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ABSTRACT 

With the environment protection and energy usage efficiency promotion issues 

concerned more and more by governments and industries these days, smart grid 

technologies have been in rapid development. On this new technology stage, residential 

site power management system has become a star. This paper introduces the concept, 

development of two high level control methods for “Smart Green Power Node” (SGPN), 

solutions of demand side energy management system.  

One control algorithm is optimal model method which uses the predictive data of 

a battery model with electrical parameters and pricing methods, to keep scheduling the 

optimal control input on the receding time horizon continuously. The other one is rule-

based method which determines each time instant’s control inputs by logical judgment 

upon current and past battery electrical parameters and price states without model and 

predictive data in an easier implementing and faster calculating manner. Both algorithm 

systems incorporate necessary data such as photovoltaic solar power generation, user 

input, hardware states and load power information, as well as a TOU pricing schedule as 

inputs to the novel system control algorithm to achieve money saving for both electricity 

supplier and homeowner. Compared to commercial energy management systems which 

exist, this system can effectively eliminate the need for human interaction and 

intelligently regulate house power flow without complicated inputs from homeowner 

except some basic preferences. 
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According to the simulation of SGPN models comparison results carried out in 

MATLAB environment, the rule-based method can provide an annual total credit earn of 

more than $1000, based on reasonable industrial electric price and residential side feed-in 

tariff, yet guarantee a micro-second level calculation rate, which is valuable for real-time 

use scenario. And the load management during peak time is able to limit the average grid 

power to utility acceptable level. Moreover, the standalone mode DC bus voltage 

maintenance capability empowers the system’s self-sufficiency during grid outage period. 

On the other hand, the optimal model method is highly dependent on the accurate 

predictive model, which could not be practically economically efficient at present to 

implement but shows the optimality than rule-based method in theory and the potential of 

guarantee more residential profit in practice if such accurate model can be derived. These 

results show SGPN’s potential market value for both electricity consumers and providers. 
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CHAPTER1 

 INTRODUCTION 

Utilizing renewable energy sources is essential issue for human future. As the 

development of human civilization, we tend to rely on electrical and electronic systems 

and technologies more and more to deal with tasks which are either impossible or 

inefficient for human labor. And presently, most of the power supply sources for these 

systems are dependent on traditional fossil energy sources, like coal, oil and gas. The 

reason for the irreplaceability of such energy sources is the lowest cost such as source 

gathering, energy extraction and responding human management cost against energy 

generation output among all sources list. However, there are many problems related to 

these fossil fuels. One is the earth’s total amount and the local distribution of these fuels 

is unmatched to the rapid development speed of our world [1]. Another problem is the 

green house gases emission using these fossil sources during electric generation process 

have been threating our environment by global warming effect. As a result, new sorts of 

renewable energy sources, such as solar energy, wind energy and hydroelectric energy 

are highly welcomed to gradually reduce and replace the portion of fossil fuels for our 

sustainable civilization in the future. 

Besides, increasing electrical energy usage efficiency is always desired on two 

primary aspects. One is from energy generation side, that utilities would like to make 

their daily energy generation more even, which means they could reduce additional 
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infrastructures’ cost just for supplying load peak. One is from energy consumption side, 

users would like to regulate their daily electrical usage according to electric billing 

strategies to achieve cost saving and/or credit earned and also they would like this service 

can be done automatically with only users preference inputs. 

All of these modern energy usage issues are requiring a kind of technology and 

system, which have the ability to incorporate renewable energy sources and enable the 

information exchange between energy supply and demand sides to increase electric usage 

efficiency and make profit. In this background, “Smart Grid” concept is proposed and is 

being researched in worldwide.   

According to the definition from Wikipedia, “smart grid is a modernized electrical 

grid that uses information and communications technology to gather and act on 

information, such as information about the behaviors of suppliers and consumers, in an 

automated fashion to improve the efficiency, reliability, economics, and sustainability of 

the production and distribution of electricity”.[2] 

Comparing with the traditional grid, smart grid has several advantageous features. 

One is smart grid gathers digital control technology to let separated smart decision-

making devices available for large number of residential sites. One is smart grid focuses 

on the real-time information exchange and process from all interacting components, in 

such way making a real-time optimization control possible. Another feature is smart grid 

enables much more flexibility for power device network topology. One day, we can 

combine different power sources, smart grid measurements, smart grid control devices 

and our usage applications following smart grid standards to construct our own power 

systems, just like playing building blocks.  

http://en.wikipedia.org/wiki/Electrical_grid
http://en.wikipedia.org/wiki/Electrical_grid
http://en.wikipedia.org/wiki/Information_and_communications_technology
http://en.wikipedia.org/wiki/Smart_grid#cite_note-1
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Based on smart grid technologies, a number of commercial or near-commercial 

products aiming at residential use [3][4] have been produced. There are four opportunities 

seen to further advance the technologies in this field – modularity to support a diverse 

application landscape, high efficiency to reduce energy losses, an ability to operate in 

standalone mode to support islanding during grid outages or off-grid uses, and a high 

level of intelligent automation to minimize user input.  

These capabilities have been built into an energy management system that is 

referred to as the Smart Green Power Node (SGPN). In comparison to the automated 

energy management system presented in [4], which uses Dynamic Programming (DP) 

optimization, SGPN takes convex optimization or rule-based method, which avoids the 

phenomenon called “Curse of Dimension”, when the optimization stages are large 

enough in DP algorithm. With the approach taken by SGPN, it has the ability to 

implement a more balanced system between calculation rate and accuracy in an efficient 

and economic manner. Also, the SGPN has the ability to detect when grid power is 

unavailable, safely disconnect using proper islanding techniques [5], and then act as an 

independent supplier maintaining power to the home.  

The following sections will follow this sequence to introduce the SGPN high level 

control system. In Chapter 2, the topology of the whole software and hardware system is 

presented to show the relationship between high level (software) part and low level 

(hardware) part and all the SGPN working modes will also be presented. In Chapter 3, 

high level control core algorithms will be presented step by step. Two sorts of algorithms, 

optimal model method and general rule-based (GRB)/enhanced rule-based (ERB) 

algorithms, will be expanded. In Chapter 4, simulation and results for high level control 
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system will be presented and these simulations are done in Matlab platform Simulink 

environment.
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CHAPTER 2  

SYSTEM TOPOLOGY 

2.1 SGPN TOPOLOGY  

This chapter introduces SGPN’s entire structure, which includes subsystems 

connection topology, high level control outputs & inputs and high level control modes. 

We start in a big picture first as shown in Figure 2.1. Here the block diagram of 

SGPN is shown and we can find there are several important low level terminal 

subsystems in this topology: on-site energy source (PV panel), off-site energy source 

(grid), energy storage subsystem and load group. There are also intermediate blocks 

between hardware terminals, which are converters or switches. Since this paper addresses 

on the high level control part of SGPN system, I will not go deeply into each hardware 

subsystem but put the hardware information into Appendix A. The high level part will be 

introduced from the outputs and inputs interaction with surrounding subsystems first, 

then three operation modes for high level control.  

2.2 HIGH LEVEL CONTROL OUTPUTS AND INPUTS 

Here we focus on the high level control part and to have a deeper insight of high 

level control, we first have a look at the high level control inputs and outputs shown in 

Figure 2.2. 

There are three control targets (control outputs) in high level control system: 

battery use current reference, PV panel’s power reference and load group switches 
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Figure 2.1 SGPN System Control Modules 

(and/or thermal load set point). Battery current reference is used to control battery power 

and the reason of this choice is that battery is the only continuously power adjustable 
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Figure 2.2 SGPN outputs and inputs 

variable in the system’s normal operation conditions comparing with all other power 

generating and consuming units: PV panel (normally in maximum power point tracking 

(MPPT) mode not adjustable), loads (can primarily be discretely switched on and off) and 

grid (balances the total house electric usage when it is connected to SGPN, and stops 

power supply when disconnected). PV panel’s maximum power point track is always 

turned on to use solar power as much as possible, except for in standalone mode, where 

MPPT may be turned off if solar power is surplus to the total present load and battery 

charging accommodation. The load group switches control is available only in load 

curtailment mode and standalone mode, and is carried out after comparing the load 

priority of presently working high power loads. Besides, thermal load set point control is 

a complementary for load switch control, since home use thermal loads such as HVAC 

and water heater consume over 50% of total home electric usage [6]. So taking care of 
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these loads has much scope to save money for homeowners.  

To calculate and determine the high level control outputs, the system uses core 

algorithm with inputs of electric price, weather condition, battery states, thermal load 

states, load profiles and user preferences. All these inputs will be extended in chapter 3 in 

detail.  

2.3 HIGH LEVEL CONTROL MODES 

High level control outputs and inputs part shows how high level control interacts 

with peripheral subsystems or terminals. And the internal structure of high level control is 

now shown here.  

Our SGPN high level control has three high level modes: automatic response 

mode, load curtailment mode and standalone mode as shown in Figure 2.3. Automatic 

response mode is assumed to be the regular operating mode of the system, in which it 

automatically responds to electric price, present and/or anticipated solar power and loads 

power to determine the battery use schedule. The detail of the scheduling algorithm will 

be discussed in chapter 3 with a comparison between optima model method and rule-

based method. Another task during automatic response mode is to control thermal loads 

according to homeowner’s preference. SGPN system would not force the change of 

thermal set point, but instead provide the suggestion about how to change set point to 

save cost and then record and retrieve homeowner’s preference automatically later.  

And automatic response mode is active when there is neither a grid-off signal from grid 

sensor nor load curtailment operation being executed.  

Load curtailment mode is started only when a request is issued by the utility or an 

aggregator (a negotiator between utility and SGPN about curtailment and reward) and is 
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Figure 2.3 SGPN three operation modes 

acknowledged by SGPN itself or through SGPN by user reference. The request sending 

and acknowledgement can be ahead of the curtailment execution period. And there are 

different kinds of curtailment requests. In one case, a grid power limit is determined 

based on electric generation conditions of utility or determined by the aggregator’s power 

use limit assignment algorithm. The homeowner agrees and actually succeeds to keep 

grid demand below this limit during a specified period can get a reward according to 

utility or aggregator rewarding policy. In another case, utility may directly transform the 

curtailment request into a real-time fluctuating electric pricing, which will be introduced 

in chapter 3.1 pricing section. Load curtailment is realized by both load switches group 

control and the thermal load control, which will be extended in chapter 3.5. 

The standalone mode is started only when the grid states sensors inform SGPN 
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system grid power has gone down. This refers to an emergency of grid energy shortage 

period, which could be from seconds to days. During this grid outage, SGPN can supply 

uninterruptible power to the house from battery and/or on-site generators. The stored 

energy in the battery determines the length home loads can be maintained. During off-site 

energy outage, lower priority loads will be automatically turned off by load switches 

group control and electric usage and generation are closely monitored to maintain a 

balanced on-site grid.  
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CHAPTER 3  

HIGH LEVEL CONTROL DETAIL 

3.1 PRICING INFORMATION 

3.1.1 ELECTRICITY PRICING  

Presently the most widely used pricing method for residential regulatory 

framework is Time of Use (TOU), either two-tier or three-tier structure. Besides, another 

pricing structure Real Time Pricing (RTP) has been proposed and researched to show its 

potential advantages for future smart grid application [7].  

Basically, electric price shows how much the cost utilities would take to serve 

customers electric usage. Traditionally, utility use constant price as an average value of 

their energy generation cost daily, monthly or annually. As a result, consumer has the 

right to demand any amount of electricity and pays a constant and infrequently updated 

price, which accustoms consumer the unawareness of planning and conserving energy 

use. So a demand-sensitive time varying pricing structure is desired and it has been 

proven a strategy that allows more service within capacity constraints of the current 

utility service system infrastructure by many service industries. [4] The TOU structure is 

the simplest improved form as time varying pricing, which is in some extent still a 

constant average price value during certain period. And we can expect real-time pricing, 

which shows the time varying real-time and predictive electricity generation cost of 

utilities, would be more and more widely used in smart grid technologies such as SGPN 

in our future lives.
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Although there are primarily two different pricing methods, SGPN has the ability 

to deal with both cases and therefore provide a generic enough approach to work in a 

variety of regions and policies. Since TOU can be treated as a special case of RTP, in our 

system, only RTP structure will be used for optima model method and rule-based 

algorithm simulations. And the different requirement of price data between these two 

algorithms lies in that, for optimal model method, system requires both real-time and 

predictive price data, however, for rule-based algorithm, predictive price data are not 

necessary. 

Instead of predicting the time varying price by itself in optimal model method, 

SGPN retrieves real-time and predictive price through internet communication of 

information management subsystem to make cost saving and load peak shaving decisions. 

Because utility itself owns more convenience to record and analyze historic and real-time 

data using statistics method, it is much more powerful to get an accurate prediction result 

than individual SGPN system. Based on this reason, SGPN would retrieve price data 

instead of predicting by itself.  In the present prototype model implementation, we use 

synthesized RTP method in reasonable style which will be shown in Chapter 4. 

3.1.2 PV FEED-IN TARIFF 

The policies that govern the premium price of photovoltaic energy fed into the 

grid are enforced at the state level to incentivize solar panels and have been used 

throughout the world. However, the detail pricing policies for such feed-in solar energy 

are distinct nationally and regionally. For example, Germany is the world leader in solar 

energy generation, partly because of a high feed-in tariff (FIT), currently about 48.89 

cents/kWh. Many US states have begun using high feed-in tariffs, particularly California 
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and Hawaii. Many states, such as South Carolina, have no feed-in tariffs. As such, solar 

energy in these states is bought by utilities at “avoided cost”. In other words, they only 

pay the cost they avoided by not buying traditional generation using the cheapest fuel [8].  

