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Abstract

Study of the chemical composition of the interstellar medium (ISM) in galaxies over

cosmic time is essential for a coherent understanding of galaxy formation and evolu-

tion. Absorption lines in the spectra of quasars can be used as powerful, luminosity-

independent probes of the properties of gas in and around galaxies and have been used

extensively to study galaxies, the circumgalactic medium (CGM) and the intergalac-

tic medium (IGM). The Damped Lyman-α systems (DLAs), with neutral hydrogen

column densities of log NHI & 20.3, and sub-Damped Lyman-α systems (sub-DLAs)

with 19.0 . log NHI < 20.3 are the highest NHI quasar absorbers and contain the

most of the neutral gas available for star formation in the high-redshift Universe.

These systems are believed to trace the progenitors of present-day galaxies and ac-

curately probe chemical abundances in the ISM over ∼ 90% of the cosmic history.

In contradiction with the cosmic chemical evolution models which predict the mean

metallicity of galaxies to rise from low metallicities at high-z to a near-solar level at

z ∼ 0, the DLAs are typically found to be metal-poor at all redshifts, showing little

or no evolution. Interestingly, past work showed that the sub-DLAs at 0.6 . z . 1.5

are more metal-rich on average than DLAs, and evolve consistently with the chemical

evolution models in this redshift range. This suggests that the DLAs and sub-DLAs

may be tracing the progenitors of different populations of present-day galaxies. How-

ever, chemical evolution of sub-DLAs is poorly constrained outside of the redshift

range 0.6 < z < 1.5 which hinders a better understanding of galaxy evolution traced

by DLAs and sub-DLAs.

This dissertation presents chemical abundance measurements of sub-DLA quasar
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absorbers at z < 0.6 and z > 1.5. The low-z absorbers were studied using medium-

resolution UV spectra from the Cosmic Origins Spectrograph on board the Hubble

Space Telescope. The systems at z > 1.5 were observed with the Magellan Inamori

Kyocera Echelle spectrograph at the Magellan-Clay Telescope. Lines of various el-

ements in several ionization stages, present in these spectra, were measured to de-

termine the respective column densities. The metallicity of the absorbing gas was

inferred from the nearly undepleted elements Zn or S, and several of the absorbers

were found to be near-solar or super-solar in metallicity. We have also investigated

the effect of ionization on the observed abundances using photoionization modelling.

We find that some of the sub-DLAs have significant amounts of ionized gas, but the

ionization corrections to metallicity for all of our sub-DLAs are relatively modest

(.0.2 dex). Combining our data with other sub-DLA and DLA data from the lit-

erature, we report the most complete existing determination of the metallicity vs.

redshift relation for sub-DLAs and DLAs. This work confirms, over a larger redshift

baseline, the suggestion from previous investigations that sub-DLAs are, on average,

more metal-rich than DLAs and evolve marginally faster. We also find evidence for

metallicity being anti-correlated with H I column density in DLAs and sub-DLAs.

The relative abundances and abundance ratios seen in these absorbers are discussed

in the context of the overall trends seen in quasar absorbers. We have explored the

kinematic properties of DLAs and sub-DLAs determined via velocity width measure-

ments of unsaturated absorption lines. We also present initial evidence for higher

interstellar cooling rates in metal-rich sub-DLAs than those seen in DLAs. Our find-

ings suggest that DLAs and sub-DLAs may trace different galaxy populations with

sub-DLAs being the progenitors of more massive galaxies.
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CHAPTER 1

Introduction

To decipher how our Cosmos unfolded from the featureless ‘dark ages’ to the present

state dominated by large structures has been one of the most fascinating quests

of the human mind. Over the last few decades we have made significant advances

towards obtaining a coherent picture of galaxy formation and evolution with the help

of observational surveys and theoretical models. However, we are yet to obtain a clear

understanding of various important aspects such as the epoch at which the very first

galaxies started to form; the density and temperature of the gas from which these

galaxies were born; the morphologies and chemical contents of the earliest galaxies

and the roles played by star formation and gas flows in the evolution of galaxies. In our

search to find the answers to these questions, important clues can come from a robust

understanding of the properties of gas in and around galaxies at all epochs. The vast

expanse between the stars in the Milky Way as well as other galaxies is permeated by

interstellar gas which acts as a crucial link in the continuous cycle of star formation

from one generation of stars to the next. Consequently, the properties (especially the

chemical makeup) of the ‘interstellar medium’ (ISM) of a galaxy provide important

information regarding its star formation and accretion history.

This chapter briefly describes the physical structure of Milky Way’s ISM (sec-

tion 1.1) and provides a discussion on various processes responsible for the chemical
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enrichment of interstellar gas in general (section 1.2). Section 1.3 discusses the basics

of galactic chemical evolution models. Section 1.4 introduces some of the physical

processes governing the interaction of photons with interstellar gas and the resulting

observables.

1.1 Structure of the ISM

The Milky Way’s ISM is a complex system. The majority of the ISM’s mass is in the

form of neutral Hydrogen gas, but there are several other important components of the

ISM that determine its physical and chemical properties: stellar winds and supernovae

‘pollute’ the ISM with elements heavier than Hydrogen and Helium which control

the temperature of the gas and govern the chemical makeup of the next generation

of stars; cosmic rays (high energy particles) stream through the ISM constantly;

magnetic fields penetrate deep into gas clouds; photons of Galactic and extragalactic

origins interact with atoms triggering transitions between various energy states and

also ionizing them; and dust grains extinguish the radiation and act as the sites of

chemical reactions. The cosmic microwave background (CMB) photons, although

relatively unimportant in affecting the behavior of the ISM, are also present. The

ISM can be broadly separated into the following phases based on temperature and

density (see Spitzer 1978 for a more detailed description):

• Cold Neutral Medium - T∼100 K with typical particle number densities n ∼50

cm−3. This component is usually found in the plane of the Milky Way.

• Warm Neutral Medium - This phase, with n ∼ 1 cm−3 and T∼ 6000 K, com-

prises ∼50% of the volume of the Milky Way and is located mainly in the disk.

• Warm Ionized Medium - This phase densities of n ∼0.1 cm−3 in diffuse gas to

n ∼ 104 cm−3 in H II regions and T∼104 K, and is found in the disk and halo

2



of the Milky Way.

• Hot ISM - Typically found in the halo of Milky Way, this component of the

ISM is extremely hot and diffuse (n ∼0.001 cm−3, T∼106 K).

• Molecular Clouds - This phase of the ISM is comprised of gas mostly in the

molecular form. These regions are highly dense (n ∼ 106 cm−3) and cold with

temperatures of the order T∼30 K. These molecular clouds are also usually very

dusty with high levels of light extinction at visual wavelengths. This, however

is a temporary phase existing right before the first stages of star formation.

