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Abstract

Excited states of chemical systems are extremely important in understanding spec-

tra, chemical phenomena, as well as how a particular compound behaves in reactions.

Computationally, excited states are normally very expensive to calculate. The dif-

ficulty in calculating these states with wavefunction based methods can be mainly

attributed to the calculation of large multi-determinant wavefunctions. One reason

to use a complicated multi-determinant wavefunction is to include some of the effects

of correlation energy. The quantity of correlation energy can most simply be defined

as the reduction in energy caused by any two or more electrons trying to avoid each

other. The most common way of avoiding these computational costs is through the

use of time-dependent density functional theory (TD-DFT). TD-DFT has an excep-

tional ratio of accuracy to computational cost because it reduces the many-electron

wavefunction to a single-electron density. A single-electron quantity, however, is an

improper way to descibe an innately two-electron property like correlation energy.

Within this research we seek to alleviate the large computational costs required

to calculate excited states with a wavefunction-based method and reduce the costs to

near Hartree-Fock theory levels. We do this by using two different inexpensive excited

wavefunction methods. First we reduce our multi-determinant wavefunction to a

single-determinant wavefunction. The single-determinant wavefunction used in this

research comes from delta self-consistent field method (∆SCF) that essentially creates

excited Hartree-Fock states. Secondly we construct the simplest multi-configurational

wavefunction using a linear combination of all singly excited states with the method

known as configuration interaction singles (CIS). The reduction in wavefunction size,
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however, reduces nearly all correlation energy recovered by both methods. This is

remedied by modeling correlation energy in a computationally inexpensive manner.

A potentially accurate way to model electron correlation within the single determi-

nant wavefunction formalism is through the expectation value of a linear two-electron

operator over the Kohn-Sham single-determinant wavefunction. For practical reasons,

it is desirable for such an operator to be universal, i.e. independent of the positions

and types of nuclei in a molecule. We choose an operator expanded in a small num-

ber of Gaussians as a model for electron correlation. The accuracy of this method

is tested by computing atomic and molecular adiabatic excited states in comparison

with popular TD-DFT functionals.

The correlation operator combined with ∆SCF is found to be comparable in ac-

curacy to TD-DFT methods for both atomic and molecular excited states. ∆SCF

is limited in its applications, however, due to its inability to guarantee orthogonal

excited states which leads to unwanted spin contamination. The correlation operator

combined with CIS is found to be comparable in accuracy to TD-DFT methods for

atomic states but has a significant loss in accuracy for excited molecular states. This

drop in accuracy is theorized to be the poor description Hartree Fock theory gives

of some ground and excited state wavefunctions.. We offer some possible solutions

to these problems in the form of orthogonality constraints and a potential hybrid

method of ∆SCF and CIS [1].
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Chapter 1

Introduction

1.1 Background

Nearly every electronic structure method is designed to balance computational cost

with accuracy. The full configuration interaction method (FCI) can calculate nearly

exact information about any property of a chemical system. It does this by including

every possible electron configuration in the form of excited determinants. By in-

creasing the system size, however, one can very simply go from a relatively tractable

problem to one that would take longer than the age of the universe to complete. This

deficiency of FCI illustrates why we must make approximations within electronic

structure methods. For FCI, approximations are made that truncate the amount of

included excited state determinants to single excitations, double excitations, triple

excitations, etc. The methods used to calculate any particular property of chemical

systems follow the same chain of logic as the simplification of FCI. Each approxima-

tion added will lessen the expense of the method but normally at the cost of some of

the accuracy.

The same computational expense and accuracy balance can be found within ex-

cited state methods. If highly accurate excited state energies are desired, then one can

perform a complete active space self consistent field method (CASSCF) calculation.

This soon runs into the same problems where results are quantitatively accurate, how-

ever, computational cost grows extremely high for larger systems. It soon becomes

clear that the increase in excited state determinants is the cause of the increase of
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computational expense. Exactly like FCI, CASSCF can be reduced to restricted ac-

tive space self consistent field method (RASSCF) that limits the amount of excited

state configurations and reduces computational complexity [2].

Many excited state methods have been created that try to avoid this inclusion

of more and more determinants to increase accuracy. The most popular method

for electronic structure calculations, density functional theory (DFT), avoids using

the wavefunction altogether to decrease computational costs. By utilizing the elec-

tron density to calculate chemical properties DFT becomes cheaper than nearly all

wavefunction-based methods. Density functional theory has an extension for excited

states known as time-dependent density functional theory (TD-DFT). Because of

TD-DFT’s low computational cost and reasonable accuracy, it has become one of the

most popular methods for calculating excited states. The use of electron density to

calculate properties comes with its own set of particular deficiencies.

The biggest inherent flaw within any DFT method is the use of the electron den-

sity. The electron density is used to calculate nearly any property of a chemical

system. A probem comes when one tries to calculate a two electron phenomenon

with a single electron density. For example one can look at the correlation energy.

Correlation energy explicitly comes from two electron interactions. This is impossible

to calculate exactly in practice using DFT’s one-electron density. Within many mod-

ern correlation functionals, however, this is normally compensated for by using many

empirically derived parameters rather than ab inito or physically derived coefficients.

During this research we sought to create a wavefunction-based method for ex-

cited states that was computationally inexpensive while simultaneously being quali-

tatively accurate. To do this we avoided density functional theory as well as multi-

determinantal wavefunctions. The simplest wavefunction one can create is a single-

determinant wavefunction. By using the Hartree-Fock method (HF), one can varia-

tionally achieve the best possible ground state single-determinant wavefuntion within
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the basis set limit. When calculating excited states, however, the HF method is not

as useful. The HF method is designed to always build a single determinant wavefunc-

tion out of the lowest energy orbitals possible. Because of this, any higher excited

energy state initially calculated by the HF method, will always variationally collapse

back to the lowest energy same spin state.

1.2 ∆SCF Method

The Gill group has shown that a single-determinant wavefunction method does not

have to suffer from variational collapse when trying to calculate excited states in

a Hartree-Fock like manner [3]. This is possible by changing the criteria for which

orbitals become occupied other than only choosing the orbitals of lowest energy. This

can be done by choosing occupied orbitals that overlap the most with the orbitals

from the previous iteration of the self-consistent field (SCF) cycle. This allows the

user to initially choose the excited state electron configuration that the final single-

determinant wavefunction is comprised of. This method known as the delta self-

consistent field method (∆SCF) essentially creates an excited HF method that avoids

variational collapse back to lower same spin states.

The ∆SCF method is surprisingly accurate for excited states despite utilizing

only a single-determinant wavefunction. The single-determinant nature and the for-

mulation of the ∆SCF method does bring its own set of deficiencies. Because the

wavefunction is made of a single determinant it omits all possible contributions from

other configurations. Many excited states and some ground states require multiple

determinants to be fully and accurately described. Without these extra configura-

tions ∆SCF may give qualitatively incorrect descriptions of chemical systems. Even

without extra excited determinants, however, ∆SCF has been shown to be a qualtita-

tively accurate method for calculating energies and other properties of many chemical

systems [4].
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The second notable weakness of the ∆SCF method is introduced by the new oper-

ators required to keep the electrons in a given configuration. The calculated excited

states are not orthogonal to other lower spin states. This inability to keep excited

states orthogonal to each other will allow spin contamination. For open shell systems,

spin contamination becomes one of the greatest sources of error within unrestricted

HF and ∆SCF theory. Spin contamination occurs when an excited wavefunction be-

gins mixing improperly with lower level excited states of same spatial but different

spin symmetry. The error created by the mixing of lower energy spin states creates

qualitatively inaccurate wavefunctions for ∆SCF calculations. This deficiency affects

all unrestricted post-HF calculations of open shell system.

The third weakness of the ∆SCF method is the total lack of correlation energy.

This is a common property that it shares with the HF method. This lack of correla-

tion comes from the mean field treatment of electron repulsion as well as the single

determinant wavefunctions of both methods. The correlation energy is normally the

smallest contribution to the total energy, however, it is critical for the description of

many chemical phenomena such as dispersion, bond breaking, and bond forming.