For a general case, FIT follows the principle of higher premium price during peak 

time so for an initial simple implementation, in the simulation, we use synthesized  FIT 

rate which is a little higher than RTP during most of daily time. By present policy, FIT 

only pays for the energy fed into the grid when solar power exceeds the home load and 

means nothing for using battery energy to feed into the grid. And this is easy to 

understand that FIT is designed to encourage the usage of renewable energy and a system 

without any renewable energy source can also feed into the system with the help of 

energy storage devices. However, this does not mean we would not use battery power to 

reduce grid burden and thus the electric cost when power price goes high in the present 

policy frame. Moreover, in future application, this policy may be changed to fully satisfy 

residential power purchase/sale marketing requirement, which does not tell the difference 

between residential power sources. So in the long run, in this version control algorithm, 

battery can be discharged to feed grid directly. 

3.2 WEATHER INFORMATION 

The weather information significant for SGPN decision is cloudiness, ambient 

temperature, windiness and humidity. And each kind of information has effect on either 

solar power input or HVAC thermal load control. 

All these four sorts of information can be used for solar power prediction for 

optimal model method and they are required to retrieve from weather forecast department 

via internet instead of predicting them by SGPN itself. Because there are randomly 
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varying and difficultly predictable weather factors for individual SGPN, it would be a 

more efficient architecture to centralize this service on weather forecast department’s 

much more powerful prediction ability, which refers to much huger volume of weather 

data and much more advanced calculation hardware and software than separately 

distributed SGPN systems. Then distributed SGPN would access accurate enough data 

from this center. 

Based on these inputs, insolation power could be predicted through clear sky 

radiation model along with local field parameters adaptive learning through artificial 

neural network algorithm [9]. The cloudiness also influences solar power input 

significantly. However to accurately predict the cloudiness effect specifically for each 

SGPN’s PV panel site, would be difficult by just using weather forecast information, 

since either the forecast does not provide SGPN interpretable weather info presently or 

there are other factors like surrounding building shading to greatly interfere solar power 

prediction. So the neural network algorithm is a good attempt to predict specific solar 

power at each site.    

Besides PV power prediction, weather information is used as thermal parameters 

in HVAC thermal load control. The insolation on the surface of a house and the average 

ambient temperature over house are the two main factors to influence the internal thermal 

state of a house. Although windiness and humidity also have effect on house internal 

thermal state, however, generally assuming in a window-closed house for air conditioning 

use, they primarily make effect indirectly by air heat conduction, and evaporation 

acceleration through the house surface/wall, which inherently contribute to the real-time 

house surface temperature measured by thermal sensors on the surfaces [10].  
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3.3 BATTERY SYSTEM 

Based on NREL’s investigation, lead-acid battery, which has relatively low 

maintenance requirements and costs, has been used for residential solar electric systems 

for a long time and is still the best choice for this application [11]. So we need to have 

further insight into the electrical parameters and structure of lead-acid battery in order to 

implement control and also prolong the cycle life of battery system. Here for a general 

battery, SGPN utilizes the parameters from battery specification, but in the future as the 

technology of smart battery becomes mature, we can expect there would be embedded 

parameter monitoring system and compatible interface toward smart grid management 

systems internally built in battery system. 

There are several essential electrical parameters or concerns of battery system and 

here they are clarified. 

3.3.1 BATTERY CAPACITY 

Battery capacity refers to the maximum volume to store charges available for 

discharging in the battery and is calculated by the product (Ampere· hour) of constant 

discharge rate (Ampere) and discharge duration (Hour) from fully charged open circuit 

voltage (12.8V in our case) to fully cycled cut-off voltage (10.5V in our case). 

Battery capacity can vary at different discharge rates and battery aging states. The 

initial capacity of battery is called nominal capacity, which is given in data sheet from 

manufacturer. A higher discharge rate leads to a lower capacity than nominal one. And 

according to [12], in our system the fixed single battery capacity is estimated about 40 Ah 

based on battery datasheet at an average discharging rate. The process to get this 

estimation is shown by (3.1) [12]. 
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The datasheet shows battery nominal capacity is Cnom at Inom (Cnom/20) 

discharging rate. So we can get: 

Cnom = C(Inom) =
KCC0

1+(KC−1)(
Inom
Iavg

)
δ,                                                                    (3.1) 

where Inom is nominal battery discharge current, unit: A; Cnomis nominal battery capacity, 

unit: Ah; Iavg is average battery discharge current, unit: A; C0 is fixed battery capacity 

responding to average actual discharge current rate, unit: Ah and KC, δ are battery 

capacity empirical coefficients, constant for a given battery and an average discharge rate, 

unit: 1, for both. Thus we can estimate the fixed battery capacitor C0 by (3.1). 

Battery capacity is also influenced by aging, and the present battery capacity 

taking aging into account can be expressed by  Cpres = C0 ∙ SOH, where SOH refers to 

state of health and Cpres is present battery capacity taking aging effect into account, unit: 

Ah. 

Here we have discussed single battery capacity used in our system. For higher 

supply capability and from the standpoint of simulation, we use ten batteries in serial 

connection and the battery supply capability reaches 2kw. In the future, for higher supply 

capability application scenario, we can use larger number battery group. 

3.3.2 STATE OF CHARGE (SOC) & DEPTH OF DISCHARGE (DOD) 

There are a lot of literatures of the definition of SOC by different authors, which 

make confusion. In our system the definition of SOC is the ratio of the present amount of 

charges stored in the battery expressed by q over the present battery capacity: 

SOC =
q

Cpres
.                                                                                                         (3.2) 

And depth of discharge (DOD) refers to how many charges have been dispatched 
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in percentage of the present battery capacity: 

 DOD =
Cpres−q

Cpres
= 1 −

q

Cpres
.                                                                                (3.3) 

The high-level control requires an accurate monitoring of state of charge (SOC). 

Many methods for lead-acid batteries management [14-16] are available in the literature, 

many using cell temperature, voltage, and current measurements. And we use current 

integral method to track SOC online as a simple implementation. 

After SGPN boots, system would calculate initial state of charge SOCiby the 

following relationship with zero battery current reference and therefore no voltage drop 

on internal resistance: 

SOCi = 1 −
Em0−Vbat

(KE∗300)
,   Vbat unit: Volt.                                                      (3.4) 

(3.4) is using specification data of [17]. The lead acid battery voltage can be estimated by: 

Vbat = Em0 − KE(273 + θ)(1 − SOC) + IbatR00[1 + A0(1 − SOC)]          (3.5)                                                                                                                                                             

where Em0, KE, R00, A0 are battery chemical parameters and θ is battery internal 

temperature. Ibat is battery real time use current, positive charging and negative 

discharging, unit: A and Vbat is battery real time voltage, unit: volt. 

Although battery internal temperature has an approximately 30℃ maximum 

deviation from normal room temperature, it only has negligible effect on the battery 

voltage since KE is very small number and 30℃ is quite small comparing with 273℃ 

constant. And when system is initialized, battery reference current is kept zero, so the Ibat 

term could also be ignored. We can compare the extreme temperature deviation and 

average temperature case. For single battery, Em0 = 12.8V, KE = 7.2mV/℃, extreme 

temperature 65℃ and normal average temperature 35℃, we can find the expression of 

SOC estimation deviation dSOC between two methods: 
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dSOC =
Em0−Vbat

KE
(

1

273+35
−

1

273+65
).                                                      (3.6) 

The maximum deviation about 9.2% lies in the case that battery is fully 

discharged, which can be avoided by SOC lower limit; therefore a well regulated battery 

assuming Vbat ≥ 11V, the deviation will not exceed 7.2% and a fuller battery has even 

less SOC estimation deviation as Vbat increases. So this method is usable if we want to 

reduce the systems cost of additional sensing of battery temperature. 

Then system estimates the varying SOC by using integration of battery current 

over the latest updated battery capacity Clatest: 

SOC[n] = SOC[n−1] + ∆SOC = SOC[n−1] +
IbatTS

Clatest
,                                       (3.7) 

where TS is sampling period. 

And the present battery capacity would always be updated and regarded as Clatest 

if SOC again reaches 100% by the following relationship: 

Clatest =
∫ Ibatdt

100%
SOCi

100%−SOCi
, unit: Ah.                                                                          (3.8) 

This capacity update should only occur on SOC 100% bound instead of the lower 

50% bound. The reason is to minimize internal resistance influence during battery voltage 

sampling which this update is based on. When SOC is near 100%, the charging current is 

small enough, typically C0/40, to ignore internal resistance influence. However, when 

SOC reaches lower boundary, battery current can still be as large as 20A, which would 

cause much larger deviation. So for a more accurate estimation, SOC is updated on 100% 

end.   
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3.3.3 STATE OF HEALTH (SOH) 

State of health indicates the extent the battery capacity is close to a nominal one. 

We can derive it from Cpres = C0 ∙ SOH: 

  SOHi =
Clatest

C0
∙                                                                                               (3.9) 

 And initial state of health SOHi is estimated based on this by substituting 

Cpres = Clatest , which means we use the latest capacity record and the fixed nominal 

capacity to estimate initial SOH and the latest capacity is updated every time battery is 

fully charged or SOC is 100%. 

According to [18], we use 80% for the lower boundary of SOH as a battery’s 

normally working range. 

3.3.4 BATTERY AGING COST 

Battery aging cost should be considered as a pricing variable in battery use 

problem. In SGPN lead acid battery use scenario, aging is primarily affected in two ways: 

battery internal grid corrosion and degradation. The amount of loss conducted by battery 

grid corrosion and degradation follows 1:4 ratio according to [19], and charging and 

discharging almost contribute on the same level to battery grid corrosion.  

So the total battery grid corrosion effect could be ignored both for discharging and 

charging operations and we only calculate the discharging cost price when battery 

discharging. 

According to [19], battery discharging aging is affected by last fully recharging 

interval, recent minimum discharging SOC and bad recharging cycles. “Last fully 

recharging interval” ∆tSOC is defined by the time period between now and the latest fully 

recharged 100% SOC state time point. And “recent minimum discharging SOC” SOCmin 
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refers to the minimum SOC during last fully recharging interval. And “bad recharging 

cycles”  n defines the remarkable degradation effect caused by the sulfate dissolution 

when recharging to nearly 95% SOC level [19] also during last fully recharging interval. 

And also this national lab research report’s corresponding mathematic relationship 

formula can be described in rule-based algorithm, which uses condition judgment logic 

and allows more complicated mathematic expression than optimal model method we 

propose here. The detail relationships are as following: 

fSOC  =  1 + (cSOC0 + cSOCmin ∙ (1 − SOCmin)) ∙ √
Ifactor

Idchgnom
∙ √

 
e

n

3.6
3

∙ ∆tSOC ;(3.10)     

Vb_cal = Nbat ∙ (U0 − g ∙ (1 − SOC) + ρd ∙
Idchg

Cn
+ ρd ∙ Md ∙

Idchg

Cn
∙

(1−SOC)

cd0−(1−SOC)
); (3.11) 

Pricedchg = BRC ∙ exp (−cZ ∙ (1 −
Zw

1.6∙ZIEC
)) ∙

cZ

1.6∙ZIEC∙Cn
∙ fSOC/Vb_cal ∙ 1000;(3.12) 

fSOC is a discharging cost factor related to last fully recharging interval, recent minimum 

discharging SOC and bad recharging cycles;  

cSOC0 is constant slope factor of SOC, unit: h−1; 

cSOCmin is constant slope factor of minimum SOC, unit: h−1; 

BRC is each battery’s replacement charge, unit: $; 

cn is nominal capacity for each battery, unit: Ah; 

SOCmin is the minimum SOC since last fully recharging; 

cZ is the exponent for calculation of capacity loss due to degradation;  

ZIEC is number of cycles under standard condition, indicated by battery specification; 

U0 is fully charged state cell voltage; 

g is electrolyte proportionality constant V; 

ρd is discharging aggregated internal resistance (ohm*Ah); 
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Mdis charge-transfer overvoltage coefficient; 

Cd0 is discharging normalized capacity factor;  

SOC is present state of charge 

Ifactor is discharging current generally average level, an experience value     

Idchg is actual discharging current value  

∆tSOC is time interval since last fully charging 

Zw is the accumulated discharging Ah through put, Ah 

n is the accumulated bad recharging cycles since last fully recharging 

Vb_cal is calculated discharging battery voltage 

The above battery aging mechanism is for rule-based algorithm and is different 

from the aging consideration for optimal model method. To simplify the optimal model 

method mathematic process and satisfy the fast calculation speed requirement, we try to 

simplify our battery model along with its constraints. So as a constraint, battery aging 

would be evaluated in a much simpler way for optimal model method, by using linear 

aging coefficient Z stated by [20]. This coefficient treats the total aging effect linearly on 

discharging operation, as the following relationships: 

∆SOC =
IbatdchgTS

Clast
                                                                                    (3.13) 

    ∆SOH = {
Z ∙ ∆SOC, ∆SOC < 0 
         0     , ∆SOC ≥ 0  

,                                                             (3.14) 

 ∆Costbat =
∆SOH∙BRC

SOHrng
, unit: $                                                                  (3.15) 

where battery health loss will only be considered when discharging (∆SOC < 0) and Z is 

linear aging coefficient (here in our system we use Z = 3 × 10−4, unit: 1) derived from 

battery manufacturer indicated cycle numbers.  
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So the discharging aging cost here can be derived by substituting (3.13) and (3.14) 

into (3.15) as: 

 Pricebat = 1000
∆Costbat

∆Ebat
= 1000

∆SOH∙BRC

SOHrng

Vbat_avgIbatdchgTS
= 1000

Z∙IbatdchgTSBRC

ClastSOHrng

Vbat_avgIbatdchgTS
=

                             1000
Z∙BRC

Vbat_avgClastSOHrng
, unit: $/Kwh,                                           (3.16) 

where Ibatdchg is discharging current; BRC refers to battery replacement cost, which is 

assumed to be 100Nbat $ (Nbat is battery number); SOHrng is battery functional working 

range indicated by SOH, unit: 1 and is selected by 20% according to the battery type of 

our system; Vbat_avg is battery average working voltage and TS is sampling period. 

