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ABSTRACT

Typical survival methods have the assumption that every subject will 

eventually experience the event of interest, given enough follow-up time. 

However, there are some occasions in which a proportion of the population of 

interest will never experience the event of interest. Therefore, the incorporation 

of a “cure” fraction in a statistical model is necessary. In this thesis, I 

comprehensively evaluate mixture cure models in two different statistical 

software programs: the smcure package in R and the PSPMCM macro in SAS. 

Extensive simulation studies in R and SAS allow evaluation of the performance 

of these two models. An additional aspect of this thesis involves application of 

the mixture cure models in R and SAS to a new real data set of soft tissue 

sarcoma patients. The results from the models fitted to the sarcoma data set in R 

and in SAS will then be compared.  
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CHAPTER 1: INTRODUCTION

In the field of biostatistics, the analysis of survival data is often the goal of 

studies. The methods currently available to do this analysis are numerous and 

varied. Some of most commonly used methods in survival analysis include the 

proportional hazards (PH) model and the accelerated failure time (AFT) model. 

Both of these methods assume that every subject will eventually experience the 

event of interest, given enough follow-up time. There are some instances, 

especially with the advancements in modern medicine, in which a proportion of 

the population of interest are “cured” and will therefore never experience the 

event of interest. This situation motivates the incorporation of a cure fraction in a 

statistical model in order to analyze the ability of a certain treatment to cure a 

disease of interest. Once that model is defined, the next step is to develop 

procedures to fit the model to study datasets by utilizing popular statistical 

software. This chapter will review the mixture cure model and explain its 

implementation in two common statistical software programs, R and SAS. 

Additionally, a motivating data set for this study will be introduced and 

evaluated using the more typical survival analysis tools. 
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1.1 Mixture Cure Models 

As previously stated, the motivation behind mixture cure modeling is the 

desire to address the situations in which there are cured proportions of 

individuals and the resulting consequence that those individuals will never 

experience the event of interest.1 This led to exploration into cure rate estimation 

and development of the first mixture cure models by Boag, Berkson and Gage, 

and Haybittle.2,3,4 From those initially developed models, various studies have 

proposed and assessed parametric and semiparametric mixture cure models.5 

Several authors have studied the parametric approach to mixture cure models 1,6,7 

however, semiparametric models, are often of greater interest than parametric 

models since the parametric assumption can be hard to meet. Therefore, many 

studies more recently have explored modeling and estimation with 

semiparametric mixture cure models.8,9,10,11,12 

To start, we give the expression for the mixture cure model. Let T denote 

the failure time for the event of interest and let Y be the indicator of an 

individual’s susceptibility to the event of interest (Y=1 for susceptible, while Y=0 

for not susceptible). Also, define    ( ) as the probability of being cured given 

the vector of covariates z.  ( |     ) gives the survival probability for 

susceptible, uncured patients at time t, given a certain covariate vector x. 
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Covariate vectors x and z may affect the survival and the cure function, 

respectively. The expression for the mixture cure model is as follows: 

    ( |   )   ( ) ( |     )  (   ( )) 

(1) 

where     ( |   ) is the unconditional survival function of T for the entire 

population. Here,  ( |     ) is defined as the latency and  ( ) is defined as 

the incidence.  

The modeling strategy for the mixture cure model involves separately 

modeling the cure proportion and the survival distribution of the uncured 

patients. Starting with the incidence portion of the model, the effects of the 

covariate vector z on the cure proportion is typically modeled using a logit link 

function 

 ( )  
   

     
 

where b is a vector of unknown parameters associated with the covariate vector 

z. However, other link functions can be used as well, including the probit link 

   ( ( ))     

where φ denotes the standard normal cumulative distribution function, and the 

complementary log-log link 

   (    (   ( )))     
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The latency portion of the model can be defined to be the proportional 

hazards (PH) model or the accelerated failure time (AFT) model. Let   ( ) be the 

baseline survival function for uncured (susceptible) individuals. When  ( |  

   )    ( )
   , the proportional hazards mixture cure (PHMC) model is selected 

and when  ( |     )     (  
  ), the accelerated failure time mixture cure 

(AFTMC) model is selected.  

Computational Methods 

Likelihood 

The methods of estimating parameters vary between the SAS macro and 

the R package, but the general procedure involves maximizing the likelihood. 

Therefore, we will start by expressing the full likelihood function for the 

observed data. Let observed data for the ith individual, i = 1, …, n, have the form 

O = (           ). The observed survival time for the ith individual is   , while the 

censoring indicator,   , is 1 if the event occurred and 0 if the individual is 

censored. Let Θ = (b, β,   ( )), the unknown parameters to be estimated, and let 

Y be the indicator of susceptibility as previously described, where Y = 1 if the 

individual will eventually experience the event of interest and Y = 0 if the 

individual will not. Given a vector y = (          ) and the observed data O, the 

likelihood function is expressed in Equation 2. 
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 (   )   ∏[    (  )]
    

 

   

  (  )
   (  |      )

     (  |      )
   

(2) 

where h(·) is the hazard function that corresponds to S(·). The expression for the 

logarithm of this complete likelihood function is shown in two parts, Equations 3 

and 4. 

Incidence log likelihood 

   (      )   ∑  

 

   

   [ (  )]  (    )    [   (  )] 

(3) 

Latency log likelihood 

   (      )   ∑  

 

   

     [ (  |      )]        [ (  |      )] 

(4) 

Estimation Procedures 

Having expressed the full likelihood and log-likelihood functions, we will 

now explore the different estimation procedures. The Expectation-Maximization 

(EM) algorithm is utilized because of the incorporation of the latent variable, y. 

This unobservable variable is replaced by the expectation in the EM algorithm. 

The differences between R and SAS arise in the M-step of the EM algorithm. 

Obviously, the PHMC model utilizes semiparametric estimation consistently 

between R and SAS. However, for the AFTMC model, the SAS macro utilizes 

parametric optimization methods to obtain maximum likelihood estimates5 while 
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the R package utilizes the rank-based estimation method proposed by Zhang and 

Peng.12 

a. Semiparametric PHMC Model 

The conditional expectation of the complete log-likelihood, with respect to 

the yi’s and given the observed data, O, and current estimates of the parameters, 

 ( ), is computed with the expectation step (E-step) of the EM algorithm. The 

conditional expectation of    is sufficient as the complete log-likelihoods in 

equations (3) and (4) are linear functions of   . Therefore, the expectation of    is 

shown in equation 5. 

  
( )

  (  |   
( ))      (    )

 (  ) (  |      )

   (  )    (  ) (  |      )
|
(   ( ))

 

(5) 

For those who have experienced the event,     , the expectation is 1, and for 

those censored observations,     , the expectation is the probability of patients 

being uncured. The second part of equation 5 is interpreted as the ith 

individual’s conditional probability of remaining uncured at the mth iteration of 

the algorithm. This expression is used in the expectations of equations 3 and 4, 

shown below in equations 6 and 7, respectively. 

 (   )   ∑  
( )    [ (  )]  (    

( ))    [   (  )]

 

   

 

(6) 
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 (   )  ∑     [  
( ) (  |      )]    

( )
    [ (  |      )]

 

   

 

(7) 

Equations 6 and 7 are maximized separately with respect to the unknown 

parameters in the maximization step (M-step) of the EM algorithm. For the 

incidence part shown in equation 6, in R, the ‘link’ option in the ‘glm’ function is 

utilized to estimate the parameters whereas in SAS, PROC LOGISTIC can be 

used to maximize the equation. In order to estimate β from equation 7 without 

having to specify the baseline hazard, a previously proposed partial likelihood 

type method is utilized.10,13 Equation 8 shows the estimating equation for this. 

   ∏[  (  )    (       (  
( )))]

  
  (  )

    (       (  
( )

))

 

   

 

(8) 

Equation 8 is similar to the standard PH model log-likelihood function, with an 

additional offset variable,    (  
( )). This similarity allows use of the ‘coxph’ 

function in R and PROC PHREG in SAS to estimate the parameters in equation 7. 

Details on this estimation are available in other studies. 10,12,15 

To proceed back to the E-step, the estimated survival function must be 

updated. Let  ( )   ( )     ( ) denote the distinct uncensored failure times. 

Also, let   ( ) be the number of events and  ( ( )) be the risk at time  ( ). Equation 

9 gives a Breslow-type estimator for   ( |   ). 
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 ̂ ( |   )     (  ∑
  ( )

∑   
( )  ̂      ( ( ))   ( )  

) 

(9) 

Because of the cure proportion,  ̂ ( |   ) may not approach 0 as    . 

Therefore, to avoid identifiability problems we can set  ̂ ( |   )    for   

 ( ), where  ( ) is the last observed failure time.4 The estimated survival function 

then becomes  ̂( |   )   ̂ ( |   )
    ( ̂ ). Note that this zero-tail constraint 

makes the assumption that individuals with survival times greater than the last 

observed failure time are all non-susceptible. 

b. Semiparametric AFTMC Model 

For AFTMC parameter estimation, the incidence part in equation 6 is 

estimated the same way as described for the PHMC model. The latency part from 

equation 7 must be demonstrated separately. The rank-based estimation method 

proposed by Zhang and Peng is used to estimate β in the M-Step.12 This method 

involves rewriting equation 7 as a log-likelihood function for a standard 

semiparametric AFT model that contains an additional constant term,   
( ). This 

is shown in equation 10. 

   ∏[  
( ) (   (  )     )]

  [ (   (  )     )
  
( )

]

 

   

 

(10) 
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Estimation of β in the M-step is then accomplished by the previously described 

methods of semiparametric estimation with AFT models.8 Zhang and Peng 

recommend maximizing the convex function  ( ) shown in equation 11.12 

 ( )      ∑∑    
( )|     | (     )

 

   

 

   

 

(11) 

Utilizing this method, the maximization of equation 7 can be accomplished by 

maximizing equation 11 through a linear programming method in R. 

With the estimated   from the rank method described above, an estimator 

for the survival function can be acquired based on the residuals,             , 

i = 1, …, n. Let            be the distinct uncensored failure residuals. Also 

let     denote the number of failures and  (  ) be the risk set at   . Equation 12 

gives an estimator of   ( |   ). This updated survival function is then used in 

the E-step. 

 ̂ ( |   )     (  ∑
   

∑   
( )

   (  )   ( )  

) 

(12) 

Similarly to the semiparametric PHMC model, for     , we can set 

 ̂ ( |   )    . Therefore, the estimated survival function is  ̂( |   )  

 ̂ ( |   ). 
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c. Parametric AFTMC Model 

The parametric method of maximum likelihood estimation involves 

assuming a specific distribution for the failure time of uncured patients.5 The 

options in the SAS macro for this distribution are lognormal, log-logistic, 

exponential, and Weibull. With this distribution selected, we can specify S(·), h(·) 

in equation 7 by a few unknown parameters associated with that specified 

distribution. Therefore, the M-step of the EM algorithm involves obtaining β(m+1) 

by maximizing equation 7, as well as other unknown parameters for the specified 

distribution. SAS uses PROC NLMIXED to obtain these maximum likelihood 

estimates. 

Variance Estimation 

The standard errors of the estimated parameters are not directly available 

from the estimating equations used in the EM algorithm. Therefore, bootstrap 

methods are employed. The R-package draws random bootstrap samples from 

the original dataset with replacement using the ‘sample’ function while the SAS-

macro employs non-parametric bootstrap sampling methods and resamples from 

the original dataset using PROC MULTITEST with the BOOTSTRAP option. 

1.2 Software Syntax 

As of 2012, a package for modeling semiparametric mixture cure models is 

available in R, called smcure.14 Additionally, a macro for modeling parametric 
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and semiparametric mixture cure models in SAS, called PSPMCM, was 

developed in 2007.15 

smcure R-package Syntax 

In order to call the smcure function within the smcure R-package, the 

following syntax is used: 

smcure(formula, cureform, offset=NULL, data, 

na.action=na.omit, model=c("ph", "aft"), link=”logit”, 

Var=TRUE, emmax=50, eps=1e-7, nboot=100) 

 

The required arguments in this statement are the FORMULA, CUREFORM, 

DATA, and MODEL portions. The FORMULA argument specifies the latency 

variable(s) and the associated survival response. The CUREFORM object allows 

specification of incidence variables. The DATA argument denotes the data frame 

that contains the incidence and latency variable(s). The MODEL statement 

allows specification of the model, with options of either “ph” for the 

proportional hazards model or “aft” for the accelerated failure time model.14 

There are also several optional arguments within the smcure function. The 

OFFSET argument identifies variable(s) with a coefficient 1 in both the incidence 

and latency parts of the PHMC or AFTMC models. By default, OFFSET=NULL. 