1.3 Configuration Interaction Singles

Although FCI is prohibitively expensive for most chemical systems, it can be trun-

cated by number of excitations to create cheaper and cheaper methods. When FCI

is truncated to single excitations it becomes configuration interaction singles (CIS).

CIS uses the HF wavefunction as a reference wavefunction and then adds a linear

combination of all singly excited configurations. The first full investigation of CIS

was done by Pople [5] and found that CIS, severely truncated as it may be, can be

surprisingly useful. The determination of the CIS coefficients allows for the CIS to

relax energetically and more properly represent excited states. CIS was found to yield

accurate properties and geometries of many chemical systems in excited states.
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The first benefit of CIS is the low computational cost. CIS is comparable in

cost to HF or ∆SCF method. The addition of all first excited state determinants

adds a negligible cost to the original HF reference wavefunction. This feature is on

account of not having to calculate any extra integrals to include these new states. The

second benefit of CIS is the ability to calculate all single excitations simultaneously.

This is contrary to the previous ∆SCF method. The ∆SCF method requires an

initial ground state calculation as well as an excited state calculation performed for a

single excited state electron configuration of interest. The third benefit of CIS is the

orthogonality of all excited states tothe ground state. This property may possibly be

the most important difference from the ∆SCF method. The inability to guarantee

the orthogonality of states is the cause of most of the ∆SCF method’s deficiencies.

CIS does not change the operators so each calculated state remains orthogonal to

the ground state. Because of these collected benefits of CIS, it becomes a very good

candidate for being used in tandem with the correlation operator.

1.4 Correlation Operator

On the quest to create the cheapest yet accurate excited state wavefunction method

we begin to neglect critical components that lead to accurate wavefunction descrip-

tions. One of these components is the correlation energy. Correlation energy can

be described in two different ways, dynamic and static. Dynamic correlation comes

from electrons avoiding each other and trying to reduce their repulsion to a mini-

mum. Static correlation is a consequence of a particular state only being describable

by multiple determinants. Reducing the wavefunction model to the ∆SCF method

leads to no inclusion of static or dynamic correlation. Creating the wavefunction us-

ing the CIS method includes some static correlation but no dynamic correlation. The

standard methods of including correlation energy within any system quickly raise the

computational cost to much higher than DFT approaches.
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The correlation operator was designed to model dynamic correlation energy with-

out greatly increasing the cost of the reference method. The correlation operator

is able to model dynamic correlation as the overlaps of all basis functions with the

operator augmented with the calculated orbital coefficients. The ∆SCF method con-

tains absolutely no correlation similar to the HF method. For ∆SCF the operator

can be evaluated over the chosen basis functions and then included within the SCF

procedure or afterwards in a perturbative fashion to model the correlation energy.

The ∆SCF correlation operator will be fully discussed in Chapter 2.

The correlation operator mixed with CIS is slightly different. The CIS method

includes some correlation for excited states in the form of static correlation. CIS is

not a single-determinant method because it includes all singly excited determinants to

calculate excited states. These excited determinants, however, do not contribute any

correlation energy to the ground state because all of the singly excited determinants

are orthogonal to the ground state as described by Brillouin’s theorem [6]. CIS still

inherently contains no dynamic correlation. Therefore CIS is a promising candidate

for treatment with the correlation operator. The full treatment and results of the

CIS correlation operator can be found in Chapter 3.
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Chapter 2

∆SCF Correlation Operator

2.1 Methods

Energy Expression

The correlation operator is designed as a perturbation to the traditional non-relativistic

Born-Oppenheimer Hamiltonian. The traditional Hamiltonian, Ĥ0, normally con-

tains a summation of one-electron terms, ĥi, and of two-electron interactions, 1
rij
, but

will now contain a perturbation, Ĥ ′, that is a two electron operator known as the

correlation operator, Ĉij.

Ĥ = Ĥ0 + Ĥ ′ (2.1)

Ĥ =
∑
i

ĥi +
∑
i>j

1
rij

+
∑
i>j

Ĉij (2.2)

Energy, E, is evaluated as an expectation value of the modified Hamiltonian in Equa-

tion 2.2 over the Kohn-Sham wavefunction, ΦKS.

E = 〈ΦKS|Ĥ|ΦKS〉 (2.3)

For the ground state, the energy expression is very similar to the evaluation of density

functionals within the Kohn-Sham formulation of DFT. The modified Hamiltonian is

analogous to an exchange-correlation functional where exact exchange is used for the

exchange portion and the correlation operator is evaluated for the correlation portion.

In development of the correlation operator, the single determinant wavefunction ΦKS

is varied to only minimize the mean field portion of the total energy. This leads the

calculated wavefunction to be identical to a Hartree-Fock wavefunction.
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Operator expression

The formulation of the correlation operator first begins with a generic linear operator.

Any generic linear operator can be expanded in a complete set of functions gi and

coefficients Oi,j:

Ô =
∑
i,j

Oi,j|gi〉〈gj|,

with coordinates of functions gi spanning the operator domain. The translational and

rotational invariance of the universal two-electron correlation operator implies that

the expansion functions gi should depend only on a relative coordinate ~r12 = ~r1−~r2 as

gi = gi(~r12). It is convenient to break the operator into radial and angular parts. Both

the semiclassical [7] and the harmonic [8] expressions of the operator are diagonal in

the angular variables of 3D vector ~r12

Ĉ =
∑
l,m,i,j

C l,m
i,j |Yl,m(θ, φ)gi(r12)〉〈Yl,m(θ, φ)gj(r12)|, (2.4)

with ~r12 = (r12, θ, φ) and Yl,m(θ, φ) being spherical harmonics.

Previous studies on correlation energy with tight hookium [8] show that the mag-

nitude of the leading expansion coefficients diminishes fast with the increase in l, with

the dominant contribution from the spherically symmetric l = 0 term, which we label

with the superscript s

Ĉs =
∑
i,j

Cs
i,j|gi(r12)〉〈gj(r12)| . (2.5)

The Ĉs component of the operator is unable to fully describe some electron inter-

actions due to its symmetric nature. It is therefore advantageous to add an anti-

symmetric correction. The leading correction to the l = 0 term is given by an

anti-symmetric l = 1 p-term, written in Cartesian representation as

Ĉp =
∑
i,j

Cp
i,j

(
|x12gi(r12)〉〈x12gj(r12)|+ |y12gi(r12)〉

×〈y12gj(r12)|+ |z12gi(r12)〉〈z12gj(r12)|
)
. (2.6)
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Two considerations go into the functions chosen for gi. First it is convenient

to choose gi to be functions with simple matrix elements over atom-centered basis

functions, such as a set of even-tempered Gaussians gi = exp (−αir2
12), αi = α0 ×

βi, with optimally chosen α0 and β parameters [9]. Secondly gi is chosen to be

eigenfunctions of the harmonic oscillator. Because the harmonic oscillator is so well

studied, it will be easier to predict and analyse the properties of the correlation

operator.

Correlation energy is known to be nearly independent of the uniform scaling trans-

formation of space [10], and exactly independent of it in the weak correlation limit.

This (i) constrains the coefficients Ci,j and (ii) requires the set of exponents of the

functions gi be, in principle, infinite. Note that in the case of infinite expansion, the

expectation value of the correlation operator should be approximately independent

of α0. The simplest approach is to limit the expansion of Eq. 2.5 to a single term

but with the adapted value of exponent α0. The adaptation of α0 is particularly

simple when the operator is evaluated in the Atomic Orbital (AO) basis, with each

basis function expanded as a linear combination of the primitive (Gaussian or Slater)

exponentials. Setting α0 to be proportional to a mean value of exponents assures the

scale invariance of the overall expression. We choose

α0 = 1
2

√
α1α2α3α4

α1 + α2 + α3 + α4
( 1
α1

+ 1
α2

+ 1
α3

+ 1
α4

) (2.7)

as this choice achieves the best overlap between Ĉs and four Gaussian primitives,

each on the 〈bra| or |ket〉 side in the basis function of either electron 1 or 2.

