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ABSTRACT 

Estuaries are important systems that link fresh, inland waters to oceanic salt water, 

where they act to deliver large amounts of nutrients, sediments and pollutants into the 

ocean. Traditionally, the study of estuarine systems has been marked by difficulty owing 

to the complex hydrodynamics influenced by strong bathymetric changes, changes in tidal 

range, intricate geomorphology, among other factors; thus beginning to unravel the 

complexities of estuarine hydrodynamics will help to illuminate the nature of estuaries as 

well as to provide a foundation for their further study.  In this study I focus on the transition 

zone from tidal to fluvial regime, which is defined as an area where tidal and river 

discharges are comparable. Recently, the transition zone has been the focus of attention as 

an important region within an estuary. 

Tides are subject to frictional dissipation as they propagate inland through estuaries 

and river channels.  Previous studies suggest that there is an enhanced tidal dissipation in 

the transition zone from a tidal to fluvial regime when the tidal flux and river discharge 

become comparable. The aim of this study is to understand the kinematics and dynamics 

within the transition zone. In particular, I hypothesize that there is an enhanced tidal 

dissipation in the transition zone due to (i) additive effects of tidal and river currents subject 

to the quadratic bottom friction, and (ii) to the presence of variable topography and 

enhanced bathymetric gradients in the transition zone.  I analyzed time series of velocity 

profiles and bottom pressure that resolve the along-channel depth-averaged momentum 

balance in the transition zone of the Santee River, SC, USA. The following momentum 
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balance terms are estimated: inertia (local acceleration), along-channel advective 

acceleration, pressure gradient, and bottom friction terms. Instruments were deployed in a 

1-km long river reach characterized by a decreasing depth in the upstream direction from 

over 4 m to less than 2 m.  Tides in the study area are predominantly semi-diurnal, flood-

dominant. The leading terms in the depth-averaged momentum balance are found to be 

inertia, pressure gradient, and bottom friction.  The pressure gradient and inertia dominate 

the momentum balance during the flood and subsequent current reversal from flood to ebb.  

However, during the ebb the pressure gradient is nearly balanced by bottom friction. A 

dissipative term is defined as a residual of inertia, advection, and pressure gradient force 

terms. I found that the dissipative term is comparable with the bottom friction term under 

steady river discharge.  However, the bottom friction term underestimates the dissipative 

term when the river discharge exhibits abrupt variations.  This yields a record-mean with a 

linear regression slope of 0.54.  I hypothesize that the lateral eddy viscosity also contributes 

to tidal dissipation, especially when the pressure gradient force increases.  Although tides 

are flood-dominant, most of the dissipation occurs during the ebb due to a superposition of 

comparable fluvial and tidal currents.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Estuaries are important systems that link fresh, inland river water with oceanic salt 

water, and act as conduits for large amounts of nutrients, sediments and pollutants being 

delivered into the ocean (Pricthard, 1967).  Moreover, the study of estuaries helps to 

elucidate many aspects of oceanographic processes including tidal processes, residual 

subtidal estuarine currents, as well as sediment transport.  As the tides propagate inland 

through an estuary they exhibit important transformations: (i) there is an increase in tide 

amplitude due to the decrease of the estuarine cross-sectional area; and (ii) as the tidal wave 

continues to travel upstream it decays due to bottom friction and energy is lost.  In many 

cases these two tendencies balance one another and the approximation of an “ideal” estuary 

can be made (e.g., Prandle, 2009). In order to comprehensively understand tidal dynamics, 

there are numerous variables to consider, and, in particular, when strong bathymetric, finite 

amplitude and bottom friction are taken into account, the dynamics become difficult to 

solve analytical.   

Estuaries are divided into three major areas (Figure 1.1), (i) lower estuary, marine 

dominated region; (ii) central region, where there is usually an increase in convergence of 

the estuary; and (iii) the inner river-dominated region or upper estuary, characterized by 

freshwater dominance, but subject to tidal influence (Dalrymple, 1992).  Since the inner 

river-dominated region is composed only of fresh water, it allows us to assume that the tide 
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propagates upstream in the form of free wave enabling the use of wave equations to 

describe flow dynamics.  As the tidal waves travel upstream the water flow changes from 

tidal dominant bidirectional to unidirectional river (fluvial) dominant.  Tidal waves at the 

mouth often behave as linear waves and as a result they exert a symmetric bottom stress.  

As the wave moves upstream tidal fluxes gradually decrease with the upstream distance 

and as they reach the upper estuary they become comparable with river discharge, this area 

is defined as the transition zone (i.e., Yankovsky et al., 2012). Tidal waves propagating 

inland and reaching this zone are characterized by an addition of fluvial and tidal flux 

(Horrevoets et al., 2004) subject to quadratic bottom friction (Prandle, 2009; Godin, 1998).  

Since tidal fluxes are much greater compared to river discharge in low estuaries near the 

mouth, the fluvial effect on tidal dynamics is often ignored, however in the transition zone 

it is an important variable.  I seek to demonstrate that the river discharge can have a 

considerable influence on tidal damping in the transition zone.     

 

Figure 1.1 A schematic diagram that describes the dynamics of a tidal wave when it enters 

from the mouth and reaches the upper estuary. 
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There has been gathering interest to study tidal dynamics and their importance in 

different regions of estuaries.  Many studies have been conducted in the lower part of 

estuaries to understand the physical exchanges, the interaction between freshwater and 

salinity, bathymetry changes and the mechanisms in forcing currents at tidal and subtidal 

regimes (Prandle, 2003).  In recent years a few studies have been conducted in upper 

estuaries, past the salt intrusion limit, where residual currents and mass transport driven by 

gradients in salinity are not present (Buschman et al., 2009; Hoitink et al., 2009; Sassi et 

al., 2011).  These studies discussed tidal processes in the transition zone, however they 

focused on subtidal fluctuations, tidally averaged and not on the tidal cycle.   

 As tides propagate upstream they become asymmetric and their distortion is related 

to finite amplitude effects and the generation of overtides (Blanton, 2002; Lanzoni and 

Seminara, 1998).  Overtides cause a change in the sinusoidal behavior, which results, in 

the case of flood-dominant regime, in a short-lasting stronger flood and weaker but long-

lasting ebb. Energy dissipation occurs as a consequence of long-lasting ebb in the transition 

zone, where there is an addition of fluvial and tidal velocities.  The tidal distortion is a 

prominent characteristic of a flood-dominant estuary.  When M2 is the dominant 

semidiurnal constituent, M4 is the largest quarter-diurnal tide formed within the estuary 

(Speer, Aubrey, et al., 1991).  The ratio of M4 and M2 shows a highly tidal distortion in the 

transition zone.   