3.3.5 BATTERY USE SECURITY 

 There are battery use security concerns on battery charging style, charging/ 

discharging current rate constraints and SOC range constraints. Our battery system uses 

double charging method to make sure that both a quick recharging and a safe charging 

process could be achieved. In the first charging stage, when battery voltage is lower than 

the lead-acid battery charging gassing limit voltage, battery is charged by constant and 

maximum allowed charging current Ichglmt to let the battery recharged as quickly as 

possible. The charging gassing limit voltage table is temperature dependent and shown in 

Table 3.1 [21], which also implies battery use should only be in Tmin to Tmax temperature 

range. Then in the second stage, after this charging gassing limit voltage reached, we use 

constant voltage charging right at this gassing limit value and in the meanwhile letting the 

charging current go down correspondingly. Finally charging ends at about C0/40 

charging current. In Table 3.1, “WET CELL”, “GEL”, “AGM” are battery categories of 

different manufacture process 
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TABLE 3.1 Temperature Dependent Charge Gassing Voltages [21] 

 

TEMPERA

-TURE 

WET CELL GEL 1 (std.) GEL 2  

(fast chg.) 

AGM 

Deg  

(F) 

Deg 

(℃) 

Accept Float Accept Float Accept Float Accept Float 

120 49 12.5 12.5 13.0 13.0 13.0 13.0 12.9 12.9 

110 43 13.6 12.7 13.5 13.0 14.0 13.4 13.9 12.9 

100 38 13.8 12.9 13.7 13.2 14.1 13.5 14.0 13.0 

90 32 14.0 13.1 13.8 13.3 14.2 13.6 14.1 13.1 

80 27 14.2 13.3 14.0 13.5 14.3 13.7 14.2 13.2 

70 21 14.4 13.5 14.1 13.6 14.4 13.8 14.3 13.3 

60 16 14.6 13.7 14.3 13.8 14.5 13.9 14.4 13.4 

50 10 14.8 13.9 14.4 13.9 14.6 14.0 14.5 13.5 

40 5 15.0 14.1 14.6 14.1 14.7 14.1 14.6 13.6 

30 -1 15.2 14.3 14.7 14.2 14.8 14.2 14.7 13.7 

and in “GEL”, there are also standard charging and fast charging difference. “Accept” 

refers to acceptable maximum charging voltage and “float” refers to the preferred 

charging voltage during float charging period.  

Generally, many battery charging systems have a third float charging stage by 

keeping a constant voltage less than the gassing voltage for a manufacturer indicated float 

charging period for better battery safety maintenance. In SGPN system, we do not include 

this triple charging, since this operation requires the battery system much time to sustain 
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on a low charging current level but battery in our system should be ready to respond to 

the fluctuating real time pricing information and should keep the secure charging period 

as short as possible.   

Another battery security issue is that battery has discharging & charging rate and 

SOC range restrictions based on the manufacturer’s safety instruction. Deep cycle extent 

should be limited in order to extend battery cycle life and the relationship figure of cycle 

life dependent on depth of discharge and cycle frequency is shown by Figure 3.1. It is 

estimated that SGPN would use 300-400 battery cycles per year (here one cycle is not 

simply one discharge process, but an accumulated 100% discharge process, which will 

not happen directly in SGPN battery use but in a mathematical way. For example, battery 

is discharged from SOC 80% to 50%, recharged to 90%, discharged again to 50%, 

recharged to 95% and finally discharged to 65%. In this example, there are not three 

cycles, but instead the actual cycle is (80%-50%)+(90%-50%)+(95%-65%)=100%, just 

one cycle. So we can estimate that the cycle number line representing our battery life can 

be roughly the dashed line and we choose 50% as the SOC lower boundary and thus the 

estimated battery life is 4-5 years.  

Also there should be upper SOC boundary for battery charging concern. If a 

battery is near 100% SOC fully charged, it would not accept large charging current but 

instead shunt the surplus current, which electrolyzes water and generates dangerous gas 

inside battery and waste energy [14]. This potential threat can be avoided by double-stage 

charging in rule-based algorithm or be avoided by a simplified SOC charging 

current limit function in optimal model method: 

Ibat ≤ 1.25 ∗ C0 ∗ (1 − SOC), unit: ampere, SOC ≥ 80%                               (3.17)  



 

 25 

When SOC is lower than 80%, battery charging limit restricts charging current  

 

 

Figure 3.1 Effect of DOD and cycle number per year on wet battery at 25℃ [13]  

within Ichglmt and when SOC is higher than 80%, limit function restricts charging current 

within an SOC related value smaller than C0/4. And this limit function method is much 

more conservative in optimal model than rule-based one since the battery voltage 

estimation accuracy in optimal model method is generally beyond security requirement of 

gassing voltage limit and voltage control is not applicable but is substituted by SOC 

control in a more conservative way in optimal model method. 

Here all the safety concern for optimal model method are summed up into Figure 

3.2. And the temperature security concern can only be applied by saturation operation in 

optimal model method, where an over or under temperature operation would be forced to 

stop and thus may affect the optimality effect in practical operation. 
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Figure 3.2 Battery use current region within constraints for optimal control method 

3.4 CORE CONTROL ALGORITHM STRUCTURE 

This section will explain the core algorithms structure in three operation modes: 

Battery Use Control, Load Switches Priority Control, Thermal Load Control and Power 

Flow Balance Control sequentially, which are shown in the flow chart of Figure 3.3. And 

the related subsystem algorithms are listed in Table 3.2. 

3.5 PRICING DIRECTED BATTERY USE ALGORITHM 

 

 

Figure 3.3 Top structure of SGPN algorithm in three modes 
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Table 3.2 Related core algorithms in each operation mode 

 

Operation Mode 

Control  

Algorithm 

automatic response 

mode 

load curtailment 

mode 

standalone mode 

Pricing Directed 

Battery Use  
   

Load Switches 

Priority Control 
   

Thermal Load Set 

Point Control 
   

Power Flow 

Balance Control 
   

Battery use control is involved in the grid-connected and pricing affecting modes, 

typically automatic response mode and load curtailment mode. In standalone mode, 

batteries are forced to balance the power difference between PV generation and load 

consumption, so there is no scope to apply pricing directed battery rate control.  

There are two options for battery use algorithm: optimal model method and rule-

based algorithm. The explanation for the optimal model method will be in the form of 

formula and related function charts. And Rule-based algorithm will be explained by flow 

chart since logic expressions dominate the whole structure. 

3.5.1 OPTIMAL MODEL METHOD 

3.5.1.1 METHOD INTRODUCTION 

The objective for the optimization problem based on optimal model is to decide 
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the battery charging and discharging rate schedule for a given pricing schedule and 

minimize the cumulative electric cost during the next 24 hour period. 

One of the most difficult problems faced with the implementation of the battery 

control module is the effective optimization period, which means how long the 

optimization will last, in addition to a time efficient calculating algorithm matching the 

update of predictive system parameters with the accuracy of optimization in an 

acceptable degree. In previous efforts, rule-based algorithms such as [22] were widely 

used for the easiest implementation but the potential quantified effectiveness to further 

optimize battery usage was not explored. Other literature such as [23] presents an 

algorithm focusing on a short-term optimal battery schedule but does not apply to long 

time periods. Dynamic programming (DP) [4][24] has long calculation time (about 

several minutes on PC platform Matlab environment) if the total schedule lasts for 24 

hours in our system case. SGPN derives an optima model and utilizes intelligent 

searching algorithms inside Matlab, typically interior point algorithm, which uses 

relatively simple math and in less than 5 seconds in the same environment computes an 

acceptable optimal solution for 24 hour period. The introduction of this algorithm follows 

this sequence: optimization model establishment, real-time updated scheduling and final 

results and conclusion in Chapter 4 results part.  

3.5.1.2 OPTIMIZATION MODEL  

In this part, the optimization objective and constraints discussed above would be 

converted into mathematical model expression. 

The optimization target battery current rate schedule for the next 24 hours is 

evenly discretized into N stages, expressed as a one by N vector, Ibat [1×N], unit: 
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Ampere. Then we can derive the expressions for state-of-charge, battery voltage, battery 

power on corresponding stages (here we use subscript “_v” to represent a [1×N] vector): 

              SOC_v = SOCi_v +
Ibat_v

24

N

C0SOH
[

1 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ 0
⋯ 1

]}N dimension  ,           (3.18) 

where SOCi_v vector has the same element of initial SOC ; C0 is the fixed nominal battery 

capacity; SOH is battery state-of-health, the variation of which can be ignored during one 

day. This is the vector version of SOC estimation formula (3.7) and it expresses the 

estimated daily SOC level according to battery use schedule with 24/N hour time span. 

According to (3.5), the lead acid battery voltage can be estimated by: 

Vbat_v = Em0_v − KE(273 + θ)(1 − SOC_v) + Ibat_vR00[1 + A0(1 − SOC_v)]        (3.19) 

Em0, KE, R00, A0 are battery electromotive force parameters, unit: V, V/℃, mΩ, 1,  

respectively. And (3.19) shows a battery voltage estimation method based on predictive  

SOC vector and lets the algorithm know the battery voltage at each time instant in a 

predictive way. As stated before, that temperature deviation would not influence battery 

voltage much, we can use 35℃ to indicate the average battery operation point. Battery 

power can be expressed by: 

Pbat_v = Vbat_vIbat_v, unit: watt                                                                  (3.20) 

Then the objective function can be expressed by:           

Fo(Ibatv) = ∑(fcost_price_i + fcost_aging_i)

96

i=1

                                                 (3.21) 

 fcost_price_i = {
fPV>Load , PPV_i − PLoadi

≥ 0                                           

fPV<Load , PPVi
− PLoadi

< 0                                             
  (3.21a)                              

fcost_aging_i = ∆Pricebat_i0.5(sgn(Pbat_i) − 1)Pbat_i
24

N
,                        (3.21b) 
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sgn(x) = {
1, x > 0
0, x = 0

−1, x < 0
 

(3.21) shows total battery use cost is composed of power regulation cost responding to 

RTP/TOU&FIT and battery aging cost. Power regulation cost can be further divided into 

two cases by whether PV power is greater than load power.  

Cost in PV larger than load power case: 

fPV>Load_v = case1judge(subcase1judge ∙ subcase1cost + subcase2judge ∙ subcase2cost); 

case1judge = 0.5(1 + sgn(PPV_v − PLoad_v)); 

subcase1judge = 0.5 (1 − sgn (Pbat_v − (PPV_v − PLoad_v))); 

subcase1cost = FIT_vPbat_v
24

N
; 

subcase2judge = 0.5 (1 + sgn (Pbat_v − (PPV_v − PLoad_v))); 

subcase2cost = TOU_v(Pbat_v − PPVv
+ PLoad_v)

24

N
+ FIT_v(PPV_v − PLoad_v)

24

N
; 

Case1judge: 0.5(1 + sgn(PPV_v − PLoad_v)) indicates only if PV power larger than 

load power (PPV_v > PLoad_v), this cost term is effective; 

Subcase1judge: 0.5 (1 − sgn (Pbat_v − (PPV_v − PLoad_v))) indicates only if 

battery power smaller than the surplus PV power over load power (Pbat_v < PPV_v −

PLoad_v), this cost term is effective. And in this case, battery power is charged by extra PV 

power and decreases the feed-in ability or is discharged to supply grid and earn more and 

thus increases the total cost. This cost term is decided by subcase1cost: FIT_vPbat_v
24

N
.  
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Subcase2judge: 0.5 (1 + sgn (Pbat_v − (PPV_v − PLoad_v))) indicates only if 

battery power larger than the surplus PV power over load power(Pbat_v > PPV_v −

PLoad_v), this cost term is effective. And in this case, battery power is charged by both 

grid and PV power, so the total cost is increased by subcase2cost: TOU_v(Pbat_v − PPVv
+

PLoad_v)
24

N
+ FIT_v(PPV_v − PLoad_v)

24

N
 . 

Cost in PV less than load power case: 

fPV<Load_v = case2judge(subcase3judge ∙ subcase3cost + subcase4judge ∙ subcase4cost) 

case2judge = 0.5(1 + sgn(−PPV_v + PLoad_v)); 

subcase3judge = 0.5 (1 + sgn (Pbat_v − (PPV_v − PLoad_v))); 

subcase3cost = TOU_vPbat_v
24

N
; 

subcase4judge = 0.5 (1 − sgn (Pbat_v − (PPV_v − PLoad_v))); 

subcase4cost = TOU_v(PPV_v − PLoad_v)
24

N
; 

Case2judge: 0.5(1 + sgn(−PPV_v + PLoad_v)) indicates only if PV power less than 

load power (PPV_v < PLoad_v), this cost term is effective; 

Subcase3judge: 0.5 (1 + sgn (Pbat_v − (PPV_v − PLoad_v))) indicates only if 

battery discharging power less than the excessive load power over PV power (PPV_v −

PLoad_v < Pbat_v), this cost term is effective. And in this case, battery power is discharged 

to supply part of the excessive load power and reduce the grid burden and thus decreases 

the total cost or battery is charged to add even more grid burden. However, either of both 
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cases shares the same cost term expression and this cost term is expressed by  

 subcase3cost: TOU_vPbat_v
24

N
.  

Subcase4judge: 0.5 (1 − sgn (Pbat_v − (PPV_v − PLoad_v))) indicates only if 

battery discharging power larger than the excessive load power over PV power (Pbat_v <

PPV_v − PLoad_v), this cost term is effective. In this case, load is supplied by both battery 

power and PV power and the excessive battery supply power into the grid would be taken 

into account by FIT. So the cost term is subcase4cost: FIT_v(Pbat_v − PPVv
+ PLoad_v)

24

N
+

TOU_v(PPV_v − PLoad_v)
24

N
. 

Aging cost: fcost_aging = ∆Pricebat_v0.5(sgn(Pbat_v) − 1)Pbat_v
24

N
 indicates that if 

battery discharging will lead to aging cost and charging will not have such effective cost 

as discharging. 