1.2 Chemical Enrichment Mechanisms

Shortly after the Big Bang the temperature of the Universe fell to ∼ 109 K, allowing

stable Hydrogen nuclei to exist while remaining high enough for fusion reactions

between Hydrogen nuclei to proceed. At the same time, the Universe was too cold for

proton-neutron inter-conversions through weak interactions and for fusion reactions

between nuclei of higher atomic numbers requiring much higher energies. As a result,

the big bang nucleosynthesis produced baryonic matter only in the form of Hydrogen,

Helium and trace amounts of Lithium. As the Universe continued to evolve to form

stars and galaxies, favorable conditions for the nuclear reactions producing heavier

elements emerged and all of the “metals” (elements heavier than H and He in the

parlance of Astronomy) were synthesized by stars of different masses in various stages

of their lives. There are three main mechanisms for the production of metals:

• Charged Particle Fusion: Fusion reactions in the cores of stars that produce

energy to stabilize the stars against gravity are also responsible for the produc-

tion of nearly all of the elements up to the Fe peak nuclei (Z.30). Fusion of

heavier nuclei require higher energy in comparison with fusion of lighter species
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and as stellar core temperatures increase with mass, the elements synthesized

in a star depends on its mass. While a solar mass star produces mainly He and

C during its lifetime, stars with M>8-10 M⊙ are massive enough to fuse the Fe

peak elements in their cores. The Fe peak elements have the most tightly bound

nuclei, i.e. the highest binding energy per nucleon. As a result, further fusion

reactions become endothermic and unsustainable. At the temperatures typical

of stellar interiors, charged particle fusion of elements with higher Z than the

Fe peak species becomes no longer feasible due to enhanced Coulomb repulsion

between the nuclei.

• The s-process: The s-process is a synthesis mechanism for elements with Z>30

via neutron capture. The s-process takes place when neutrons are freed during

fusion reactions such as

22
10Ne + α→25

12 Mg + n− 0.48 MeV, (1.1)

13
6 C + α→16

8 O + n− 0.91 MeV, (1.2)

in massive stars and are later captured. Unlike the charged particles, these

free neutrons are not impeded by the coulomb barriers of Fe peak nuclei. The

characteristic timescale for the addition of free neutrons is longer than the

subsequent β-decay rates and therefore it is called a ‘slow’ process. The s-

process occurs primarily in highly evolved intermediate mass and massive stars

on the Asymptotic Giant Branch (AGB) during thermal pulsations.

• The r-process: Most of the heaviest elements are produced in supernovae

explosions via the r-process. The explosions produce extremely high densities

(∼ 1023 cm−3) of free neutrons through electron capture reactions such as

4



p + e → n + νe. (1.3)

Unstable neutron rich isotopes are produced, through neutron capture, from

the rapid accumulation of free neutrons before β-decay can occur. With the

eventual subsidence of the flux of free neutrons the unstable isotopes decay into

more stable nuclei (see e.g., Pagel 1997 for a more detailed discussion of the s

and r processes).

Different elements produced in these processes are released into the ISM on differ-

ent timescales which depend on the production, ejection and mixing mechanisms. The

interstellar gas, in turn, contributes material for the formation of the next generation

of stars and the chemical evolution of the galaxy continues in this cyclical process

(see Fig. 1.1). The main processes responsible for the injection of heavy elements into

the ISM are stellar winds and supernova explosions.

Thermal pulsations at the end of the lives of intermediate mass stars (. 10M⊙)

give rise to stellar winds. The expanding outer shells of these dying stars carry the

elements produced in nuclear fusion and are commonly known as ‘planetary nebulae’

(see Fig. 1.2). The shells expand at a typical rate of ∼10 km s−1, eventually

(after ∼ 20,000 years) diffusing into the ISM and fading away from visibility. The

progenitors of planetary nebulae, being low mass stars, mainly release light elements

such as He, C, N, and O (van den Hoek & Groenewgen, 1997) into the ISM and the

heavier elements are not produced in significant quantities (see e.g., van den Hoek

& Groenewgen 1997; Karakas & Lattanzio 2007 for discussions on elemental yields

of planetary nebulae). The timescale of chemical enrichment through stellar winds

depends on progenitor masses. However, since the process can only start after the

progenitor evolves off the main sequence, the typical timescale is & 108 years for the

generally low-mass progenitors.
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Figure 1.1 A schematic representation of how star formation cycles in galaxies connect
stars with the chemical enrichment of the interstellar medium.

Supernova explosions can be classified into two groups based on the presence or

absence of absorption lines of Hydrogen in their optical spectra; Type I (no Hydrogen

lines) and Type II (Hydrogen lines are present). Type I supernovae can again be

subdivided into three classes; Types Ia, Ib and Ic, based on absorption lines (from

Silicon and Helium) in their optical spectra. Type Ia supernovae are believed to be

caused by the accretion of material from a red giant onto a white dwarf in a binary

system. All other classes (Ib, Ic, II) are believed to result from the collapse of cores

in massive (M & 10M⊙) stars at the end of their lives. Due to the difference in

progenitor masses, the nucleosynthetic yields and timescales of type Ia and type II

6



Figure 1.2 Visible and Infrared composite image of the Ring nebula, a planetary
nebula in the constellation of Lyra. The observations in visible wavelengths come
from NASA’s Hubble Space Telescope and the ground-based Infrared observations
come from the Large Binocular Telescope. Image Credit: NASA, ESA

supernovae are quite different. Consequently, they influence the chemical evolution

of the ISM in different ways. Supernova nucleosynthesis models predict that type II

supernovae overproduce α-capture elements such as C, O, Mg, Si, S, Ca, Ar relative

to Fe, whereas type Ia supernovae mainly produce the Fe-peak elements (Cr, Mn, Fe,

Co, Zn). In other words, type II supernovae are responsible for the creation of the

majority of the α-capture elements and type Ia supernovae contribute significantly to

the synthesis of Fe-peak nuclei. As a comparison, on average each Type Ia supernova

produces ∼0.8M⊙ of Fe, while a Type II supernova produces ∼0.1M⊙. The observed

ratio of the occurrence frequency of Type Ia to type II supernovae is ∼0.12 (van den
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Bergh & Tammann, 1991). Based on type Ia and type II supernovae yields and their

relative frequencies, Nomoto et al. (1997) estimate that ∼ 50−75% of 56Fe is produced

in Type Ia supernovae. For further discussions on nucleosynthetic yields in massive

stars see, for instance, Woosley, Heger & Weaver (2002) or Nomoto et al. (2006).

For Type Ia supernova yields, see Nomoto et al. (1997). In terms of the chemical

enrichment timescales, a typical massive star ending its life in a supernova explosion

has a lifetime of ∼ 107 years, whereas stars of mass M . 10M⊙ producing type Ia

explosions require on the order of ∼ 109 years. Therefore, the early galactic chemical

evolution is expected to be dominated by type II supernovae. Since stars born at

different epochs carry information on the state of enrichment of the interstellar gas

they were created from, populations of old stars should be exhibiting overabundance

of α-capture elements relative to Fe. Observations of old stellar populations in the

halo of the Milky Way confirm this trend indeed.

1.3 Galactic Chemical Evolution Models

Galaxies change constantly driven by internal star formation, gas exchange with

the surroundings and gravitational interaction with other nearby galaxies. One of

the manifestations of this change, as predicted by galaxy evolution models, is the

gradual build-up of metals. As represented in Figure 1.1, the continuous cycles of

star formation and death enrich the initially primordial (composed primarily of H

and He) ISM with metals and this accumulation should eventually be detectable.

Therefore, the state of chemical enrichment of a galaxy narrates its star formation

history, which in turn, is closely related to other galaxy properties such as morphology,

gas temperature and ionization. Armed with the knowledge of element production,

ejection and mixing mechanisms mentioned in the previous section and information

on chemical abundances, evolution in galaxies can be deciphered with the help of

8



galactic chemical evolution models.

1.3.1 Closed Box Model

The simplest galactic chemical evolution model assumes the galaxy to be a closed box,

i.e, no gas flows into or out of the system during the entire course of its evolution.

This model also assumes the initial material to be uncontaminated with metals, and

that the system is homogeneous, or in other words, the gas remains well mixed.