The argument NA.ACTION specifies how to deal with missing data with the 

default option being omission (NA.OMIT). The LINK option allows specification 

of the link function used for the incidence component; options include logit (the 
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default), probit, or complimentary loglog (cloglog). If VAR= TRUE, which is the 

default setting, then bootstrap standard errors are returned for the estimated 

coefficients; for VAR=FALSE, only the coefficient estimates are returned. The 

argument EMMAX specifies the maximum number of iterations of the EM 

algorithm. If the convergence criterion, specified by EPS (default value of EPS = 

1e-7), is not met after the EMMAX specified iterations, the EM iteration will be 

stopped and the last maximum likelihood estimates will be used in the output.14 

Section 4.1 contains an example of the syntax used for the smcure package with 

the motivating dataset. 

PSPMCM SAS Macro Syntax 

In order to invoke the PSPMCM SAS macro which fits parametric AFTMC 

and semiparametric PHMC models, the following statement is used: 

%PSPMCM 

 (DATA= , ID= , CENSCOD= , TIME= ,  

  VAR= , INCPART= , SURVPART= , 

 TAIL= , SU0MET= , 

 MAXITER= , CONVCRIT= , ALPHA= , 

 FAST= , BOOTSTRAP= , NSAMPLE= , BOOTMET= , 

 GESTIMATE= , STRATA= , JACKDATA= , BASELINE= , 

 SPLOT= , PLOTFIT= ); 

run; 

 

Similarly to the smcure package in R, the required arguments include DATA, ID, 

TIME, CENSCOD, VAR, INCPART, and SURVPART, as well as ALPHA, 

BASELINE, SPLOT, and PLOTFIT. These parameters are defined in the 
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following ways. The dataset name is specified with the DATA option; it is 

required that the dataset is structured so that there is one record per individual. 

ID is the individual’s identification number. CENSCOD is the censoring 

indicator where 0 represents censoring, while 1 represents event occurrence. The 

variable that denotes the time to failure or time to censoring is defined in the 

TIME statement. The VAR= statement is used for covariate definition and 

indication of inclusion in the incidence (I) and/or in the latency (S) parts of the 

mixture cure model. Names of variables are separated by spaces. Also defined in 

the VAR statement is the value that the covariate will take on in later survival 

plots. INCPART is the selection of the model for the incidence part of the 

mixture cure model. Options include logit (LOGIT), probit (PROBIT), and 

complementary log log (CLOGLOG), with a default option is logistic regression 

(LOGIT). SURVPART selects the baseline survival function. The Cox 

proportional hazards model (COX) selection is the semiparametric option, while 

the parametric options include lognormal (LOGN), loglogistic (LLOG), 

exponential (EXP), and Weibull (WEIB).15 

Additionally required, specification of the significance level, ALPHA, is 

used for the hazard ratio and odds ratio confidence limits. By default, ALPHA= 

0.05 for 95% confidence intervals, but any value between 0 and 1 can be chosen. 

The value for the BASELINE argument is either Y or N, with a default of N. 
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When the value is set to Y, the baseline survival function estimate,  ̂ ( |   ), 

along with parameter estimates for parametric models, are written to a dataset 

called BASELINE. If bootstrap resampling is selected, the dataset BASELINE_T 

will also contain estimates for bootstrap replicates. For a value of Y, the SPLOT 

argument plots the estimated conditional survival curve,  ̂ ( |         )  as 

well as the marginal survival curve,  ̂ ( |     ) for an individual with covariate 

vectors xi and zi. The values for these covariate vectors are specified in the VAR 

statement for each covariate following incidence/latency specification and after 

the comma. However, the default value for SPLOT is N. The last required 

argument is the PLOTFIT statement. Although the default value is N, a value of 

Y results in computation of the observed marginal survival curve,  (   )( |     ) 

for each stratum defined by the covariate vectors. A plot of this observed 

marginal survival as well as the estimated marginal survival,  ̂( |     ), against 

time allows for examination the model’s prediction abilities. A correlation 

coefficient between the observed and expected survival probabilities is also 

calculated for each stratum as a quantifier of goodness of fit.15 

There are also several optional statements that can be utilized and 

specified in the SAS macro. The SU0MET option allows selection of the method 

of conditional baseline survival function estimation; either Breslow-type (CH) or 

product limit estimator (PL) can be selected, with a default of PL. To select a 
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constraint or tail completion method to be used to estimate  ̂ ( |   ), the TAIL 

option is defined. The default value, ZERO, specifies that the zero tail constraint 

is used, while ETAIL and WTAIL select the exponential and Weibull tail 

completion methods, respectively. NONE is an option to indicate that no 

constraint is used, but this can cause identifiability and convergence issues. The 

maximum number of iterations to be performed by the EM algorithm is defined 

by MAXITER. The last maximum likelihood iteration is used in the output if the 

convergence criterion, which can be defined by CONVCRIT (default value is a 

relative change of less than 1e-5), is not met after the defined maximum number 

of iterations. By default, MAXITER = 200. The FAST option is, by default, set to 

Y in order to write parameter estimates and their standard errors to datasets 

called FAST_INCI and FAST_SURV.15 

Additionally, for the PHMC model, there are several options available 

when bootstrap confidence intervals are requested. If BOOTSTRAP=Y, this 

option invokes the performance of non-parametric resampling with replacement 

from the original dataset. The default, however, is N. NSAMPLE specifies the 

number of bootstrap replicates produced. The STRATA option identifies a 

stratification variable to use in resampling. The bootstrap confidence interval 

type is specified by BOOTMET, with options including bias corrected (BC), 

normalized bias corrected (BOOTN), accelerated bias corrected (BCA), hybrid 
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method (HYB), and percentile (PTCL), as well as Jackknife after bootstrap 

(JACK). There is also the option to select all methods by specifying BOOTMET = 

ALL. Finally, the option GESTIMATE=Y outputs Q-Q plots and bar charts of the 

distribution of parameter estimates over the bootstrap replicates. This allows 

graphical checking of the validity of the bootstrap confidence intervals. With 

overdispersion relative to the normal distribution, percentile based confidence 

intervals become questionable in their validity.15 For an example of this syntax 

utilized in a real setting, see Section 4.2 for the use of the PSPMCM macro with 

the motivating dataset. 

1.3 Motivating Example 

Limb-sparing resection is the preferred method of treatment for adult soft 

tissue sarcomas in extremities. Overall treatment goals are focused on complete 

resection of the tumor while simultaneously preserving of limb function and also 

maximizing survival. External beam radiation as an adjuvant therapy for soft 

tissue sarcomas was first explored in the mid-twentieth century16,17 and had the 

goal of reducing local recurrence (LR) rates and assisting in local control in 

situations where margins were very close or positive for the resected tumor. In 

1996, Yang et al. published a study prospectively evaluating the use of radiation 

therapy versus no radiation therapy in patients with resected soft tissue 

sarcomas.18 The conclusion, based solely on log rank tests and Kaplan Meier 
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curves, was that there was a marked decrease in local recurrence in both high 

grade and low grade tumors associated with radiation therapy. As evidenced by 

the low event rate observed in the study population of Yang’s paper—1 of 70 

patients who received radiation therapy developed a LR while 17 of 71 patients 

who did not receive XRT developed a LR over the 12 year follow up period18—

there appears to be evidence of a potential cure fraction in soft tissue sarcoma 

patients undergoing limb salvage surgery, and that may or may not be a result of 

radiation therapy. 

The motivating dataset obtained from Levine Cancer Institute (LCI) is a 

result of an IRB approved retrospective chart review of all patients presenting to 

LCI between 1992 and 2010 who were diagnosed with extremity soft tissue 

sarcomas. In order to be included in the study, patients must have had the 

following characteristics: complete medical records, limb sparing surgery for an 

extremity soft tissue sarcoma, absence of metastatic disease, and be at least 18 

years old at presentation time. Additionally, chemotherapy treatment excluded 

patients from the study. Patients received radiation therapy based on physician 

discretion and the National Comprehensive Cancer Network (NCCN) 

guidelines. 

A total of 162 patients with soft tissue sarcomas met the inclusion and 

exclusion criteria mentioned previously. Our analysis will focus on those with 
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pathologically high grade soft tissue sarcomas, defined as grade 2 or grade 3; this 

results in a total of 120 patients used in the analysis. The main outcome of 

interest to be assessed is recurrence free survival, with an event occurring if the 

patient experienced a tumor recurrence, either local or systemic, or death. A 

surviving patient received censored status if they did not have a recurrence at 

last follow up. Table 1.1 describes the variables in the sarcoma dataset that were 

used or evaluated as potential covariates in a multivariable model. 

Table 1.1. Soft Tissue Sarcoma Dataset Variables. 

Variable Variable Name Code 

Status indicator for any 

recurrence 
cens_rfs 

1 = recurrence event 

0 = no recurrence (censored) 

Time to recurrence rfs Continuous 

Radiation therapy rad_01 
1 = received radiation therapy 

0 = no radiation therapy 

Age at surgery age_01 
1 = > 50 years old 

0 = < 50 years old 

Gender gender_01 
1 = male 

0 = female 

Categorized tumor size calc_ts_class 
1 = tumor size > 5 cm 

0 = tumor size < 5 cm 

Tumor site d_site_01 
1 = lower body 

0 = upper body 

Race race_01 
1 = White 

0 = Other 

The median follow up time for the recurrence free survival outcome in 

this study was 3.68 years (range: 0.13 to 20.32 years). There were 24 patients in 

the group that received no radiation therapy, while 96 patients received radiation 

therapy. The overall censoring rate was 57.5%, while the censoring rates in the 
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radiation therapy group versus the no radiation therapy group were 60.42% and 

45.83%, respectively. Additionally, information regarding patient demographics 

and tumor characteristics was obtained and is shown in Table 1.2. 

Table 1.2. Study population demographics for the high grade sarcoma patients, 

stratified by radiation treatment status. 

 XRT, n (%) No XRT, n (%) Total, n (%) 

Gender    

  Female 45 (47) 19 (79) 64 (53) 

  Male 51 (53) 5 (21) 56 (47) 

Race    

  White 64 (67) 12 (50) 76 (63) 

  Other 28 (29) 10 (42) 38 (32) 

  Missing** 4 (4)** 2 (8)** 6 (5)** 

Age    

  < 50 34 (35) 10 (42) 44 (37) 

  > 50 62 (65) 14 (58) 76 (63) 

Tumor Size    

  < 5 cm 30 (31) 15 (62) 45 (38) 

  > 5 cm 66 (69) 9 (37) 75 (62) 

Tumor Site    

  Upper 23 (24) 6 (25) 29 (24) 

  Lower 73 (76) 18 (75) 91 (76) 

    

TOTAL 96 24 120 

 

From this demographics table, there are six patients who are missing 

information regarding their race. Because of this missing data, race will not be 

used in the multivariable models. Most studies involving the analysis of soft 

tissue sarcoma and race show differences in incidence of certain types of 

sarcomas, but less conclusive results for overall incidence of soft tissue 



20 

sarcomas.19 However, all other covariates beyond the main exposure of interest, 

radiation therapy, will be evaluated in multivariable models later in this study. 

As evidenced by the Kaplan Meier curve shown in Figure 1.1, there may 

be a difference in recurrence events between the subjects who received radiation 

therapy and those who did not receive radiation therapy. A log rank test found 

that this difference between treatment groups is not quite significant, with a p 

value = 0.0692. However, we can see that the radiation therapy group (XRT) has 

consistently higher survival probability than the no radiation therapy group 

(nXRT). Also notable in the Kaplan Meier survival curves are the plateaus for 

both treatment groups at values much greater than zero. This leveling out of 

survival curves occurred after about 3 years of follow up in the nXRT group and 

after about 13 years of follow up in the XRT group. This indicates that some 

patients will likely not experience a recurrence in either treatment group. This 

suggests that a proportion of cured patients may exist in those who received 

radiation therapy and those who did not. 