To summarize, the expectation value of the correlation operator over the sin-

gle determinant Kohn-Sham wavefunction is evaluated as a linear combination over

contributions from individual basis functions,

〈ΦKS|Ĉ|ΦKS〉 =
∑

λ,µ,η,ν

Pλ,µPη,ν〈χλ(~r1)χη(~r2)|Ĉs + Ĉp|

× (χµ(~r1)χν(~r2)− δσ1,σ2χν(~r1)χµ(~r2)〉 . (2.8)
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The summation runs over all one-electron basis function indices, Pλ,µ and Pη,ν are

one-electron density matrices summed over both spin contributions; δσ1,σ2 is zero

for different spin contributions of the two P matrices, and 1 otherwise. Each basis

function, χλ(~r) = ∑
i b
λ
i exp (−αλi (~r − ~Rλ)2), is expressed as a linear combination over

the primitive Gaussians, which (using only the Ĉs component as an example) yields

〈χλ(~r1)χη(~r2)|Ĉs|χµ(~r1)χν(~r2)〉 =
∑
i,j,k,l

Cs
i,j,k,l , (2.9)

with the expression for the integral over primitives Cs
i,j,k,l given in the Appendix.

Two points about the correlation operator expression are worth emphasizing.

First, the Gaussian(s) in the operator expression are centered at the origin of ~r12,

regardless of the center positions of the Gaussian basis functions. Second, the Ĉs

contribution is usually dominant even when evaluated over p-type atomic or molec-

ular basis functions.

The reduction of the operator expression, essentially to a single Gaussian for each

l value, makes it unnecessary to use model systems to derive the Ci,j expansion co-

efficients, or to split the operator into mean-field and response parts, as was done in

the tight hookium study [8]. In practice, essentially every density functional model

used in quantitative studies adjusts the overall normalization coefficient of the func-

tional contribution. The current version of the correlation operator only contains two

paramaters used as normalization coefficients to the Ĉs and Ĉp components of the

operator. The ratio of the two normalization coefficients corresponds to the correla-

tion energy within the Hooke’s law atom. The single coefficient for the Ĉs component

has a value of −0.0435159. The single coefficient for the Ĉp component has a value

of −0.0029605.
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Wavefunction model

The correlation operator is designed to give correlation energy as an expectation value

over a single-determinant wavefunction. The single-determinant wavefunction is well-

known for being deficient in describing excited states, as well as, some ground state

systems due to the neglect of extra electron configurations. The single-determinant

formalism was chosen due to its simplicity and its accuracy regardless of not includ-

ing extra excited determinants. The ∆SCF method of describing single-determinant

excited states was chosen to be investigated with the correlation operator because

it has many desirable qualities for calculating excited states. For ground state cal-

culations the ∆SCF method is the Hartree-Fock method. The ∆SCF method also

gives some excited states as long as they have a different symmetry from all other

lower energy states. It is normally impossible to constrain a particular symmetry

using the traditional SCF procedure without variationally collapsing to the lowest

same-symmetry state. It is possible to converge to these higher excited states and

avoid variational collapse by using an augmented SCF procedure developed by the

Gill group known as the Maximum Overlap Method (MOM). Initial-guess orbitals

are occupied for the desired excited state and MOM maximizes overlap between oc-

cupied orbitals during each successive SCF iteration. The calculated wavefunction

essentially creates HF excited states for states that were impossible to reach using

the traditional SCF procedure. The change in the SCF procedure, however, leads to

as Gill describes “quasi-orthogonality” [3]. This undesirable property of MOM and

∆SCF will be further discussed in the next section.

The correlation operator is utilized within the ∆SCF formalism in two ways, per-

turbatively and self-consistently. The perturbative approach maybe adequate because

the correlation energy contribution is typically one of the smallest contributions and

thus does not perturb the overall wavefunction very significantly. The perturbative

approach also allows us to re-adjust the normalization coefficients without redoing
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the calculations. The same formulation of the ∆SCF correlation operator also has the

option to be used within the self-consistent procedure. The addition of the correlation

operator into the self-consistent procedure allows the operator to act as a response

term. Instead of acting as a perturbative correction that has no effect on the opti-

mized wavefunction, the operator now dynamically changes the wavefunction through

each SCF cycle. This method allows us to see how our model of electronic correlation

is able to affect the single determinant wavefunction as it is being optimized rather

than perturbatively added to a totally uncorrelated wavefunction.

Basis sets

The correlation operator is evaluated as an expectation value over a single determi-

nant wavefunction. The basis sets were carefully chosen to eliminate any basis set

error that may affect the accuracy of the calculated adiabatic excitation energies. Due

to the single determinant nature of the wavefunction, it is relatively easy to choose a

significantly large basis set to reach the basis set limit. Two different basis sets were

used for atomic and molecular calculations respectively. Atomic calculations require

far more flexibility within the diffuse domain when calculating excited states. The

dependence of the ∆SCF method on the quality of the basis set can be seen in Table

2.1.

Table 2.1 Comparison of the energy of the 3P state of
He calculated using the ∆SCF method with basis sets
including subsequently more diffuse basis functions.
All deviations are from experiment. Energies reported
in atomic units.

Basis Deviation % error
6-311G∗∗ 0.831771 107.96
6-311++G 0.291918 37.89
6-311(2+,2+)G 0.291848 37.88
6-311(3+,3+)G 0.066539 8.64
Even-Tempered -0.040171 -5.21
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For atomic calculations we used a modified version of the Universal Gaussian

Basis Set (UGBS) [11]. It is based on a fully optimized uncontracted 12s9p atomic

basis, augmented in the diffuse region to 17s12p size. The custom basis set is also

augmented with even-tempered 9d3f uncontracted basis functions. The calculation

of molecular excited states does not have as strict of basis set conditions as calculating

atomic states. Molecular calculations are not required to have such a large flexibility

in the diffuse domain. Because of this we chose to use the large but more traditional

G3MP2Large basis set. The G3MP2Large basis set is large enough that basis set

error can be neglected for all molecular calculations presented in this investigation.

2.2 Results and Discussion

The analysis of the results will be split into two data sets: atoms and molecules. All

calculations were performed using the developer’s version of the electronic structure

package of QCHEM [12]. The value of the correlation energy was computed two

separate ways as an expectation value of the correlation operator during the SCF

procedure and perturbatively after the SCF procedure while using a spin-unrestricted

formalism.

Atoms

Our atomic test set consisted of low-level excited states of the first and second row

atoms, shown in Table 2.2. The set contains same-spin and spin-flip excited states.

The experimental values are taken from the NIST database [13]. No spin-orbit correc-

tions were used in the calculations. The largest spin-orbit correction in the set would

likely be for the sulfur excitation energy. Its magnitude is less than 10−3 hartree [14],

which is sufficiently small to be neglected. The computed excitation energies are re-

ported as deviations from the experimental values, with positive numbers indicating

overestimation of excitation energy. All data are reported in atomic units.
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Table 2.2 Atomic excitation energies computed with a custom
even-tempered basis set. Experimental excitation energies are
taken from NIST [13]. The excitation energies computed with the
correlation operator are reported as the deviation from the
experiment. Energies reported in atomic units.

Atom Transition E(exp) ∆E(ĈPert) ∆E(ĈSCF )
He 1S → 3S 0.728357 -0.007805 -0.007809
He 1S → 3P 0.770416 -0.006074 -0.006081
Li 2S → 2P 0.067906 0.001697 0.001686
Be 1S → 3P 0.100140 -0.012758 -0.012878
B 2P → 2S 0.182434 0.013993 0.013554
C 3P → 5S 0.153790 -0.006637 -0.006716
N 4S → 4P 0.379470 0.009089 0.008728
O 3P → 5S 0.336113 -0.000986 -0.001313
F 2P → 4P 0.466595 -0.004448 -0.004848
Ne 1S → 3P 0.610740 -0.006299 -0.006728
Na 2S → 2P 0.077258 0.001197 0.001393
Mg 1S → 3P 0.099558 -0.004104 -0.004375
Al 2P → 4P 0.132251 -0.004562 -0.004858
Si 3P → 5S 0.151845 -0.005661 -0.006007
P 4S → 4P 0.254879 0.012686 0.012129
S 3P → 5S 0.239771 0.019488 0.018888
Cl 2P → 2P 0.327866 0.021063 0.020202
Ar 1S → 3P 0.424394 0.024937 0.023842

RMS 0.011362 0.011064

The correlation operator data are separated into the self-consistent and perturba-

tive formalisms. For most atoms it can be seen that the self-consistent and pertur-

bative correlation operator are very close in accuracy, with less than a millihartree

difference. A more significant difference can be seen for the heavier atoms such as

P, S, Cl, and Ar where the difference between the self-consistent and perturbative

corrections become more and more pronounced. This is promising since the errors

also grow consistently larger for heavier atoms. This is a notable problem and most

likely due to the qualitative accuracy of a single-determinant model for the atomic

wavefunction used in the test.