 Furthermore, the importance of the interaction between fluvial and tidal currents 

(Horrevoets et al., 2004; LeBlond, 1979; Godin, 1991; Buschman et al., 2009) is being 

acknowledged.  For example, Wong and Sommerfield (2009) presented an observational 

study in the upper Delaware estuary where they found that there is, in fact, a tidal current 
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amplification at the upper estuary. They also showed the importance of the river discharge 

in relation to forcing the mean flow.   

A key feature of the flow dynamics of the transition zone is the along-channel 

momentum balance, which can be used to describe the general aspects of hydrodynamics 

of the upper estuary.  There is an agreement in the importance of the observational work to 

resolve momentum balance, although it presents a challenge due to the complexity of the 

estuarine tidal dynamics (Trowbridge et al., 1999).  My major research goal is to study the 

tidal dynamics in the upper estuary with an emphasis on tidal interactions with abrupt 

bathymetric gradients while considering river discharge.  Other studies showed that 

channel geometry produced variability in tidal current, amplitude and phases (Seim et al., 

2006).   

Tidal dynamics in the transition zone can be explained by estimating the along-

channel depth-averaged momentum balance.  The along-channel momentum balance 

equation is comprised by linear and no-linear terms.  It is known that the tidal wave non-

linearity is primarily associated with the advection and bottom friction, and results in the 

generation of overtides (Lanzoni & Seminara, 1998).  Theoretical and observational work 

has been previously performed to describe tidal dynamics; however these studies are often 

based on simplifying assumptions.  Prandle (2009) describes theoretical tidal dynamics 

using the equations of motion.  He explains the role of amplitude, bed friction, inertia and 

how they vary depending on different characteristics. Savenije, Toffolon, et al. (2008) used 

analytical solutions of these equations in a one-dimensional form to describe tidal wave 

propagation, but ignored the downstream velocity component from river input.  When mass 

conservation and momentum balance equations are used there are non-linear terms that 
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explain the tidal behavior.  Jay (1991) explains these effects, friction and variable 

topography, on tidal wave propagation.  There are a few studies that are based on strongly 

convergent channels; however these studies linearized the friction term (Friedrichs & 

Aubrey, 1994).  An observational example is shown by Trowbridge et al. (1998) where 

they studied a straight section of the lower Hudson estuary to obtain the bottom stress using 

the law of the wall and to resolve along-channel momentum balance.  Sassi et al., 2011 

reveals the influence of side wall effects on velocity profiles in a tidal river.  Their study 

provides progress towards understanding momentum balance; however there still remain 

numerous unresolved aspects of momentum balance, including what happens in the 

transition zone in relation to river discharge and tidal dissipation and the relation between 

energy loss and geomorphology.   

The main objective of this study if to resolves the along-channel depth-averaged 

momentum balance equation by observational data at the transition zone of the Santee 

River, South Carolina, USA.  I resolved inertia, advection of momentum, bottom friction 

and pressure gradient terms within the tidal cycle.  I sought observational evidence for the 

enhanced bottom friction due to the interplay between fluvial and tidal currents, as well as 

the role of the dissipative term (bottom friction and horizontal transfer of momentum).  The 

transition zone is characterized by strong tidal dissipation (Yankovsky et al., 2012).  I 

hypothesized that there is an enhanced tidal dissipation in the transition zone due to (i) 

additive effects of tidal and river currents subject to the quadratic bottom friction, and (ii) 

to the presence of variable topography and enhanced bathymetric gradients in the transition 

zone.   
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CHAPTER 2 

DATA AND METHODOLOGY 

2.1 STUDY SITE 

The experiment was conducted in the freshwater reach of the Santee River on July 

16 to August 18, 2010. The center of the study area was approximately 53 km upstream 

from the river mouth (Figure 2.1). The Santee River is a coastal plain river approximately 

230 km long formed by the confluence of the Wateree and Congaree rivers southeast of 

Columbia, SC.  The Santee River provided principal drainage for the coastal areas of 

southeastern South Carolina. Downstream of the study site, the Santee River splits into two 

channels: the North Santee and the South Santee, located 10 miles (16 km) from the mouth, 

reaching the Atlantic Ocean south of Georgetown, SC. The Santee River discharge is 

regulated by the Lake Marion and (to a lesser degree) Lake Moultrie dams.  

The data were supplemented by USGS observations of stream flow velocity and 

river discharge from the gauging station 02171700, near Jamestown, SC (Figure 2.1) on 

the Alt 17 bridge (33º18'17"N and 79º40'42"W) and approximately 57 km downstream of 

the Lake Marion dam, 24 km downstream of the Lake Moultrie diversion, and 55 km 

upstream of the mouth.  The station consists of a SonTek Argonaut SL velocimeter that 

samples at 15-minute intervals.    According to the USGS data record spanning the years 

2000 through 2010 the average discharge was 202.2 m³s-¹, with a monthly low of 18.2 m³s-¹ 

and a monthly high of 1,323.8 m³s-¹.  During the end of July through the end of August 

2010 low discharge conditions were observed, with tidally-averaged discharge varying 
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from 23.3 m³s-¹ - 42.7 m³s-¹.  The USGS data presented in this study comprise river 

discharge and streamflow data for March to October 2008 and 2010 thus overlapping 

periods of the current meter deployments.  

2.2 OBSERVATIONAL DATA 

There were two different equipment arrays set up in the Santee River: the first one, 

that I will briefly make reference to, from 2008 and the second one which this project is 

based on from 2010.  The 2008 deployment consisted of two upward-looking Aquadopp 

current profiles mounted on bottom tripods and separated by approximately 6 km along-

channel distance.  The upstream location (R) and downstream location (S) record-mean 

water depths were 1.78 m and 3.27 m respectively (shown in green in Figure 2.2).  A 

detailed description of the 2008 deployment is discussed by Yankovsky et al. (2012).  

The 2010 array consisted of three bottom tripods deployed along-channel axis 

(Figure 2.2).  The along-channel extension of the array was slightly less than 900 m, while 

the USGS gauge station was approximately 1 km further upstream (Figure 2.2).  Within 

the study site, the channel exhibits some curvature and its depth decreases in the upstream 

direction from ~5 m to ~2 m under the observed low-discharge conditions.  Instruments 

were deployed close to the thalweg and were set to record measurements for approximately 

one month (July 16 to August 18, 2010).  Time of deployment is measured as starting from 

July 16, 2010, 14:00 (local daylight saving time). 
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Figure 2.1 Study area in the Santee River, South Carolina, USA.  
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Figure 2.2 Map of the study area. The top panel shows the instrument deployment sites in 

2008 (green triangles) and 2010 (red triangles); the corresponding record-mean depth is in 

parentheses. Yellow pin points the USGS gauging station. The lower panel shows a closer 

look of the study area and the lower right side shows the instruments deployed at each 

location. 