Both battery use cases and all the subcases related to electricity price/FIT are 

show in Figure 3.4. In this figure PV and load curves are only sketches not a real data 

profile and the straight lines boundary of battery use subcases indicates the rough range 

of the battery use power instead of the exact range determined by VbatIbat.  

fcost_aging_v refers to the battery aging cost as discharging happens. 

After substitution of (3.18-3.20) into (3.21) and the parameters from battery 

datasheet and manipulation, we can get an objective function only related to Ibat_v. 

And sign function “sgn” is used to empower the objective function of 

incorporating the comparison relationship into a mathematical formula expression. For 

example, 0.5(sgn(Pbat_v) − 1) tells us only if Pbat is negative or battery is discharging, 

this term is active, and otherwise it will be zero. 
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Figure 3.4 Battery use all subcases corresponding to price  

By observing the form of the objective function, we find neither it nor its 

derivative is continuous function, which can not be used to check the convexity of the 

multiple arguments function or be handled by most differential parameters necessary 

optimization algorithms. And all these mathematic processing obstacles of that “sgn” 

function are due to discontinuity at origin, which causes a step hop. However, this can be 

conquered by an approximating alternative, by using the following mathematical 

expression: 

sgn(x) ≈ sigmoid(x) =
2

1 + e−100x
− 1; 

We can find how close these two functions are from Figure 3.5. And the right side 

of this approximation, which can be represented by function “sigmoid”  is a completely 
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continuous and derivable function on the whole real number definition domain. Moreover, 

if the final optimization vector result does not have any element exactly letting the 

“sigmoid” function equal to zero, we can further enlarge the absolute value of the power 

of expectation term in the sigmoid function to make our approximation more accurate. 

 

 

Figure 3.5 Comparison between sigmoid and sgn functions 

The similar way, this sign function will work in the following several formulas. 

Cost in PV larger than load power case: 

fPV>Load_v = case1judge(subcase1judge ∙ subcase1cost + subcase2judge ∙ subcase2cost); 

case1judge = 0.5(1 + sigmoid(PPV_v − PLoad_v)); 

subcase1judge = 0.5 (1 − sigmoid (Pbat_v − (PPV_v − PLoad_v))); 

subcase1cost = FIT_vPbat_v
24

N
; 

subcase2judge = 0.5 (1 + sigmoid (Pbat_v − (PPV_v − PLoad_v))); 
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subcase2cost = TOU_v(Pbat_v − PPVv
+ PLoad_v)

24

N
+ FIT_v(PPV_v − PLoad_v)

24

N
; 

Cost in PV less than load power case: 

fPV<Load_v = case2judge(subcase3judge ∙ subcase3cost + subcase4judge ∙ subcase4cost) 

case2judge = 0.5(1 + sigmoid(−PPV_v + PLoad_v)); 

subcase3judge = 0.5 (1 + sigmoid (Pbat_v − (PPV_v − PLoad_v))); 

subcase3cost = TOU_vPbat_v
24

N
; 

subcase4judge = 0.5 (1 − sigmoid (Pbat_v − (PPV_v − PLoad_v))); 

subcase4cost = FIT_v(Pbat_v − PPVv
+ PLoad_v)

24

N
+ TOU_v(PPV_v − PLoad_v)

24

N
; 

 Aging cost: 

fcost_aging = ∆Pricebat_v0.5(sigmoid(Pbat_v) − 1)Pbat_v
24

N
, 

Then we need to consider constraints for this objective function:                                 

Idchg_lmt ≤ Ibat_v ≤ Ichg_lmt(SOC)   ,                                                        (3.22a) 

or  

Idchg_lmt_v ≤ Ibat_v [

1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮
0

⋱
⋯

⋱ 0
0 1

] ≤ Ichg_lmt_v(SOC)                                       (3.22b) 

According to (3.22b) and the Figure 3.2 battery charging current limit over SOC 

assumed to be fSOC,  we can derive and replace (3.22) by:  

Idchglmtv
≤ [

1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮
0

⋱
⋯

⋱ 0
0 1

] Ibatv ≤ fSOC (SOCiv +
Ibatv

24
N

C0SOH
[

0 0 ⋯ 0
1 ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ 0
1 0

]) , (3.22c)   

SOClmt ≤ SOC_v ≤ 100%   ,                                                                 (3.23a) 
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By substitution of (3.18), we can get the transformation of constraint (3.23a): 

C0SOH

24
N

(SOClmt − SOCi_v) ≤ Ibat_v [

1 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ 0
⋯ 1

] ≤
C0SOH

24
N

(100% − SOCi_v)  

(3.23b) 

So the combination of (3.22c) and (3.23b) is the constraints of this problem. 

3.5.1.3 CONVEXITY JUDGMENT 

There is one sort of optimization problem called convexity optimization with the 

local minimum the same as the global minimum, which is a very useful property to 

conveniently transform the global optimization problem into a local one and enable many 

mature methods to solve so far. So we would like to check the convexity of this problem.  

According to convexity theory, the judgment of convexity of an optimization 

problem is composed of two parts: the convexity of the objective function and the 

convexity of the definition domain described by constraints. 

First we try to judge convexity of the objective function. The objective function is 

a multi-input function and we can use Hessian Matrix for the judgment.  In our problem, 

we use y = f(x1, ⋯ , x96) = ∑ fi(xi)
96
i=1   to represent the objective function. 

From (3.21), we know the function is the sum of 96 separate one-input functions. 

Because of this linear operation feature, we can derive the Hessian Matrix to this form: 

H =

[
 
 
 
 
 

∂2f

∂2x1

∂2f

∂x2 ∂x1

∂2f

∂x1 ∂x2

∂2f

∂2x2

⋮
∂2f

∂x96 ∂x1

⋮
∂2f

∂x96 ∂x2

⋯
…

∂2f

∂x1 ∂x96

∂2f

∂x2 ∂x96

⋱
…

⋮
∂2f

∂2x96 ]
 
 
 
 
 

=

[
 
 
 
 
d2f1

dx1
2

0

0
d2f2

dx2
2

⋮
0
    

⋮
0

⋯
…

0
0

⋱
…

⋮
d2f96

dx96
2]
 
 
 
 

. 
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So the convexity of the objective function is determined by the convexity of the 

96 single-input functions, which we will focus on next. 

 The form of these single-input functions are exactly the same, so we only 

investigate one of them which has two cases determined by the term: PPV_v − PLoad_v. If 

we can prove single fi(xi) function’s convexity in both cases, we can prove the convexity 

of the whole objective function. 

When PV power is larger than load power, the function can be regarded as a 

function with three piecewise lines smoothly connected together, shown in Figure 3.6.   

 

 

Figure 3.6 Battery use cost rate when solar power larger than load power 

We can find that if TOU or RTP is greater than FIT, then the second order 

derivative of fi(xi) is always larger than zero and thus the objective function is convex. 

Otherwise if TOU or RTP is less than FIT, the objective function is not convex and we 

can not apply convex optimization directly. We can divide the problem into sub-problems 

which guarantee the convexity of both objective function and definition domain and 

compare their minimums to get the global minimum. Typically this sub-problem division 

technique here can be adding one more constraint: 

 0 ≤ Pbat_v = Vbat_vIbat_v ≤ PPV_v − PLoad_v.                                            (3.24) 
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And for the other case, when PV power is less than load power, the function can 

be regarded as a function of two piecewise lines smoothly connected together, shown in 

Figure 3.7. And this time this function has the similar convexity requirement of TOU or 

RTP greater than FIT. If this condition does not hold, we still need a subspace division by 

adding the following constraint: 

 Pbat_v = Vbat_vIbat_v ≤ PPV_v − PLoad_v ≤ 0.                                            (3.25)  

 

 

Figure 3.7 Battery use cost rate when solar power less than load power 

Besides, the aging cost term is always there no matter whether it is in case 1 or 

case 2. And we can also find it is convex either from its function plot shown in Figure 3.8 

or from the second order derivative judgment. 

Then we check the convexity of definition domain defined by (3.23b). To prove  

 

 

Figure 3.8 Battery aging cost rate when discharging 



 

 39 

the convexity of the definition domain S, we do combination and transformation to the 

matrix expressions in (3.23b): 

    
C0SOH

24
N

(SOClmt − SOCiv) = C1 

 
C0SOH

24
N

(100% − SOCi_v)  = C2 

[

1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ ⋮
⋯ 1

] = A, 

then (3.23b) can be substituted by matrix A, C1, C2: 

S:    C1 ≤ Ibat_vA ≤ C2. 

Now assume there are two feasible elements x1 and x2 in S, which means the 

following two relationships are valid: 

C1 ≤ x1 ∙ A ≤ C2 

C1 ≤ x2 ∙ A ≤ C2. 

We can easily derive from these two inequalities to get the following: 

C1 = (λ + (1 − λ))C1 ≤ λ ∙ x1 ∙ A + (1 − λ)x2 ∙ A ≤ (λ + (1 − λ))C2 = C2 

λ ∈ (0,1). 

And this is just the definition of convexity set, so the convexity of the domain set 

defined by (3.23b) is proved.   

In (3.22b) , the left ineuqality relationship: Idchg_lmt_v ≤ Ibat_v [

1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮
0

⋱
⋯

⋱ 0
0 1

] 

defines also a convex set similarly to the relationship S: C1 ≤ Ibat_vA ≤ C2 proved above. 
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But the right side: 

−fSOC (SOCiv +
Ibatv

24

N

C0SOH
[

0 0 ⋯ 0
1 ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ 0
1 0

]) + [

1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮
0

⋱
⋯

⋱ 0
0 1

] Ibatv ≤ 0, we need to figure 

out whether it is convex. 

From Figure 3.2 we can see that −𝐟𝐒𝐎𝐂(𝐮), expressed by the “charing limit” 

dashed line as upper boundary, is convex and the internal term of the mutilple inputs 

compound function is a linear combination of Ibat1 to  Ibat96, so according to the 

compound function convexity property, this function: 

 −fSOC (SOCiv +
Ibatv

24

N

C0SOH
[

0 0 ⋯ 0
1 ⋱ ⋱ ⋮
⋮
1

⋱
⋯

⋱ 0
1 0

]) + [

1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮
0

⋱
⋯

⋱ 0
0 1

] Ibatv 

is also a convex function and thus its level set is a convex set. Then the complete 

definition domain is the intersection set of the convex sets expressed by (3.22b) and 

(3.23c) proved above, so it is also convex.  

3.5.1.4 UTILIZATION OF MATLAB ALGORITHMS 

Now since the problem is convex with nonlinear objective function and 

constraints, we can directly use the Matlab optimization toolbox to solve this optima 

problem. We use “fmincon” command, which is the assembly of several optional 

optimization algorithms typically for nonlinear optima problems and these algorithms are 

interior-point algorithm, active set algorithm,  sqp algorithm and trust-region-reflective 

algorithm. The result of using Matlab optimization toolbox will be shown in Chapter 4. 

3.5.1.5 REAL-TIME UPDATING 

The battery control module is realized by the cooperation of real-time updating 

sub-module and battery current reference calculation sub-module. This architecture is 
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dependent on the fact that the battery current reference can only be calculated by taking 

predictive load power, solar power, and pricing into account. So SGPN battery control 

works in a predictive scenario in which one time point’s decision is completely dependent 

on how the price varies in the future and the comparison of future load and solar power.   

And generally accurate real-time load forecast and PV generation forecast would improve 

the system’s real-time performance. However, because there would always be uncertain 

error between real-time data and prediction, it is necessary to apply a method to update 

and keep real-time optimal of the schedule.  There are two variables with difference 

between real-time and predictive data: RTP and PPV − PLoad. 

When RTP is used to calculate cost, there would be price deviation between 

predictive and real price. And generally, the real-time difference between PV power and 

load power should be considered as main error to fix. The reason that PV power and load 

power is treated as an union is that only their difference is meaningful to the optimization 

problem, as can be seen from the expression of (3.21a). SGPN would monitor the 

deviation between predicted and real-time cumulative cost saving, which is caused by 

PPV − PLoad and/or RTP and after the deviation reaches certain threshold  Th∆cost, system 

retrieves the latest predictive inputs from internet or prediction related inputs to 

reschedule the battery use.  

We can adjust Th∆cost to direct how frequently the updating should occur based 

on the algorithm’s average executing time tcal on different platforms. We can express the 

relationship as:  

Th∆cost ≥ ravg_costtcal,                                                                            (3.26) 
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where ravg_cost is the average cost deviation rate. For example, we have a personal 

computer Matlab environment running optima method 15 seconds once. And according 

to a normal situation, there will be approximately 30 cents cost deviation every hour, so 

the threshold should be larger than 30 ×
15

1×60×60
= 0.125 cents.    

 3.5.2 BATTERY USE RULE-BASED ALGORITHM 

There is a tradeoff between error of predictive inputs and optimization potentiality 

of an algorithm here for our SGPN system.  If a predictive inputs algorithm is utilized, a 

perfect optimal result would be there if prediction exactly equals to actuality. However, in 

reality, there are always problems from the deviations between predictive and real-time 

data, which attenuate the optimization effect. On the other hand if an algorithm excludes 

any predictive inputs and makes decision only upon the present and/or historic data, it 

eliminates the probability of any input errors.  

And there are two kinds of solutions for this contradiction. One is to use 

predictive inputs with real-time correction updated to guarantee accuracy of related 

predictive algorithms, such as the optimal model method mentioned before; the other is a 

predictive inputs excluded one, a decision making mechanism dependent only on historic 

and present data, such as rule-based algorithm.  

Rule-based algorithm is easy to interpret and much simpler to apply by using 

logical judgment sentences, so it is suitable for the implementation verification and also 

as a counterpart to other later developed complicated algorithms. 

 Here in this section, the rule-based algorithm for battery use in automatic 

response mode is first shown, which has the same problem background and as optima 

method. The rule of the battery use follows two primary goals: to increase cost saving 
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and to keep the safety use of battery and the algorithm flow chart is also shown in Figure 

3.9. And later we will show the rule-based algorithm for both load curtailment mode and 

standalone mode. 