The self-consistent and perturbative correlation operator performances are com-

pared to the ∆SCF method, configuration interaction singles (CIS), and TD-DFT
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with three popular functionals, B3LYP [15], PBE0 [16], and M06-2X [17]. The TD-

DFT and CIS results were calculated with the multiplicities at the ground and excited

states rather than allowing the calculations to flip the spins from one multiplicity to

another. For example, consider the 1S → 3S transition of helium. The ground state

was calculated at a multiplicity of one. The excited triplet was calculated from a

multiplicity of three rather than one so as not to require a spin flip in the calculation.

This increases the accuracy of all the density functionals and CIS by nearly a factor of

2. The root mean square deviations and mean absolute deviations are given in Table

2.3. Both the self-consistent and perturbative correlation operators outperformed all

of the TD-DFT functionals and CIS as well as increasing the accuracy of ∆SCF by

a factor of more than 3.

Table 2.3 RMS values and mean
absolute deviations for atomic
excitation energies obtained with
the correlation operator methods,
∆SCF, CIS, and TD-DFT
functionals. Energies reported in
atomic units.

Method RMS 〈|∆E|〉
ĈPert 0.011362 0.009082
ĈSCF 0.011064 0.009002
∆SCF 0.039363 0.033997
B3LYP 0.026867 0.016720
PBE0 0.015897 0.010734
M06-2X 0.018209 0.014459
CIS 0.040393 0.034165

Molecules

The molecular test set was chosen to include all diatomics made of first row atoms

and hydrogen for which experimental excited state geometry and energy are available

[18], and with an excited state that did not have a lower level excited state of same
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spatial but different spin symmetry. The last restriction is necessary because the

spin-unrestricted calculation can become spin-contaminated by mixing with a lower-

energy spin state, yielding a qualitatively incorrect excited state wavefunction [19].

The contaminated spin states are often unbound and thus could not be used for

adiabatic excitation calculation. The molecular test set and correlation operator

results are shown in Table 2.4.

Table 2.4 Diatomic excitation energies computed with the G3MP2Large basis set.
Experimental excitation energies are taken from reference [18]. All computed data
are reported as the deviation from the experiment. Energies are in atomic units,
bond distances are in Angstroms.

Molecule Re(Grnd) Transition Re(Excit) E(exp) ∆E(ĈPert) ∆E(ĈSCF )
BeH 1.3431 2Σ→ 2Π 1.3327 0.09125 0.00716 0.00636
BeF 1.3614 2Σ→ 2Πi 1.3941 0.15142 0.00790 0.00767
BF 1.262 1Σ→ 3Π 1.308 0.13279 -0.01231 -0.01279
BO 1.2049 2Σ→ 2Πi 1.3524 0.10861 -0.01278 -0.01160
C2 1.2425 1Σg → 3Πu 1.3119 0.00326 0.00346 0.00345
CN 1.1718 2Σ→ 2Πi 1.2327 0.04211 -0.02781 -0.02327
CO 1.1281 1Σ→ 3Πr 1.2093 0.22184 0.00511 0.00103
N2 1.094 1Σg → 3Σu 1.2866 0.22874 0.05378 0.05376
NH 1.038 3Σ→ 3Π 1.037 0.13581 0.00604 0.00582
OH 0.9706 2Πi → 2Σ 1.0121 0.14891 0.00636 0.00631
RMS 0.02052 0.01979

On average the adiabatic molecular excitation energies are much smaller than the

atomic excitation energies. Contrary to the typical atomic system, it is far less com-

mon for only a single determinant to be able to properly describe the wavefunction of

a molecular system. For instance, the two ∆SCF operators’ errors for the excitation

energy in CN is more than 50 %. To investigate this issue, we have performed Full

Configuration Interaction (FCI) calculations in 9 orbital active space with core elec-

trons frozen, using 6-311G(3d) basis using GAMESS program [20]. Both the ground
2Σ and the excited 2Πi states show significant multireference character, as judged by

the magnitudes of the determinant expansion coefficients in the wavefunction. The

ground state has a second determinant expansion coefficient of 0.1527, and the excited
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state has a second determinant expansion coefficient of −0.1262. The FCI excitation

energy is 0.04714, which is much closer to the experimental value of 0.04211 than the

ĈPert and ĈSCF values of 0.01430 and 0.01884 respectively.

Table 2.5 RMS values and
mean absolute deviations for
diatomic excitation energies
obtained with the correlation
operator methods, ∆SCF, CIS,
and TD-DFT functionals.
Energies reported in atomic
units.

Method RMS 〈|∆E|〉
ĈPert 0.02052 0.01427
ĈSCF 0.01979 0.01321
∆SCF 0.02146 0.01734
B3LYP 0.00736 0.00575
PBE0 0.01234 0.01044
ωB97X 0.00725 0.00593
M06-2X 0.00730 0.00421
CIS 0.05765 0.03830

The perturbative and self-consistent correlation operator performances are com-

pared to the ∆SCF method, configuration interaction singles (CIS), and TD-DFT

with B3LYP [15], PBE0 [16], ωB97X [21], and M06-2X [17] functionals. The root

mean square deviations and mean absolute deviations are given in Table 2.5. Overall,

the correlation operator improves the ∆SCF results. Looking at each of the correla-

tion operator results separately we see that the self-consistent form performs superior

to the correlation operator as a perturbative correction. Comparing the self-consistent

results to the perturbative results can help to reveal how the correlation operator al-

ters the ∆SCF wavefunction. We can see that on average the correlation operator

as a response term within the SCF procedure changes the wavefunction in a way

that more closely resembles a correlated wavefunction. We find, however, that both

correlation operator approaches are inferior to most density functionals used within
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TD-DFT method. We theorize that this has to be due to the single-determinant

description of the excited states. The gradual improvement from the ∆SCF method

to the perturbative correction to the self-consistent correction is very promising.

2.3 Conclusions

The goal of this research was to test the correlation operator’s ability to accurately

model electron correlation in a balanced and computationally inexpensive way. This

was achieved by adapting the correlation operator to work in cooperation with the

∆SCF method in a perturbative and self-consistent manner. We found that overall

the correlation operator improves the accuracy of the ∆SCF method by more than a

factor of three for atomic excitation energies and by several milli-hartrees on average

for diatomic systems. We also found that when we compare the two ∆SCF correlation

operator versions, the self-consistent version is superior. This was expected due

to the response like nature of the self-consistent correlation operator. We see that

when the correlation operator is allowed to alter the wavefunction, the orbitals relax

even further and most importantly towards yielding the true experimental adiabatic

excitation energies.

The results show a true improvement of the ∆SCF method using the correlation

operator, however, we are limited by some of the properties of the ∆SCF method.

The test set was chosen carefully so as to only show the deficiencies of the correlation

operator. Many other molecules could not be tested due to the non-orthogonal states

calculated by the ∆SCF method. The combination of the non-orthogonality of the

calculated states and the nature of unrestricted Hartree-Fock formalism leads to spin

contamination that gives qualitatively inaccurate states. These large errors are unable

to be corrected by the small correction that is the correlation operator. This is why

we choose the CIS wavefunction model within the next chapter. The more orthogonal

states of CIS, in theory, should be a better fit for the correlation operator.
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Chapter 3

CIS Correlation Operator

3.1 Methods

The CIS correlation operator is almost identical to the perturbative ∆SCF operator.