 

A Nortek Acoustic Wave and Current recorder (AWAC) and a SBE 26plus 

Seagauge Wave and Tide Recorder were deployed at the shallowest location (position S, 

Figure 2.2), with a record-mean water depth of ~2.3 m.  The AWAC was configured to 

resolve the mean flows by measuring three-dimensional flow velocities throughout the 

water column at a rate of 1 Hz for 120 s every 15 minutes; each 120 s sampling was 
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internally averaged.  The transducer was 0.38 m above the river bed, with a blanking 

distance of 0.40 m and bin size of 0.5 m.  A high resolution Nortek Aquadopp Current 

Profiler, hereafter referred to as “HR”, was deployed at the middle location (marked with 

M in Figure 2.2) with a record-mean water depth of ~3.0 m. The instrument sampled the 

lower half of the water column with the same sampling scheme as the AWAC.  The 

transducer was placed 0.13 m above the river bed with a blanking distance of 0.04 m, and 

the velocity profile consisted of 23 cells with a bin size of 0.05 m.  A Nortek Aquadopp 

Current Profiler, hereafter referred to as “LR” (lower resolution), and a SBE 26plus 

Conductivity Seagauge Wave and Tide Recorder were deployed at the deepest location, 

marked with D in Figure 2.2, with a record-mean water depth ~4.4 m.  The LR Aquadopp 

sampled more than half of the water column with the velocity profile consisting of 25 cells, 

each 0.10 m high.  The transducer was 0.13 m above the bed and the blanking distance was 

0.20 m.  All the pressure sensors of the current profilers were adjusted to atmospheric 

pressure (set to zero) at the moment of deployment. However, as there was a lack of a 

barometric pressure record for the study site, and since the atmospheric pressure fluctuated 

through the period of deployment, I could not infer an accurate water depth through the 

duration of the measurements.  The separations between S and M as well as M and D were 

540 m and 320 m, respectively.  The SBE 26plus yielded the bottom pressure records with 

a higher precision required for the along-channel pressure gradient estimate than the 

AWAC and Aquadopp Current Profilers.  The conductivity sensor at location D allowed 

me to confirm a 0 ppt salinity at the study site.   

Bathymetry measurements could not be conducted during the experiment due to the 

low discharge conditions.  The bathymetry survey was done on March 11-12, 2013 when 
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the discharge was higher making most of the channel to be accessible with a small boat. 

Tidally averaged discharge recorded at the USGS gauging station 02171700 during the 

bathymetric survey was 170 - 242 m3s-1
 with corresponding tidal fluctuations in stage of 

0.55 m, although current reversals did not occur. In this survey the river free surface 

elevation referenced to the NAVD88 datum, and the water depth was measured. The 

bathymetry was obtained by subtracting the water depth from the free surface elevation 

(Figure 2.3).  

 

Figure 2.3 Bathymetry of the study area referenced to the NAVD88 datum. 

 

Cross-sectional areas for locations S, M and D were calculated using depth values 

corresponding to transects where instruments were deployed from the bathymetric survey 

(survey measurements were done with 1 m separation).  I determined the average stage for 

the time interval of the 2010 deployment from the USGS gage station 02171700.  I also 
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determined the instantaneous stage at the moment of bathymetric measurements at each 

transect.  A ∆h (difference between 2010 and 2013 stage measurements) was calculated 

and adjusted to obtain the water depth across the channel.  Figure 2.4 shows the values for 

the cross-sectional areas calculated.  In general there is a convergence at the central 

location: a decrease in cross-sectional areas from S to M and subsequently an increase from 

M to D.  This result might indicate the potential importance of the advective acceleration 

terms in this region. 

 

Figure 2.4 Cross-sectional areas for S, M and D locations.  
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2.3 DATA PROCESING 

 The time series data recorded were low-pass filtered in order to remove high 

frequency noise.  A Gaussian low-pass filter (LPF) was applied to retain oscillations with 

periods longer than 1 hr.  Furthermore, I subtracted a record-mean value from the SBE 

26plus bottom pressure time series.  As the first step in the data analysis, I compared the u 

(eastward) and v (northward) components of the velocity for the Aquadopp at location M 

and D; and for AWAC at location S (Figure 2.5).  I defined the direction of the along-

channel velocity component as the direction of the principal axis velocity component 

[Emery and Thomson (2001)], positive downstream (seaward).  Furthermore, I determined 

the minor axis and principal axis to determine alignment between each other as well as 

standard deviation to ensure u >> v.  Figure 2.6 shows an example for cell 19 (1.12 m) 

which corresponds to the highest elevation sampled at M location.  The standard deviation 

values for the principal and minor axis were 0.0821 and 0.005, respectively.  Figure 2.6 

shows an alignment with the along-channel direction.  For comparison, I also determined 

the recorded mean velocity direction (see Table 2.1). Both estimates are in good agreement 

at all three locations indicating alignment of tidal (oscillatory) and river (mean) current 

velocities. The reference cells used for these estimates correspond to the approximate 

middle of the water column for each measurement site.  I used the following cells: AWAC 

cell 1 (1.28 m), HR Aquadopp cell 19 (1.12 m) and LR Aquadopp cell 18 (2.12 m).   
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Figure 2.5 Samples of vector time series from two cells of velocity profiles measured at S 

and M locations. 
 

 

Figure 2.6 Minor and principal axis for cell 19 (1.12 m) at M location. 
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Table 2.1 Along-channel velocity characteristics at sites S, M and D. 

 

Site Subtidal regime 

 𝛼𝑚𝑒𝑎𝑛 𝛼𝑝𝑟 𝑎𝑥 𝑢𝑎̅̅ ̅ 𝑢𝑚̅̅ ̅̅  

S -46.9 -46.0 0.104 0.103 

M -39.6 -40.6 0.084 0.089 

D -2.5 -7.5 0.104 0.105 

Tides, amplitude 𝑀2

𝑢𝑚̅̅ ̅̅
 

𝑀4

𝑀2
 

K1 M2 S2 M4 M6   

0.011 0.072 0.003 0.035 0.007 0.84 0.49 
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CHAPTER 3 