This dataset was also fit with the Cox Proportional Hazards model with 

only radiation therapy and a hazard ratio for treatment was found to be 0.560 

(95% CI: 0.297, 1.055, p = 0.0729). These results, prior to modeling with a mixture 

cure model, suggest that for those patients receiving radiation therapy, the risk 
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reduction of a recurrence is not quite significant, but still notably trending 

towards nearly a 50% reduction.  

  

Figure 1.1. Kaplan-Meier recurrence free survival for the radiation therapy group (XRT) 

and the no radiation therapy group (nXRT). 

 

Model selection procedures with the previously mentioned covariates of 

interest resulted in a model including radiation therapy, gender, categorized age, 

and categorized tumor size. The reduction in risk of a recurrence in those who 

received radiation therapy versus those who did not receive radiation therapy is 

over 65% (HR = 0.339, p = 0.0018, 95% CI: 0.172, 0.669), after adjusting for age, 

gender, and tumor size. This significant risk reduction with the radiation 

treatment is definitely noteworthy. Since this motivating dataset displays the 

  XRT 

_  _  _  _ nXRT 

p = 0.0692 by log rank test 
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possibility of a cure proportion, a mixture cure model should be evaluated and 

implemented in order to accurately estimate that cure proportion as well as the 

survival probability of uncured patients. 

1.4 Outline of Thesis 

The main aims of this study are to compare and contrast the R package 

and the SAS macro, to determine optimal study settings for each of these 

programs, to suggest updates to the smcure package in R if weaknesses are 

found, and, finally, to apply the mixture cure model to a new data set with cure 

tendencies. These aims are accomplished in the following chapters. Chapter 2 

outlines the simulation settings used for the comparison of the R package and 

SAS macro. Chapter 3 contains the results from each of the planned settings. The 

application of the mixture cure models in R and SAS to the sarcoma data set 

introduced in Section 1.3 is addressed in Chapter 4. Finally, Chapter 5 

summarizes and concludes the study. 
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CHAPTER 2: SIMULATION PLAN AND METHODOLOGY

In this chapter, the settings used for the simulation studies are outlined. 

The goal of this study is to compare and contrast the current methods of mixture 

cure modeling in R and SAS by assessing parameter estimation and standard 

error estimation. Simulations allowed us to assess the limitations of these two 

packages, as well as to find their optimal utilization settings. Section 2.1 explains 

the simulation plan and methods for the PHMC model while Section 2.2 

describes the simulation strategy for the AFTMC model. Finally, the expected 

results of this study are defined in Section 2.3 

2.1 PHMC Model Simulation Study Settings 

The following aims were investigated for both the SAS macro and the R 

package with the PHMC model: 

 Baseline survival function distributions 

Survival times of the uncured patients were generated from the Weibull 

distribution, Wei(1,2), and the standard lognormal distribution, logN(0, 1). 

 Covariates 

Simulation results for the PHMC model were evaluated in two covariate vector 

settings. The first covariate setting was a single binary covariate from a binomial 
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distribution with probability 0.5, resulting in the following vectors: z = (z0, z1) 

and x = x1. The second setting had two covariates, one categorical covariate, again 

from a binomial distribution with probability 0.5, and one continuous covariate 

generated from a standard normal distribution, N(0,1). Therefore, the covariate 

vectors were z = (z0, z1, z2) and x = (x1, x2). 

 Cure rate 

The cure rate was varied through definition of the b vector, assessing slight and 

moderate cure rates. For the single binary covariate setting, the slight cure rate 

for the treatment group (z1 = 1) was 27% and for the control group (z1 = 0), 12%, 

resulting from defining b = (2, -1). The moderate cure rate for the treatment 

group was 40% and 20% for the control group, when b = (1.3863, -1). The cure 

rate when there is a continuous variable is found using a numeric integral of the 

cure rate function. The formula code used to determine this can be found in 

Appendix C. The resulting slight and moderate cure rates when the continuous 

variable’s coefficient was defined to be 0.3 were the same as with the single 

covariate setting: 12%/27% and 20%/40%. 

 Censoring rate 

Slight and moderate censoring rates, relative to the defined cure rates, and their 

impacts were evaluated. 
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 Sample size 

Samples of two different sizes were generated, including n = 200 and n = 500, in 

order to observe the effect of sample size on parameter estimation. 

 Link Function 

The cure proportion of all the data sets was generated from a logistic model. A 

sensitivity analysis with respect to the different link functions available for the 

incidence portion was then performed by comparing cure rate estimates 

resulting from misspecified link functions to the correctly specified logit link 

estimates. 

 Computation time 

The computation time required for different sample sizes and settings was 

compared between the R package and the SAS macro. 

2.2 AFTMC Model Simulation Study Settings 

The following aims were investigated for both the SAS macro and the R 

package with the AFTMC model: 

 Failure time error distribution 

The error distribution for the survival times of the uncured patients followed the 

Extreme Value/log-Weibull distribution, defining λ = 1 and k = 1. 
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 Covariates 

Simulation results for the AFTMC model was evaluated in only one covariate 

vector setting: a single binary covariate from a binomial distribution with 

probability 0.5. 

 Cure rate 

The cure rate was again varied through definition of the b vector, assessing slight 

(12%/27%) and moderate (20%/40%) cure rates, as previously defined. 

 Censoring rate 

Slight and moderate censoring rates, relative to the defined cure rates, and their 

impacts were evaluated. 

 Sample size 

Similarly to the PHMC model settings, data sets of sample size n = 200 and n = 

500 were generated to observe the effect of sample size. 

 Link Function 

The cure proportion of all the data sets was generated from a logistic model and 

only the correctly specified logit link function was selected from the model 

options. 

 Computation time 

As the methods of AFTMC model parameter estimation are completely different 

between R and SAS (semiparametric versus parametric, respectively), the 
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computation times are not comparable, so no computation time analysis was 

performed. 

2.3 Expected Results 

The results obtained from these simulation studies included estimate 

biases, mean square error, confidence interval coverage probabilities, and 

computation times. Bias is simply defined as the difference between the 

estimated parameter and the true defined parameter. Mean square error, MSE, is 

commonly defined as the square of the bias of the estimate plus the variance of 

the estimate. The coverage probabilities were calculated by finding a 95% 

confidence interval for each of the parameter estimates and determining the 

frequency in which the true parameter value was captured. For all computation 

time data, simulations in R and in SAS were completed using computers with an 

Intel Core i7-4770S at 3.10 GHz processor, 8.00 GB RAM. R version 3.0.2 was 

used for the smcure package and SAS version 9.4 was used for the PSPMCM 

macro. These results allowed some conclusions to be made in the comparison of 

the statistical software programs. 

 



28 

CHAPTER 3: SIMULATION RESULTS AND DISCUSSION

From the simulation plan described in Chapter 2, the results for each of 

the combinations of settings gave an extensive assessment of the impact of 

certain factors on the models’ performance. This chapter presents the obtained 

results and briefly interprets their meaning for the scope of this study. Section 3.1 

focuses on the results of the simulations associated with the proportional hazards 

mixture cure model, while Section 3.2 focuses on the results of the accelerated 

failure time mixture cure model simulations. 

3.1 PHMC Simulation Study 

For the proportional hazard mixture cure model simulation study, the 

following settings were utilized. As previously stated in Chapter 2, the logistic 

model was used to generate the probability of cure. Settings included both 1-

covariate data sets and 2-covariate data sets. Tables 3.1-3.4 give the results from a 

single z covariate for the cure portion which was a binary variable generated 

from a binomial distribution with probability 0.5. That same generated variable 

was used as the x covariate in the survival portion. Tables 3.5-3.8 give the results 

from data sets with 2 covariates generated. The first covariate, z1, was the same 

as previously described, a binary variable, while the second covariate, z2, was a 
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continuous covariate generated from a standard normal distribution. Again, both 

of these generated variables were used as the x1 and x2 covariates, respectively. A 

uniform distribution, U[c1, c2], was used to generate censoring times, with c1 and 

c2 defined in order to give chosen censoring rates. Survival times of the uncured 

patients were generated from the Weibull distribution with λ = 2 and k = 1 as 

well as from the standard Lognormal distribution, logN(0, 1). Generated sample 

sizes included n = 200 and n = 500. One hundred bootstrap samples were used for 

all simulation settings as a previous study had found the difference between 100, 

200 and 500 samples in the R package to be trivial.14 

The estimated biases, mean square error (MSE), and confidence interval 

capture rate for the defined parameters from the PHMC model, are presented in 

the following tables. In Tables 3.1 and 3.2, the covariate vectors have true values 

of b0 = 2, b1 = -1, and β = 2 for a cure rate of 12%,    (   )      , in the 

control group (z = 0) and 27%,    (   )      , in the treatment group. In 

Tables 3.3 and 3.4, the parameters were defined to have true values of b0 = 1.3863, 

b1 = -1, and β = 2, therefore, the b vector of parameters gives a cure rate of 20% in 

the control group and a cure rate of 40% in the treatment group. These results 

include data sets of sample size n = 200 and n = 500, with 500 replications each 

from both the R package and the SAS macro. 
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Table 3.1. Estimates from the smcure PHMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,2) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI Cap Bias MSE CI Cap 

Weibull Slight   ̂ 2 0.0372 0.4597 93.4 0.0167 0.0792 90.2 

 U[0,20]   ̂ -1 0.0253 0.6017 96.8 -0.0108 0.1383 94.6 

 22.2%   ̂ 2 0.0339 0.1079 95.4 0.0118 0.0413 94.8 

 

 Mod   ̂ 2 0.0651 2.2389 97.4 0.0315 0.1402 94.0 

 U[0,4]   ̂ -1 -0.0495 2.4398 98.8 -0.0208 0.2004 95.6 

 32.4%   ̂ 2 0.0315 0.1269 92.8 0.0088 0.0437 96.0 

 

LNorm Slight   ̂ 2 0.1130 1.6654 95.8 0.0430 0.1519 89.0 

 U[0,25]   ̂ -1 -0.1037 1.8373 97.8 -0.0358 0.2101 93.0 

 23.1%   ̂ 2 0.0137 0.1090 94.8 0.0141 0.0405 93.6 

 

 Mod   ̂ 2 -0.2311 1.7622 67.6 -0.3475 0.3203 57.2 

 U[0.5,5]   ̂ -1 0.2472 1.9410 83.8 0.3580 0.3796 68.2 

 29.5%   ̂ 2 -0.0435 0.1194 94.0 -0.0754 0.0519 89.2 
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Table 3.2. Estimates from the PSPMCM PHMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,2) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI Cap Bias MSE CI Cap 

Weibull Slight   ̂ 2 0.0455 0.2415 95.6 0.0158 0.0893 95.4 

 U[0,20]   ̂ -1 -0.0601 0.3512 96.4 -0.0016 0.1314 94.8 

 22.2%   ̂ 2 0.0177 0.1022 96.2 0.0002 0.0396 93.6 

 

 Mod   ̂ 2 0.0867 0.6708 94.6 0.0497 0.1521 96.6 

 U[0,4]   ̂ -1 -0.0634 0.7741 95.2 -0.0416 0.2088 95.4 

 32.4%   ̂ 2 0.0246 0.1201 95.6 0.0180 0.0458 95.2 

 

LNorm Slight   ̂ 2 0.1349 0.7428 93.1 0.0264 0.1262 94.4 

 U[0,25]   ̂ -1 -0.1375 0.8535 95.1 -0.0185 0.1716 94.1 

 23.1%   ̂ 2 0.0180 0.1049 94.1 0.0085 0.0401 93.6 

 

 Mod   ̂ 2 -0.1837 1.3239 78.0 -0.2701 0.6469 66.4 

 U[0.5,5]   ̂ -1 0.1846 1.4418 83.0 0.2885 0.6914 73.0 

 29.5%   ̂ 2 -0.0371 0.1128 94.4 -0.0546 0.0481 94.4 
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Table 3.3. Estimates from the smcure PHMC model where cure rate is 20% in control and 40% in treatment group. (1.3863,-1,2) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI Cap Bias MSE CI Cap 

Weibull Slight   ̂ 1.3863 0.0389 0.1287 91.0 0.0171 0.0466 89.6 

 U[0,20]   ̂ -1 -0.0453 0.2398 94.8 -0.0181 0.0911 94.6 

 32.6%   ̂ 2 0.0394 0.1272 95.0 0.0051 0.0459 95.8 

 