Under this assumptions, the amount of interstellar gas is steadily decreased due to

star formation, and the gas left over in the ISM gets gradually enriched with metals

produced in stars (Searle & Sargent, 1972). If the mass of metals in the ISM at time

t is Mm(t), and the mass of gas is Mg(t), then the metallicity of the gas is defined as

Z(t) =
Mm(t)

Mg(t)
. (1.4)

By this definition, the Sun’s metallicity by mass is Z⊙ ∼ 0.02. If the total stellar

mass in the system is given by Ms(t) then a burst of star formation produces a mass

of new stars δMs in time δt. These stars will form a mass of metals pδMs, where p

is the yield. However, the amount of metal already locked in these stars is given by

ZδMs and taking this into account we get the net mass of new metals as

δMm = pδMs − ZδMs = (p− Z)δMs. (1.5)

Conservation of mass in the isolated system dictates that δMs = −δMg. Therefore,

from equations 1.4 and 1.5 we get,

δZ = −pδMg

Mg
, (1.6)

which can be solved assuming the yield p to be constant, as
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Z(t) = −p ln

(

Mg(t)

Mg(0)

)

. (1.7)

The yield p can be estimated by measurements of Z and Mg and point to an average

yield of p ∼ 0.01 in the Milky Way. The mass of stars with metallicity less than Z is

given by Ms(< Z) = Mg(0) −Mg(t), which according to equation 1.7 is

Ms(< Z) = Mg(0)

(

1 − exp(−Z
p

)

)

. (1.8)

Taking into account the gas fraction in the Milky Way which is ∼0.1, the closed box

model predicts that about half of stars in the Milky Way should be less metal rich

than 0.25Z⊙. However, the observed fraction of stars with such metallicities is much

less at only a few percent. This points out one of the shortcomings, known as the

“G-Dwarf problem”, of this simplistic model that it predicts too many metal poor

stars in the disk of the Milky Way than what is observed.

1.3.2 Accreting Box Model

Observations reveal that the Milky Way is accreting gas constantly from the Mag-

ellanic clouds and the inter-galactic medium. This fact contradicts the assumption

of the closed box model that galaxies are isolated systems. The accreting box model

takes this into account by letting the the total mass, Mtot, of the system vary.

δMtot = δMs + δMg, (1.9)

this relation leads to the evolution of metallicity Z(t) as

δZ = δ

(

Mm

Mg

)

=
1

Mg

((p− Z)δMtot − pδMg) , (1.10)

which upon division by δMtot leads to the differential equation,
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dZ

dMtot
=

1

Mg

[

p(1 − dMg

dMtot
) − Z

]

. (1.11)

Assuming that the infall rate is equal to the rate at which the star formation is con-

suming the gas i.e, the total gas mass remains constant and that the initial material

as well as the infalling gas are free of metals, the equation above can be integrated to

Z = p

[

1 − exp

(

1 − Mt(t)

Mg(t)

)]

. (1.12)

From equation 1.12, the mass of stars with metallicity less than Z can be derived to

be

Ms(< Z) = −Mg ln

(

1 − Z

p

)

. (1.13)

For Milky Way’s gas fraction ∼ 10%, and p ∼ Z⊙ (from eq. 1.12), the accreting

box model predicts the fraction of stars with metallicities lower than 0.25Z⊙ to be

∼ 3%. This matches the observations much more closely than the predictions from

the closed box model.

The analytical frameworks described above employ many simplifying assumptions

to model the highly complex process of chemical evolution in galaxies, and therefore,

describe an approximate picture only. However, work in this field has advanced

much in the recent decades with more sophisticated analytical, semi-analytical and

hydrodynamical simulation models which take various star-formation, accretion and

merger scenarios into account. Pei & Fall (1995) and Pei et al. (1999) present good

examples of complex analytical models of cosmic chemical evolution that incorporate

observational constraints. The model described in Somerville et al. (2001) and those

from Argast et al. (2000) and Gibson et al. (2003) are some of the semi-analytical

models in use today. For examples of hydrodynamic simulations of cosmic chemical

evolution, see Cen et al. (2003); Oppenheimer et al. (2012).
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As expected from the basic premise that chemical enrichment of ISM occurs due

to continuous star formation cycles, all of the models predict that the metallicity

of interstellar gas increases with decreasing redshift (z), starting from a low value

at high z (see Appendix A for a brief discussion on redshift). The models are in

close agreement with each other in predicting that the mean interstellar metallicity

should reach the solar level at z = 0, which has been confirmed by observations of

the Galaxy’s ISM and the ISM of nearby galaxies. Figure 1.3 represents the models

from Pei et al. (1999) and Somerville et al. (2001) as examples of the trends predicted

by chemical evolution models. Different models, however, disagree in terms of the

metallicities at high redshifts resulting in uncertainties in our understanding of the

chemical evolution of the young Universe. Constraints derived from observations of

interstellar metallicity in galaxies up to very high redshifts and over a long redshift

baseline is, therefore, of crucial importance. The observations can help eliminate

the less accurate models or lead to new improved ones, and help shed light on star

formation, galaxy dynamics and gas flow properties of young galaxies.

1.4 Physics of Spectral Line Formation

The need for studying the ISM in galaxies for the improvement of our understanding

of cosmic chemical evolution is evident. Observational data coming from beyond the

Milky Way’s neighborhood is especially crucial for these purposes. Radiation is emit-

ted by interstellar gas across various wavelength bands and in different intensities

based on the temperature, ionization state, density and proximity of the emitting

region with other sources of energy. The emission may come in the form of recombi-

nation lines (e.g., Hα), molecular lines (e.g., CO, NH3), or scattered radiation, and

the properties of ISM can be studied with the help of imaging or emission spectra.

However, due to the diffuse nature of the emission coupled with inverse square law
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Figure 1.3 Predicted mean interstellar metallicity (relative to solar metallicity) evolu-
tion from models described in Pei et al. (1999); Somerville et al. (2001). The abscissa
denotes the ’lookback time’ with the corresponding redshift, z, shown at the top of
the panel. In the lookback time scale, t = 0 denotes the present time and increasing t
denotes younger Universe. The horizontal dotted line represent the solar metallicity.
Note that both the models predict the mean metallicity to evolve from a low value at
high redshift (young Universe) to near solar values at z = 0 (present time), although
the predictions differ widely at high z.

and the expansion of the Universe, the study becomes gradually more difficult with

increasing distance. In fact, even light from the stellar component of high redshift

galaxies can be extremely difficult to detect and can be observationally expensive

even with the 8-10m class telescopes. Most of the high redshift galaxies with reason-

able detections have been extremely bright either because they hosted active galactic

nuclei or they were star burst galaxies. But these systems can not be considered as

typical representation of galaxies and therefore, flux limited studies of high redshift

galaxies tend to introduce a bias towards unusual, bright, star forming systems.

An alternate way of exploring the nature of interstellar gas is through its absorp-
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tion properties, i.e., through the study of its absorption signatures imprinted on light

from background sources such as quasars (see Chapter 2 for details). The absorp-

tion study is independent of the brightnesses of the galaxies under consideration and

is free from any bias towards bright, star forming galaxies. This section introduces

the basics of the physical processes dictating the interaction of light with interstellar

medium. The resulting observables are also described, with an emphasis on those rel-

evant to absorption studies. More detailed discussions on these topics can be found

in Rybicki & Lightman (1979); Spitzer (1978).