The procedure for evaluating the operator over all basis functions is fully described

in Section 2.1 in the previous chapter. Nearly the only difference between the CIS

correlation operator and the perturbative ∆SCF correlation operator is the alloca-

tion of correlation operator integrals. The CIS method evaluates not just a single

determinant wavefunction like the ∆SCF method but all singly excited states. The

correlation operator is evaulated over many combinations of singly excited states

instead of only one state of interest.

Wavefunction Model

The simplest form of a multi-configurational wavefunction can be obtained from the

configuration interaction singles procedure. The full configuration interaction wave-

function is a linear combination of all possible excited electron configurations:

|ΨFCI〉 = C0|Φ0〉+
∑
i,a

Ca
i |Φa

i 〉+
∑
i,j,a,b

Cab
ij |Φab

ij 〉+
∑

i,j,k,a,b,c

Cabc
ijk |Φabc

ijk〉+ ..., (3.1)

where i, j, and k are occupied orbitals that are being excited from and a, b, and

c are virtual orbitals being excited to. Truncation of equation 3.1 at the first term

returns the Hartree-Fock wavefunction and truncation at the second term becomes

the definition of the CIS wavefunction.
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The CIS wavefunction is chosen to be a linear combination of all possible singly

excited determinants for several reasons. It is possible to have a singly excited wave-

function that is made of only one determinant. This procedure would be the equiv-

alent of using one determinant from the many that are within the CIS expansion

written generally as: |Ψ〉 = |Φa
i 〉. The first disadvantage of this approach is that

occupied orbital i and virtual orbital a have been variationally optimized for only

the ground state. The orbitals will not be relaxed and at their lowest possible en-

ergies within this configuration. The evaluation of this wavefunction would be more

consistent with the ionization energy of the chemical system rather than the actual

excited state. The second disadvantage is that this approach totally neglects any

possible degeneracy within the system. Promoting an electron to or from only one

degenerate orbital does not completely describe a particular excitation. Excitations

to or from degenerate orbitals requires contributions from all degenerate orbitals.

Using one unrelaxed, singly excited determinant makes this impossible. These defi-

ciencies are overcame by using a linear combination of all possible singly excited state

determinants [5].

The CIS wavefunction is convenient to use for calculating excited states for sev-

eral reasons. First, the computational cost of calculating the excited states within

the CIS formalism negligibly increases the overall computational cost. CIS does not

require the calculation of extra integrals because they are all defined within the cal-

culation of the reference Hartree-Fock wavefunction. The most expensive part of the

CIS procedure is the transformation from the atomic orbital basis to a molecular

orbital basis. This is a very desirable attribute for use with the correlation operator.

Nearly all ab-initio wavefunction-based excited state methods are multiple orders of

magnitude more computationally expensive than Hartree-Fock theory. CIS is one of

the only excited state methods that remains computationally inexpensive compared

to an excited state method like TD-DFT.
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Second, contrary to the ∆SCF method CIS calculates all singly excited states si-

multaneously. The formulation of the ∆SCF method only allows for one excited state

to be calculated at a time and requires separate subsequent calculations to calculate

other states. This property of the CIS method is not only computationally convenient

but also gives valuable information about the vertical ordering of states. The CIS

method can calculate any number of excited states above the ground state depending

on the amount of virtual orbitals that are calculated from the initial Hartree-Fock

reference wavefunction. The calculation of these states at any state’s given equilib-

rium bond distance allows the user to see how all of the other states are ordered and

are able to compare vertical excitation energies of all states at once. This is also

a boon to the user because many points on different excited state potential energy

surfaces can be calculated and compared simultaneouly. This is all contrary to the

∆SCF method where only single potential energy surface points and single excitation

energies can be evaluated with each calculation.

Third, CIS is guaranteed to create excited states that are orthogonal to the ground

state. This third property may be the most important advantage over ∆SCF [22].

The guaranteed orthogonality to the ground state within CIS is not matched by the

∆SCF method. Because the wavefunction solutions to the ∆SCF method are cal-

culated using different operators, the excited state wavefunctions cannot therefore

be guaranteed to be orthogonal to the ground state or one another. The ∆SCF

method can only rely on symmetry to guarantee that certain states are orthogo-

nal to each other. The CIS method relies on the Brillouin theorem. One of the

corollaries of this theorem states that any two determinants that differ by only one

orbital are completely orthogonal from one another. For CIS this is relevant because

〈Φa
i |Ĥ|ΦHF 〉 = 0. By definition all singly excited determinants within CIS differ by

one orbital from the reference HF wavefunction. This orthogonality constraint within

the CIS method is a critical difference between itself and the ∆SCF method.
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Energy Expression

The electronic energy of an excited state within configuration interaction singles

is evaluated as an expectation value of a sum of an exact non-relativistic elec-

tronic Hamiltonian, Ĥ, that consists of the one-electron terms, ĥi, and the electron-

electron Coulomb interaction, 1
rij
, and a correlation operator, Ĉ, evaluated over

a wavefunction made of a linear combination of all singly excited determinants,

|ΨCIS〉 = C0|Φ0〉+
∑
i,aC

a
i |Φa

i 〉. When evaluated as an expectation value over the non-

relativistic Hamiltonian and correlation operator, we find three distinct hamiltonian

matrix elements:

H00 = 〈Φ0|Ĥ + Ĉ|Φ0〉 (3.2)

H0a = 〈Φ0|Ĥ + Ĉ|Φa
i 〉 (3.3)

Hab = 〈Φa
i |Ĥ + Ĉ|Φb

j〉. (3.4)

The first matrix element in equation 3.2 returns the ground state Hartree-Fock

energy with the calculated value for the correlation operator. This value is the equiv-

alent to evaluating a ground state single determinant wavefunction with the per-

turbative correlation operator. The second matrix element type in equation 3.3 is

the overlap of the reference HF wavefunction with any singly excited determinant

over the Hamiltonian with the correlation operator. All matrix elements of this

type reduce to only correlation operator elements. Because of the Brillouin theorem,

〈Φa
i |Ĥ|ΦHF 〉 = 0. Within CIS, the Brillouin theorem does not allow any interaction

between the ground state and singly excited determinants. Because the correlation

operator integrals are added within the CIS matrix instead of during the SCF proce-

dure for the HF reference wavefunction, this form of the correlation operator does not

follow Brillouin’s theorem. This means that all H0a = 〈Φ0|Ĥ + Ĉ|Φa
i 〉 are equivalent

to H0a = 〈Φ0|Ĉ|Φa
i 〉 allowing for interaction between the singly excited determinants

and the reference wavefunction. The third general matrix element in equation 3.4
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creates many cross terms between all other singly excited determinants. All of these

other matrix elements are easily evaluated using the Slater-Condon rules. A more

descriptive evaluation of these matrix elements are found in the Appendix.

The total electronic energy of the ground and excited states are evaulated as

eigenvalues of the Hamiltonian matrix. The resultant matrix is diagonal with all the

ground and excited state energies along the diagonal. The variational optimization

of the CIS coefficients allows all occupied orbitals in each electronic excited state to

relax. This allows for the calculated state to better represent the actual excited state

wavefunction rather than an ionized state as if the wavefunction only contained a

single excited determinant.

3.2 Results and Discussion

The analysis of the results will be split into two data sets: atoms and molecules. All

calculations were performed using the developer’s version of the electronic structure

package of QCHEM [12]. The value of the correlation energy was computed as an

expectation value of the correlation operator after the SCF procedure of the refer-

ence single-determinant wavefunction and used within CIS formalism. All data are

calculated while using spin-unrestricted formalism.

Atoms

Our atomic test set consists of low-level excited states of the first and second row

atoms, shown in Table 2.2. The set contains same-spin and spin-flip excited states.

The experimental values are taken from the NIST database [13]. No spin-orbit cor-

rections were used in the calculations. The computed excitation energies are reported

as deviations from the experimental values, with positive numbers indicating overes-

timation of excitation energy. All data are reported in atomic units.
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Table 3.1 Atomic excitation energies computed with a custom
even-tempered basis set. Experimental excitation energies are taken from
NIST [13]. The excitation energies computed with the correlation operator
are reported as the deviation from the experiment. Energies reported in
atomic units.