 Mod   ̂ 1.3863 0.0348 0.1626 93.2 0.0157 0.0547 92.2 

 U[0,7]   ̂ -1 -0.0198 0.2816 96.6 -0.0229 0.1034 95.0 

 37.3%   ̂ 2 0.0352 0.1405 94.2 0.0033 0.0506 93.6 

 

LNorm Slight   ̂ 1.3863 0.0287 0.1641 90.8 0.0242 0.0588 88.6 

 U[0,25]   ̂ -1 -0.0276 0.2883 95.6 -0.0073 0.1028 96.0 

 33.1%   ̂ 2 0.0112 0.1223 95.8 0.0047 0.0442 96.0 

 

 Mod   ̂ 1.3863 -0.0001 0.4483 85.2 -0.0286 0.1185 85.8 

 U[0,8]   ̂ -1 0.0100 0.5873 92.4 0.0321 0.1720 91.0 

 39.6%   ̂ 2 0.0138 0.1490 94.2 0.0074 0.0538 95.0 
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Table 3.4. Estimates from the PSPMCM PHMC model where cure rate is 20% in control and 40% in treatment group. (1.3863,-1,2) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI Cap 

Weibull Slight   ̂ 1.3863 0.0448 0.1547 95.6 0.0148 0.0530 96.2 

 U[0,20]   ̂ -1 -0.0482 0.2414 95.2 -0.0006 0.0848 97.2 

 32.6%   ̂ 2 0.0408 0.1237 94.8 0.0135 0.0461 94.4 

 

 Mod   ̂ 1.3863 0.0433 0.1827 96.6 0.0057 0.0635 95.4 

 U[0,7]   ̂ -1 -0.0375 0.2724 96.4 -0.0063 0.0991 95.6 

 37.3%   ̂ 2 0.0187 0.1332 95.6 0.0075 0.0457 96.2 

 

LNorm Slight   ̂ 1.3863 0.0335 0.1733 96.8 0.0145 0.0698 92.6 

 U[0,25]   ̂ -1 -0.0247 0.2541 97.6 -0.0101 0.1051 94.8 

 33.1%   ̂ 2 0.0153 0.1258 94.4 0.0081 0.0457 95.4 

 

 Mod   ̂ 1.3863 0.0451 0.8141 91.0 -0.0059 0.4047 89.2 

 U[0,8]   ̂ -1 -0.0480 0.8692 93.2 0.0104 0.4540 90.8 

 39.6%   ̂ 2 0.0017 0.1364 94.4 -0.0051 0.0557 93.6 
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From the results presented in Tables 3.1-3.4, we can see some trends. In 

both R and SAS, the estimate biases are very small, consistently less than 0.2, 

with most less than 0.05. With only a few exceptions, the bias decreases with 

increasing sample size, as expected. For all settings in both programs, the mean 

square error for each parameter estimate decreases with increasing sample size 

and increases with increasing censoring rate from slight to moderate. Confidence 

interval capture rates are relatively similar between the R and SAS settings. 

However, the SAS macro seems to have closer to accurate (95%) capture rates 

than the R package in some of the settings with higher censoring rates or higher 

cure rates. 

The following tables give the results from the two-covariate setting. The z 

and x vectors were generated as previously defined in section 2.1. In Tables 3.5 

and 3.6, the covariate vectors have true defined values of b = (2, -1, 0.3) and β = 

(2, 0.5), which still gives a cure rate of 12% in the control group (z = 0) and 27% in 

the treatment group when the value for the continuous variable was chosen to be 

the mean, which is zero. In Tables 3.7 and 3.8, the parameters were defined to 

have true values of b = (1.3863, -1, 0.3) and β = (2, 0.5); therefore, the b vector of 

parameters has a cure rate of 20% in the control group and a cure rate of 40% in 

the treatment group. Again, 500 replications each were performed for sample 

sizes n = 200 and n = 500. 
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Table 3.5. Estimates from the smcure PHMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,0.3,2,0.5)  

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI 

Cap 

Weibull Slight   ̂ 2 0.0604 0.4220 93.6 0.0159 0.0680 91.4 

 U[0,20]   ̂ -1 -0.0514 0.5818 96.0 -0.0068 0.1229 96.6 

 22.3%   ̂ 0.3 0.0086 0.0834 95.0 0.0054 0.0287 94.8 

    ̂ 2 0.0429 0.1065 94.4 0.0110 0.0381 94.2 

    ̂ 0.5 -0.0003 0.0176 94.0 0.0007 0.0062 95.4 

 

 Mod   ̂ 2 0.0990 2.0239 95.4 0.0441 0.1661 93.4 

 U[0,4]   ̂ -1 -0.0756 2.1783 96.8 -0.0370 0.2292 96.8 

 32.1%   ̂ 0.3 0.0184 0.1067 95.2 0.0066 0.0359 96.6 

    ̂ 2 0.0298 0.1226 94.6 0.0149 0.0427 96.0 

    ̂ 0.5 0.0036 0.0205 94.8 0.0018 0.0079 94.8 

 

LNorm Slight   ̂ 2 0.0953 2.4130 93.0 -0.0161 0.1065 89.2 

 U[0,25]   ̂ -1 -0.0656 2.5766 94.0 0.0156 0.1620 95.2 

 24.1%   ̂ 0.3 0.0484 0.0982 95.8 0.0201 0.0332 94.4 

    ̂ 2 0.0372 0.1140 93.0 0.0087 0.0402 94.2 

    ̂ 0.5 -0.0057 0.0189 94.8 -0.0050 0.0070 94.0 

 

 Mod   ̂ 2 0.3435 1.5454 63.0 -0.3795 0.3396 49.4 

 U[0.5,5]   ̂ -1 0.3787 1.7530 74.8 0.3910 0.4043 65.2 

 31.3%   ̂ 0.3 0.1213 0.1169 92.6 0.0770 0.0438 90.8 

    ̂ 2 -0.0436 0.1225 93.6 -0.0731 0.0477 91.0 

    ̂ 0.5 -0.0276 0.0242 92.2 -0.0277 0.0085 94.8 

 
  



 

 

36 

Table 3.6. Estimates from the PSPMCM PHMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,0.3,2,0.5)  

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI 

Cap 

Weibull Slight   ̂ 2 0.0283 0.2458 95.8 0.0062 0.0846 95.2 

 U[0,20]   ̂ -1 -0.0150 0.3691 96.2 0.0056 0.1252 96.8 

 22.3%   ̂ 0.3 0.0223 0.0814 96.6 0.0030 0.0289 96.6 

    ̂ 2 0.0167 0.0990 95.0 0.0129 0.0398 94.0 

    ̂ 0.5 0.0061 0.0176 93.6 0.0054 0.0066 95.8 

 

 Mod   ̂ 2 0.1585 0.8130 95.0 0.0320 0.1630 96.0 

 U[0,4]   ̂ -1 -0.1379 0.9496 94.4 -0.0288 0.2092 96.8 

 32.1%   ̂ 0.3 0.0285 0.1080 97.0 0.0156 0.0390 95.8 

    ̂ 2 0.0452 0.1186 95.8 0.0138 0.0466 94.0 

    ̂ 0.5 -0.0037 0.0218 94.4 0.0003 0.0082 94.8 

 

LNorm Slight   ̂ 2 0.0508 0.5075 94.2 -0.0274 0.1188 91.8 

 U[0,25]   ̂ -1 -0.0452 0.6181 94.8 0.0384 0.1666 93.8 

 24.1%   ̂ 0.3 0.0405 0.0886 95.4 0.0285 0.0340 93.6 

    ̂ 2 0.0354 0.1059 93.8 -0.0046 0.0388 95.6 

    ̂ 0.5 -0.0090 0.0182 94.4 -0.0103 0.0071 93.4 

 

 Mod   ̂ 2 -0.3118 1.3787 67.8 -0.3417 0.6848 55.6 

 U[0.5,5]   ̂ -1 0.3428 1.5409 72.0 0.3670 0.7421 64.6 

 31.3%   ̂ 0.3 0.1255 0.1117 92.4 0.0826 0.0435 90.4 

    ̂ 2 -0.0604 0.1223 92.6 -0.0579 0.0467 95.0 

    ̂ 0.5 -0.0305 0.0247 93.2 -0.0231 0.0097 92.6 
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Table 3.7 Estimates from the PHMC model where cure rate is 20% in control and 40% in treatment group. (1.3863,-1,0.3,2,0.5) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI Cap 

Weibull Slight   ̂ 1.3863 0.0408 0.1288 90.4 0.0091 0.0486 87.2 

 U[0,20]   ̂ -1 -0.0327 0.2444 97.6 -0.0191 0.0900 95.0 

 34.0%   ̂ 0.3 0.0069 0.0582 96.4 0.0044 0.0230 95.0 

    ̂ 2 0.0348 0.1272 95.2 0.0141 0.0449 95.0 

    ̂ 0.5 0.0051 0.0209 95.2 0.0063 0.0079 93.6 

 

 Mod   ̂ 1.3863 0.0451 0.1732 92.0 0.0256 0.0585 89.4 

 U[0,7]   ̂ -1 -0.0439 0.2942 95.4 -0.0179 0.1041 95.8 

 37.0%   ̂ 0.3 0.0099 0.0662 96.4 0.0007 0.0257 95.0 

    ̂ 2 0.0280 0.1362 95.2 0.0189 0.0486 94.6 

    ̂ 0.5 0.0035 0.0239 93.8 0.0023 0.0083 95.2 

 

LNorm Slight   ̂ 1.3863 0.0186 0.1869 90.2 -0.0044 0.0543 91.8 

 U[0,25]   ̂ -1 -0.0100 0.3113 95.8 0.0099 0.0983 96.2 

 33.9%   ̂ 0.3 0.0280 0.0665 95.8 0.0243 0.0246 97.2 

    ̂ 2 0.0277 0.1162 96.6 0.0064 0.0463 93.4 

    ̂ 0.5 0.0083 0.0240 92.4 0.0082 0.0082 96.8 

 

 Mod   ̂ 1.3863 -0.1085 0.3203 80.0 -0.1321 0.1039 79.8 

 U[0,8]   ̂ -1 0.1086 0.4412 91.8 0.1243 0.1501 89.8 

 39.7%   ̂ 0.3 0.0761 0.0797 94.6 0.0506 0.0334 90.6 

    ̂ 2 -0.0238 0.1384 94.8 -0.0249 0.0471 95.6 

    ̂ 0.5 -0.0282 0.0273 93.8 -0.0229 0.0104 92.8 
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Table 3.8 Estimates from the PSPMCM PHMC model where cure rate is 20% in control, 40% in treatment group. (1.3863,-1,0.3,2,0.5) 

Survival 

Distr 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI Cap Bias MSE CI Cap 

Weibull Slight   ̂ 1.3863 0.0453 0.2240 96.0 0.0136 0.0777 95.0 

 U[0,20]   ̂ -1 -0.0386 0.3177 95.8 -0.0162 0.1174 93.0 

 34.0%   ̂ 0.3 0.0334 0.0754 94.2 -0.0034 0.0288 93.4 

    ̂ 2 0.0481 0.1279 96.0 0.0118 0.0475 93.8 

    ̂ 0.5 -0.0005 0.0222 94.6 -0.0021 0.0087 95.2 

 

 Mod   ̂ 1.3863 0.0528 0.1918 97.4 0.0202 0.0680 95.2 

 U[0,7]   ̂ -1 -0.0479 0.2772 97.0 -0.0103 0.1052 95.8 

 37.0%   ̂ 0.3 0.0133 0.0695 95.0 0.0020 0.0248 96.4 

    ̂ 2 0.0373 0.1318 94.4 0.0081 0.0503 94.6 

    ̂ 0.5 0.0151 0.0237 93.0 0.0016 0.0086 94.0 

 

LNorm Slight   ̂ 1.3863 0.0417 0.2131 96.2 0.0006 0.0703 94.2 

 U[0,25]   ̂ -1 -0.0740 0.3157 95.4 0.0102 0.1094 95.6 

 33.9%   ̂ 0.3 0.0404 0.0655 96.4 0.0132 0.0245 95.8 

    ̂ 2 0.0255 0.1166 96.2 -0.0020 0.0448 95.6 

    ̂ 0.5 -0.0053 0.0230 93.2 -0.0014 0.0083 94.6 

 

 Mod   ̂ 1.3863 -0.0849 0.5257 88.8 -0.1251 0.1339 85.6 

 U[0,8]   ̂ -1 0.1014 0.6344 90.8 0.1369 0.1742 88.8 

 39.7%   ̂ 0.3 0.0605 0.0764 96.4 0.0409 0.0289 96.2 

    ̂ 2 -0.0193 0.1312 96.4 -0.0194 0.0533 94.2 

    ̂ 0.5 -0.0256 0.0271 94.4 -0.0148 0.0098 94.4 
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Some trends are also evident in Tables 3.5-3.8 with the two-covariate 

setting results. The estimate biases were smaller than 0.4 in all settings; however 

most biases were smaller than even 0.15. Again, mean square error decreased 

with larger sample sizes and increased with increasing censoring rate. 