1.4.1 Radiative Transport and Optical Depth

Considering a point source of radiation, the amount of energy in a wavelength range

dλ passing in time dt through a surface element dA which subtends a solid angle dΩ

at the source is given by

dEλ = Iλ cos θdA dΩ dλ dt, (1.14)

where θ is the angle between a ray of light and the normal to the surface, and Iλ

is defined as the specific intensity. If the medium through which the radiation is

traveling adds photons from other sources to the beam, then the amount of energy

added in a volume element dV is given by

dEλ = jλ dV dλ dt dΩ = jλ dAds dΩ dλ dt, (1.15)

where jλ is the emissivity of the medium and ds is the path along the beam within

dV . The contribution of dV to the beam intensity is given by

dIλ = jλds. (1.16)
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Now, if the medium is also responsible for absorption of photons from the beam, the

resulting reduction in the beam intensity is

dIλ = n(s)σλIλds ≡ αλIλds, (1.17)

where n is the number density of absorbing particles, σ is the absorption cross section,

and αλ is called the attenuation coefficient. Taking both emission and absorption into

account, the transfer equation i.e., the differential equation describing the change in

beam intensity along the path length ds can be written as

dIλ
ds

= jλ − αλIλ, (1.18)

or, by rearranging,

dIλ
ds αλ

=
jλ
αλ

− Iλ. (1.19)

By defining the ‘optical depth’ (τλ) and the ‘source function’ (Sλ) of the medium as

τλ =

∫

αλ ds =

∫

n(s)σλ ds, (1.20)

and

Sλ ≡ jλ
αλ

, (1.21)

the transfer equation can be re-written in a simpler form

dIλ
dτλ

= Sλ − Iλ. (1.22)

Assuming the source function to be constant along the beam, equation 1.22 can

be integrated to obtain the intensity as a function of the optical depth

Iλ(τλ) = Iλ(0)e−τλ + Sλ(1 − e−τλ), (1.23)
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where Iλ(0) is the intensity of the beam incident on the medium. If the medium is

responsible for only absorption, the source term vanishes and equation 1.23 can be

re-written as

Iλ(τλ) = Iλ(0)e−τλ . (1.24)

Equation 1.24 describes the variation of intensity with wavelength in a beam of light

passing through an absorbing medium. When applied to the scenario of absorption

from intervening material along a line-of site towards a bright background source,

this equation essentially describes an absorption spectrum. The quantity Iλ(0) repre-

sents the unaffected spectrum of the background source and Iλ represents absorption

signatures imprinted on the background spectrum by intervening gas which can be

characterized by τλ. The optical depth is one of the most fundamental observables de-

rived from the study of absorption lines present in the spectra of background sources

and as seen from equation 1.20, reveal important properties of the absorbing gas.

In most astrophysical observations and especially for absorption along a line-

of-sight, the true densities n(s) are difficult or impossible to determine. However,

quantitative information on absorbing particles can be obtained in terms of ‘column

density’, defined as

N ≡
∫

n(s) ds. (1.25)

The column density is the number of absorbing particles (e.g., neutral atoms, ions or

molecules) along the line of sight in a pencil beam of 1 cm2 cross-section. The optical

depth, using equations 1.20 and 1.25 can be written as

τλ = Nσλ. (1.26)

From measurements on the absorption lines produced by different molecules or ele-

ments in various ionization stages, their column densities can be determined, which
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in turn, reveal information on chemical composition, ionization, and other physical

properties of the absorbing gas.

1.4.2 Equivalent Width

Another observable of fundamental importance derived from of an absorption line is

the equivalent width, W , defined as

W ≡
∫

∞

0

Ic − Iλ
Ic

dλ =

∫

∞

0

(1 − e−τλ)dλ, (1.27)

where Iλ is the intensity within the absorption line while Ic stands for the intensity

of the continuum, i.e, the intensity of the region in background spectrum around

the absorption line but unaffected by any absorption. For a continuum normalized

spectrum, Ic = 1, and the equivalent width can be thought of as the width of a

rectangular box with unit height and having the same area as that enclosed by the

spectral line. Figure 1.4 describes this concept.

Due to the Hubble expansion, the observed equivalent width (Wobs) of an absorp-

tion line from a cloud at redshift zabsis stretched by a factor (1 + zabs) compared to

the equivalent width at the rest frame (Wrest) of the absorber. Therefore,

Wobs = Wrest(1 + zabs). (1.28)

1.4.3 Line Broadening Processes

The form of the intervening material’s optical depth modifying the radiation from

the background source is governed by the physical and chemical properties of the

absorbing gas. Most of the absorption features important for ISM-studies originate

from bound-bound atomic transitions. Although the absorption profiles produced

by these transitions are expected to be extremely sharp and well-defined, in reality
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Figure 1.4 The equivalent width of an absorption line. The horizontal dashed line
represents the normalized continuum level at I = 1. The absorption line is represented
with the solid red curve. The area under the line profile is same with the area of the
rectangular shaded region of unit height. The width of this rectangle is defined as
the equivalent width of the absorption line.

they are observed to be much more complex. The width and shape of a spectral

line are governed by several factors such as the column density of the absorbing ion,

temperature, turbulence and bulk motion in the gas. The interstellar gas belonging

to a galaxy at a certain redshift is usually composed of several sub-structures mov-

ing with respect to each other with different relative velocities. Therefore, while a

spectral line originating form one particular substructure is broadened due to vari-

ous underlying physical processes, multiple lines produced by the different velocity
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components superpose to result in a complex absorption feature.

There are several mechanism responsible for spectral line broadening but the two

main processes at work in a typical ISM environment are the natural or quantum

mechanical broadening and the thermal or Doppler broadening. Another common

type of broadening, resulting from collisions between atoms, is usually unimportant in

interstellar medium owing to its low density. This section provides brief discussions on

natural and thermal broadening mechanisms. More detailed descriptions on different

broadening processes, including quantum mechanical and thermal broadening, can

be found in Mihalas (1970); Thorne et al. (1999).

• Natural Broadening The photons in a beam traveling through a medium in-

teract with the material depending on their own energies as well as the energy

structure of the atoms in the medium. An atom with energy levels Eu and El

(where Eu > El), upon interacting with a photon of energy hν0 = Eu − El,

can absorb the photon to make a transition to the excited state. The atom

stays in the unstable excited state for a short time (typically ∼ 10−8s for dipole

transitions) before spontaneously emitting a photon of the same energy (hν0)

and returning to the lower energy state. Unlike the incident photon traveling

along the beam direction, the spontaneous emission has an isotropic probabil-

ity distribution, i.e., the photon can be emitted at any random direction. This

essentially removes a photon with frequency ν0 from the sight line. The cumu-

lative effect produced by a collection of such atoms in the medium will result in

an absorption line in the spectrum of the background source at ν = ν0. How-

ever, the line is expected to be have the profile of a delta-function, i.e, to be

infinitely sharp. However, the observed lines have finite widths and one of the

reasons behind this is the quantum mechanical broadening. The fact that the

atom takes a finite amount of time for de-excitation suggests, obeying the un-

certainty relation ∆E∆t ∼ ~, that the energy difference between its two states
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has a spread around the value given by Eul = Eu − El. This spread in energy

∆E translates into the finite width of the absorption line. From the classical

treatment of an atomic transition as a damped oscillator, we can arrive at the

equation for absorption cross section, σν , as

σν =

(

πe2

mec

)

φ(ν) =

(

πe2

mec

)

γ/4π2

(ν − ν0)2 + (γ/4π)2
, (1.29)

where γ is the oscillator damping constant. The absorption cross section de-

scribes the profile of the spectral line centered at ν0. Equation 1.29 represents

a Lorentzian profile with full width at half maximum of FWHM = γ/2π.