RESULTS 

3.1 OVERTIDES 

Tidal amplification in the convergent estuary renders tidal dynamics increasingly 

non-linear (Seim et al., 2006).  Tides become asymmetric and their distortion is related to 

finite amplitude effects and generates overtides.  The ratio of M4 and M2 can reveal a tidal 

distortion in the transition zone.  I performed a harmonic analysis using stream flow 

velocity from USGS.  I applied the predominant semidiurnal constituent M2 and compared 

what happened when the effect of M4 and M6 harmonics (see table 1 and figure 3.1) are 

added.  I found that the M4 amplitude of along-channel velocity oscillation exceeds 45% 

of the corresponding M2 amplitude.  This percentage shows evidence that within the 

transition zone there exist a strong tidal distortion related to abrupt bathymetry changes, 

convergence of the channel, and an enhanced quadratic bottom friction due to the 

superposition of fluvial and tidal currents. The harmonic analysis allows for observing the 

presence of overtides. Thus, the relation between steady and low discharge and the spring 

and neap tides (Figure 3.1b) is identified.  The discharge was fairly uniform through the 

time period.  Specific moments in time for constant and variable discharge are examined 

to resolve along-channel depth-averaged momentum balance are discussed in section 3.6 

(showed in vertical gray bars in figure 3.1b).  
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Figure 3.1 (a) Tidal streamflow prediction based on the harmonic analysis of the USGS 

data: sum of K1, M2, S2, M4 and M6 constituents; (b) the Santee River discharge during the 

2010 deployment. Vertical gray bars indicate time intervals for the detailed momentum 

balance analysis in Section 3.6. 

 

Times series of the free surface tidal oscillations were obtained from the bottom 

pressure records by subtracting a 1-day LPF time series from 1-hour LPF time series.  A 

similar procedure was performed with the along-channel velocity records in order to obtain 

the along-channel tidal velocity time series.  I estimated a time-lagged correlation 

coefficient between the free surface tidal oscillations and the along-channel tidal velocity 

for S and M locations using those time series (Figure 3.2b).  It was found that the time lag 

between velocity and free surface at locations S and M is the same (120 min).  The 

correlation is negative due to the tidal wave propagation upstream.  Figure 3.2c shows the  
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Figure 3.2 (a) The Santee River discharge measured at USGS station in 2008 and 2010, the 

gray bar represents time interval of the 2010 deployment. Time-lagged correlation 

coefficient between tidal free surface and along-channel velocity oscillations from (b) 

locations S and M, depth-averaged velocity; and (c) from near-bottom, middle and top cells 

at M location, cell 2 (z=0.28 m), cell 10 (z=0.68 m) and cell 19 (z=1.12 m). 

 

lag for the middle location from the bottom, middle and the top cells, which show the same 

results.  The time-lag between the free surface tidal oscillations and the along-channel tidal 

velocity shows an area of strong bottom friction and convergence of the channel.  For the 

M2 constituent this time-lag correspond to 58 degrees at the two locations.  This phase lag 

agrees with the strongly convergent and strongly dissipative tidal channel, which is 

represented by up to a 90 degree phase lag [Lanzoni and Seminara, 1998].  During the 2008 

deployment (refer to figure 2.2 for location) it was also found significant time lags for the 
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M2 constituent in both locations, S (68 degrees) and R (51 degrees).  These results showed 

that the phase difference between water level and the currents velocities decreases moving 

inshore as the phase decreases from S (2008) to M (2010) and R (2008).  These changes in 

phase result as an effect of bottom friction and channel convergence, which have important 

implications for the tidal energy carried by tidal waves (Seim et al., 2006).  As the phase 

increases upstream the tidal energy flux decreases.   

3.2 ESTIMATING THE ALONG-CHANNEL MOMENTUM BALANCE 

The focus of this study is to resolve the depth-averaged along-channel momentum 

balance in the transition zone.  This zone is part of a long channel of fresh water reach, 

hence a shallow water equation and hydrostatic approximations can be applied, as a result 

the along-channel momentum balance can be written as,              

  A          B          C                D       E         F      G 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑥
−

𝜏𝑏

𝜌ℎ
+ ℱ𝑥 + ℱ𝑦                             (1). 

Here u is the depth-averaged along-channel velocity (positive downstream), v is the depth-

averaged across-channel velocity, g=9.81 ms-2 is the acceleration due to gravity, η is the 

perturbation of free surface from a horizontal level (positive upward), 𝜏𝑏 is the bottom 

stress, 𝜌  is the water density and h is the water depth, and ℱ𝑥  and ℱ𝑦  represent the 

horizontal transfer of momentum along x- and y-coordinates. The current measurements 

were averaged over a 2 min interval.  The measurements yield estimates for the following 

momentum balance terms: A (inertia or local acceleration), B (along-channel advective 

acceleration), D (along-channel pressure gradient force), and E (bottom friction) at location 

M.  Figure 2.3 shows strong along-channel water depth variations and it has been shown 

by Basdurak and Valle-Levinson (2012) that the advective acceleration can be of the same 
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magnitude as the leading term in estuarine tributaries.  For the purpose of subsequent 

discussion, I define the dissipative term Diss as Diss=A+B-D, and the residual term 

R=A+B-D-E.  This Diss term then enclose C, E, F and G terms. 

3.3 DEPTH-AVERAGED VELOCITY AND ACCELERATION TERM 

As a first step, I estimated the depth-averaged along-channel velocity at each site of 

measurements.  For the AWAC data, due to their coarse vertical resolution and shallow 

water at site S, I simply averaged the velocities from cells 1 and 2. This yielded the record-

mean depth-averaged along-channel velocity of 0.103 ms-¹.  In the case of M location I 

used two different approaches.  The first approach applied was to calculate depth-averaged 

along-channel velocity for M and D locations. I used the time-averaged along-channel 

velocity profiles to find the depth corresponding to the depth-averaged velocity.  At 

locations M and D, where HR and LR Aquadopps were deployed, respectively, only the 

lower portion of the water column was sampled, which necessitated an extrapolation of the 

velocity profile to the surface. I assumed a logarithmic function of velocity distribution 

with depth, and used a linear regression (least squares fit) to extrapolate velocity values as 

a function of ln z (Figure 3.3). Once the full record-mean along-channel velocity profile 

was reconstructed, I found a depth-averaged velocity value and its corresponding depth. I 

found that for the HR Aquadopp, the record-mean depth-averaged velocity was 0.086 ms-¹.  

Due to the depth of this velocity being above the range of the HR Aquadopp sampling, I 

converted a low-pass filtered velocity series at cell 19 (1.12m), location M, into the depth-

averaged series by applying a coefficient of 1.03. This coefficient is a ratio of the depth-

averaged and the cell 19 along-channel record-mean velocities.  For the LR Aquadopp, the 
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depth-averaged velocity, 0.105 ms-¹, corresponded to the velocity at cell 16 (1.92 m). 

Hence, this cell was used as a proxy for the depth-averaged velocity at site D.   