Confidence interval coverage probabilities were, for the most part, relatively 

good for both the R package and the SAS macro, although the lognormal settings 

with higher censoring rates typically saw much lower coverage probabilities 

than expected (95%). Additionally, the PSPMCM macro was consistently closer 

in all settings to the accurate capture rate.  

Sensitivity Analysis 

In order to assess the effect of link function specification on model 

estimation, we used the same data generation described for Tables 3.1-3.4, but we 

focused only on the sample size of 500, a single binary covariate, and the Weibull 

survival distribution. As previously described, the probability of cure was 

generated from a logistic model, but as the smcure package and the PSPMCM 

macro both have three options for the link function (logit, probit, and cloglog), 

we re-estimated the unknown parameters using each of those link functions in 

order to simulate misspecification of the link function chosen for the probability 

of cure. The cure rates for the control group and the treatment group were then 

calculated using the appropriate link functions. The resulting estimates of the b 
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parameters within each of the previously specified settings are summarized in 

Tables 3.9-3.12. 

Table 3.9. Estimated cure rates for different link functions as compared to true cure rate 

(12%/27%); slight censoring with Weibull survival distribution (n=500). 

Censoring 

Distribution 
Parameter 

True 

Value 

Estimated Values 

R SAS 

Logit Probit Cloglog Logit Probit Cloglog 

U[0,20]     

22.2%   ̂ 2 2.0167 1.1627 0.7248 2.0158 1.1857 0.7585 

   ̂ -1 -1.0108 -0.5476 -0.4581 -1.0016 -0.5618 -0.4798 

 Cure Rate    

 Control 0.1192 0.1175 0.1225 0.1269 0.1176 0.1179 0.1182 

 Treatment 0.2689 0.2678 0.2692 0.2710 0.2662 0.2664 0.2668 

 

Table 3.10. Estimated cure rates for different link functions as compared to true cure rate 

(12%/27%); moderate censoring with Weibull survival distribution (n=500). 

Censoring 

Distribution 
Parameter 

True 

Value 

Estimated Values 

R SAS 

Logit Probit Cloglog Logit Probit Cloglog 

U[0,4]     

32.3%   ̂ 2 2.0315 0.9726 0.5054 2.0497 1.2024 0.7708 

   ̂ -1 -1.0208 -0.3851 -0.2810 -1.0416 -0.5823 -0.4957 

 Cure Rate    

 Control 0.1192 0.1159 0.1654 0.1906 0.1141 0.1146 0.1152 

 Treatment 0.2689 0.2668 0.2784 0.2861 0.2674 0.2676 0.2680 

 

Table 3.11. Estimated cure rates for different link functions as compared to true cure rate 

(20%/40%); slight censoring with Weibull survival distribution (n=500). 

Censoring 

Distribution 
Parameter 

True 

Value 

Estimated Values 

R SAS 

Logit Probit Cloglog Logit Probit Cloglog 

U[0,20]     

32.4%   ̂ 1.3863 1.4034 0.8273 0.4480 1.4011 0.8492 0.4813 

   ̂ -1 -1.0181 -0.5884 -0.5557 -1.0006 -0.5992 -0.5734 

 Cure Rate    

 Control 0.2000 0.1973 0.2040 0.2091 0.1976 0.1979 0.1983 

 Treatment 0.4046 0.4048 0.4056 0.4074 0.4012 0.4013 0.4017 
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Table 3.12. Estimated cure rates for different link functions as compared to true cure rate 

(20%/40%); moderate censoring with Weibull survival distribution (n=500). 

Censoring 

Distribution 
Parameter 

True 

Value 

Estimated Values 

R SAS 

Logit Probit Cloglog Logit Probit Cloglog 

U[0,7]     

37.3%   ̂ 1.3863 1.4020 0.7669 0.3616 1.3920 0.8438 0.4764 

   ̂ -1 -1.0229 -0.5372 -0.4920 -1.0063 -0.6029 -0.5782 

 Cure Rate    

 Control 0.2000 0.1975 0.2216 0.2380 0.1991 0.1994 0.1998 

 Treatment 0.4046 0.4063 0.4092 0.4157 0.4048 0.4048 0.4053 

 

From these tables, despite the large bias in parameter estimation, the 

estimated cure rates associated with each of the different link functions overall 

are quite similar to the true cure rates. With the moderate censoring 

distributions, there was slightly more bias in the cure rate estimates from the R 

package than the SAS macro, as seen in Tables 3.10 and 3.12. In these cases where 

the bias in the cure rate estimates is larger in the R package, the complimentary 

log log estimates were more biased than the probit estimates, while the logit was 

predictably the most accurate. However, the most inaccurate cure rate estimate, 

observed for the control group with the complimentary log log link in Table 3.10, 

was still relatively close to the true value, (0.1906 versus 0.1159). 

Computation Time Analysis 

In order to assess and compare the time-restrictions of the PHMC models 

in R and SAS, the average time elapsed to get parameter estimates and 

bootstrapped standard error was recorded for the smcure package and the 
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PSPMCM macro. For each of the following settings, 500 data sets were generated 

as previously described. The average computation times for the parameter 

estimates and their bootstrapped standard errors with each of the models (R-

smcure, SAS-PSPMCM) are recorded in Table 3.13. 

Table 3.13. Average computation time for model parameter estimation, comparing R 

and SAS PHMC models. 

Survival 

Distribution 

Covariate 

Setting,  

True Vector 

Computation Time (seconds) 

R SAS 

n = 200 n = 500 n = 200 n = 500 

Weibull Cens U[0,20]  

 1 Covariate  

(2, -1, 2) 
3.99 9.42 2.99 3.37 

2 Covariates  

(2, -1, 0.3, 2, 0.5) 
4.19 9.24 3.47 4.16 

 Cens U[0,4]  

 1 Covariate  

(2, -1, 2) 
8.53 16.50 6.32 7.58 

2 Covariates  

(2, -1, 0.3, 2, 0.5) 
9.67 19.36 9.56 10.73 

Lognormal Cens U[0,25]  

 1 Covariate  

(2, -1, 2) 
6.55 15.37 5.31 6.56 

2 Covariates  

(2, -1, 0.3, 2, 0.5) 
7.78 16.07 7.85 8.38 

 Cens U[0.5,5]  

 1 Covariate  

(2, -1, 2) 
15.23 40.49 12.03 17.92 

2 Covariates  

(2, -1, 0.3, 2, 0.5) 
13.47 32.61  13.83 18.62 

 

As seen in Table 3.13, the average computation times for the PSPMCM macro in 

SAS are shorter than the computation times for the smcure package in R.  The 

data generated with a logistic-Lognormal data typically took longer than the 

logistic-Weibull data, especially when censoring rate was higher and sample size 
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was larger. Despite some noticeable differences in computation times between R 

and SAS, for the big picture, even the setting with the longest time took, on 

average, much less than a minute (40.5 seconds) to obtain parameter estimates 

and standard errors. 

3.2 AFTMC Simulation Study 

For the accelerated failure time mixture cure model simulation study, the 

following settings were utilized. As with the PHMC model simulations, the 

logistic model was used to generate the probability of cure. Only a single binary 

covariate z was generated from a binomial distribution with probability 0.5. That 

same generated variable was used as the x covariate in the survival portion. A 

uniform distribution, U[c1, c2], was used to generate censoring times, with 

constants c1 and c2 defined in order to give chosen censoring rates. The error 

distribution for the failure times of the uncured patients followed the extreme 

value distribution. In Tables 3.14-3.15, we have regression parameters defined as 

b0 = 2, b1 = -1, and β1 = 2 for a cure rate of 12% in the control group (z = 0) and 27% 

in the treatment group. Similarly in Tables 3.16-3.17, regression parameters are 

defined as b0 = 1.3863, b1 = -1, and β1 = 2, for cure rates of 20% and 40% in the 

control and treatment groups, respectively. The logistic-Extreme data was 

generated in samples sizes of n = 200 and n = 500, with 500 replications. 

Additionally, 100 bootstrap samples were chosen. 
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Table 3.14. Estimates from the smcure AFTMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,2) 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI 

Cap  

Bias MSE CI 

Cap 

Slight   ̂ 2 0.0400 0.5275 93.4 0.0300 0.0783 92.6 

U[0.5,30]   ̂ -1 -0.1181 0.9785 94.2 0.0092 0.2051 96.4 

28.7%   ̂ 2 -0.0318 0.1298 92.4 -0.0065 0.0833 92.0 

 

Moderate   ̂ 2 0.1527 2.4471 94.8 0.0301 0.1118 93.0 

U[0.5,9]   ̂ -1 -0.4970 3.4686 85.0 -0.5031 0.6138 63.0 

43.2%   ̂ 2 -0.2469 0.3514 78.0 -0.2697 0.1743 65.8 

 

Table 3.15. Estimates from the PSPMCM AFTMC model where cure rate is 12% in control and 27% in treatment group. (2,-1,2) 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI 

Cap 

Slight   ̂ 2 0.0446 0.2163 95.6 0.0199 0.0853 94.6 

U[0.5,30]   ̂ -1 0.0456 0.9093 95.8 0.0256 0.2385 96.2 

28.7%   ̂ 2 0.0112 0.1247 94.0 0.0130 0.0467 95.8 

 

Moderate   ̂ 2 0.0552 0.3129 97.2 0.0191 0.1188 94.2 

U[0.5,9]   ̂ -1 -0.5700 4.8323 82.4 -0.2304 3.2700 84.6 

43.2%   ̂ 2 -0.3504 0.5829 85.6 -0.1617 0.2761 88.8 
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Table 3.16. Estimates from the smcure AFTMC model where cure rate is 12% in control and 27% in treatment group. (1.3863,-1,2) 

Censoring 

Rate 

Parameter True 

Value 

R 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI 

Cap 

Slight   ̂ 1.3863 0.0318 0.1193 90.2 0.0322 0.0527 86.0 

U[0.5,30]   ̂ -1 0.0274 0.3859 94.4 0.0112 0.1397 95.2 

37.9%   ̂ 2 0.0180 0.1657 89.8 -0.0186 0.0638 93.0 

Moderate   ̂ 1.3863 0.0183 0.2086 91.8 0.0156 0.0579 90.0 

U[0.5,9]   ̂ -1 -0.1627 0.8810 80.0 -0.3019 0.3822 73.0 

49.8%   ̂ 2 -0.1865 0.4448 75.2 -0.2421 0.1987 74.6 

 

Table 3.17. Estimates from the PSPMCM AFTMC model where cure rate is 12% in control and 27% in treatment group. (1.3863,-1,2) 

Censoring 

Rate 

Parameter True 

Value 

SAS 

n = 200 n = 500 

Bias MSE CI 

Cap 

Bias MSE CI 

Cap 

Slight   ̂ 1.3863 -0.0012 0.1287 96.6 0.0004 0.0573 94.2 

U[0.5,30]   ̂ -1 0.0396 0.6169 96.8 -0.0033 0.1339 94.2 

37.9%   ̂ 2 -0.0015 0.1530 95.6 0.0035 0.0539 96.6 

Moderate   ̂ 1.3863 0.0453 0.1741 96.4 0.0213 0.0693 95.0 

U[0.5,9]   ̂ -1 0.3111 4.3420 86.0 -0.0710 2.7025 89.2 

49.8%   ̂ 2 -0.2895 0.7862 84.8 -0.1113 0.3780 89.4 
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The results from the AFTMC model simulations show some similar trends as the 

PHMC model results. Tables 3.14-3.17 show relatively small biases overall. 