The flow of this rule-based algorithm follows this way. First, after system goes 

into rule-based automatic response mode, it checks whether the grid power is consumed 

or supplied by system. This is because the two grid power use cases would make 

difference on the battery power use price. When grid is consumed by system, more 

charging will increase burden to grid power, so it costs electric price. More discharging 

reduces grid burden power, and also has discharging aging cost, so the total discharging 

price is electric price minus discharging aging cost. On the other hand, when grid is 

 

 

Figure 3.9 Rule-based algorithm for battery use in automatic response mode 
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supplied by system, more charging will reduce the capability for system to feed into grid, 

so it costs FIT. More discharging will increase system feeding capability, and also has 

discharging aging cost, so the total discharging price is FIT minus discharging aging cost.  

Then, system goes to compare between the extents of the potential charging and 

discharging operations, based on the pricing info at this time. These extents are indicated 

by absolute value of the difference between charging/discharging cost and average 

electric price, by which the system would provide an initial battery use current reference. 

Finally, after system checks all the security requirements, such as battery use current rate, 

voltage range, SOC range and internal temperature, it determines the actually applied 

battery current reference.  The detail control code, which also includes the rule-based 

algorithms for the other two modes will be attached in the final part of this chapter. The 

code is written in Matlab m-file format, fully commented to make everything clear and 

can be easily translated into Simulink code. 

3.6 LOAD SWITCHES PRIORITY CONTROL 

Load switches priority control is the primary load curtailment function in load 

curtailment mode and standalone mode. It selects and cuts off the lowest priority or most 

insignificant load according to user preference assigned to the system ahead.  

The load switches priority control algorithm flow chart is shown in Figure 3.10.  

The algorithm will be started by load shutting down signal either from the average grid 

power over limit case in load curtailment mode or DC bus under-voltage case in 

standalone mode. And the two cases will not immediately trigger load shunting signal 

unless the cases have been sustained for a short period decided by the system response 

requirement, response rate and working load number. For example, if the maximum 
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allowed DC bus under-voltage period is 100ms and two working loads are there, then 

accounting for 10ms of the command transfer and actuator delay, then load shutting 

signal will not be enabled until DC bus under-voltage period reached (100/2-10)=40ms 

and will keep disabled if there is only 1ms under-voltage period caused by voltage ripple 

on DC bus. Load number needs to be considered, since one cutting off operation may not 

guarantee the required load level so we use the total number of present working loads. 

After system receives this load cutting enabled signal, it will find all the working 

loads through current sensor assigned to each load in control. And then after system gets 

the working loads list, it compares and finds the lowest priority load, and enables circuit 

breakers.   

As we can see from Figure 3.10, load switches priority is the primary part of load 

curtailment mode and its enable signal is from the average grid power evaluation by the 

following relationship: 

load cutting off = {
 enabled,    Pwrcurtl > Pwrgrdlmt 

disabled,   Pwrcurtl ≤ Pwrgrdlmt
           (3.27)  

where  Pwrcurtl is the average grid power during load curtailment request accepted 

period and the calculation formula is : 

  Pwrcurtl = 
∫ Pwrgrd∗dt

time now
curtailment start

curtailment period so far
,                          (3.28)  

and Pwrgrdlmt is the utility assigned grid power limit. 

 Besides, in load curtailment mode, if average grid power is under assigned limit, 

then no cutting off operation will be taken and just the same control style as in automatic 

response mode will be used.  

Load switches priority control will be coded also in the final section of this 
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chapter in Matlab M-file. 

3.7 THERMAL LOAD CONTROL 

According to [6], thermal loads such as HVAC and water heater take up more 

than 50% of the total residential power consumption, so it is significant to explore the 

potential margin in thermal load control to help energy peak shaving. Although HVAC 

set point control margin is in ±2℃ range around users’ preference, and may not enough  

to curtail whole HVAC load, it will be included as auxiliary load shaving method, which 

means it does not affect the load switches control operations and takes effect only when 

 

 

Figure 3.10 Load switches priority control algorithm flow chart 

HVAC is on. Unlike Load Switches Priority Control, Thermal Load Control takes action 

not only in load curtailment mode and standalone mode but also in automatic response 
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mode as a regular load shaving and cost saving method. In this section, a HVAC control 

algorithm will be discussed based on the brief introduction of the principles related to air-

conditioner and the building and theoretical analysis of HVAC simulation model.  

There are primarily two kinds of air-condition systems dependent on the size, 

ductless or duct system. And we explore on the latter one, which is generally called 

central air-condition, since we take the thermal dynamics of the whole house as the 

research target. And in our system, the air-condition has the bidirectional thermal flow 

capability, which means both cooling and heating functions and such AC system is also 

called “heat pump”. 

A basic AC system is composed of four parts: condensing coil, expansion valve, 

evaporator coil and compressor Figure 3.11. 

 
 

Figure 3.11 HV air-condition working principle diagram [25] 

Phase change principle is used on a material with excellent thermal characteristics 

called refrigerant. In the cooling cycle, refrigerant gas is first compressed into high 

temperature and pressure liquid phase by an electrical motor and then transferred into 

condensing coil to dissipate heat and convert into mediate temperature and pressure 

liquid, where the total refrigerant thermal energy is decreased. Then liquid refrigerant 

passes through expansion valve and reaches evaporator coil, where refrigerant quickly 
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inflates into gas phase companying with heat absorption from indoor air, which cools our 

rooms. Then the gas refrigerant loops back into compression step. A heating process 

follows the same principle, but a reverse refrigerant flow direction. 

In general, air conditions use compressor to cause pressure change, which actively 

condenses and pumps refrigerant. And this compressor consumes electricity energy 

quantitatively indicated by coefficient of performance (COP), which is defined by: 

COP =
Q

E
 ,                                                                                                 (3.29) 

where Q is the heat supplied to or removed from house rooms, and E is the electric 

energy consumed by the heat pump. 

Heat pump stops working when temperature drops below or rise above the 

temperature threshold (typically±1℃) of the applied environment with a benchmark of 

the user’s desired set point. So it is necessary to do research on heat flow pattern on heat 

source side and the thermal characteristics of thermal house, which has close relationship 

with the fluctuation pattern of indoor temperature. According to [26], the relationship can 

be expressed by:  

dQpmp

dt
= (Tpmp − Tin)Ṁc                                                                          (3.30) 

dQloss

dt
=

Tin−Tout

Rthm
,                                                                                        (3.31) 

dTin

dt
=

1

M c
(
dQpmp

dt
−

dQloss

dt
),                                                                    (3.32) 

where Tin is indoor temperature, Tout outdoor temperature, Tpmp the temperature of 

pumped air into room, Rthm house thermal resistence to indicate house’s ability to isolate 

heat dissipation, Qloss heat loss, Qpmp heat gain generated by heat pump, M air mass 

https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Refrigerant
https://en.wikipedia.org/wiki/Heat
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inside of house, Ṁ the amount of pumped air into room in unit time period and c constant 

heat capacity of air. 

This model is shown in Figure 3.12. Several related issues to be pointed out: 

although there may be other heat sources inside of the house, such as cooking and 

washing, their effect could be ignore comparing with heat pump; outdoor temperature is 

the average air temperature around the house and although it is fluctuating daily, this 

variation is quite slow and can be reteated as constant in several minutes time span; the 

house thermal resistence is variable of the open extent of windows and doors, but in a 

general HVAC working scenario, we regard it a constatn with windows and doors 

completely closed. 

We can see the simulation of HVAC model in Matlab simulink. This simulation 

shows the daily indoor temperature variation and HVAC electric power consumption in 

cooling mode and under a sinusoidal outdoor temperature condition. 

We can derive the expression of several significant quantities.  

The running power(HVAC has running and stopping periods and this running 

power is the average value on running period and the total average HVAC power is on 

running plus stopping period) can be estimated by: 

P = COP ∙ Ṁ ∙ c(Tset − Tpmp)                                                                   (3.33) 

where Tset  is the desired room temperature set point. 

HVAC working and idling periods are expressed by: 

Hon = M ∙ c ∙ Rthm ln
Tset+Tth+Fon

Tset−Tth+Fon
                                                            (3.34) 

Hoff = M ∙ c ∙ Rthm ln
Tset−Tth+Foff

Tset+Tth+Foff
                                                           (3.35) 

Fon = −Ṁ ∙ c ∙ Rthm(Tset − Tpmp) − Tout                                            (3.36) 
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 Foff = −Tout                                                                                              (3.37)  

Tout is outdoor temperature, unit: ℃; 

Tpmp is temperature of pumped air into room, unit: ℃; 

Rthm is house thermal resistance to indicate house’s ability to isolate heat dissipation, 

unit: ℃/kw; 

M is air mass inside of house, unit: kg;   

Ṁ is the amount of pumped air into room in unit time period, unit: kg/h; 

c is constant heat capacity of air, unit: kwh/(kg ∙ ℃); 

Tset is desired room temperature set point, unit: ℃; 

Hon is heat pump working period, unit: h; 

Hoff is heat pump idling period, unit: h; 

Fon is heat pump working on factor, unit: ℃; 

Foff is heat pump working off factor, unit: ℃. 

 

 

Figure 3.12 HVAC Simulink model with both heating and cooling functions 
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And we can also intuitively see the parameters in above expressions from room 

temperature and HVAC power curves shown in Figure 3.12 and Figure 3.13. 

Although when HVAC starts, there is huge instantaneous current into the 

compressor coil to establish the magnetic field about 5-7 times as the stable starting 

current, it can  be ignored in the analysis of the total electricity energy loss since it lasts 

for less than one second and also it doesn’t change load’s peak feature since HVAC is 

generally the dominant load even without this spike. Generally in standalone mode this 

large current consumption load would be cut off immediately after it is started, however 

 

 

Figure 3.13 Room temperature curve under cooling mode 

 

 

Figure 3.14 HVAC power curve under cooling mode 
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lead acid battery could supply huge amount of current unless it causes overheating and 

gasing problems, and this current would not consume much energy to damage battery. So 

we can use a special care on the load management channel connected with such kind of 

huge current starting loads, and allow a second-level excessive discharging current rate. 

Base on (3.34)-(3.37), we can derive the average HVAC working power 

expressed by: 

PHVAC = P
Hon

Hon+ Hoff
= COP ∙ Mratec(Tset − Tpmp)

ln
Tset+Tth+Fon

Tset−Tth+Fon

ln(
Tset+Tth+Fon

Tset−Tth+Fon
∙
Tset−Tth+Foff
Tset+Tth+Foff

)
           

(3.38) 

The HVAC power control margin upon a set point control margin can also been 

estimated based on this relationship. We can estimate the control power margin for 

HVAC is about 100w, if we assume a 35℃ outdoor temperature, 26℃ desired set point 

and 2℃ set point control margin in a house with a general parameter air-condition and 

room thermal isolation. This is not an impressive control margin but considering that air-

condition has usually a long working period, we can expect a considerable cost saving.  

The detail realization of the HVAC thermal load control is mapping the set point 

control percentage in the control margin to the cost rate. We use a proportional function:  

Tset% = at ∙ cost rate + bt and dTset = Tmrg ∙ Tset%              (3.39) 

mapping relationship to apply more set point control at high cost rate period and less 

control at low cost rate period. This will be coded separately from the three mode code 

part and in thermal load control subsystem of the Matlab simulink environment since it 

does not tell operation mode difference.  

3.8 POWER FLOW BALANCE CONTROL 
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Power flow balance control is exclusively in standalone mode, since in this mode 

system is disconnected to grid, which acts as a natural power balance source in automatic 

response mode and load curtailment mode. The difference of load control between 

standalone mode and load curtailment mode is in standalone mode, system requires a real 

time power balance between solar power source, battery usage and load usage, so system 

should monitor DC bus voltage and respond very fast to cut off overrate loads in 

millisecond for voltage bus current balancing. And also battery use related issues, such as 

SOC too low and too high, have considerable effect on control style and require related 

operation. In standalone mode, system controls its DC bus voltage by a PI controller and 

the device action rules. The standalone mode load control algorithm flow chart is shown 

in Figure 3.14. And in this mode, since there is a strict power balance requirement, so all 

the loads user wants to run need to be regulated by SGPN control channels.  

The control target is the DC voltage bus system, which could be expressed by the 

differential equation: 

                                                         Cdc
dVdc

dt
= Idc,                                                     (3.40) 

where Cdc is DC bus capacitance, Vdc is DC bus voltage and Idc is DC bus current. 

After the discretization, we get: 

Vdc(k + 1) = Vdc(k) +
Ts

Cdc
Idc(k)                                              (3.41) 

Ts is sampling period. 

And we use Backward Euler discrete PI controller to track DC bus voltage and get 

Idc(k) control input: 

 dIdc(k) = (Kp + Kp ∗ KI ∗ Ts) ∗ (Vdc(k) − Vdcref) − Kp ∗ (Vdc(k − 1) − Vdcref),    (3.42) 

where dIdc(k) is the required DC bus current increment present time interval, Kp is PI 
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proportional parameter, KI is PI integral parameter and Vdcref is DC bus voltage reference. 

Both PI parameters require a real field tuning other than the Simulink tuning in Matlab. 

Since DC bus current control input has a relationship with PV, load and battery current as: 

 

 

 

Figure 3.15 Power flow balance control algorithm flow chart for standalone mode  

 dIdc(k) = dIpv(k) − dIld(k) − dIbat(k),   (3.43) 

we would like to regulate all these current components to satisfy  dIdc(k) requirements 

by rule-based algorithm in standalone mode.  

We need to know what kind of control is required for each component current, 

which can be shown in Table 3.3. Then all these requirements are organized in rule-based 
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algorithm.   