 

Figure 3.3 Extrapolation of record-mean along-channel velocity profiles to the surface at 

sites M (top) and D (bottom).  The extrapolated values are shown as gray asterisks on left 

panels. 

 

The second approach to obtain a depth-averaged along-channel velocity at M 

location was to linearly extrapolate measured velocity profile to the surface using 5 

uppermost cells and applying a least-squares fit.  Using this approach yields to a record-

mean along-channel velocity of 0.089 ms-1.  This result is comparable to the result obtained 

using the first approach.  Data from location D (LR Aquadopp) proved to be too noisy for 

extrapolating them to the surface and obtaining their depth-averaged estimates using the 
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second approach.  Figure 3.4 shows the depth-averaged velocity time series at location M 

using the first and second approaches as well as the depth-averaged velocity for S location.  

 

Figure 3.4 Depth-averaged velocity time series for S, Mmean (first approach) and Minst 

(second approach) locations. 

 

It is interesting to note that while the depth increases from S to D locations, the 

depth-averaged velocity does not decrease. The record-mean discharges through the unit 

cross-channel distance at S, M, and D sites are 0.24, 0.26, and 0.45 m2s-1, respectively. 

Since the net discharge integrated across the channel should be conserved, this discrepancy 

implies that the transverse structure of the along-channel flow changes from site to site (see 

figure 2.3 for reference).  Using cross-sectional areas presented in figure 2.4 and the mean 
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depth-averaged velocities for S = 0.103 ms-1, M = 0.089 ms-1 and D = 0.105 ms-1 discharge 

values for S, M and D are 18.60, 14.53, 20.0 m3s-1, respectively.  These last values also 

support the change in the transverse structure.   

 I utilized the second approach, for location M, to obtain the depth-averaged velocity 

time series and used this to estimated term A by approximating a time derivative with 

central differences.  I selected this approach because it accounts for the fluctuations of 

water level that correspond to each velocity profile. 

3.4 ALONG-CHANNEL ADVECTICE ACCELERATION TERM 

Once the depth-averaged velocity time series are obtained for each location, I 

estimated term B using three difference finite difference approximations.  In the presence 

of non-linear waves the advection terms (B) needs to be taken into account, especially 

because of strong bathymetric variations.  The advective acceleration term was calculated 

using three different numerical schemes: central difference (whole study site), forward 

difference (deep part of the study site) and backward difference (shallow part of the study 

site).  For the central difference approximation, I subtracted data at location S from data at 

location D: D-S; the forward/backward differences were approximated as D-M and M-S, 

respectively (figure 3.5).  These approaches were done to help to understand that while the 

depth increases from S to D locations, the depth-averaged velocity does not decrease.  

Furthermore, the advective acceleration term requires a small spatial scale because there is 

a relation between spatial distributions with respect to along-channel flow, and 

understanding its effect among the three locations may be beneficial.   

Figure 3.5 showed the advective acceleration numerical schemes, and the deeper 

part of the study site (forward difference) and the shallower part (backward difference) 
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showed different signs most of the time.  A possible explanation for this phenomenon is 

the redistribution of cross-channel momentum as a result of a convergence at the central 

location from the forward to the backward differences.  Measurements at location D were 

proven to be too noisy; as a consequence, hereafter for the estimation of the depth-averaged 

along-channel momentum balance I selected the backward difference. 

 

 

Figure 3.5 The advective acceleration terms using three different approximations: central 

(D-S), forward (D-M) and backward (M-S) differences. 
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3.5 BOTTOM FRICTION 

In the study of convergent estuaries, bottom friction plays an important role in the 

hydrodynamics.  Currents at site M are in good alignment for logarithmic velocity profile 

(Figure 2.5). The bottom friction term was estimated from the logarithmic boundary layer 

approximation [Schilighting, 1960].  The velocity distribution law by Prandtl is defined by 

                        (2), 

 

     where                (3). 

Here z is the height above the bottom,  is the friction velocity,  is the roughness 

height, k=0.41 is the Von Kàrmán’s constant, and  is the turbulent shear stress. Using 

equation (2) and (3) the along-channel bottom stress τb and the drag coefficient is 

defined, by 

𝜏𝑏 = 𝜌𝐶𝑑𝑢𝑟|𝑣⃗𝑟|                  (4) 

                               (5). 

Here  is the horizontal velocity vector, index r refers to the depth-dependent velocity at 

the reference level z, and the drag coefficient depends on the choice of z. The drag 

coefficient, and consequently the bottom stress, was estimated only for those velocity 

profiles which satisfied the following screening criteria (same as in Yankovsky et al., 

2012): change of the horizontal velocity direction with depth did not exceed 10o, and 
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ms-².  These two criteria are used because Prandtl’s theory assumes steady-

state, parallel flow. Hence, the bottom boundary layer (BBL) current representing flood 

and ebb conditions using cell 2 (z=0.27m) through cell 7 (z=0.52m).  Figure 3.6 shows 

examples of the logarithmic velocity profiles during ebb and flood conditions.  I did not 

use the full range of the measured velocity profile because in some cases the upper part of 

the profile departs from its logarithmic structure; typically this happens during ebb (figure 

3.6c).  The deviation of velocity profile from the logarithmic structure is likely to cause 

variations in the estimation of the Cd.  However, the quality of the data fit to a logarithmic 

profile for all the screening data show a R2 of 0.97 for cells 2 through 7 and R2 of 0.93 for 

the whole range (cells 2 through 19).  

 

Figure 3.6 Site M, examples of logarithmic velocity profiles, bin 2 through 7 (top), ebb (a) 

and flood (b) conditions for yearday 207 through 209. Black asterisks are the velocity 

measurements (cell 2 through cell 7) and gray lines are the least-squares linear fit; (c) 

examples of velocity profiles departing from their logarithmic structure in the upper part. 

  

610/  tua
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 Bottom drag estimates are shown in Figure 3.7 as a function of the along-channel 

velocity corresponding to z=0.52 m (cell 7) for ebb and flood conditions separately.  Cd  

values show a tendency to change with the velocity magnitude.  Due to this tendency, Cd 

values were averaged for the along-channel velocity bins separated by 0.02 ms-1 intervals 

and the corresponding 95% confidence limits for these averaged Cd were estimated. Figure 

3.7 also shows bottom drag coefficients estimated in 2008 the deployment (presented in 

Yankovsky et al., 2012).  These bottom drag coefficients show the following features: (i) 

the Cd tends to decrease with an increase in velocity magnitude and this tendency is more 

evident in 2010 data; (ii) there is an asymmetry in the bottom drag between ebb and flood 

conditions, with higher Cd coefficients during flood.  Averaged Cd values for flood 

conditions are 0.018 (2008) and 0.011(2010), while for ebb they are 0.011 (2008) and 

0.0046 (2010).  Previous studies in estuaries and in tidal rivers (e.g., Scully and Friedrichs, 

2007; Fong et al., 2009) provided observational examples of asymmetry in the bottom drag.   