Atom Transition E(exp) ∆E(ĈPert) ∆E(ĈSCF ) ∆E(ĈCIS)
He 1S → 3S 0.728357 -0.007805 -0.007809 -0.007809
He 1S → 3P 0.770416 -0.006074 -0.006081 -0.006370
Li 2S → 2P 0.067906 0.001697 0.001686 -0.000441
Be 1S → 3P 0.100140 -0.012758 -0.012878 -0.012879
B 2P → 2S 0.182434 0.013993 0.013554 0.016129
C 3P → 5S 0.153790 -0.006637 -0.006716 -0.020267
N 4S → 4P 0.379470 0.009089 0.008728 0.005249
O 3P → 5S 0.336113 -0.000986 -0.001313 -0.055413
F 2P → 4P 0.466595 -0.004448 -0.004848 -0.042371
Ne 1S → 3P 0.610740 -0.006299 -0.006728 0.001089
Na 2S → 2P 0.077258 0.001197 0.001393 -0.003662
Mg 1S → 3P 0.099558 -0.004104 -0.004375 0.007010
Al 2P → 4P 0.132251 -0.004562 -0.004858 0.007499
Si 3P → 5S 0.151845 -0.005661 -0.006007 -0.002541
P 4S → 4P 0.254879 0.012686 0.012129 0.011169
S 3P → 5S 0.239771 0.019488 0.018888 0.012876
Cl 2P → 2P 0.327866 0.021063 0.020202 0.029001
Ar 1S → 3P 0.424394 0.024937 0.023842 0.036735

RMS 0.011362 0.011064 0.021653

The atomic results of the CIS correlation operator are presented in Table 3.1.

These results are also compared with the two versions of the ∆SCF correlation oper-

ator. Comparing all versions of the correlation operator we find that the CIS operator

performs nearly twice as inaccurately as either of the two ∆SCF formulations. We

do find that 13 of the 18 tested atomic excitation energies calculated by the CIS

correlation operator are comparable or better than the ∆SCF calculations. Between

the ∆SCF and CIS versions, however, very large deviations occur for the 3P → 5S

oxygen transition and 2P → 4P fluorine transition that severely affect the final RMS.

The pattern of decreased accuracy for heavier atoms is evident for the CIS operator

just as it can be seen for the ∆SCF operator. This is most likely due to the poor

accuracy of describing these atomic wavefunctions using only a single-determinant.
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Table 3.2 RMS values and mean absolute
deviations for atomic excitation energies
obtained with the correlation operator
methods, ∆SCF, CIS, and TD-DFT
functionals. Energies reported in atomic
units.

Method RMS 〈|∆E|〉
ĈCIS 0.021653 0.015473
ĈPert 0.011362 0.009082
ĈSCF 0.011064 0.009002
CIS 0.040393 0.034165

∆SCF 0.039363 0.033997
B3LYP 0.026867 0.016720
PBE0 0.015897 0.010734

M06-2X 0.018209 0.014459

The CIS correlation operator is compared to the perturbative and self-consistent

versions of the ∆SCF correlation operator, the ∆SCF method, CIS an TD-DFT

with three popular functionals, B3LYP [15], PBE0 [16], and M06-2X [17]. The root

mean square deviations and mean absolute deviations are given in Table 3.2. When

comparing the data we find that the CIS correlation operator is inferior to both of

the ∆SCF operator formulations. Despite this inferiority to the ∆SCF correlation

operator, the CIS correlation operator is quite comparable to the TD-DFT functional

results. The final point that can be taken out of this is the comparison with just

CIS. The CIS correlation operator nearly doubles the accuracy of its base method.

Although the results were not as impressive as the ∆SCF correlation operator, it is

very encouraging for future studies using CIS like wavefunctions.

Molecules

The molecular test set was chosen to include all diatomics made of first row atoms

and hydrogen for which experimental excited state geometry and energy are available

[18], and with an excited state that did not have a lower level excited state of same
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spatial but different spin symmetry. The last restriction is necessary because the

spin-unrestricted calculation can become spin-contaminated by mixing with a lower-

energy spin state, yielding a qualitatively incorrect excited state wavefunction [19].

The contaminating spin states are often unbound and thus could not be used for

adiabatic excitation calculation. The molecular test set and correlation operator

results are shown in Table 3.5.

Table 3.3 RMS values and mean
absolute deviations for diatomic
excitation energies obtained with
the correlation operator methods,
∆SCF, CIS, and TD-DFT
functionals. Energies reported in
atomic units.

Method RMS 〈|∆E|〉
ĈCIS 0.07285 0.04751
ĈPert 0.02052 0.01427
ĈSCF 0.01979 0.01321
CIS 0.05765 0.03830

∆SCF 0.02146 0.01734
B3LYP 0.00736 0.00575
PBE0 0.01234 0.01044
ωB97X 0.00725 0.00593
M06-2X 0.00730 0.00421

From the results it can be seen that the CIS correlation operator results are

very underwhelming compared to the promising atomic results. The CIS correlation

operator not only performs poorly compared to the perturbative and self-consistent

∆SCF correlation operators but also makes the results of CIS worse. For example,

the 2Σ → 2Πi transition of CN increases in error by nearly 11 milli-hartrees from

a deviation from experiment of 0.14423 to 0.15501 when including the correlation

operator. The biggest problem with these deviations, however, is not the fact that the

correlation operator makes the adiabatic excitation energy worse but how inaccurate

the CIS method is initially. The CIS method calculates the excitation energy to be
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0.14423 hartrees above the exerimental value. Within CN it can be seen that CIS

calculates the excited state wavefunction completely and qualitatively wrong. This

discrepancy between theory and experiment may show that CIS is not able to calculate

an accurate enough wavefunction to be able to benefit from the correlation operator.

Although the correlation operator can correct some minor errors it is not designed

to make huge alterations to incorrect wavefunctions. The same phenomenon occured

for the ∆SCF correlation operator for highly spin contaminated wavefunctions.

The CIS correlation operator performance is compared to the perturbative and

self-consistent ∆SCF correlation operator formulations, the ∆SCF method, configu-

ration interaction singles (CIS), and TD-DFT with B3LYP [15], PBE0 [16], ωB97X

[21], and M06-2X [17] functionals. The root mean square deviations and mean abso-

lute deviations are given in Table 3.3. From the results it can be seen that the CIS

correlation operator is far inferior to all tested TD-DFT functionals as well as its base

method CIS. We do not believe that the correlation operator is to blame for these

poor results. We can already see that the CIS method performs very poorly with an

RMS of 0.05765 and a mean absolute error of 0.03830. Excluding the CIS correlation

operator, CIS performs the worst by a factor of 3 over the next worst method. This

initially led us to believe that something must be inherently wrong within CIS to

have such poor initial results.

To better elucidate this problem, we examine the difference between CIS and the

more accurate TD-DFT with the B3LYP functional. We took a closer look at the
2Σ→ 2Πi transition of BO. CIS deviated from the experimental adiabatic excitation

energy of this state by nearly 100 milli-hartrees. The B3LYP functional, however, only

had a deviation from experiment of approximately 8 milli-hartrees. These deviations

differ by over a factor of 10, therefore, we can almost certainly say that B3LYP

creates a much closer example of the exact wavefunction than CIS. Because of this

we compare the results of the first three excited state energies of CIS with B3LYP in
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Table 3.4. The highlighted sections are the 2Σ→ 2Πi transition of BO we calculated

within this test set. We find that the B3LYP wavefunction accurately describes the
2Σ → 2Πi transition as the first excited state. The CIS method, on the other hand,

equates the same transition to the third excited state. The CIS method is unable to

calculate the proper energy or order of excited states.

Table 3.4 The comparison of the first 3 excited states of the BO molecule
calculated with CIS, time-dependent B3LYP, and CIS using the ground state
B3LYP wavefunction. Energies reported in atomic units.