Again, mean square error decreased with increasing sample size and increased 

with higher censoring rates. Confidence interval coverage probabilities were 

acceptable for the semiparametric methods in R, but they were somewhat 

concerning in the parametric methods in SAS. It is expected that those capture 

rates would be much closer to accurate because of the fully parametric methods 

used in the SAS macro. 
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CHAPTER 4: REAL DATA ANALYSIS- LEVINE CANCER INSTITUTE DATA

As described in Section 1.3, the soft tissue sarcoma dataset from Levine 

Cancer Institute appeared to have cure tendencies as seen by the plateauing in 

the Kaplan Meier survival curves. Therefore, it was used as an illustration for the 

application of the semiparametric PH mixture cure model, utilizing both the 

smcure package in R and the PSPMCM macro in SAS. For comparison, the 

options available were defined similarly between R and SAS. To get bootstrap 

standard error estimates, 100 bootstrap samples were selected. The maximum 

number of iterations was set at 200 and the convergence criterion was defined as 

1e-7. Since the smcure method of conditional baseline survival function 

estimation is the Breslow type, the CH option was selected in the PSPMCM 

macro. 

4.1 smcure Package Application 

First, using the smcure R package, the PHMC model was fit to the 

motivating sarcoma dataset. The variables used in this mixture cure model 

statement are described above in Table 1.1; however, the first model that was run 

included only the main treatment factor: radiation therapy. The following shows 

an example of the syntax used in R: 
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smcurehisarc<- smcure(Surv(rfs,cens_rfs)~rad_01, 

cureform=~rad_01, data=hisarc, model="ph", emmax=200, eps=1e-7, 

nboot=100) 

The resulting parameter estimates and bootstrapped standard errors obtained 

from invoking this model are shown in Table 4.1. 

Table 4.1. smcure PHMC model parameter estimates and bootstrapped standard errors 

for the simple model, along with Z-values and associated p-values. 

Model Parameter Estimate Standard  

Error 

Z Value Pr(|Z|) 

Cure 

Portion 

Intercept 0.34996 0.49094 0.71283 0.47595 

rad_01 -0.32083 0.60437 -0.53084 0.59553 

Survival rad_01 -0.76114 0.40139 -1.89629 0.05792 

 

In order to obtain the standard errors of the estimated parameters, 100 bootstrap 

samples were acquired. From the parameter estimates in the cure probability 

model, the cure rate can be calculated for each of the treatment groups. The cure 

rate for the radiation group is calculated to be 

   ̂( )                    (                  )⁄       , suggesting that 

49.3% of patients receiving radiation therapy are cured. The cure rate for the 

group that did not receive radiation therapy was calculated similarly, but was 

found to only be 41.3%. However, the p-value for the radiation therapy variable 

is not significant at α = 0.05 level of significance (p = 0.5955). Therefore we cannot 

truly conclude that there is a significant difference in cure rate between the two 

treatment groups when only assessing the radiation treatment. 
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We can also obtain the predicted survival probabilities for the radiation 

treatment groups using the predictsmcure command as shown below. The 

resulting predicted survival curves are shown with the Kaplan Meier curves in 

Figure 4.1. 

predhisarc=predictsmcure(smcurehisarc, newX=c(1,0), 

newZ=c(1,0),model="ph") 

 

Figure 4.1 Predicted survival curves and Kaplan Meier curves for the sarcoma study, 

stratified by treatment group. Upper black lines are the XRT group while lower red lines 

are the nXRT group. The dashed curves are the Kaplan Meier estimates while the solid 

lines are the Cox mixture cure model estimates. 

 

From the predicted survival curves in Figure 4.1, it would appear that 

those who receive radiation therapy have a better predicted survival probability, 

meaning they are less likely to experience a recurrence, than those who do not 

receive radiation therapy. Additionally, the logistic-Cox mixture cure model 

appears to be a good fit for the data since the KM curves and the MC model 
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estimates are very similar. The p-value for the radiation parameter estimate in 

the failure time distribution model is not quite significant (p = 0.0579). However, 

although a solid conclusion of significance is not possible, the near significant p-

value suggests that radiation therapy could have a positive effect on recurrence 

free survival in the uncured population. The hazard ratio for receiving radiation 

therapy versus not receiving radiation therapy is                (95% CI: 0.213, 

1.026), suggesting that the use of radiation therapy in patients who are not 

“cured” appears to slow down the recurrence of a soft tissue sarcoma. A 

multivariable mixture cure model that assesses the inclusion of variables 

described in Table 1.1 is also estimated in Section 4.3.  

4.2 PSPMCM Macro Application 

Utilizing the SAS PSPMCM macro, the PHMC model was again fit to the 

motivating sarcoma dataset. As previously stated, the variables used in this 

mixture cure model statement are described in Table 1.1, starting initially with 

only radiation therapy in the model. The following shows the statement used to 

invoke the PSPMCM macro in SAS. 

%PSPMCM 

(DATA= hisarc, ID= id, CENSCOD= cens_rfs,  

 TIME= rfs, VAR= rad_01(IS,1),INCPART= logit,  

 SURVPART= Cox, TAIL= zero, SU0MET= ch, 

 MAXITER= 200, CONVCRIT= 1e-7, ALPHA= 0.05, 

 FAST= Y, BOOTSTRAP= Y, NSAMPLE= 100, BOOTMET= ALL, 

 GESTIMATE= , STRATA= , JACKDATA= , BASELINE= , 

 SPLOT= , PLOTFIT= Y); 

run; 
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Here, note that VAR=rad_01(IS,1), which means that the radiation treatment 

variable, rad_01, is included in both the incidence and the latency parts of the 

model. Also, the specified value after the comma is the value that the rad_01 

variable will take on in any obtained survival function plots. The following 

Tables 4.2 and 4.3 show the parameter estimates output resulting from 

invocation of the SAS macro. 

Table 4.2. PSPMCM macro incidence parameter estimates output from the LOGISTIC 

procedure for the sarcoma data. 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Intercept 1 0.3501 0.4145 0.7135 0.3983 

rad_01 1 -0.3204 0.4621 0.4808 0.4880 

 
Table 4.3. PSPMCM macro latency parameter estimates output from the PHREG 

procedure for the sarcoma data. 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-Sq Pr > ChiSq Hazard 

Ratio 

95% HR 

Confidence 

Limits 

rad_01 1 -0.65078 0.33982 3.6676 0.0555 0.522 0.268 1.015 

 

The standard errors of these fast estimates in the output may be underestimated 

as they are based on the inverted Hessian matrix which was computed on the 

last maximum likelihood iteration. Therefore, the “fast” standard errors and 

confidence intervals should not be used for drawing conclusions about the 

effects of the variables of interest. Instead, the bootstrap standard errors and 

confidence limits should be used. These can be obtained from the “BOOTDIST” 
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data set that is written by the PSPMCM macro. The parameter estimates, boot 

strap standard errors, and p-values for the mixture cure model are given in Table 

4.2, where the intercept and “L_rad_01” variables come from the incidence 

portion and the “S_rad_01” variable is from the latency portion of the model.  

Table 4.4. PSPMCM model parameter estimates and bootstrapped standard errors for 

the simple model, along with Z-values and associated p-values. 

Parameter Estimate Standard  

Error 

Z Value Pr(|Z|) 

Intercept 0.3501 0.58566 0.59779 0.5500 

L_rad_01 -0.3204 0.65882 -0.48632 0.6267 

S_rad_01 -0.76135 0.45673 -1.66696 0.0955 

 

These parameter estimates are consistent with the results from the smcure 

package. The cure rate for each of the treatment groups can be easily calculated 

from the parameter estimates for the incidence portion. For the radiation group, 

we calculated    ̂( )                  (                )⁄         which 

indicates that 49.3% of patients receiving radiation therapy are cured. 

Comparatively, the patients who did not receive radiation therapy only had a 

cure rate of 41.3%. However, the radiation therapy parameter estimate is not 

significant in the incidence portion, so there does not appear to be a significant 

difference in cure rate between the two groups before adjusting for other 

covariates. 

In order to obtain the bootstrap standard errors, 100 bootstrap samples 

were acquired from the macro. These standard errors are also comparable with 



 

53 

the smcure package standard errors and the same conclusions, in terms of 

significance, are drawn. There appears to be some potential positive effect of 

radiation therapy on the recurrence free survival in the uncured subset of 

patients, although it is not significant at α = 0.05 level of significance (p = 0.0955). 

 

Figure 4.2. Marginal survival function curves for soft tissue sarcoma dataset. Upper 

black lines are the XRT group while lower red lines are the nXRT group. The dashed 

curves are the Kaplan Meier estimates while the solid lines are the Cox mixture cure 

model estimates. 

 

The PSPMCM macro also gives the estimated and observed marginal 

survival functions, shown in Figure 4.2. The correlation between the estimated 

and the observed survival probabilities is also obtained and gives an idea of 

goodness of fit. The correlation between the observed and expected marginal 

survival curves for the nXRT group is 0.99365 while the correlation for the XRT 
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group is 0.99880. These high correlations are indicative of a good fit by the 

logistic-Cox mixture cure model. 

4.3 Multiple Proportional Hazards Mixture Cure Models 

In order to more completely analyze this soft tissue sarcoma dataset with 

the mixture cure model, multiple covariates will be assessed to select the most 

appropriate model. The covariates available in the dataset include several 

demographic variables such as age and gender and also tumor-related 

information such as tumor size and tumor site. The model selection procedure in 

started in R with all five variables (radiation therapy, categorized age, tumor size 

class, gender, and tumor site) in the “full” model. Table 4.3 gives the parameter 

estimates and standard errors for the full model.  

Table 4.5. smcure PHMC model parameter estimates and bootstrapped standard errors 

for the full model, along with Z-values and associated p-values. 

Model Parameter Estimate Standard  

Error 

Z Value Pr(|Z|) 

Cure 

Portion 

Intercept -1.04005 3.93646 -0.26421 0.79162 

rad_01 -1.21938 5.86065 -0.20806 0.83518 

age_01 0.85081 0.91845 0.92636 0.35426 

gender_01 0.49043 2.03085 0.24149 0.80917 

ts_class 2.12661 3.11636 0.68240 0.49498 

d_site_01 0.02141 1.04421 0.02051 0.98364 

 

Survival rad_01 -0.89582 0.57766 -1.55075 0.12096 

age_01 0.33178 0.61650 0.53816 0.59047 

gender_01 -0.14530 0.56793 -0.25583 0.79808 

ts_class -0.22466 0.72984 -0.30782 0.75822 

d_site_01 0.03264 0.71526 0.04563 0.96361 
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The least significant covariate that was first removed from full model was tumor 

site in the cure portion, p = 0.9836. Tumor site in the survival portion was the 

next variable to be removed (p = 0.9419). Following the complete removal of the 

tumor site variable, the categorical age variable was then removed from the cure 

portion (p = 0.9015) and then tumor size class was removed from the survival 

portion (p = 0.9728). Gender was also removed from both portions with 

insignificant p-values (p = 0.6891, 0.8518 for the survival and cure portions, 

respectively). The resulting model, shown in Table 4.4, does not contain all 

significant variables; however, it was chosen as the final reduced model since, 

with the adjustment for age, the radiation therapy variable is significant in the 

survival portion (p = 0.0055) suggesting that radiation therapy has a significant 

impact on survival probability in those who are uncured, after adjusted for age. 

Additionally, the inclusion of gender and tumor size class in the cure portion 

results in a noteworthy, although insignificant p-value (p = 0.1112) for the 

radiation therapy variable. This suggests that after adjusting for tumor size, there 

might be a difference in cure probability for those who receive radiation therapy 

and those who do not. For those with tumors less than 5 cm in diameter, the 

probability of cure is 80.2% for those who receive radiation therapy, and 58.4% 

for those who do not receive radiation therapy. Comparatively, for those who 

have tumors larger than 5 cm, the probability of cure in those who receive 
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radiation therapy is 34.8% and only 15.6% in those who do not receive radiation 

therapy. Appendix C, part (a) contains the details of these calculations.  

Table 4.6. smcure PHMC model parameter estimates and bootstrapped standard errors 

for the reduced model, along with Z-values and associated p-values. 