 While bottom roughness and bottom drag characterize local flow conditions and 

can exhibit strong spatial variations, I argue that lower bottom drag in 2010 existed in the 

entire study area. Indeed, different bottom roughness was likely preconditioned by different 

flow regimes in 2008 vs. 2010 prior to instrument deployments (Figure 3.2a). In 2008, low 

discharge conditions existed for several months before the deployment, while in 2010 the 

river discharge varied between high and medium values before the deployment. Higher 

discharge results in a unidirectional, fluvial-dominant flow regime with a stronger bottom 

shear stress due to higher flow velocities. Obviously, the impact of this higher discharge 

on bed forms lasted for some time even after the discharge had subsided.  
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Figure 3.7 Drag coefficient versus along-channel velocity measured at cell 7 (z=0.52m) at 

M site:  (a) 2010 deployment, ebb currents; (b) 2008 deployment ebb currents; (c) 2010 

deployment,  flood currents; (d) 2008 deployment, flood currents. Green triangles are drag 

coefficients averaged over 0.02 ms-1 velocity intervals, and vertical bars are their 

corresponding 95% confidence intervals. 

 

3.6 ALONG-CHANNEL PRESSURE GRADIENT FORCE 

 The pressure gradient force term D can be expressed as: 

−𝑔
𝜕𝜂

𝜕𝑥
= −𝑔 (

𝜕𝜂̅

𝜕𝑥
+

𝜕𝜂′

𝜕𝑥
)   (6). 

Here the overbar and prime symbols refer to the record-mean and perturbed values, 

respectively.  The perturbed pressure gradient force was obtained from the SBE 26plus at 

locations D and S.  In order to obtain the actual value of the pressure gradient force, the 

record-mean pressure gradient has to be added (which is unknown). Assuming that the 



 

29 

time-averaged pressure gradient is balanced by bottom friction, −𝑔
𝜕𝜂̅

𝜕𝑥
−

𝜏𝑏

𝜌ℎ
= 0 , the 

averaged along-channel velocity ur and water depth at M location is used to find the mean 

pressure gradient force value −𝑔
𝜕𝜂̅

𝜕𝑥
=

𝐶𝑑𝑢𝑟
2

ℎ̅
.  For the record-mean pressure gradient 

estimate, I chose the drag coefficient from the bin containing the record-mean velocity in 

cell 7. The corresponding Cd (ebb conditions) is 8.9×10-3 and ur=0.075 ms-1 which yields 

a mean pressure gradient force of 1.66×10-5 ms-2.   

 The estimate for −𝑔
𝜕𝜂̅

𝜕𝑥
 can be further verified using an alternative approach based 

on the linear regression between the perturbed pressure gradient force and the sum of other 

momentum balance terms. The shift of the regression line relative to the origin will thus 

account for the missing record-mean part of the pressure gradient force (6). Figure 3.8 

shows two plots: A+B-E and A-E versus pressure gradient force.  I found for A+B-E the 

linear regression shift is 1.84×10-5 ms-2, while for A-E combination (two other leading 

momentum balance terms are compared with the pressure gradient), this shift is 

1.52×10-5ms-2.  That is, the estimate for the record-mean pressure gradient force based on 

the dynamical consideration is within the range set by linear regression fits. This 

verification illustrates that the pressure gradient force is properly represented in the along-

channel momentum balance. 

3.7 MOMENTUM BALANCE 

The estimate of the along-channel depth-averaged momentum balance at the center 

of the study area (site M) is summarized in Figure 3.9.  I estimated the pressure gradient 

term of the momentum balance (1) at the central location M, approximating partial 

derivatives with central finite differences, whereas the advective acceleration was 

estimated using the backward difference. For reference, Figure 3.9a shows the free surface 
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oscillations and the depth-averaged velocity at location M, where flood and ebb currents 

are short-lasting and long-lasting, respectively. Both the pressure gradient force and local 

acceleration are of the leading order, while the advective acceleration (based on backward 

difference) is relatively small (Figure 3.9b).  I assumed that bottom friction plays a leading 

role in tidal dissipation so that the dissipative term Diss should be comparable with the 

bottom friction term E if the momentum balance terms are properly resolved. Figure 3.9c 

captures this feature and shows an overall good alignment between Diss and E.  

    

Figure 3.8 Regression line between A+B-E and A-E terms with respect to PGF. 

 

The relationship between Diss and E terms is quantified in Figure 3.10a: the 

correlation between the two terms is 0.69, while the linear regression slope is 0.54. Since 
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the slope of the regression line is less than 1, I infer that the bottom friction underestimates 

on average the dissipative term, which suggests that the bottom friction is not the only term 

responsible for the momentum dissipation. The other likely candidates are the momentum 

balance terms C and G in (1), this feature, especially the possible contribution of the G 

term, is explained in more detail in the appendix.   

 

Figure 3.9 Momentum balance term estimates for the entire record: (a) free surface and 

depth-averaged along-channel velocity at site M; (b) inertia (black), advective acceleration 

(red) and pressure gradient force (blue); (c) dissipative (black) and bottom friction (red 

dots) terms. 

 

Now three subsets of the momentum balance analysis (marked by gray vertical bars 

in Figure 3.1b) are considered: two time intervals corresponding to steady discharge 



 

32 

conditions when the momentum balance was particularly well resolved and a time interval 

with variable river discharge.  The steady-state river discharge conditions are presented in 

Figure 3.11 (yearday 214 through 216) and Figure 3.12 (yearday 221 through 223). Figures 

3.11b, 3.11c, 3.12b and 3.12c show that the along-channel momentum balance is resolved, 

i.e., Diss and E terms are comparable, although during ebb the bottom friction 

underestimates the dissipative term most of the time.   The principal balance during flood 

is between the pressure gradient force and the inertia terms, as in the case of long gravity 

waves.  However during ebb, the balance is between the pressure gradient force and the 

bottom friction terms, as in the case of steady-state current. Surprisingly, the contribution 

of advective acceleration remains small most of the time, even though the study area is 

characterized by strong along-channel bathymetric variations.  