CIS TD-B3LYP CIS(B3LYP)
State Transition ∆E Transition ∆E Transition ∆E

3rd Excited 1π → 3σ 0.22479 3σ → 1π∗ 0.23149 3σ → 1π∗ —
2nd Excited 3σ → 1π∗ 0.20586 1π → 1π∗ 0.19111 1π → 1π∗ —
1st Excited 1π → 1π∗ 0.19643 1π → 3σ 0.11464 1π → 3σ —

We performed one last test, however, to test for the accuracy of CIS in calculating

the particular BO excited state. The CIS method is based upon the expansion of the

reference HF wavefunction. If CIS is the main culprit for the inability to describe the

excited states of BO, then an accurate reference wavefunction used within the CIS

formalism should theoretically also calculate the wrong excited state. The B3LYP

ground state Kohn-Sham wavefunction when used with CIS rather than the HF ref-

erence wavefunction should calculate the wrong order of states. To achieve this we

calculated the ground state B3LYP wavefunction and used it as the initial guess with

zero SCF iterations within a CIS calculation. The order of the calculated excited

states are labeled in Table 3.4 under CIS(B3LYP). When performed in this manner,

we find that CIS acurately predicts the order of the first three excited states of BO.

This leads us to the conclusion that the reference HF wavefunction may be too poor

of a representation of the groundstate wavefunction to accurately describe excited

states within CIS using the correlation operator.
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Table 3.5 Diatomic excitation energies computed with the G3MP2Large basis set. Experimental excitation energies
are taken from reference [18]. All computed data are reported as the deviation from the experiment. No spin-orbit
corrections were used in the calculations. Energies are in atomic units, bond distances are in Angstroms.

Molecule Re(Grnd) Transition Re(Excit) E(exp) ∆E(CIS) ∆E(ĈCIS) ∆E(ĈPert) ∆E(ĈSCF )
BeH 1.3431 2Σ→ 2Π 1.3327 0.09125 0.00898 0.00934 0.00716 0.00636
BeF 1.3614 2Σ→ 2Πi 1.3941 0.15142 0.00467 0.00740 0.00790 0.00767
BF 1.262 1Σ→ 3Π 1.308 0.13279 -0.03398 -0.00586 -0.01231 -0.01279
BO 1.2049 2Σ→ 2Πi 1.3524 0.10861 0.09329 0.13407 -0.01278 -0.01160
C2 1.2425 1Σg → 3Πu 1.3119 0.00326 0.00313 0.00346 0.00346 0.00345
CN 1.1718 2Σ→ 2Πi 1.2327 0.04211 0.14423 0.15501 -0.02781 -0.02327
CO 1.1281 1Σ→ 3Πr 1.2093 0.22184 -0.01863 0.01914 0.00511 0.00103
N2 1.094 1Σg → 3Σu 1.2866 0.22874 -0.03607 0.09793 0.05378 0.05376
NH 1.038 3Σ→ 3Π 1.037 0.13581 0.01816 0.02060 0.00604 0.00582
OH 0.9706 2Πi → 2Σ 1.0121 0.14891 0.02189 0.02227 0.00636 0.00631
RMS 0.05765 0.07285 0.02146 0.02052
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3.3 Conclusions

Our goal for the CIS correlation operator was to model dynamic electron correlation

in atoms and molecules in a computationally inexpensive way with a wavefunction

based method. We theorized that the CIS approach would give us certain benefits

that the ∆SCF method does not have. Two benefits we believed would benefit us the

most were the multi-determinant nature of CIS and the orthogonality of all excited

states to the ground state. The CIS method does not include any dynamic correlation

but does include a small amount of static correlation with the inclusion of all possible

singly excited determinants. We believed that the small amount of static correlation

would be a benefit because ∆SCF has no inherent correlation within its formulation.

The second benefit we believed the CIS method would contribute to our correlation

operator was the ability to have orthogonal excited states to the ground state reference

Hartree-Fock wavefunction. This would be beneficial to try to eliminate some of

the problem ∆SCF has with no guaranteed orthogonality between states other than

symmetry.

The value of the correlation operator is relatively insensitive to the quality of the

basis set. However, to adequately describe atomic excited states, atomic calculations

require far more flexibility within the diffuse domain. For the atomic test set we

used a custom even-tempered basis set that consisted of fully optimized uncontracted

12s9p atomic basis, augmented in the diffuse region to 17s12p size. The custom

basis set is also augmented with even-tempered 9d3f uncontracted basis functions.

When used in conjunction with the CIS method we find that the correlation operator

calculates atomic excited states comparable to the most popular TD-DFT functionals.

Most importantly the correlation operator improved the accuracy of the CIS method

by nearly a factor of two. The CIS correlation operator performed inferior to the

perturbative and self consistent correlation operator but gave very promising results

for study on molecules.
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To adequately describe molecular excited states, it is not as necessary to be so

flexible in the diffuse domain like atomic calculations. Because of this we chose to use

the large but more standard G3MP2Large basis set. The results of the CIS method

in conjunction with the correlation operator were found to be problematic. The CIS

correlation operator performed far worse than any other compared methods. This

includes the CIS method by itself. At first it was believed that the CIS method

may be too poor a model for excited states to benefit from the correlation operator,

however, we found that it is more likely the HF reference wavefunction. Therefore

to use a CIS like method we require a more accurate reference wavefunction. This is

part of the future research that will be elaborated upon within the next chapter.
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Chapter 4

Future of the Correlation Operator

Based on the conclusions from Chapter 2 and Chapter 3 we found that the primary

concerns for the future of this research do not necessarily come from the correlation

operator itself but from the underlying methods. At this stage of research we find

that the ∆SCF and CIS methods have some critical flaws that have to be overcome

to continue. The ∆SCF correlation operator formulations are very promising for the

future of this research. The ∆SCF method itself is unable to guarantee orthogonal

states other than through symmetry. This limits viable test systems considerably.

Within our atomic and molecular test sets we try to limit ourselves to systems whose

error can only be attributed to deficiencies within the correlation operator. Because

the ∆SCF method contains no other constraint to guarantee orthogonality between

excited states and the ground state, we become more and more limited as we increase

the size of the test systems. This can be seen by comparing our test set for atoms and

molecules. Our atomic test set has at least one viable state for all of the first 17 multi-

electron atoms. The molecular test set was originally made of 20 diatomics made of

the first row atoms and hydrogen for which experimental excited state geometries and

energies were available. This list of 20 molecules became 10 molecules because we

were required to choose molecules that were orthogonal by symmetry to lower states

to achieve a fair representation of the correlation operator performance.

The non-orthogonality problem of the ∆SCF method can be further seen when

investigating larger molecules. Within Table 4.1 we have calculated the adiabatic

excitation energies of the benzene molecule for the 1A1g → 1B1u and 1A1g → 3B2u
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Table 4.1 Comparison of the 1B1u and 3B2u adiabatic excitation
energies of benzene calculated using ∆SCF and the ∆SCF correlation
operator formulations. Experimental excitation energies are taken from
reference [23]. All computed data are reported as the deviation from
the experiment. Energies reported in atomic units.

Transition E(exp) ∆E(∆SCF ) ∆E(ĈPert) ∆E(ĈSCF )
1A1g → 1B1u 0.17346 0.03333 0.06725 0.08939
1A1g → 3B2u 0.20580 -0.03362 -0.00125 -0.01195

transitions. The 1B1u state is not orthogonal to lower states while the 3B2u is or-

thogonal to all lower states by symmetry. For the 1A1g → 1B1u transition the ∆SCF

method overestimates the experimental excitation energy by neary 20 percent be-

cause of spin contamination from lower states. With the inclusion of the correlation

operator the error increases to 39 percent for the perturbative correction and over

50 percent for the self-consistent correction. The spin contaminated state described

by the ∆SCF method adversely affects the performance of the correlation operator

causing the error to increase dramatically. In contrast we can see the opposite result

with the 1A1g → 3B2u transition of benzene. Because the 3B2u state is guranteed to

be orthogonal to lower states we see how ∆SCF more accurately models the excited

wavefunction based on the energy. With the correlation operator the error goes from

16 percent to less than 1 percent for the perturbative correcttion and 6 percent for

the self-consistent correction. The results show promise for the ∆SCF correlation

operator on larger more complex molecules, however, we must be able to guarantee

orthogonality between more states before this method can be used on larger and more

varied systems.