First, the algorithm pre-calculates the required battery current based on present 

and previous PV current & power, present load current and required DC bus current: 

Ibatpre(k) = dIbatpre(k) + Ibat(k − 1) = (dIpv(k) − dIld(k) −  dIdc(k)) +

Ibat(k − 1) = (Ipv(k) − Ipv(k − 1)) − (Ild(k) − Ild(k − 1)) − dIdc(k) + Ibat(k − 1);  

(3.44) 

Then this pre-calculated value is compared with battery safety concern rules, 

which synthesizes the present battery temperature, SOC range, charging/discharging 

current limit and current limit implied by charging style to judge whether this current 

reference 

Table 3.3 Required control for current of all components in standalone mode 

 

Component Current Control Requirement in standalone mode 

PV current 

 Follow maximum power point tracking (MPPT) when battery has 

enough power storage; disable MPPT and track battery & load 

power sum when battery & load power sum less than solar power. 

load current 

Cut off load according to load priority if DC voltage keeps 

decreasing for an indicated duration while both battery reaches 

maximum supply capacity and PV uses MPPT.  

battery current 

Concern battery use safety, which includes battery temperature, 

SOC range, charging/discharging current limit and current limit 

implied by charging style.  
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value is safe, over the safety upper limit or under the lower limit. After that, it will apply 

control action on battery current reference, PV current reference and load switches. The 

detail action for each case is shown here.  

If pre-calculated battery current is safe, then algorithm would use this battery 

current as present battery control signal Ibat(k) = Ibat_pre(k). It also tries to use 

maximum PV power into the system in the next interval since there is still scope of 

storing more solar energy into battery and so it compares the battery use upper limit 

related PV power with the MPPT PV power reference: 

Ppvref(k + 1) = min (MPPTPVref(k + 1), Ppv(k) + Vdc(k) (Ibatuplmt(k) −

Ibatpre(k)));                                                                                          (3.45) 

Ppvref(k + 1) is PV power reference in the next interval and it can get PV current 

reference in the next interval by: 

Ipvref(k + 1) =
Ppvref(k+1)

Vdc(k+1)
;                                           (3.46) 

MPPTPVref(k + 1) is MPPT calculated PV power reference for next interval; Ppv(k) is 

present PV power; Ibatuplmt(k) is present battery current upper limit value translated on 

DC bus side and it varies by system parameters like temperature, SOC range, as 

mentioned before, so this variation is expressed by time variable k; term Ppv(k) +

Vdc(k) (Ibatuplmt(k) − Ibatpre(k)) shows how much PV power is required to fully charge 

the battery and make maximum use of battery storage. 

And finally in this case load is not cut and time counter for cutting off operation is 

cleared: Ncounter(k + 1) = 0. 

Another battery use safety case is if pre-calculated battery current under 
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Ibatlwrlmt(k), which means battery has been using maximum discharging capability, then 

algorithm would keep using this upper lower current input as present battery control 

signal Ibat(k) = Ibatlwrlmt(k). Similar to Ibatuplmt(k), Ibatlwrlmt(k) is present battery 

current lower limit value translated on DC bus side and it also varies by system 

parameters like SOC range, so this variation is also indicated by time variable k. In this 

case, we use MPPT PV power reference to make full use of solar power supply capability: 

 Ppvref(k + 1) = MPPTPVref(k + 1).                                      (3.47) 

In the meanwhile, the algorithm tries to monitor the duration of this case by time 

counter Ncounter(k + 1) = Ncounter(k) + 1 and if   Ncounter(k + 1) ∗ Ts > Tm, the load 

priority cutting off operation is taken, and here Tm is the maximum system allowed 

under-voltage time duration. 

The final battery use safety case is if pre-calculated battery current over 

Ibatuplmt(k), then algorithm would use this upper limit current input as present control 

signal Ibat(k) = Ibatuplmt(k). It also tries to control PV power to track the sum of load 

and battery charging power to avoid surplus solar power unbalancing system. 

Ppvref(k + 1) = min (MPPTPVref(k + 1), Pld(k + 1) + Vdc(k)Ibatuplmt(k));      (3.48) 

And also in this case load is not cut and time counter for cutting off operation is 

cleared: Ncounter(k + 1) = 0. 

3.9 RULE-BASED ALGORITHM CODE 

Here the rule-based algorithm code for three operation modes is posted. This code 

is written in Matlab M file format and the notation part is started by duplicated 

percentage signs “%%%”. 

%%%%%%%%% SGPN Control High Level Code %%%%%%%%%% 
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%%% By Hang Xu, University of South Carolina, EE Department%%% 

%%% July 3rd, 2014 %%%%%%%%%%%%%%%%%%%%%%%%% 

%%% Initially judge system operating mode, by checking logic signal from  

%%% grid voltage sensor, which indicates whether grid is on and logic signal 

%%% from network, which indicates whether a preapproved load curtailment period  

%%% has come. 

switch Grid_sgn %%% grid on/off logic signal 

case 1 %%% grid is on, system works in either Automatic Response/ Load 

Curtailment 

 %%% Mode 

if Curtl == 0 %%% system not in load curtailment mode, but in automatic response  

%%% mode. In this mode, only battery power can be controlled indirectly by  

%%% battery current reference. PV MPPT should always be enabled to 

%%% maximum utilize solar input and load should not be cutoff to satisfy general 

%%% user requirement. Battery usage is directed by price, which includes both  

%%% electric price and battery discharging aging price. Although, charging also  

%%% conducts to battery grid corrosion and thus capacity loss, however, it is much less 

%%% than the active mass loss caused by discharging, which is stated by [19] of a 1:4  

%%% ratio. 

%%% And also, battery discharging almost equally contributes to grid corrosion, so grid  

%%% corrosion is not an effective factor to make charging/discharging decision and is  

%%% neglected.  

%%% Besides price, battery is also strictly monitored and controlled to make sure battery  
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%%% charging voltage, current and discharging current and voltage are always in safety  

%%% area. This is much more robust than only use SOC to guarantee battery safety. 

%%% To synthesize all the concerns about battery, the battery use code follows these  

%%% concerns: 1.Grid power situation judgment; 2. Battery use price situation; 

%%% 3. Battery electrical states.  

%%% Rule-based algorithm allows more complicated description of battery aging. 

%%% According to [19], battery aging is affected by last fully recharging 

%%% interval, recent minimum discharging SOC and bad recharging cycles factor.  

%%% Battery aging parameters by battery spec or from battery technology reference  

%%% [17][19]. 

%%% Later, battery manufacturers are supposed to provide more detail info for smart  

%%% battery management. 

cSOC0 = 6.614E-5; %%% Constant slope for SOC factor (h^-1) 

cSOCmin = 3.307E-3; %%% Impact of the minimum SOC on SOC factor (h^-1) 

BRC = 100; %%% each battery replacement fee  

Cn = 40; %%% nominal capacity for each battery, Ah  

  cz = 5; %%% Exponent for calculation of capacity loss due to degradation  

ZIEC = 500; %%% Number of cycles under standard condition; 

U0 = 2.1; %%% fully charged state cell voltage, V 

g = 0.076; %%% electrolyte proportionality constant V 

roud0 = 0.699; %%% discharging aggregated internal resistance (ohm*Ah) 

Md = 0.0464; %%% charge-transfer overvoltage coefficient 

Cd0 = 1.75; %%% discharging normalized capacity factor  
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%%% SOC is present state of charge 

 %%% SOCmin is the minimum SOC since last fully recharging 

Ifactor= -20; %%% normalized reference current for current factor       

Idchgnom = -15; %%% discharging current level in 

fSOC = 1 + (cSOC0+cSOCmin*(1-

SOCmin))*sqrt(Ifactor/Idchgnom)*(exp(n/3.6))^(1/3)*deltatSOC;     

Vb_cal = Nbat*(U0 - g* (1-SOC) + roud0 * Idchgnom/Cn + roud0*Md*Idchg/Cn*(1-

SOC)/(Cd0-(1-SOC))); 

%%% calculated discharging battery voltage 

price_dchg = BRC*exp(-cz*(1-Zw/1.6/ZIEC))*cz/1.6/ZIEC/Cn*fSOC/Vb_cal*1000; 

%%% deltatSOC; time interval since last fully charging 

%%% Zw is the accumulated discharging Ah through put, Ah 

%%% n is the accumulated bad recharging cycles since last fully recharging 

if SOC <= 0.5  

%%% Battery state of charge level is too low and be forced to be charged 

    if Tbat >= Tmin && Tbat <= Tmax  

%%% Only in this temperature, charging is allowed for battery use safety concern, and 

%%% the battery charging voltage limit is dependent on battery temperature through 

%%% table looking up. Battery average electrolyte temperature data are expected here. 

                    if  Vbat < Vconst_T  

Iref = Ichglmt;                            

%%% Voltage under limit, fast charge battery to above 50% SOC state,  

%%% by maximum charging current  
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                    else 

%%% Battery voltage is no less than voltage reference, then charging is not allowed. 

                        Iref = 0; 

                    end                                                                 

            else %%% charging not allowed for inappropriate temperature 

                        Iref = 0; 

            end                                             

elseif (SOC > 0.6)||(SOC <= 0.6 && SOC0506 == 0.6) 

%%% In this SOC range, battery can be either charged or discharged, dependent on price 

%%% info.   

if ld_pv < 0 %%% Load power minus solar power less than zero. 

       Prc_chg = FIT; %%% charging cost price 

%%% Charging will reduce solar feeding-in capability, so it costs FIT. 

       Prc_dchg = FIT - p_dchg; %%% discharging earn price 

%%% Discharging will lead to more feeding-in power, but also discharging aging cost,  

%%% so the total discharging price is FIT minus discharging cost. In our algorithm,  

%%% negative grid power is defined as grid feeded by system situation. In this situation,  

%%% the feeding in power can be from solar source and/or battery power. According to  

%%% present regulation, power from battery should not be used to feed into the grid for 

%%% FIT. However, for future application, this policy may be changed to fully satisfy 

%%% residential power purchase/sale marketing requirement. So in this version battery  

%%% can be controlled to discharge and feed grid. 

       if Prc_chg < Price_avg %%% charging profitable   
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%%% Calculate and judge whether charging is profitable. 

%%% In this case, charging would first take up the solar feed-in capability which costs  

%%% FIT and then the charging amount above total solar power would extraly cost  

%%% electric price of this time, so we compare between FIT, present price-Price and  

%%% average electric price-Price_avg during one day estimated by historic data.  

%%% Average price is the daily average calculated by  Priceavg = 
∫ Price∗dt

24h
0

24h
. Only  

%%% when charging price lower than this price we charge battery and when price 

%%% is over average price plus the potential discharging price we can discharge battery  

%%% and in this way, guarantee every unit energy stored into battery will successfully  

%%% get cash earned. 

%%% when FIT and present price both less than average price charging is profitable and  

%%% only restricted by the maximum charging power limited of the battery for safety  

%%% and aging concern. To keep a charging battery safe and charge as fast as possible,  

%%% we use triple charging method, with battery voltage and current thresholds for each  

%%% charging stages’ boundary condition. 

          if Price <= Price_avg %%% max charging 

            if Tbat >= Tmin && Tbat <= Tmax  

%%%charging allowed in appropriate temperature zone 

               if Vbat < Vconst_T %%%  charging allowed for safe voltage    

%%% rapid charge - 1st stage Voltage under limit, fast charging allowed, 1st stage of  

%%% charging Vconst_T is linearly looked up through charging limit voltage table- 

%%% temperature and used to guide charging without obvious gassing inside battery.                                                                    

if 1000*(-ld_pv)-((Price_avg-FIT)*Ichglmt/dd)*Vbat>0       
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                      Iref = (Price_avg-FIT)/dd* Ichglmt;  

%%% According to FIT and price, decide how much the charging current is used, which  

%%% is an advanced method than simply using max charging when charging profitable.  

%%% “dd” is the downside price variation value. “(Price_avg-FIT)/dd” indicates how  

%%% profitable present charging is and directs how much charging current be used.                                                                                     

else 

%%% If battery charging power is large enough to let grid supplying system. The actual  

%%% used battery charging current will be a quadratic relationship with FIT and price  

%%% and is calculated by following code. 

          poly = [1000 -((Price_avg-Price)*Ichglmt/dd)*Vbat 

 -ld_pv*(FIT-Price)*Ichglmt*Vbat/dd]; 

                        r = real(roots(poly)); 

                        rt=(r>=0)'*r; 

Iref = 1000*rt/Vbat;         

                  end 

               else %%% Vbat >= Vconst_T  

%%% Battery voltage is no less than voltage reference, then charging current is limited.  

%%% Constant voltage charging-2nd 3rd  stage 

         Iref = (Kp1+Kp1*Ki1*Ts)*(Vbat-Vconst_T)+Kp1*(Vbatp-Vconst_T)+Ibatp; 

%%% backward discrete filtering PID control is used for constant voltage maintenance. 

%%% Kp1 – proportional value of constant voltage control  

%%% Ki1 – integral value of constant voltage control 

 %%%  
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%%% Ts – discrete PID sampling period 

 %%% Nv – PID filtering enhancing number 

%%% Vbat,Vbatp – battery voltage of present and adjacent past instants 

 %%% All these parameters need a real field tuning, although such tuning could be done 

%%% to fit Matlab simulation environment, however, Matlab use very easy 

%%% mathematic description of the real system, and could not exactly match the case 

%%% when real field tuning implemented. 

               end   

               if Iref < 0             

%%% the calculated battery charging current reference should be within [0,Ichglmt] 

                  Iref = 0 ;                                     

elseif Iref > Ichglmt  

                  Iref = Ichglmt; 

            end                                           

         else %%% battery temperature not in safety range, no charging 

              Iref = 0;                               

         end                          

      else %%% price is large enough to limit charging                               

%%% Reuse price charging code as above, but put one more price charging limit 

%%% afterward.  