Complete quantum mechanical treatment yields the same cross section with a

multiplication factor called the oscillator strength f , which describes the prob-

ability of the transition in question. The oscillator strength can be expressed

as

glful = guaul
mecλ

2

8π2e2
, (1.30)

where λ is in Å, gu and gl are the statistical weights of the upper and lower

energy levels, respectively and aul is the transition probability. The absorption

cross section, including the oscillator strength is given as

σν =

(

πe2

mec

)

fulφ(ν). (1.31)

The oscillator strength assumes different values for different bound-bound tran-

sitions but typically f . 1. Only for for a few very strong transitions f > 1.

The oscillator strengths corresponding to various transitions in H atom can

be calculated analytically and f -values for other atomic transitions can be de-

termined from laboratory measurements of transition lifetimes. The oscillator

20



strength can be also be thought of as the effective number of classical oscilla-

tors (Shu, 1991). In terms of wavelength λ, the absorption cross section can be

written as

σλ = σ0φλ, (1.32)

where σ0 in the equation above is given by

σ0 =
λ4

8πc

gu

gl

aul, (1.33)

where the broadening function, φλ, is given as

φλ =
1

π

γ

γ2 + (λ− λ2
0)
, (1.34)

and the radiation damping constant is given by

γ =
λ2

4πc

∑

Er<Eu

aur. (1.35)

The FWHM of a naturally broadened profile is, in wavelength units, FWHM =

λ2γ/2πc, which is typically very small for most transitions in the Ultraviolet

and Optical bands.

• Doppler Broadening While the absorption cross section, described in equa-

tion 1.31, explains the natural broadening of a line around the central wave-

length ν0, individual motion of an atom can shift the central wavelength in

accordance with the Doppler effect. Atoms moving with different relative veloc-

ities in the gas produce a ‘smeared’ absorption line or in other words, contribute

to the broadening of the line. Aside from bulk motion, thermal velocity domi-

nates the movement of particles in interstellar gas. Collisions in the gas ther-

malize the medium and produce a Maxwellian velocity distribution in a short
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amount of time (Spitzer, 1978). According to the relativistic description of the

Doppler effect, the difference between observed and rest-frame wavelengths is

is dependent on the velocity as

λobs = λrest

√

1 + v
c

1 − v
c

. (1.36)

At temperatures typical for interstellar gas, we can assume v/c << 1, and

equation 1.36 reduces to

λobs = λrest(1 ± vx

c
), (1.37)

where the radial component of the velocity is taken to be in the x direction.

From the Maxwellian velocity distribution we get the number of particles with

velocities between v and v + dv as

N(v)dv =
N0√
πb

exp(−v2
x/b

2)dv, (1.38)

where N0 is the total number of particles in the cloud and b (also called the

‘Doppler b-parameter’) is the most probable speed, defined as

b = bth =

√

2kT

m
. (1.39)

Using equation 1.37 with the Maxwell-Boltzmann distribution of velocities, we

get the fraction of atoms absorbing radiation between the wavelengths λ and

λ+ dλ,

ψ(λ)dλ ≡ N(λ)dλ

N0
=

1√
π∆λD

exp

(

−(λ− λrest)
2

∆λ2
D

)

dλ, (1.40)

where the the Doppler width, ∆λD is defined as
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∆λD =
λrestbth

c
. (1.41)

Equation 1.40 represents a Gaussian profile with full width at half max of

FWHM = 2
√

ln 2∆λD. With numerical solutions to equation 1.41, we obtain

FWHM ∼ 0.22
√

T/A km s−1, where T is the temperature in Kelvin and A is

the atomic mass number.

Besides thermal motions, the interstellar gas undergoes bulk motions, in which

the entire cloud or large sub-structures in it move with respect to the observer

reference frame. In addition, there are smaller scale turbulent motions within

the cloud which also contribute to the broadening of spectral line. This type of

broadening can be accounted for by adding a term to the Doppler parameter

and by defining an ‘effective Doppler parameter’

b2eff = b2th + b2turb. (1.42)

Ideally, it is possible to separate the turbulent and thermal motions from ob-

served spectra to determine the kinetic temperature of the gas. Due to the mass

dependence of the Doppler parameter, different atomic species in a certain ab-

sorber have different thermal broadening of their absorption features while the

effect of turbulence will be the same. If observations of two lines of species (e.g.,

Si and Fe) with very different masses exist for an absorbing cloud, one can esti-

mate the temperature by measuring the FWHM of the lines independently and

by eliminating bturb. The temperature can be obtained as

T =
mSimFe(b

2
Si − b2Fe)

(mFe −mSi)2k
. (1.43)

However, high resolution and high S/N spectra are needed for accurate param-

eter estimates to achieve this goal (see for instance Jenkins et al. (2005)). Even
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with high resolution spectra blending of individual lines can lead to artificially

high Doppler parameters and hence temperatures.

1.4.4 The Voigt Profile

Natural and thermal broadening are independent processes. Therefore, the com-

bined broadening produced by these mechanisms can be represented by a function,

also called the Voigt function, which is the convolution of the natural and Doppler

broadening functions:

φλ(V oigt) = φλ(Natural) ⊗ ψλ(Doppler). (1.44)

Qualitatively, this can be viewed as the superposition of the natural line profiles

produced by the fractional number of particles absorbing radiation between λ and

λ+ dλ, over all wavelengths. Using equations 1.34 and 1.40 we get,

φλ(V oigt) =
1

π3/2 ∆λD

∫

∞

−∞

γ

γ2 + (λ− λ′)2
exp

[

−(λ− λ′)2

∆λ2
D

]

dλ′. (1.45)

The absorption cross section can be written in terms of the Voigt function as

σλ = σ0φλ(V oigt), (1.46)

and, using equations 1.24 and 1.26, the absorption line profile can be written in terms

of the column density of the absorbing species as

Iλ = I0e
−Nσ0φλ(V oigt). (1.47)

Comparing equations 1.34 and 1.40 we find that the probability that an atom will

absorb ∆λ away from λ0 (∆λ = |λ − λ0|) decreases as the inverse square of ∆λ for

natural broadening and exponentially in the case of Doppler broadening. Therefore,

24



-75 -50 -25 0 25 50 75
Radial Velocity (km s

-1
)

0

0.25

0.5

0.75

1

1.25

N
or

m
al

iz
ed

 F
lu

x

b=5
b=15
b=25

-50 -25 0 25 50
Radial Velocity (km s

-1
)

0

0.25

0.5

0.75

1

1.25
N

or
m

al
iz

ed
 F

lu
x

N=10
13

N=10
14

N=10
15

N = 1.5 x 10
13

 cm
-2

b = 10 km s
-1

Figure 1.5 Left panel: Theoretical Voigt profiles for the S II 1259.5 Å transition
with b = 10 km s−1 and column densities of 1013cm−2, 1014cm−2, and 1015cm−2.
Right panel: Theoretical Voigt profiles for the Lyman-α line of Hydrogen with N =
1.5× 1013cm−2 and b-parameters of 5, 15 and 25 km s−1. The horizontal dotted line
in both panels represents the normalized continuum level.

equating 1.34 and 1.40 it can be seen that at ∆λ × ( c
λ
) ≃ 3b the probabilities of

absorption due to these broadening processes are comparable (for the values of aul

corresponding to commonly seen interstellar absorption lines). Therefore, the ab-

sorption in a Voigt profile is dominated by motion in the gas for ∆λ < 3bλ
c

, while for

∆λ > 3bλ
c

, the absorption is primarily due to natural damping. Figure 1.5 depicts the

Voigt profiles of several absorption lines for different N (with a fixed b-parameter)

and b-parameter (with a fixed N) values.