Model Parameter Estimate 
Standard 

Error 
Z Value Pr(|Z|) 

Cure 

Portion 

Intercept -0.3396 0.4745 -0.7157 0.4742 

rad_01 -1.0574 0.6639 -1.5927 0.1112 

ts_class 2.0255 0.5685 3.5627 0.0004 

 

Survival 
rad_01 -0.8726 0.3141 -2.7784 0.0055 

age_01 0.6692 0.4936 1.3557 0.1752 

 

Utilizing this same model in the SAS macro finds the following full (Table 

4.5) and reduced (Table 4.6) models with parameter estimates. We do not find 

quite the same significance or near significance from the PSPMCM reduced 

multivariable model that we had with the smcure package.  

Table 4.7. PSPMCM PHMC model parameter estimates and bootstrapped standard 

errors for the full model, along with Z-values and associated p-values. 

Model Parameter Estimate 
Standard 

Error 
Z value Pr(|Z|) 

Cure 

Portion 

Intercept -1.0392 0.99398 -1.04549 0.295795 

rad_01 -1.219 0.76143 -1.60094 0.109391 

age_01 0.8502 0.83643 1.016463 0.309409 

gender_01 0.4907 0.78237 0.627197 0.53053 

calc_ts_c 2.1261 0.82965 2.562647 0.010388 

d_site_01 0.0208 0.84674 0.024565 0.980402 

 

Survival 

rad_01 -0.8957 0.5601 -1.59918 0.109781 

age_01 0.3323 0.60639 0.547997 0.583694 

gender_01 -0.1456 0.52043 -0.27977 0.779655 

calc_ts_c -0.2242 0.66474 -0.33727 0.73591 

d_site_01 0.0333 0.65947 0.050495 0.959728 
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The parameter estimates are very similar but the standard errors are larger which 

results in larger p-values. The p-value for the radiation therapy in the cure 

portion is more significant (p = 0.1038) and in the survival portion, where 

radiation therapy was significant in the smcure model, radiation therapy is also 

significant at α = 0.05 (p = 0.0432). Cure probability calculations are nearly 

identical between the two programs, which is to be expected with very similar 

estimates. Appendix C, part (b) contains the details of these calculations. 

Table 4.8. PSPMCM PHMC model parameter estimates and bootstrapped standard 

errors for the reduced model, along with Z-values and associated p-values. 

Model Parameter Estimate 
Standard 

Error 
Z value Pr(|Z|) 

Cure 

Portion 

Intercept -0.3397 0.5371 -0.6325 0.5271 

rad_01 -1.0572 0.6498 -1.6269 0.1038 

ts_class 2.0255 0.6237 3.2473 0.0012 

 

Survival 
rad_01 -0.8728 0.4317 -2.0220 0.0432 

age_01 0.6691 0.5231 1.2792 0.2008 
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CHAPTER 5: CONCLUSIONS AND FUTURE STUDIES

Mixture cure models have growing applications in the field of biostatistics 

as the advancement in medical treatments and technology has led to more 

diseases being cured rather than just mitigated. With the typical survival 

methods that assume all patients will eventually get the disease of interest, there 

is no way to account for a proportion of cured individuals who will never 

experience that disease occurrence. Mixture cure models allow both the cured 

proportion and the remaining uncured individuals to be modeled 

simultaneously with incidence and latency portions, respectively. The goal of 

this thesis was to compare methods of this mixture cure modeling in two popular 

statistical software programs, R and SAS. Utilizing simulations and real data 

analysis, that comparison was possible. This final chapter, divided into six 

sections, summarizes and explains the findings from the comparative methods 

used for the smcure package in R and the PSPMCM macro in SAS. 

5.1 Overall Model Comparison 

The PHMC models in R and SAS are consistent in terms of computational 

methods for parameter estimates. Only slight differences in parameter estimates 
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arise when the PSPMCM macro option for estimation of the conditional baseline 

survival function, SU0MET, is chosen to be “PL” for the product limit estimator. 

This is because the default and only option for the smcure package in R is the 

Breslow-type method, which is selected in the PSPMCM macro with “CH.”  

On the contrary, as discussed in Section 1.1, the smcure package has the 

advantage of implementing a semiparametric approach to the AFTMC model, 

which makes fewer assumptions than the parametric approach for the AFTMC 

model from the PSPMCM macro. Semiparametric approaches (or nonparametric 

when possible) are often preferred because of their flexibility since assumptions 

about the survival distribution are not necessary. 

5.2 Syntax and Model Output Comparisons 

Comparing the R package to the SAS macro in terms of the user interface, 

the PSPMCM macro was found to have many more options available for 

specification while the smcure package contained more “default only” settings. 

The additional complex plots available in SAS, especially the goodness of fit Q-Q 

plot, seem advantageous for certain study goals. Additionally, there is more 

freedom in the SAS macro for specification of certain computational methods. 

This includes multiple survival distributions as well as the multiple methods for 

estimation of the conditional baseline survival function. However, with more 

options to specify in the macro, it is potentially easier for the user to run into 
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issues with misuse of the macro or incorrect option selection. The simplicity and 

straightforward options in the smcure package might make it more ideal for 

someone looking only to obtain parameter estimates and standard errors.  

Another aspect for comparison is the output from the two programs. In 

the PSPMCM macro, the output that the user sees initially will include the “Fast 

Estimates” for the incidence and latency parts. However, that output does not 

contain the bootstrapped standard errors, and instead, gives the standard errors 

based on the inverted Hessian matrix which was computed on the last maximum 

likelihood iteration. This could easily be misinterpreted by users who assume 

that, since they selected the bootstrap option, they would get bootstrap standard 

errors in the primary output. Instead bootstrap standard errors are only found 

through the “BOOTDIST” data set that is created with the selection of bootstrap 

resampling. The smcure output, however, directly contains the bootstrap 

standard errors and associated p-values for quicker and easier interpretation. 

5.3 Estimate Bias and Mean Square Error Comparisons 

Both the smcure package and the PSPMCM macro showed good 

performance in terms of bias and mean square error for a range of settings in 

both the PHMC model and the AFTMC, as seen previously in Sections 3.1 and 

3.2. One notable difference though is the inflated mean square error of estimates 

for a few specific settings in R for the Weibull PHMC model. With moderate 
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censoring in the small sample size and smaller cure rate setting, the average 

mean square error for the cure portion estimates was much larger for the R 

model estimates than for those from SAS, in both covariate settings. There were 

also somewhat increased mean square errors in the lognormal data settings; 

however, these increases were more consistent between the two programs, R and 

SAS. 

Additionally, for the AFTMC settings, the semiparametric model in R 

cannot estimate the intercept,   , as it is not identifiable. The intercept is 

identifiable in the SAS macro, so the intercept can be estimated; however, 

without a value from R for comparison, this estimate was not reported. Besides 

that discrepancy, the two AFTMC models are relatively similar in their 

performance with the estimates and standard errors. Although, some of the 

confidence interval capture rates in the fully parametric model from SAS are 

notably low for a parametric method. With fully parametric methods, it is 

expected to see more consistent results. 

5.4 Computation Time Comparisons 

From Section 3.1, we saw that for the PHMC model, the R package takes 

slightly longer to estimate parameters and standard errors than the SAS macro. 

However, for all settings and in both programs, it only takes a matter of seconds, 

on average, to get parameter estimates with 100 bootstrap samples. Therefore, 
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there does not appear to be a distinct advantage in terms of computation time for 

the SAS macro as compared to the R package. Also, note that the computation 

times were not compared in the AFTMC models in R and SAS as they are not 

comparable, having two difference estimation methods. 

5.5 Real Data Analysis Comparisons 

Without adjusting for other covariates, the parameter estimates were 

identical between the smcure package and PSPMCM macro for the simple 

PHMC model, which looked only at the impact of radiation therapy on the 

recurrence free survival in soft tissue sarcoma patients. Additionally, the 

conclusions drawn from the p-values between the two simple models were 

similar. It is noteworthy though that the standard errors from the smcure 

package were consistently smaller than those from the PSPMCM macro, which 

can lead to different conclusions in certain situations. This is noticed in Section 

4.3 where the multivariable PHMC model was explored. Both R and SAS found 

the radiation therapy to be significant in the survival portion (p = 0.0055 and p = 

0.0432, respectively). Additionally, both models suggest a possible trend for the 

radiation therapy variable in the cure portion (p = 0.1112 and p =0.1038).  

Because there were some inconsistencies in bootstrap standard errors in 

the smcure adjusted and the PSPMCM adjusted models, larger bootstrap 

samples were chosen, to see if the differences were a result of unstable estimates 
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due to small bootstrap sample size. In the process of choosing larger bootstrap 

sample sizes, it was found that the standard error estimates are not stable in the 

smcure package. Running the identical model with 100 bootstrap samples 

multiple times resulted in several different p-values for radiation therapy (as 

well as the other cure portion variables), ranging from 0.11 that resulted from the 

initial model fit to 0.72, as a result of different standard error estimates. When 

500 bootstrap samples were used, the bootstrap standard error estimates and 

resulting p-values remained more consistent in the cure portion, but were 

actually very large, indicating little or no significance in any of the cure portion 

variables. This issue is inconsistent with the results from changing the bootstrap 

sample size to 500 in the SAS macro. The standard error estimates remained 

consistent with 100 bootstrap samples and only increased a little with 500 

bootstrap samples. These issues motivate some of the future directions 

mentioned in Section 5.6. 

5.6 Future Directions 

Beyond the scope of this study, there are several directions in which the 

two models could be further evaluated and potentially improved upon. The 

impact of different bootstrap sample sizes should be evaluated both on the mean 

square error of estimates as well as the added computation time. Although a 

previous study had found the difference in standard errors between 100, 200 and 
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500 samples sizes with the R package to be trivial, there might be some impact 

and potential benefit in the SAS macro [3]. By comparing the expected positive 

effect that an increased bootstrap sample size has on the estimate’s mean square 

error to the subsequent expected additional computation time, a “cost-benefit” 

analysis of sorts could be performed to identify ideal bootstrap sample sizes in 

the R package and the SAS macro. 

One of the biggest factors that should be investigated further is the 

variance estimation procedures in the smcure package and PSPMCM macro. The 

bootstrapping methods utilized in R and those used in SAS differ enough that, 

despite similar parameter estimates, the estimate bootstrapped standard errors 

are dissimilar. A complete analysis of the sampling methods should be 

performed for better understanding of the differences between the R package 

and the SAS macro for mixture cure models.  

Also, simulation studies should be performed to examine the bootstrap 

variance in comparison to the empirical variance. A brief investigation of the 

empirical variances of the estimates compared to the bootstrap variances 

resulting from this thesis is presented in Appendix D. No significant conclusions 

can be drawn from the limited results, although it is noteworthy that for small 

sample sizes the bootstrap variances are not comparable to the empirical 

variances. When there are inconsistencies between the bootstrap variance and the 
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empirical variance, the bootstrap variance may not be stable. This relationship 

should be further assessed in future studies to determine if there is some 

connection with model performance, such as confidence interval capture rates. 

An additional evaluation that could be beneficial for a more complete 

assessment of the R package and the SAS macro would be a study of the survival 

distribution effect for the AFTMC models. By purposefully misspecifying the 

survival distribution of a generated data set and evaluating the estimate’s biases 

and mean square errors, the robustness of smcure’s semiparametric AFTMC 

model could be compared to PSPMCM’s parametric AFTMC model. This would 

be carried out somewhat similarly to the sensitivity analysis performed in 

Section 3.1, only in this case, the focus would be on the failure time generation. 

Failure time errors would be generated from a lognormal distribution while the 

survival distribution would still be defined as the log Weibull/Extreme Value 

distribution. 