           Iref = Price_charging();                 

           Plmt_prc_chg = -ld_pv*(FIT-Price)/(Price_avg-Price); 

           Ilmt_prc_chg = Plmt_prc_chg*1000/Vbat; 
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%%% Additional charging current limit put by large enough price  

Iref = min(Ilmt_prc_chg,Iref); 

%%% Compare the new constraint and the original calculated one and get the  

%%% discharging current reference. 

        end 

      elseif Prc_dchg > Price_avg  %%% discharging profitable discharge according to 

%%% how profitable discharging is  

    Iref = (Prc_dchg-Price_avg)/du*Idchglmt; 

%%% According to FIT and price, decide how much discharging current is used, which 

%%% is also an advanced method than simply using maximum discharging when  

%%% discharging profitable. “du” is the upside price variation value. “(Price_avg- 

%%% FIT)/dd” indicates how profitable present discharging is and directs how much  

%%% discharging current should be used.                         

      else %%% neither profitable, do not use battery     

           Iref = 0; 

      end 

   else %%% load power no less than solar power 

       Prc_chg = Price; %%% cost 

       Prc_dchg = Price - p_dchg; %%% earn 

%%% Charging will increase more burden to grid power, so it costs electric price. 

%%% Discharging will reduce grid burden power, but also cause discharging aging cost,  

%%% so the total discharging price is electric price minus discharging cost.        

      if Prc_chg < Price_avg %%% charging profitable   
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%%% Reuse price charging code as above 

           Iref = Price_charging();    

      elseif Prc_dchg > Price_avg %%% discharging profitable 

if 1000*(-ld_pv)-((Prc_dchg-Price_avg)*Idchglmt/du)*Vbat<=0 

               Iref = (Prc_dchg-Price_avg)/du* Idchglmt;  

%%% Discharging price directed discharging, the same as above discharging case.                                                        

           else   

            poly = [1000 ((FIT-p_dchg-Price_avg)*Idchglmt/du)*Vbat -ld_pv*(FIT-

Price)*Idchglmt*Vbat/du]; 

           r = real(roots(poly)); 

           rt=(r<=0)'*r; 

           Iref = 1000*rt/Vbat;  

%%% Discharging power is large enough to feed grid and causes a quadratic relationship  

%%% between price and discharging current.                

         end 

         if FIT < Price_avg  

%%% FIT is small enough to put one more constraint on battery discharging current. 

            Plmt_FIT_dchg = -ld_pv*(Price-FIT)/(Price_avg-FIT+p_dchg); 

            Ilmt_FIT_dchg = Plmt_FIT_dchg*1000/Vbat; 

                     Iref = max(Ilmt_FIT_dchg, Iref ); 

%%% Compare the new constraint and the original calculated one and get the  

%%% discharging current reference. 

          end                   
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       else %%% neither profitable, do not use battery 

           Iref = 0;                  

       end 

    end    

  else %%% SOC <= 0.6 && SOC0506 == 0.5 

%%% To avoid battery charged to above 50% area and then immediately be discharged  

%%% responding to present price info, battery is forced to be charged onto 60% by a 

%%% small current when discharging profitable and a large current when charging  

%%% profitable. The sign “SOC0506” indicates the present SOC recently arrives at 50% 

%%% instead of 60% to verify this case valid. 

if ld_pv < 0 %%% Load power minus solar power less than zero. 

       Prc_chg = FIT; %%% charging cost price 

%%% Charging will reduce solar feeding-in capability, so it costs FIT. Here only  

%%% charging is considered, if price indicates discharging operation, do not use battery 

      if Prc_chg < Price_avg 

%%% Reuse price charging code as above 

           Iref = Price_charging();    

      else %%% discharging profitable or neither profitable 

           Iref = 0; 

      end 

    else %%% Load power no less than solar power 

           Prc_chg = Price; 

        if Prc_chg < Price_avg                                                 
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%%% Reuse price charging code as above 

           Iref = Price_charging();   

         else %%% discharging profitable or neither profitable 

           Iref = 0; 

        end                                  

end 

else %%% voltage threshold not satisfied, so charging is also not allowed 

     Iref = 0; 

  end  

else %%% charging not allowed for inappropriate temperature 

     Iref = 0; 

end                                     

else %%% Curtl signal 1(only 0/1 logic value), system in load curtailment mode 

%%% In load curtailment mode, system is still connected to grid power source,  

%%% but the difference is in this mode, the average grid power over time should 

%%% be less than Pwrcurtl, where the calculation is : 

%%% Pwrcurtl = 
∫ Pwrgrd∗dt

time now
curtailment start

curtailment period so far
.  

%%% If average grid power lower than curtailment requirement, the system 

%%% operation would have no difference from in automatic response mode. 

%%% And automatic response mode is reused in the function form:  

%%% Iref = AutoRspn(). However, when the average grid power reaches the limit 

%%% requirement, and battery discharges maximum or battery not secure to do 

%%% any discharging, we just execute load cutoff, according to user’s preference 
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%%% load priority.  

%%% Update curtailment energy and average grid power use value 

             Egrid = Egridpre + dt*Pwrgrid; 

             Pavggrid = Egrid/t; 

  if  Pavggrid < Pwrcurtl  %%% average grid power no exceeding limit 

%%% Reuse automatic response mode function code. 

       Iref = AutoRspn() 

else %%% average grid power exceeding limit 

%%% We first try to use battery discharging to reduce grid burden, however 

%%% when this is not available to use or not enough to reduce, we cut off load 

%%% after short delays (require real field system response speed test). 

    if Pwrgrid > 0 %%% grid is supplying system, battery is used to do potential 

%%% discharging, this is the same as in automatic response mode, so reuse the  

%%% function code 

 Iref = AutoRspn_Pwrgrd_ovr0(); 

else  %%% Grid is feeded by solar power, battery can only be used to do 

%%% potential charging. In this case, the difference between that in automatic 

%%% response mode is, here an additional grid power limit is applied. So we 

%%% compare and use the small limit to guarantee both limit satisfied. 

Pwrchggrdlmt = abs(Pwrgrd)*(Price-FIT)/(Price-Price_avg)- abs(Pwrgrd); 

%%% the price directing charging power limit 

Pwrchgcurtllmt = Pwrcurtl –Pwrgrd 

Pwrchglmt = min(Pwrchggrdlmt, Pwrchgcurtllmt)  
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%%% compare and use smaller limit value, then reuse other function as in automatic  

%%% response mode. 

Iref = AutoRspn_Pwrgrd_undr0(); 

end 

%%% judge whether load is necessary to be cut 

if  Pavggrid > Pwrcurtl   

                  counter = counterp + 1; %%% cutoff delay judgment 

           else 

                  counter = 0; %%% clear cutoff delay 

           end 

                 if counter >= 10 %%% 10 is used to allow delay cutoff, and 

%%% need real field tuning to determine practical use value  

                     cut_en = 1; %%% load cutoff enabled  

                 end 

end  

case 0 %%% grid is off, system works in standalone mode  

%%% standalone mode is quite different from the above two modes since it is  

%%% disconnected with grid, an obvious different physical environment. There would  

%%% be no grid power flow in this mode. And there are three control required and  

%%% controllable components in this mode: battery current reference; load switches and  

%%% solar panel MPPT use. The key of maintaining the system running in this mode is 

%%% to monitor the DC bus voltage and use DC voltage PI controller to make sure it is  

%%% around the nominal value with maximum ripple of 5%. 
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Vdc_ref = 36; %%%set DC bus reference voltage (in our simulation 36V is used) 

  dInet = (Kp2+Kp2*Ki2*Ts)*(Vdc-Vdc_ref)-Kp2*(Vdcp-Vdc_ref);  

%%% DC bus voltage uses PI control to calculate the necessary DC bus current variation  

%%% in the next sample interval. Kp2,Ki2 are DC bus voltage related PI controller  

%%% parameters, which are also needed to be tuned in real system. 

                Iref = 0; %%% default reference battery current zero 

%%% If no judgment battery current reference is triggered, this value is used. 

                if dInet > 0 %%% DC bus undervoltage 

%%% next necessary DC current variation is positive, which means DC bus is less than 

%%% reference value and needs positive net current to balance.   

                    Ipv_out = Ipv;  

%%% in this mode solar current is controlled, but in this case, no surplus solar power  

%%% exists, so keep MPPT open and use maximum input solar power. 

                    counter1 = counter1p;  

%%% Use undervoltage state counter to calculate the undervoltage time for potential  

%%% load cut off operation. 

                    cut_en = 0;  

%%% Initially keep load, do not cut until time counter reaches threshold. 

                    dIbat = -Vdc_ref*(dInet-(Ipv-Ipv_a)+dIld)/Vbat; 

                    Ibat = Ibatp + dIbat; %%% potential battery current 

%%% Assume load and solar power not controlled, purely control battery to achieve DC  

%%% current variation 

              if  Ibat < Idchglmt 
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                   bat_lwr = 1;  

                   Iref = Idchglmt;  

%%% Judge whether controlled battery current reach lower boundary. If so, use lower  

%%% boundary and set lower boundary reach sign “bat_lwr”.  

              end          

              if SOC <= 0.5 || (SOC <= 0.6 && SOC0506 == 0.5)  

%%% If SOC is less than 0.5 or larger than 0.5 less than 0.6 from 0.5 previously, battery  

%%% is only used for charging and lower boundary sign is set.  

                   if Ibat < 0 

                       bat_lwr = 1; 

                        Iref = 0; 

                     end 

                  end 

                       if Vbat < Vconst_T 

                              if Ibat > Ichglmt 

                                bat_upr = 1; 

                                Iref = Ichglmt; 

                              end  

else 

  Iref_up = (Kp1+Kp1*Ki1*Ts)*(Vbat-Vconst_T)-Kp1*(Vbatp-Vconst_T)+Ibatp;                               

                              if Ibat > Iref_up 

                                bat_upr = 1; 

                                Iref = Iref_up; 
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                              end   

                       end 

                     if Tbat < Tmin || Tbat > Tmax 

                             if Ibat > 0 

                                bat_upr = 1; 

                                Iref = 0; 

                             end  

                     end                        

%%% Battery current upper boundary check. If boundary reached, use upper boundary  

%%% and set upper boundary sign.  

                       if bat_lwr == 0 && bat_upr == 0  

%%% If pre-calculated battery current reference reaches neither upper nor lower  

%%% boundary, just use the calculated value. 

                          Iref = Ibat; 

                       end 

                    if bat_lwr == 1  

                        counter1 = counter1p + 1; 

%%% If lower boundary reached, add undervoltage time counter by 1. 

                    end 

                    if counter1p >= 2 

                        cut_en = 1;  

%%% If undervoltage time counter reaches 2, enable cut-off. 

                        counter1 = 0;  
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%%% clear undervoltage counter 

                    end 

                     if bat_upr == 1  

                        dIpv = (Iref-Ibatp)*Vbat/Vdc_ref+dInet+dIld; 

                        Ipv_out = Ipv_a + dIpv; 

%%% If battery current reaches upper boundary, use upper boundary battery current 

%%% and control solar power in the meanwhile to achieve DC bus current variation. 

                     end 

                else %%% dInet <= 0  DC bus overvoltage  

                    cut_en = 0; %%% Do not cut load when overvoltage 

                    counter1 = 0; %%% clear undervoltage counter               

%%% In standalone mode, battery current reference function code reuse 

                        Iref = Ibat_stdaln_reuse();  

                     if bat_upr == 1  

                        dIpv = (Iref-Ibatp)*Vbat/Vdc_ref+dInet+dIld; 

                        Ipv_out = Ipv_a + dIpv;  

%%% If battery current reaches upper boundary, use upper boundary battery current 

%%% and control solar power in the meanwhile to achieve DC bus current variation. 

                     end                     

otherwise %%% grid information is unknown, wait and no control operation executed 

               %%% At DSP programming scenario, here we can use delay commands. 

end %%% Rule-based algorithm ends. 
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CHAPTER 4  

SYSTEM SIMULATION & RESULTS 

4.1 SIMULATION DIAGRAM 

  The purpose of the simulations is first to make sure that both rule-based and 

optima model method are effective for SGPN system with cost saving achievable and all 

system parameters such as battery current, voltage and SOC are in safety states and 

second to compare between enhanced rule-based algorithm and general rule-based 

algorithm on the capability to save more. By using rule-based algorithm, all the three 

SGPN modes are simulated to verify rule-based algorithm is applicable for the whole 

system functions.  

  This simulation is running in Matlab 2013a Simulink environment and the full 

system diagram is shown in Figure 4.1. In this diagram, SGPN system, controller, load 

group, utility information and measurement observers are all included and designated by 

tags. To give a more clear description, SGPN system represents SGPN hardware part: PV, 

batteries, inverter/rectifier and other converters. Controller will be applied by both rule-

based and optima model methods. Load group is composed of seven kinds of profiled 

common household application devices:  HVAC, lighting, cooking, washing, refrigerator 

and small electronics group, each connected with a load switch for curtailment and 

standalone mode load control. Utility information provides electric price and load 

curtailment requests, which are prescheduled data instead of real-time ones. Measurement 

observers are Matlab Simulink scope components. 



 

 

7
6 

 

 

Figure 4.1 SGPN Simulink block diagram
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4.2 SIMULATION PARAMETERS 

Most of the parameters in this simulation are based on academic references or 

technique specification [9] [17-21] for components, like: lead-acid battery, photovoltaic 

panel. Other parameters are either from industrial/residential practice, like TOU price and 

load profile, or based on ideal assumptions. The simulation is assumed to be on July 1
st
 , 

a summer day and it is also assumed that all the SGPN hardware components are lossless 

and all the parameters related to the swap of three different system modes are known one 

day ahead and no changes is made to these scheduled events, which is a theoretically 

ideal situation.   

 Here the simulation configurations are shown in Figure 4.2.  The simulations are 

implemented for three operation modes on typical price and load, solar power profile to 

show the system can work well in all three modes and “ode3” simulation solver with 

sampling period 0.001hour (3.6second) is adopted to solve the discrete states model.  