The momentum balance in Figure 3.13 is similar to previous figures, except for the 

period yearday 202.3 through 202.7, when the river discharge and the downstream velocity 

both increase.  This happens as well during yearday 212 (Figure 3.1 shows discharge peaks 

for those yearday). During these time intervals, the along-channel pressure gradient force 

becomes particularly high and the absolute value of the dissipative term exceeds the bottom 

friction by a factor of 2 or 3.  This result shows that river discharge plays an important role 

in the depth-averaged current velocity and free surface variations. For example, around 

yearday 202.7 the fluvial flow increases and there is almost no flow reversal.  As the fluvial 

flow increases there is a subsequently enhanced pressure gradient force causing the flow 

to accelerate up to a certain threshold.  As a consequence, the pressure gradient force is not 

balanced by inertia and bottom friction, but instead this instability threshold is reached and 
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a lateral eddy is developed.  Appendix A shows a more detail explanation and an estimation 

of the eddy viscosity. 

 

Figure 3.10 Scatterplot of (a) bottom friction versus dissipative terms (flood is in blue, ebb 

is in red, and ebb with large absolute value of the residual term is in green, corr is the 

correlation coefficient, and (b) pressure gradient versus residual R terms. In both panels, 

solid line is the linear regression and m is its slope. 

Flood 

Ebb 

corr=0.69 

m=0.54 

m=-0.62 
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Figure 3.11 Momentum balance term estimates for yearday 214-216: (a) free surface and 

depth-averaged along-channel velocity at site M; (b) inertia (thick black), advective 

acceleration (black) and pressure gradient force (gray); (c) dissipative (gray) and bottom 

friction (black star) terms. 
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Figure 3.12 Momentum balance term estimates for yearday 221-223: (a) free surface and 

depth-averaged along-channel velocity at site M; (b) inertia (thick black), advective 

acceleration (black) and pressure gradient force (gray); (c) dissipative (gray) and bottom 

friction (black star) terms. 
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Figure 3.13 Momentum balance term estimates for yearday 202-204: (a) free surface and 

depth-averaged along-channel velocity at site M; (b) inertia (thick black), advective 

acceleration (black) and pressure gradient force (gray); (c) dissipative (gray) and bottom 

friction (black star) terms. 

 

 

3.8 ACCURACY OF THE PRESSURE GRADIENT FORCE TERM  

It is widely accepted that the pressure gradient force (D) it is of the leading terms 

in the along-channel momentum balance.  Figures 3.12b, 3.12c, 3.13b and 3.13c show that 

the along-channel momentum balance terms, were Diss and E terms are comparable for 

the most part.  Undulations in the pressure gradient force appeared after yearday 223 and 

as result there is an increase in misalignment between Diss and E.  This undulation is most 

likely to carry a discrepancy when calculating the Diss term.  There are two possible 



 

37 

explanations to this phenomenon, (1) instrumentation or (2) it is natural occurring.  Figure 

3.14 shows a plot of the pressure gradient force term (D) and the pressure gradient force 

calculated taking gauge station measurements from USGS gauging station 02171905 (gage 

datum = -19.55 feet above NGVD29), located 10 km from the mouth and from USGS 

gauging station 02171700 1 km upstream from the study site hereafter, “ocean-river”.  This 

ocean-river pressure gradient force (black line in figure 3.14) is compared with the pressure 

gradient force term D (red line in figure 3.14) described in section 3.6.  These two pressure 

gradient are base on different spatial scale and are not expected to coincide, but on subtidal 

frequencies they show a similar trend.  Figure 3.14 shows that after approximately yearday 

223 there is an opposite behavior between pressure gradient forces (one increase, while the 

other decrease).    I decided to plot the pitch and roll during that period of time for location 

S to seek a better understanding.     

I plotted the pitch and roll for the AWAC instrument located along-side with the 

SBE 26plus (location S), which was used to calculate pressure gradient force.  I found a 

change in the pitch and roll at approximately yearday 223 (Figure 3.15).  I hypothesized 

that the movement of instrument due to the accumulation of sediments could contribute to 

the undulation in the pressure gradient force after yearday 223.  However, during the first 

14 days of the series I inferred that the pressure gradient force is well aligned with the 

inertia and the bottom friction. 
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Figure 3.14 Pressure gradient force term D (red) and pressure gradient force between 

USGS gauging station 02171905 and USGS gauging station 02171700 (ocean-river). Blue 

bar shows yearday corresponding to discrepancy between both. 

 

Figure 3.15 Pitch and roll for AWAC, S Location. Blue ovals show discrepancy at yearday 

223. 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

 I analyzed velocity profiles with corresponding bottom pressure records obtained 

from three different locations (S, M and D) in the reach of the Santee River at the transition 

zone where the tidal flux and river discharge become comparable. Instruments were 

deployed in the convergent (with respect to tidal wave propagation) river channel where 

the nonlinear dynamics was expected to be well pronounced. Using depth-averaged along-

channel velocity and pressure records I estimated local and advective accelerations, a 

pressure gradient force, and a bottom friction based on the logarithmic layer 

approximation. Using the USGS stream flow and discharge data I performed a harmonic 

analysis and determined that the study site is characterized by strong tidal distortion 

associated with the presence of M4 and M6 constituents, which proves nonlinear tidal 

dynamics.  I found the time-lag between the free surface tidal oscillations and the along-

channel tidal velocity for S and M locations.  This time-lag is the same for both locations 

and does not vary with depth, which indicates rapid frictional adjustment in the vertical.    

This study accounts for strong bathymetric variations, finite amplitude effects and 

bottom friction in the presence of low river discharge.  Under such discharge conditions, 

the study site represents a transition zone from fluvial to tidal regime, where the river and 

tidal current velocities become comparable [Yankovsky et al., 2012]. During high discharge 

conditions the flow regime in the study area becomes predominantly fluvial (that is, 

unidirectional flow, although tidal oscillations are still present).      
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I resolved, for the most part, the depth-averaged along-channel momentum balance 

throughout the entire period of measurement. The residual term is consistently smaller than 

the leading-order momentum balance terms: the pressure gradient force, the local 

acceleration (inertia), and the bottom friction. Surprisingly, the advective acceleration term 

is small, although the tidal dynamics clearly shows nonlinearity and the channel depth 

exhibits more than a two-fold change within the study area. The importance of the 

momentum “diffusion” is evident in that the record-mean velocity close to the center of the 

channel does not follow depth variations between the measurement sites but remains fairly 

unchanged in the along-channel direction.  This implies variations in the mean flow 

transverse structure and hence the lateral momentum redistribution.   