Additionally, as the rank based estimation method for the semiparametric 

AFTMC model in R performs better with continuous covariates, it would be 

interesting to further study the performances of the semiparametric and 

parametric AFTMC models with a different covariate setting. Perhaps the smcure 

AFTMC model would have closer results, or even better results, to the 

parametric PSPMCM macro’s results.  
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Finally, as evidenced by long computation times for the AFTMC model in 

the smcure package (ranging from approximately ten minutes to nearly two 

hours), there appears to be room for improvement in the source code to 

potentially speed up the estimation and bootstrapping times. The source code for 

the package was initially written in R rather than C or C++. Rewriting the 

package in C or C++, where the algorithms are typically faster, could result in an 

improvement in computation time. Additionally, there are aspects in the current 

bootstrapping source code that could be streamlined for efficiency. 
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APPENDIX A: SELECTED R CODE 

Weibull PHMC model, 2 covariate simulation code 
 

####################################### 

###define data generation function##### 

####################################### 

generate<-function(n,intercept,bZ,beta,k,lambda,C,simu,nb){ 

 

est<-matrix(rep(0,simu*3),nrow=simu) 

estbias<-matrix(rep(0,simu*3),nrow=simu) 

var<-matrix(rep(0,simu*3),nrow=simu) 

mse<-matrix(rep(0,simu*3),nrow=simu) 

lcl<-matrix(rep(0,simu*3),nrow=simu) 

ucl<-matrix(rep(0,simu*3),nrow=simu) 

cap<-matrix(rep(0,simu*3),nrow=simu) 

time_mod<-matrix(rep(0),nrow=simu) 

censrate<-matrix(rep(0),nrow=simu) 

  for(i in 1:simu){ 

 #cure rate indicator 

 z<- rbinom(n,1,0.5) 

 linpred<-cbind(1,z) %*% c(intercept,bZ) 

 prob<-exp(linpred)/(1+exp(linpred))      

 y<-rbinom(n=n, size=1, prob=prob) 

 

 #survival probabilities Weilbull and time calculation 

 u<-runif(n,0,1) 

 x<-z 

time1<-qweibull(1-exp(-exp(log(-log(u))-beta*x)),k,lambda) 

 delta<-as.numeric(time1<=C) 

 

#delta restriction based on cure indicator 

 status<-ifelse(y==0,0,delta) 

 T<-status*time1+(1-status)*C 

 

 #final data to be run in smcure 

 curedata<- data.frame(status,T,z,x) 

 

 #censoring rate 

 censrate[i]<-1-(sum(curedata$status)/n) 

 Tdistr<-hist(T) 

  

 ptm<-proc.time() 

smcuremod<- smcure(Surv(T,status)~x,cureform=~z, data=curedata, 

model="ph",link="logit",nboot=nb) 

 time_mod[i]<-(proc.time()-ptm)[3] 

 

 est[i,]<-c(smcuremod$b, smcuremod$beta) 
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 estbias[i,]<-est[i,]-c(intercept,bZ,beta) 

 

 var[i,]<-c(smcuremod$b_var, smcuremod$beta_var) 

 mse[i,]<-var[i,]+estbias[i,]*estbias[i,] 

 

 lcl[i,]<-est[i,]-1.96*sqrt(var[i,]) 

 ucl[i,]<-est[i,]+1.96*sqrt(var[i,]) 

 

cap[i,]<-ifelse(lcl[i,]<=c(intercept,bZ,beta) & 

ucl[i,]>=c(intercept,bZ,beta),1,0) 

 } 

 

##est bias## 

biasvec<-apply(estbias,2,mean) 

##est MSE## 

MSEvec<-apply(mse,2,mean) 

##est means## 

meanvec<-apply(est,2,mean) 

##mean censoring rate## 

meanCR<-apply(censrate,2,mean) 

##capture rate## 

caprate<-apply(cap,2,function(x) sum(x)/simu) 

##mean time## 

meantime<-apply(time_mod,2,mean) 

 

write.csv(est,"est.csv") 

write.csv(estbias,"estbias.csv") 

write.csv(mse,"mse.csv") 

write.csv(time_mod,"time_mod.csv") 

 

 

list(meanvec,biasvec,MSEvec,meanCR,caprate,meantime) 

} 

#############end function############## 

 

#########PARAMETER DEFINITION########## 

#define number of subjects 

n<-200 

####logistic model#### 

#define coefficients for logistic model 

intercept<-2 

bZ<--1 

####failure time model#### 

#generate rv from weibull distribution 

lambda<-2 

k<-1 

C<-runif(n,0,4) 

#define coefficient for failure time distr 

beta<-2 

#number of simulations 

simu<-500 

#number bootstrap resamples 

nb<-100 

 

####################################### 

generate(n,intercept,bZ,beta,k,lambda,C,simu,nb)
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APPENDIX B: SELECTED SAS CODE

Weibull PHMC model, 2 covariate simulation code 
 

*generate from weibull distribution; 

%Macro weibsimulate(n,numsim,f,g,intercept,bZ,beta,k,lambda); 

options nonotes; ods graphics off; ods exclude all; ods noresults; 

proc datasets nolist; delete outestw; run; 

proc datasets nolist; delete outbootsew; run; 

proc datasets nolist; delete estcrw; run; 

proc datasets nolist; delete timew; run; 

 

 %do id=1 %to &numsim; 

  data temp; 

   do id=1 to &n; 

    uni=rand('UNIFORM'); /*U[0,1]*/ 

    c= &f + (&g-&f)*uni; /*U[f,g]*/ 

    zvar=rand('BERNOULLI',0.5); 

    linpred=&intercept+&bZ*zvar; 

    prob=exp(linpred)/(1+exp(linpred)); 

    y=rand('BERNOULLI',prob); 

    u=rand('UNIFORM'); 

    xvar=zvar; 

time1=quantile('WEIBULL',1-exp(-exp(log(-

log(u))-&beta*xvar)),&k,&lambda); 

    if time1<=c then delta=1; else delta=0; 

    if y=0 then status=0; else status=delta; 

    T=status*time1+(1-status)*c; 

    output; 

   end; 

  drop linpred uni u prob time1 delta; 

  run; 

  proc summary data=temp; 

  var status; output out=sumoftemp sum=statsum; run; 

  data censrate; set sumoftemp; 

  cr = 1-(statsum)/&n; run; 

  data a; 

  starttime=%sysfunc(time()); run; 

   

   %PSPMCM                                                                                                   

     (DATA=temp, ID=id, CENSCOD=status, TIME=T,  

      VAR= zvar(I) xvar(S),    

  INCPART=logit, SURVPART=Cox, 

           TAIL=zero, SU0MET=ch, 

                   MAXITER=200, CONVCRIT=1e-5, ALPHA=0.05,  

       FAST=Y, BOOTSTRAP=Y, NSAMPLE=100, BOOTMET=, 

      GESTIMATE=, STRATA=, 

      JACKDATA=, BASELINE=, SPLOT=, PLOTFIT= ); 

  run; 
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  data b; set a; 

  finishtime=%sysfunc(time()); 

  elapsedtime=finishtime-starttime; run; 

  

  data fast_surv; set fast_surv; 

  if Parameter="lpi" then delete; 

  keep parameter estimate; run; 

 

  data fast_inci; set fast_inci; 

  Parameter=variable; 

  keep parameter estimate; run; 

 

  data est; set fast_inci fast_surv; 

  sim=&id; run; 

 

  proc means data=bootdist; 

  var L_int ; output out=se1 std=sd; run; 

  data se1; set se1; 

  parameter='Intercept'; 

  drop _type_ _freq_; run; 

 

  proc means data=bootdist; 

  var L_zvar ; output out=se2 std=sd; run; 

  data se2; set se2; 

  parameter='zvar'; 

  drop _type_ _freq_; run; 

 

  proc means data=bootdist; 

  var S_xvar ; output out=se3 std=sd; run; 

  data se3; set se3; 

  parameter='xvar'; 

  drop _type_ _freq_; run; 

 

  data se; set se1 se2 se3; 

  sim=&id; run; 

   

 proc append base=outestw data=est; run;  

 proc append base=outbootsew data=se; run; 

 proc append base=estcrw data=censrate; run; 

 proc append base=timew data=b; run; 

 %end; 

options notes; ods graphics on; ods exclude none; ods results; 

%mend weibsimulate; 

%weibsimulate(200,500,0,20,2,-1,2,2,1) 

 

title1 "Computation time: weibsimulate(200,500,0,20,2,-1,2,2,1)"; 

*simulation results; 

title2 "Average Computation Time"; 

proc means data=timew; 

var elapsedtime; 

run; 

 

data outestw2; 

set outestw; 

if parameter="Intercept" then truevalue=2; 

 else if parameter="zvar" then truevalue=-1; 

 else if parameter="xvar" then truevalue=2; 
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bias=estimate-truevalue; 

biassq=bias*bias; 

run; 

 

proc sort data=outestw2; 

by sim parameter; 

run; 

 

proc sort data=outbootsew; 

by sim parameter; 

run; 

 

data finalw; 

merge outestw2 outbootsew; 

by sim parameter; 

run; 

 

data allw; 

set finalw; 

var = sd*sd; 

mse = var+biassq; 

lcl = estimate-1.96*sd; 

ucl = estimate+1.96*sd; 

if lcl <=truevalue and ucl>=truevalue then capture = 'yes'; 

 else capture = 'no'; 

run; 

 

proc sort data=allw; by parameter; run; 

 

title2 'Confidence Interval Capture'; 

proc freq data=allw; by parameter; tables capture; run; 

 

title2 'Average Bias of Parameter Estimates'; 

proc means data=allw; by parameter; var bias; run; 

 

title2 'Average MSE of Parameter Estimates'; 

proc means data=allw; by parameter; var mse; run; 

 

title2 'Average Censoring Rate'; 

proc means data=estcrw; var cr; run; 
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APPENDIX C: CALCULATIONS AND REAL DATA ANALYSIS OUTPUT

Cure Rate Calculation (in R) 

#case of (2,-1,0.3) (12%/27%) 

#control 

nn<-function(z){(1/(1+exp(2+0.3*z)))*1/sqrt(2*pi)*exp(-z^2/2)} 

integrate(nn, -Inf,Inf) 

 

#treatment  

nn<-function(z){(1/(1+exp(1+0.3*z)))*1/sqrt(2*pi)*exp(-z^2/2)} 

integrate(nn, -Inf,Inf) 

 

#case of (1.3863,-1,0.3) (20%/40%) 

#control 

nn<-function(z){(1/(1+exp(1.3863+0.3*z)))*1/sqrt(2*pi)*exp(-

z^2/2)} 

integrate(nn, -Inf,Inf) 

 

#treatment 

nn<-function(z){(1/(1+exp(0.3863+0.3*z)))*1/sqrt(2*pi)*exp(-

z^2/2)} 

integrate(nn, -Inf,Inf) 

 

Real Data Cure Rate Calculations 

A. R- real data results 

a. Simple model: cure rate calculations 

Radiation:  

   ̂( )                  (                )⁄        
No radiation: 

   ̂( )           (         )⁄        

b. Multiple covariate model: cure rate calculations 

Tumors less than 5 cm 

Radiation: 
   ̂( )                   (                 )⁄        
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No radiation:  
   ̂( )            (          )⁄        

Tumors greater than 5 cm 

Radiation: 
   ̂( )                          (                        )⁄

       

No radiation: 
   ̂( )                   (                 )⁄        

B. SAS- real data results 

a. Simple model: cure rate calculations 

Radiation: 
   ̂( )                  (                )⁄        
No radiation: 

   ̂( )           (         )⁄        
 

b. Multiple covariate model: cure rate calculations 

Tumors less than 5 cm 

Radiation: 
   ̂( )                   (                 )⁄        

No radiation:  
   ̂( )            (          )⁄        

Tumors greater than 5 cm 

Radiation: 
   ̂( )                          (                        )⁄

       

No radiation: 
   ̂( )                   (                 )⁄        
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APPENDIX D: VARIANCE COMPARISON

Table D.1. Bootstrap versus empirical variance comparison for select 

simulation settings 

Lognormal b0 b1 beta 

n=200 12%/27% Bootstrap 

Variance 
1.708806 1.941011 0.119375 

U[0.5,5] Empirical 

Variance 
0.913531 0.980333 0.059238 

n=500 12%/27% Bootstrap 

Variance 
0.199578 0.251463 0.046256 

U[0.5,5] Empirical 

Variance 
0.130475 0.144098 0.024305 

Weibull 
 

n=200 12%/27% Bootstrap 

Variance 
3.311067 3.551104 0.109674 

 U[0,4] Empirical 

Variance 
0.676867 0.752525 0.048935 

n=500 12%/27% Bootstrap 

Variance 
0.139222 0.199957 0.043578 

 U[0,4] Empirical 

Variance 
0.069359 0.093058 0.020368 
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