 

 

Figure 4.2 Simulation parameters 

4.3 SIMULATION RESULTS 

The simulations are separated into three sections for three operation modes. The 

first one is for automatic response mode and uses both optimal model method and rule-

based algorithm as two main methods. Then for load curtailment mode and standalone 

mode, we both use rule-based algorithm. 

In the first section’s simulation, the model adopted by optimal model method is 
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different from that adopted by rule-based algorithm in two ways: it does not integrate 

battery internal temperature safety constraint and it uses linear aging coefficient, a 

different aging calculation method from that of rule-based algorithm. Both of the two 

differences are based on approximation and due to the highly complicated form of 

optimization objective function not satisfying convexity requirement, so optimal model 

method and rule-based algorithm can not be compared using the same benchmark. 

However, we can compare optimal model used case with no such battery control used 

case to check how much this algorithm could achieve in cost saving. And general rule-

based algorithm and enhanced rule-based algorithm are using the same battery model, so 

they will be compared along with the battery control not used case.  

The TOU and FIT pricing profiles for optimal model method are shown in Figure 

4.3 and the battery use current and voltage along with solar power and load power 

profiles are shown in Figure 4.4. 

 

 

Figure 4.3 Electric price and FIT profiles for optimal model method 
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The other algorithm used for automatic response mode is rule based algorithm, 

which adopts a more complicated solar power and load power profiles. The solar power is 

superposed on disturbances, which are seen to have some concave parts on the “Solar 

Power” plot to simulate the real solar power fluctuation, for instance, caused by clouds 

covering. And load profile adopts refrigerator usage, which is composed of a series of 

spikes in the “Load Power” plot. The FIT and electric price data shown in Figure 4.5 is 

from the synthesized data of related real-time pricing system and can be changed to any 

other profile. And we use two comparison counterparts: general rule-based algorithm (in 

Figure 4.6) and enhanced rule-based algorithm (in Figure 4.7). 

The other two sections’ simulations are for load curtailment mode (shown in 

Figure 4.8 and Figure 4.9) and standalone mode (shown in Figure 4.10), which are both 

realized by rule-based algorithms.  

 

 

Figure 4.4 Battery current & voltage, solar & load power and daily accumulated cost in 

optimal model method 
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Figure 4.5 Electric price and FIT profiles for rule-based algorithm 

 

 

Figure 4.6 Battery current & voltage, solar & load power and daily accumulated cost in 

general rule-based algorithm 
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Figure 4.7 Battery current & voltage, solar & load power and daily accumulated cost in 

enhanced rule-based algorithm 

4.4 RESULTS ANALYSIS 

In the optimal model method’s simulation Figure 4.4, we can see battery current 

and voltage are in safety area and this optimal model method enables our system an 

accumulated cost saving of $ -3.44, which means we can earn $3.44 one day by applying 

optimal model battery use control comparing with the battery control not used case only 

$ 2.78. This result verifies that optimal model method can save money for our system and 

also guarantee the battery current and voltage safety requirements. 

Then we compare the cost saving capability during 24 hours between enhanced 

rule-based algorithm and general rule-based algorithm. The former considers how 

profitable of present FIT and electric price to decide corresponding battery use current 

but the latter simply decides battery use upon whether it is profitable time period without 
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detecting how profitable it is.  

We use the same solar and load power profile and same FIT and electric price 

data for the comparison. The daily accumulated cost for a battery control not used case is 

$-4.41, which means we can earn $4.41 one day by solar power’s unregulated feeding 

into grid. On the other hand, the final accumulated daily earn is $4.73 for general rule-

based (GRB) algorithm used case and $6.07 for enhanced rule-based (ERB) algorithm 

used case. This demonstrates that both algorithms are capable of earning money and 

especially the enhanced rule-based algorithm can earn more. From the corresponding 

battery current control plots we can find how this difference yields. At the beginning and 

in the end of the day, when FIT and electric price is getting lower, GRB tends to charge 

battery with maximum charging current, however, ERB calculates how profitable present 

charging price is, and assigns less battery charging current when profit not remarkable 

and more current when price info shows more profit. And in the middle of the day, when 

FIT is getting higher, GRB uses maximum discharging, which depletes all the stored 

battery energy to earn money; while on the other hand, ERB intelligently monitors FIT, 

judges how profitable the present discharging operation is and applies less discharging 

when FIT is not high enough. In both ways, ERB guarantees more money earned for the 

whole system. 

In the second section’s simulation, the simulation for Load curtailment mode is 

executed to check whether grid power can be controlled under a specific average level 

and whether the load cutting off subsystem functions normally. Since load curtailment 

happens only when load is larger than solar power, we focus our simulation on the period 

around load curtailment period. 
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Figure 4.8 Load curtailment mode battery current & voltage, solar power & grid power 

 

 

 

Figure 4.9 Load curtailment mode uncontrolled, controlled load profiles 

From the simulation Figure 4.9, we can see during the curtailment period, solar 

power is in outage, and the uncontrolled load power is almost twice as much as the 

indicated curtailment request 2kw level. At the beginning of this period, system detects 
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the average grid power has exceeded the required level, so it immediately executes 

cutting off, and we can see the large spikes and triangular shaped load are removed in the 

controlled load profile and in the meanwhile, battery is trying to compensate the 

dominating load. After that, the rest of working load is not huge enough to increase 

average grid burden to be above 2kw, which keeps the curtailment successfully 

completed shown in Figure 4.8. 

The final section’s simulation is for standalone mode. Unlike the previously two 

modes, system in this mode is disconnected with grid, which is a more complicated 

physical operation environment, since the DC bus voltage of the system is sensitive to the 

current flow variation of PV panel, battery and load without grid’s natural power balance. 

So a DC bus PI controller is adopted here and guarantees the DC bus voltage stable can 

be achieved by battery current control, PV input control and load shunt.  

From the last subplot, we can see that DC bus voltage is kept around reference 

value, and there are only two small DC voltage drops around 4am time point and 7:30am 

time point, which are caused by overload and load cutting off operation. At around 4am, 

when there is no solar input, the spike is too large for battery to supply, the system first 

tries to use maximum battery discharging supply but the undervoltage is still continued 

for a short interval and then cutting off is executed, and we can see the spikes in the 

original uncontrolled load plot are removed from controlled load plot. And later from 

6:30am to 7am battery is capable to supply load without solar input but at around 7:30am, 

battery is depleted and forced to charge or not use, however at that time, solar power 

can’t solely supply load, so load is cut off for a second time and battery is charged by 

solar power. When solar power gets larger and reaches the maximum charging power 
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Figure 4.10 Standalone mode battery current & voltage, solar power & load power, DC bus voltage plot  
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absorption ability, the solar power is regulated to be shunt, and we can see this from the 

actual PV usage plot “Actual used PV power” in Figure 4.10. And later at around 19pm, 

solar power again is in outage, and the fully recharged battery supply the total loads.  

4.5 CONCLUSION 

Both optima and rule-based methods are available to realize SGPN system yet 

give users certain degree of electric cost saving. And comparing to a rule-based method 

making decision upon present information, optima model method synthesizes much 

larger size of system’s present and predictive information to provide a system control 

schedule input. So it can make more cost savings and more reliability if all the 

information predicted sufficiently accurate. However, this also inevitably leads to more 

complexity and more cost on the controller hardware and more dependence on peripheral 

algorithms software, such as power predictive algorithms. On the other hand, rule-based 

algorithm can be easily implemented to fulfill the control requirement in three different 

operation modes, such as standalone mode, in which optima method still can’t be applied 

for its less accuracy and slower calculation speed. So depending on whether there is 

standalone mode operation requirement and whether it is limited hardware or 

development period required application scenario, we can choose rule-based method or 

optima based method. In the future, as the development of more advanced peripheral 

algorithms and computing hardware, we can expect a more prospective application for 

the optima model method in smart grid and maybe other areas.  
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APPENDIX A  

SGPN HARDWARE STRUCTURE  

A.1 SUBSYSTEM COMPONENTS   

A.1.1 ON-SITE ENERGY SOURCE 

On-site energy source enables the SGPN system’s electric self-supply ability, 

which would give benefits to electric providers and consumers in two ways. One is SGPN 

would use on-site generated power to supply home loads and reduce grid power burden in 

automatic response mode and load curtailment mode. The other is in standalone mode 

(grid is disconnected from the system for electric shortage) the system can guarantee the 

basic loads working for a considerable period.  

The choice of on-site energy source could be varying from solar energy source 

(photovoltaic panel), wind energy source (wind turbine) to any other available sources. 

This empowers the system to incorporate renewable energy and contribute to reduction of 

green-house gas emission. And in our system, solar energy is adopted. 

A.1.2 OFF-SITE ENERGY SOURCE 

Off-site energy source here refers to the traditional grid source. It still exists in the 

system to provide sufficient supply ability and stabilize the power consumption since 

solar energy, which is directly influenced by weather condition and daytime length, has 

limited capability to supply total home loads all the time by itself and obviously the 

power produced by these sources has uneven manner daily.  
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A.1.3 ENERGY STORAGE SYSTEM 

Energy storage system is necessary for our system because it can realize cost 

saving for customers by energy usage shift, which means putting electricity into storage 

system at low electric price period and feed energy back into loads at high price period. 

Besides, in standalone mode, it is essential to increase system’s supply ability and 

maintain power stability, since in this mode there are only two energy sources, on-site 

energy source mentioned above and energy storage system. 

Since it is mentioned in Chapter 3, lead-acid battery is best for residential power 

storage system, we adopt lead-acid batteries as energy storage unit in our system.  

A.1.4 LOADS SYSTEM 

Loads are the group of applications homeowners most concern. In a typical house 

electric usage scenario, there are high power loads, such as air-conditioning, water heater 

and low power loads like microwave, refrigerator and television.  

A.2 INTERMEDIATE CONNECTION COMPONENTS 

A.2.1 AC AND DC BUSES 

The reasons for intermediate connection parts are the electrical configuration 

difference. Off-site energy source uses AC (alternating current) input while PV panel 

provides DC (direct current) input. This physical configuration difference decides that 

there should be two buses, one AC bus with off-site energy source and all AC devices 

connected and one DC bus with PV panel, lead-acid battery system and all DC devices 

connected. In our system, AC bus is 60Hz, 240V RMS and DC bus is set to 36V (36V, 

48V or other value dependent on desired PV and battery configuration) according to 

present PV and battery capacity as a 2kw low power prototype SGPN model.     



 

 92 

A.2.2 INVERTER AND RECTIFIER 

There should be a bridge between AC side and DC side, which gives the system 

bi-directional power flow capability. This bridge is called inverter / rectifier, and it 

functions as inverter when converting DC power into AC power, and functions as 

rectifier when converting AC power into DC power.  In our system, the power flow 

direction is controlled by reference current positive and negative sign to represent DC to 

AC and AC to DC respectively and power flow amount is controlled by reference current 

absolute value.   

A.2.3 PV CONVERTER 

PV converter is a boost type DC/DC converter in our system. The reason for this 

choice is that buck type converter requires additional input capacitor to work in 

continuous input current mode and buck/boost converter is not necessary for our system. 

This buck type capacitor is generally an electrolyte capacitor for a high voltage input and 

thus is not suitable for high frequency application. Besides, guaranteeing the reliability of 

input capacitor needs additional hardware and software and therefore we use boost type 

to reduce total system cost.  

PV boost converter is used to raise solar generator input voltage to the desired DC 

bus voltage and control the amount of solar electric input power. This PV power control 

has two cases: MPPT mode and non-MPPT mode, where MPPT means maximum power 

point tracking. In most system working conditions PV converter is kept running in MPPT 

mode, except for an extreme condition in standalone mode, if PV input power over the 

total amount of load consumption and battery system fully charged, PV converter will be 

disabled to automatically follow load.    
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The necessity of MPPT is that the maximum output power of a PV panel keeps 

changing during one day, due to varying real-time insolation and all sorts of fluctuating 

factors related to influence solar input power, such as cloudiness, temperature, humidity 

and PV load coupling level. There should be an algorithm to adjust the total coupling 

load by changing PV boost converter duty cycle to maximize output power and the usage 

efficiency of PV generator. 

There have been a lot of different methods to implement MPPT, but a widely used 

and simple one is called “Perturb & Observe” (P&O) method [27]. This method applies a 

positive or negative small increment (Perturb) on duty cycle and keeps monitoring 

(Observe) the changing output power, product of PV output voltage and current. If the 

change is positive, the duty cycle is further perturbed in that direction, otherwise it is 

perturbed in the opposite direction. And in this thesis we only discuss which MPPT algorithm 

is adopted instead of developing a new MPPT algorithm. 

A.2.4 BATTERY CONVERTER 

Battery is a DC voltage device and is connected to DC bus through DC/DC 

converter.   In our system, battery charging and discharging are both required, so we use 

buck/boost converter to realize this bidirectional power flow control. Battery is charged 

or discharged according to battery current reference determined by high level control 

system. And high level control algorithm needs state of charge (SOC) information to 

regulate battery use in a safe range. The lead acid battery modeling and control issues are 

discussed in Chapter 3 in detail. 
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A.2.5 LOADS SWITCHES GROUP  

Load switches group is connected between AC bus, DC bus and responding loads. 

It is used to turn off and turn on loads designated by SGPN load management algorithm, 

which is discussed in Chapter 3.  

 

 

Figure A.1 SGPN Control 5-layer Hierarchy Architecture  

A.3 HIGH LEVEL AND LOW LEVEL CONTROL HIERARCHY 

The SGPN control hierarchy architecture is based on IEEE 1676-2010, Guide for 

Control Architecture for High Power Electronics (1 MW and Greater) Used in Electric 

Power Transmission and Distribution Systems [28]. Our present system is 2 KW 

prototype model farther below 1 MW level, but this architecture is still suitable for high 
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level control and low level system implementation. This architecture defines each layer 

with different operating speed requirements and functions to allow a robust control 

system.  

This diagram Figure A.1 is similar to a cross-section of system’s operation, which 

shows how an operation is executed from top command to bottom hardware components’ 

action through five different functional layers. 
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