In addition to broadening processes mentioned above, the instrument used for

observations contributes to the blurring of absorption lines through imperfections

in the optics, diffraction gratings and detectors. As a result, the observed spectral
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profile is the convolution of the theoretical Voigt profile and the blurring profile of the

instrument, also called the instrument spread function (ISF). The following equation

describes the process:

Iobs(λ) =
[

I0(λ)e−τλ

]

⊗ φISF (λ), (1.48)

or from equation 1.46,

Iobs(λ) =
[

I0(λ)e−Nσ0φλ(V oigt)
]

⊗ φISF (λ). (1.49)

The ISF can be determined from observations of emission lines from gas discharge

lamps in the laboratory. Since these emission lines have extremely small natural

widths which can be calculated using equation 1.31, the observed line profiles can

be used to determine the ISF. Typically, the instrumental spread function can be

approximated as a Gaussian. With the knowledge of the ISF, column densities of

various ions can be extracted from their absorption line profiles by Voigt profile

fitting via χ2 minimization routines.

1.4.5 The Curve of Growth

The curve of growth (COG) describes how the equivalent width, Wλ, of a line grows

with increasing column density of the absorbing atoms, and therefore, can be used

to derive the column density from the observed Wλ. For an absorption line, the

functional dependence of Wλ on N is determined by the optical depth at the line

core, τ0. The COG can be divided into three distinct regions depending on the value

of τ0 and N :

• Linear Part This part of the COG can be seen when the line is optically thin,

i.e., for τ0 << 1. This regime allows us to the use the approximation e−x ≃ 1−x

and from equations 1.26,1.27 and 1.46 we get,
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Wλ = Nσ0

∫

∞

−∞

φλdλ = Nσ0, (1.50)

since, φλ represents a probability distribution and
∫

∞

−∞
φλdλ = 1. Upon using

the numerical values for σ0, we get.

N = 1.13 × 1020.
Wλ

λ2f
cm−2. (1.51)

In this region, Wλ ∝ N , and the relation is independent of b. On this linear

regime, Wλ provides accurate determination of N .

• Logarithmic Part The residual intensity at the line core decreases (depth of

the line increases) with increasing τ0. This process continues until all of the

photons at the line core are absorbed from the beam of light. With further in-

crease in τ0 (i.e., with increasing N), the number of additional photons removed

from the beam is very little, or in other words, Wλ increases very little with

increasing N , and the line becomes ‘saturated’. On this part of the COG, for

10 . τ0 . 103, Wλ ∝ b
√

ln(N/b) and the growth function becomes sensitive to

the Doppler b-parameter. In this regime, Wλ is not an accurate measure of N .

• Damped Part With further increase in τ0 beyond the logarithmic part, the

optical depth values become significant at wavelengths far from the line center,

where absorption is dominated by the natural damping. As a result, the line

profile exhibits ‘damping wings’ (where σλ ∝ ∆λ−2) and the equivalent width

starts to increase again as Wλ = 2(Nσ0γ)
1/2 Å. In this regime (τ0 & 104),

the growth of equivalent width is independent of the b-parameter and allows

accurate determination of column density.
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Figure 1.6 The growth function of the equivalent width with respect to the column
density for the Lyman-α line of Hydrogen corresponding to b-parameters of 10, 40
and 70 km s−1. It can be noted that the equivalent width is independent of the
b-parameter in the linear and the damped regions. The threshold between the loga-
rithmic and the damped regions corresponds to NHI ∼ 1019.

Figure 1.6 represents the curves of growth for the H I Lyman-α line corresponding

to various Doppler b-parameters. The figure suggests that the damped region in the

COG of Lyman-α corresponds to NHI & 1019.

1.4.6 The Apparent Optical Depth

In addition to the method described in Sections 1.4.4 and 1.4.5, column densities can

be derived from the ‘Apparent Optical Depth’ (AOD) measured from the observed line

profiles (Savage & Sembach, 1991). The spectral continuum of the background sources

used in absorption line studies usually vary slowly with wavelength and we can assume
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the continuum level to be nearly constant over the extent of the absorption line,

provided the line width is small. With this assumption, we can re-write equation 1.48

as

Iobs(λ) = I0(λ)
[

e−τλ ⊗ φISF (λ)
]

. (1.52)

The AOD, or the instrumentally blurred version of the true optical depth can be

obtained, using equation 1.52, as

τa(λ) = ln[I0(λ)/Iobs(λ)] = ln[1/(e−τλ ⊗ φISF (λ)]. (1.53)

For well resolved lines, FWHM(φISF ) << FWHM(line), and the apparent optical

depth τa(λ) is a good approximation of the true optical depth, τλ. The AOD can,

therefore, be described in terms of column density as

τa(λ) =
πe2

mec2
fλ2N(λ), (1.54)

where N(λ)dλ is the column density responsible for absorption between λ and λ+dλ

and the total column density is given by N =
∫

N(λ)dλ. In terms of the radial

velocity, the relation takes the form

τa(v) = 2.654 × 10−15fλN(v), (1.55)

when the wavelength λ is given in Å. The total column density is given by

N =

∫

N(v)dv =
3.768 × 1014

fλ

∫

ln

(

I0(v)

I(v)

)

dv. (1.56)

The AOD method works accurately when the line is resolved in a high S/N spec-

trum and for weak features. However, even for moderately strong lines in moderate

resolution spectra, the AOD method has been demonstrated to determine column

densities accurate to . 10% (Savage & Sembach, 1996).

29



1.4.7 Abundances of Elements

The column densities of various elements derived from absorption lines can be used

to calculate abundances in the absorbing gas. If NX and NY are the column densities

of elements X and Y respectively, then the abundance of X relative to Y is given by

[X/Y ] = log(NX/NY ) − log(X/Y )⊙, (1.57)

where log (X/Y)⊙ is the solar system abundance ratio between X and Y. The absolute

abundance of an element X is defined as its abundance relative to Hydrogen in the

absorber and is given by

[X/H] = log(NX/NH) − log(X/H)⊙. (1.58)

The solar system abundances are determined from measurements of Sun’s photo-

sphere and the composition of meteorites. There are many compilations of the solar

system abundances in the literature which vary only slightly from each other. The

abundance data adopted for this work come from Asplund et al. (2009). The solar

abundances of various elements commonly observed in the ISM are given in Table B.1

and a plot of the adopted solar abundance pattern is shown in Figure 1.7.

With a knowledge of the physical processes and measurement techniques described

above, absorption lines from interstellar gas prove to be a powerful tool to study

the state of chemical enrichment in galaxies at various epochs. This technique is

extensively used in the study of the absorption line systems seen in the spectra of

background quasars. Chapter 2 provides an introduction to the quasar absorption

line systems.
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Figure 1.7 Solar system abundances of various elements relative to Hydrogen. The
abundance data are from Asplund et al. (2009).
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CHAPTER 2

Quasar Absorption Line Systems

As seen from Chapter 1, study of absorption lines in the spectra of bright background

sources is a powerful way to learn about interstellar gas in galaxies at high redshifts.

Absorption line systems in the spectra of quasars have been used most extensively

to this purpose and the current chapter provides a description of these absorption

systems.

2.1 Quasi-Stellar Object (QSO)

At the time of their discovery, these objects appeared as star like objects in their

images but showed very different colors (spectral energy distributions) from stars.