The non-orthogonality problem that can be found within ∆SCF is a problem that

plagues many similar methods. A similar problem of non-orthogonality was found

in time-independent density functional methods for excited states. Through the use

of orthogonally constrained density functional theory (OC-DFT) [24] it was found

that one could create variationally optimized Kohn-Sham wavefunctions for excited
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states without variational collapse to the ground state. The OC-DFT study found

that using orthogonality constraints led to excited state results similar to TD-DFT.

To solve our near identical problem we propose an orthogonality constrained ∆SCF

method. If we can create orthogonally excited states, we can reduce the influence of

lower states on higher states significantly. The results of OC-DFT leads us to believe

that an orthogonally constrained ∆SCF may be a promising path to research for

further investigation of the correlation operator.

CIS also requires some changes to become a viable method for use with the cor-

relation operator. The performance of CIS was found to be very poor by itself and

with correlation operator. Based on the comparison of HF and B3LYP reference

wavefunctions we came to the conclusion that the HF wavefunction may be too qual-

itatively inaccurate of a model to benefit from the correlation operator. Therefore

we determined that a more accurate reference wavefunction must be obtained before

initiating the CIS or CIS correlation operator method. This leads us to the possibility

of a hybrid ∆SCF and CIS method to get the benefits inherent in both methods. For

atoms and molecules we have found that the correlation operator increases the accu-

racy of the ∆SCF method nearly universally for orthogonal states that are not spin

contaminated thus creating more qualitatively accurate HF-like wavefunctions. Be-

cause of this we can propose that the self consistent or perturbative ∆SCF correlation

operator wavefunction be used as the reference wavefunction. The CIS method has

the benefit of creating excited state determinants that are guaranteed to be orthog-

onal to the ground state. The ∆SCF method has no way of guaranteeing that any

particular state is orthogonal to other states unless by symmetry. Because the CIS

method does not guarantee orthogonality between any of the excited states we also

propose to constrain all of the lower states from the state of interest to be orthogonal.

This hybrid method could possibly alleviate some of the deficiencies of both methods

while accentuating their benefits.
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Appendix A

Chapter 2: ∆SCF Correlation Operator

A.1 Correlation Operator Matrix Elements

The simplest of the analytical integrals implemented with the correlation operator is

the s-type component of the operator combined with four s-type primitives,

Cs
1,2,3,4 = 〈C1N1e

−α1(~r1−~R1)2
C2N2e

−α2(~r2−~R2)2|N0e
−α0~r2

12〉~r12

〈N0e
−α0~r2

12|C3N3e
−α3(~r1−~R3)2

C4N4e
−α4(~r2−~R4)2〉 (A.1)

where C1, C2, C3, C4 are primitive coefficients, N1, N2, N3, N4 are primitive nor-

malization constants, and N0 is the correlation operator normalization constant. The

outer 〈〉 bra-ket denotes integration over all coordinates of an electron pair, while the

inner 〉〈 ket-bra of the operator applies only to the intracule coordinate. The latter is

labeled with the subscript r12 to indicate the distinction. To carry out the integration,

it is convenient to transform coordinates of each primitive into intracule, ~r12 = ~r1−~r2,

and extracule, ~p12 = (~r1 + ~r2)/2, coordinates. In Cartesian representation the overall

integral remains separable into x, y, z components.

We use a generating function for all combinations of s- and p-type Gaussian prim-

itives with the correlation operator, by differentiating the following expressions with

respect to the Gaussian displacement parameters Xi. Using the x-component as an

example and omitting multiplicative coefficients for clarity of notation:
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〈e−α1(x1−X1)2
e−α2(x2−X2)2|e−α0x2

12〉x12〈e−α0x2
12|e−α3(x1−X3)2

e−α4(x2−X4)2〉 =

Cxe
−βl(X2−X1)2

e−βr(X4−X3)2
e
− γlγr
γl+γr

(Tl−Tr)2
(A.2)

Cx = 4π
√

π

(α1 + α2 + 4α0)(α3 + α4 + 4α0)(γl + γr)
,

γl = 4(α1α2 + α0(α1 + α2))
4α0 + α1 + α2

, γr = 4(α3α4 + α0(α3 + α4))
4α0 + α3 + α4

,

βl = α1α2α0

(α1 + α2)α0 + α1α2
, βr = α3α4α0

(α3 + α4)α0 + α3α4
,

Tl = X1 +X2

2 + α0(α2 − α1)(X2 −X1)
(α1 + α2)α0 + α1α2

,

Tr = X3 +X4

2 + α0(α4 − α3)(X4 −X3)
(α3 + α4)α0 + α3α4

.

All combinations of four s- and p-type Gaussian primitives were analytically de-

rived and verified using Maple.
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Appendix B

Chapter 3: CIS Correlation Operator

B.1 CIS Correlation Operator Matrix Elements

The evaluation of the matrix elements within the CIS correlation operator are done

by using the Slater-Condon rules. All Hamiltonian matrix elements and correlation

operator matrix elements are allocated in the same way. Within the following equa-

tions Ĥ will be equivalent to ∑i ĥi +
∑
i>j

1
rij

+ Ĉ. The matrix elements are also split

into three categories, alpha-alpha, beta-beta, and alpha-beta. The alpha-alpha and

beta-beta will be grouped together because they are equivalent to each other. For

brevity Nα,β ≡ Nα or Nβ and 〈ab||cd〉 ≡ 〈ab| 1
r12

+ Ĉ|cd〉 − 〈ab| 1
r12

+ Ĉ|dc〉.

αα & ββ Integrals

〈Φijk...|Ĥ|Φijk...〉 =
Nα,β∑
i

hii +
Nα,β∑
j>i

〈ji||ji〉 (B.1)

〈Φijk...|Ĥ|Φa
jk...〉 = hia +

Nα,β∑
j 6=i
〈ij||aj〉 (B.2)

〈Φa
jk...|Ĥ|Φa

jk...〉 =
Nα,β∑
j 6=i

hjj + haa

Nα,β∑
j 6=i
〈aj||aj〉+

Nα,β∑
j 6=i,k>j

〈kj||kj〉 (B.3)

〈Φa
ik...|Ĥ|Φa

jk...〉 = hji − 〈ai||aj〉 −
Nα,β∑

i 6=j,k 6=i,j
〈ki||kj〉 (B.4)

〈Φa
jk...|Ĥ|Φb

jk...〉 = hab +
Nα,β∑
j 6=i
〈aj||bj〉 (B.5)

〈Φa
jk...|Ĥ|Φb

ik...〉 = 〈aj||bi〉 (B.6)
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αβ Integrals

α-occupied: ijk... α-virtual: abc...

β-occupied: xyz... β-virtual: rst...

〈Φijk...xyz...|Ĥ|Φijk...xyz...〉 =
Nα∑
i

Nβ∑
x

〈ix||ix〉 (B.7)

〈Φa
jk...xyz...|Ĥ|Φijk...xyz...〉 =

Nβ∑
x

〈ax||ix〉 (B.8)

〈Φ r
ijk...yz...|Ĥ|Φijk...xyz...〉 =

Nα∑
i

〈ir||ix〉 (B.9)

〈Φa
jk...xyz...|Ĥ|Φa

jk...xyz...〉 =
Nβ∑
x

〈ax||ax〉+
Nα∑
j 6=i

Nβ∑
x

〈jx||jx〉 (B.10)

〈Φ r
ijk...yz...|Ĥ|Φ

r
ijk...yz...〉 =

Nα∑
i

〈ir||ir〉+
Nα∑
i

Nβ∑
y 6=x
〈iy||iy〉 (B.11)

〈Φa
jk...xyz...|Ĥ|Φb

jk...xyz...〉 =
Nβ∑
x

〈ax||bx〉 (B.12)

〈Φ r
ijk...yz...|Ĥ|Φ

s
ijk...yz...〉 =

Nα∑
i

〈ir||is〉 (B.13)

〈Φa
jk...xyz...|Ĥ|Φa

ik...xyz...〉 = −
Nβ∑
x

〈ix||jx〉 (B.14)

〈Φ r
ijk...yz...|Ĥ|Φ

r
ijk...xz...〉 = −

Nα∑
i

〈ix||iy〉 (B.15)

〈Φa
jk...xyz...|Ĥ|Φ

r
ijk...yz...〉 = 〈ax||ir〉 (B.16)
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