   I found that the correlation coefficient between bottom friction and the dissipative 

term is 0.69 with a linear regression slope of 0.54.  Since the slope of the regression line is 

less than 1, I inferred that the bottom friction term underestimates on average the 

dissipative term, which suggests that the bottom friction is not the only mechanism 

influencing tidal dissipation. I hypothesize that the discrepancy between the dissipative 

term and bottom friction is primarily due to lateral eddy viscosity. Based on the correlation 

between the residual term and the pressure gradient force, I infer that the generation of 

eddies and the resulting lateral momentum “diffusion” can be triggered by the enhanced 

along-channel pressure gradient, for instance, when the river discharge abruptly increases 

(Figure 3.13). Such an enhanced forcing causes the flow to accelerate only up to a certain 

magnitude, when the instability threshold is reached and the jet structure starts 

disintegrating into eddies. The presence of bed forms and bathymetric variations in the 

study area is likely to further amplify the “eddying” of the mean current; the influence of 
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local bathymetry on the horizontal momentum “diffusion”; and ultimately on tidal 

dissipation.   

I found that there is a change in scattering of the  values in relation to the along-

channel velocity (Figure 3.7a). The drag coefficient values scatter when velocity is low 

and, conversely, cluster when velocity is high.  This result indicates that for small velocities 

the uncertainty of the bottom friction estimate will increase.  However, these small 

velocities do not induce strong bottom friction and the leading terms in the along-channel 

momentum balance are the inertia and the pressure gradient forces. In contrast, for larger 

velocities when bottom friction is significant, the uncertainty decreases. Thus, the bottom 

friction and dissipative term comparison is not strongly affected by the uncertainty of 

bottom drag estimate.  Also, the bottom drag coefficient varied between the 2008 and 2010 

deployments. This difference can be related with very different river discharge conditions 

prior to deployments in those years. In particular, medium-to-high discharge in 2010 

resulted in stronger, unidirectional currents and higher bottom shear stress, so that the bed 

forms and bottom roughness could also be affected. The smoother channel conditions 

existed for some time even after the discharge had subsided by the time of deployment, 

and were captured by the measurements. Thus, variations in river discharge not only shift 

the location of the transition zone along the river channel, but can also affect the bottom 

drag and the efficiency of tidal dissipation.   

Few important uncertainties or sources of error of the data analysis which might 

interfere with the agreement between the dissipative term and the bottom friction are: (1) 

the presence of scattering in the velocity profiles when I performed the logarithmic layer 

approximation may have affected the estimate of zo.  (2) The estimation of the spatial 

dC
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derivative, where the advective acceleration term requires a small spatial scale to be most 

accurate, whereas the pressure gradient estimation requires a larger spatial scale.  (3) The 

contribution of the lateral momentum terms, C, F and G.  However, I assumed that the 

lateral momentum term C (across-channel advective acceleration) might be insignificant 

because the across-channel pressure gradient, which controls the v component, is set by 

long gravity waves propagating across the channel.  The channel width in the area of 

measurement is 100-130 m under low discharge conditions observed during deployment, 

and the long wave crosses the channel in less than 40 s (this is an estimation assuming an 

average water depth of 1 m).  As a consequence the lateral momentum term C is associated 

with time scale shorter than the averaged internal, over a 2 min interval, of the current data.  

Also F and G transfer are associated with vertical structures of velocity deviating from its 

depth-averaged value.  These terms, especially G, explained the rest of the contribution of 

the Diss term. 

In conclusion, this study shows that tidal dynamics is highly non-linear in the study 

area.  The depth-averaged along-channel momentum balance in the transition zone of the 

Santee River was estimated. During flood and subsequent current reversal from flood to 

ebb pressure gradient force is balance by inertia.  Meanwhile, during ebb the pressure 

gradient force is balance by bottom friction, mostly during steady state conditions. The 

bottom friction is of the leading order in the momentum balance, and tidal dissipation is 

likely to be also affected by the lateral eddy viscosity.  Most of the dissipation occurs during 

the ebb, when comparable tidal and fluvial currents are additive and subject to the quadratic 

bottom friction.  Highly variable, convergent bathymetry of the transition zone also 

contributes to the enhanced tidal dissipation through the elevated bottom roughness, tidal 
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distortion and asymmetry, and possibly by lowering the threshold for flow instabilities and 

eddy generation.   
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APPENDIX A – THE PRESENCE OF LATERAL MOMENTUM 

We presented in section 3.2, using hydrostatic approximation, the along-channel 

momentum balance equation (1). This equation can be simplified by assuming that the 

momentum is diffused by eddy viscosity by a constant value and rewritten as,  

  A          B          C              D         E              F        G 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑥
−

𝜏𝑏

𝜌ℎ
+ 𝐴 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2)                 (7). 

Here A is the kinetic horizontal eddy viscosity, x and y are long- and across-channel 

coordinates, respectively.  We discussed in section 3.3 that while the depth increases from 

S to D locations, the depth-average velocity does not decrease.  The record-mean 

discharges through the unit across-channel distance at S, M, and D sites are 0.24, 0.26, and 

0.45 m2s-1, respectively.  Since the net discharge integrated across the channel should be 

conserved, this discrepancy implies that the transverse structure of the along-channel flow 

changes from site to site with the more laterally uniform current at location S and more jet-

like structure at location D. This lack of local along-channel velocity variations in response 

to the depth change leads us to suggest that the across-channel eddy viscosity F should 

contribute to the momentum balance, while G is likely to be small due to near-uniform u.  

We estimated the relationship between Diss and E terms and we determined that 

bottom friction is not the only term responsible for the momentum dissipation.  

Furthermore, we argue that the other likely candidate is the lateral eddy viscosity in the 
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cross-channel direction (G).  We estimated a residual term R which should be related with 

the lateral eddy viscosity, and plotted it against all explicitly resolved momentum balance 

terms (i.e., A, B, D and E). Only the D versus R combination shows a significant linear 

regression slope (Figure 3.10). We conclude that the along-channel pressure gradient force 

can trigger the formation of eddies which diffuse momentum in the transverse direction. 

The peak value of the eddy viscosity coefficient A in (7) can be estimated as follows. We 

select data points with high absolute values of Diss such that |Diss|≥6×10-5 ms-2 (shown in 

green in Figure 3.10). For these data points, we obtain the following average values: 

Diss≈-6.8×10-5, E≈-3.2×10-5, and R≈-3.6×10-5 ms-2; i.e., the residual term magnitude on 

average exceeds the corresponding bottom friction term magnitude. Next, we assume the 

transverse structure of the along-channel flow to be triangle-shaped and we approximate 

the second derivative of the along-channel velocity in the across-channel direction with 

finite differences as , where Uc is the scale for the maximum along-channel 

velocity at the center of the channel, and W is the channel width. We estimate A by solving 

the following system (approximations for across-channel horizontal eddy viscosity and 

bottom friction terms): 

                                                  (8), 

                                                                           (9). 

Assuming h=3 m, Cd=3×10-3, and W=130 m, we obtain A≈0.2 m2s-1.  
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