They were also found to be of extra-Galactic origins and at large distances. The

estimated intrinsic (distance-corrected) luminosities of these objects were far too high

for them to be stellar sources. Hence the name quasi-stellar objects (or quasars)

was ascribed to them. The quasars typically are many times more luminous than

the entire Milky Way (∼ 1046 ergs s−1). The size of the emitting region in these

sources can be estimated from the variation time scales in their flux and the observed

variations, typically of the order of weeks, suggest sub-parsec scale emitting regions.

The enormous energy output from such small regions and the presence of broad

32



emission lines in the spectra indicate relativistic processes responsible for the energy

production in quasars and the presently accepted notion puts accreting super-massive

black holes (MBH ∼ 106 − 109M⊙) as the central engines driving these sources. The

continuum of a typical quasar can be fit, in parts of the electromagnetic spectrum,

by power law functions of the form Fν ∝ να. Using a large sample of HST spectra,

Zheng et al. (1997) showed that the average quasar continuum obeys the power law

with an index α ∼ −1. Synchrotron radiation is thought to be responsible for the

non-thermal continuum of quasars. Quasar spectra also show broad emission lines.

Another important property of the spectral energy distribution of quasars is that they

produce an enormous amount of radiation at short wavelengths, or in other words,

the rest-frame quasar spectra have an abundance of high energy photons. This is

responsible for their intrinsic blue colors.

Quasars are among the farthest sources known to us and the most distant quasar

detected till date is at z = 7.1 (Momjian et al., 2014). Consequently, quasars have

extensively been used to study the Universe at the largest scales. A number of large

scale surveys have discovered more than 200,000 quasars so far, the majority of them

come from the Sloan Digital Sky Survey (York et al., 2000). Quasars, due to their high

luminosity and large redshift baseline, are ideal as background sources for absorption

line studies. The intrinsic blue colors of high redshifts quasars, considering the expan-

sion of the Universe, are suitable for ground based observations in visual wavelengths.

The high abundance of low wavelength photons in quasar emission provide high flux

density in the UV-Blue wavelength range at the rest-frame of intervening absorbers.

The most important transitions for absorption line studies take place in this wave-

length range. In addition, the predictable and slowly varying continuum along with

the broad emission lines in quasar spectra make the measurements of absorption lines

less complicated than, for instance, in the case of background galaxy spectra.
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2.2 Lyman-α Absorption Lines In Quasar Spectra

A quasar sight line may interact with intervening gas of various densities and temper-

atures at various locations such as the intergalactic medium, circum galactic medium

and ISM in galaxies. The spectrum of the quasar shows the absorption signatures

from various elements in these absorption systems. Figure 2.1 provides an illustration

of this process. A schematic representation of the line of sight towards a quasar and

the observed spectrum are shown in the figure. The broad peak in the spectrum

represents Hydrogen emission from the quasar and the strong Hydrogen absorption

line at ∼ 4700 Å is produced by an intervening galaxy. The narrow absorption

signatures to the right of the H-emission peak represent metal absorption from the

galaxy. Numerous other Hydrogen absorption features of various strengths can be

seen to the left of the peak, representing various other absorbers along the same line

of sight. Hydrogen (the most abundant element in the Universe) lines are most com-

mon among the different absorption features seen in quasar spectra. As most of the

neutral Hydrogen atoms present in gas clouds inhabit the ground state, Lyman-series

transitions dominate the features produced by neutral Hydrogen. The Lyman-α tran-

sition (n = 1 → 2) at 1215.6701 Å is the strongest member of this series and can be

detected abundantly in quasar spectra. The different absorption systems detected in

quasar spectra can broadly be classified into four categories (see Table 2.1) based on

their neutral Hydrogen column densities derived from the Lyman-α lines.

The quasar absorption line systems at the low-end of the NHI scale constitute

the Lyman-α forest. The weak absorption features produced by these systems are

ubiquitously seen blueward of the Lyman-α emission peak in the spectra of distant

quasars. The rate of incidence of these absorbers is much higher than that expected

of intervening galaxies and they exhibit weak clustering properties. As a result,

these absorbers are thought to be separate from galaxies and they are identified with
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Figure 2.1 A schematic representation of the quasar absorption line technique. This
illustrates the absorption by material along the line of sight to a quasar and the
resulting lines imprinted on the quasar spectra. This representation is created from
a version produced by John Webb and published in Pettini (2004).

intergalactic gas clouds. These absorbers are seen to consist hot and highly ionized

gas, with T ∼ 4 × 104 K and nHI/nH ∼ 10−4. Although these clouds are extremely

diffuse, their high rate of incidence implies that they contain the majority of the

baryons in the Universe while most of the neutral gas is thought to reside in higher

Table 2.1 The classification, based on NHI , of absorption systems seen in quasar
spectra.

Column Density Classification
log NHI <17.2 Lyman-α forest

17.2 . log NHI . 19.0 Lyman Limit System (LLS)
19.0 . log NHI . 20.3 sub-Damped Lyman-α (sub-DLA)

log NHI >20.3 Damped Lyman-α (DLA)
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column density absorbers (Petitjean et al., 1993). Because of their high population

and large redshift baseline, the Lyman-α forest clouds provide crucial constraints

for simulations of structure formation in the Universe and several smoothed particle

hydrodynamic (SPH) simulations (Cen et al., 1994; Zhang et al., 1998; Springel et al.,

2004) have been successful in reproducing the observed properties of Lyman-α forest.

The observed redshift evolution of the number of Lyman-α forest lines N obeys a

broken power law of the form

dN
dz

=

(

dN
dz

)

0

(1 + z)γ , (2.1)

and is shown in Figure 2.2. The number of forest clouds per unit redshift is seen to

be roughly constant in 0 < z . 1 and shows a steep increase with γ ∼ 2 at z & 1.5

(Kim et al., 2002). This suggests a significant evolution in the population of Lyman-α

forest systems. However, the sample may be affected by incompleteness at very low

redshifts and for very low column densities due to non-detectability in low S/N UV

spectra. Another important property of the Lyman-α forest is that it appears similar

along sight lines in any direction, implying large scale uniformity and isotropy.

The class of quasar absorbers appearing above the Lyman-α forest on the NHI

scale is called Lyman-limit systems (LLSs). These absorbers with 19.0 & log NHI

> 17.2 contain gas which is denser and more neutral compared to that in Lyman-α

forest clouds. At log NHI = 17.2, a cloud becomes optically thick (τ = 1.0) at 912

Å (the limit of the Hydrogen Lyman series, corresponding the ionization potential of

H). This column density, therefore, marks a physically meaningful boundary between

the mostly ionized forest systems and the moderately ionized Lyman-limits systems.

The neutral fraction of Hydrogen increases with increasing NHI due to self-shielding

effects. An important property of the Lyman-α line profile is its change in shape

with increasing NHI . As shown in Figure 2.3, the Voigt profile corresponding to a

low NHI value is dominated by the Gaussian component determined by the Doppler
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Figure 2.2 The redshift evolution of number density for Lyman-α forest lines. A
broken power law fit suggests strong evolution of the Lyman-α forest lines. The data
presented in this plot are from Kim et al. (2002).

b-parameter. However, with increasing column density, the Lorentzian component

starts to become important and at log NHI > 19.0, the damping wings of the the nat-

ural line width become evident. Consequently, NHI = 1019 cm−2 marks the boundary

between the LLSs and the class of quasar absorbers giving rise to damped Lyman-α

lines. The Lyman-limit systems are believed to trace gas around galaxies (the circum

galactic medium). Lehner et al. (2013) reported a bimodality in terms of metallicity

in a sample of 28 LLSs and suggested that while the metal-poor branch trace cold ac-

cretion streams, the metal-rich branch is likely to originate in winds, recycled outflows

and tidally stripped gas from galaxies. However, owing to the high ionization fraction

in LLSs, their observed metallicities may not represent true chemical enrichment in

the gas unless the observations are corrected for ionization effects (see Chapter 4 for
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Figure 2.3 Theoretical Voigt profiles for the H I Lyman-α transition with b = 10 km
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profile increasingly dominates the Voigt profile with rising NHI . The damping wings
start to become evident for log NHI & 19.0

more details).

Systems with log NHI > 19.0 are the highest column density quasar absorbers

and trace large amounts of neutral gas. For reasons described in Section 2.3, these

absorbers are believed to be associated with galaxies along the sight lines and are

extremely important for chemical evolution studies. These systems are further sub-

divided into two classes; the sub-damped Lyman-α systems (19.0 ≤ log NHI < 20.3)

or sub-DLAs, and the damped Lyman-α systems (log NHI ≥ 20.3) or DLAs. The

boundary (NHI = 1020.3) between sub-DLAs and DLAs is arbitrary and historically

resulted from the initial DLA surveys carried out with low-resolution spectrographs.

This column density represents the lower limit of the strengths of the features detected
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Figure 2.4 The Column Density Distribution Function (CDDF) at < z >= 2.8 for
Lyman-α lines in quasar spectra. The Lyman-α forest, LLS and DLA data are from
Petitjean et al. (1993) and the sub-DLA data are from Péroux et al. (2003b). The
solid red line represents a single power law with index α = −1.49 which provides a
reasonable fit to the data over ∼ 8 orders of magnitude.

in these studies. However, although a sharp boundary between sub-DLAs and DLAs

does not exist, the sub-DLAs and DLAs seem to differ in various aspects which will

be discussed in due course.

A fundamental property of quasar absorption line systems is that the rate of

incidence decrease with increasing column density. This is demonstrated via the

column density distribution function (see Fig. 2.4). The column density distribution

function (CDDF) at a redshift z is defined as the number of absorbers in a given

column density range (N , N + ∆N) detected in m-number of quasar spectra with a

total absorption distance of
∑m

i=1 ∆Xi and can be written as
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fHI(N, z)dNdX =
n

∆N
∑m

i=1 ∆Xi
dNdX. (2.2)

In the equation above, X(z) is the absorption distance defined as

dX

dz
=

(1 + z)2

[ΩΛ + Ωm(1 + z)3 + Ωr(1 + z)4 + (1 − Ω)(1 + z)2]
1

2

, (2.3)

where ΩΛ, Ωm and Ωr are the vacuum, matter and radiation energy density pa-

rameters, respectively (the total energy density parameter, Ω, is given by Ω =

ΩΛ + Ωm + Ωr). The zeroth moment of the CDDF gives the total number of ab-

sorbers (at redshift z) per redshift interval,

dN
dX

=

∫ Nmax

Nmin

fHI(N, z)dN. (2.4)

Figure 2.4 clearly shows that the weakest Lyman-α forest systems are much more

numerous in quasar spectra than the DLAs and sub-DLAs. The solid red line in the

plot represents a single power law fit with index α = −1.49 and coefficient β = 8.03.

The CDDF, however, is difficult to constrain at low redshifts as the redshift path is

lower for low z quasars decreasing the probability of intersection with an absorber

(Péroux et al., 2003b). The requirement of space based UV observations to detect low

redshift Lyman-α lines and the incompleteness introduced due to non-detectability

of very low NHI lines also contribute to this problem.

In addition to the Lyman-α line, absorption features corresponding to various

elements are produced by quasar absorption systems and these lines can be measured

to determine the chemical abundances in these systems following equations 1.57 and

1.58. These lines are detected more frequently in the highest NHI systems, i.e, in sub-

DLAs and DLAs. Many elements such as Ar, C, N, O, P, Mg, S, Si, Ca, Ti, Cr, Mn,

Ni, Fe, Zn have been detected in quasar absorption systems and can be used to shed

light on the chemical enrichment histories of the gas they represent. Although Fe has

been extensively used to determine metallicity of stars, it is not a reliable metallicity
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Figure 2.5 Abundance pattern (relative to the Solar abundance) of various elements in
the warm and cool diffuse ISM clouds in the sight line towards ζ Oph. The elements
are arranged in the order of increasing condensation temperatures. As expected, the
elements with low condensation temperatures have solar or near-solar abundances i.e,
they show little or no depletion onto dust grains, especially in the warm ISM. On the
other hand, elements with higher condensation temperatures show moderate to high
depletion. (Based on Savage & Sembach 1996b)

indicator for interstellar gas due to its depletion onto dust grains (see Fig. 2.5). Zn,

on the other hand, is found to be relatively undepleted in the Galactic ISM, especially

for warm diffuse gas with low molecular fraction of H. This is typically the case with

quasar absorption systems and therefore, Zn is usually the preferred tracer of gas

phase metallicity in quasar absorbers. Another advantage of using Zn is that the

lines Zn II λλ2026, 2062 used to measure NZn are relatively weak and therefore, the

abundance is relatively free from saturation effects, especially for high NHI systems.

S, with its low condensation temperature is another reliable indicator of gas phase
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metallicity and are often used in abundance studies when Zn is not available.

2.3 Properties of DLA and sub-DLA Absorbers

The damped Lyman-α systems (DLAs and sub-DLAs), although rare, are believed

to contain majority of the neutral gas in the Universe. The cosmological neutral gas

mass density of absorbers with Nmin < NHI < Nmax can be determined from the first

moment of fHI(N, z) as

Ωg =
H0µmH

cρcrit

∫ Nmax

Nmin

Nf(N, z)dN, (2.5)

where ρcrit is the critical density, mH is the mass of hydrogen atom, and µ is the mean

molecular weight which takes into account the contributions from He. The observed

CDDF at various redshifts indicate that most of the contribution to Ωg come from

DLAs and sub-DLAs. Using a single power law fit to the observed data, such as the

one seen in Figure 2.4, Lanzetta, Wolfe, & Turnshek (1995) estimated that ∼ 90%

of the neutral gas estimated from quasar absorption line systems resides in DLAs.

The contribution of sub-DLAs to Ωg increases with redshift and Ωsub−DLA
g becomes

comparable with ΩDLA
g at high z (Péroux et al., 2003b; Zafar et al., 2013). Moreover,

the cosmological gas mass density at z ∼ 3.5 determined from the damped Lyman-α

systems has been found to match the cosmological stellar mass density (Ωs) in the

local Universe (z = 0) very closely (Lanzetta, Wolfe, & Turnshek, 1995). This implies

that the neutral gas contained in high NHI systems at high redshifts is sufficient to

produce all the stars in the local Universe. Thus, DLAs and sub-DLAs are believed

to probe largely neutral, star forming gas in the distant Universe and offer an oppor-

tunity to study the progenitors of modern day galaxies (Storrie-Lombardi & Wolfe,

2000; Péroux et al., 2003b). Indeed, several low-z DLA host galaxies have been con-

firmed through deep imaging and follow-up spectroscopy (e.g., Chen $ Lanzetta 2003;
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Gharanfoli et al. 2007). These systems offer the most precise element abundance mea-

surements in distant galaxies, independent of electron temperature, complementing

the emission-line abundances in Lyman-break galaxies (LBG’s) or star-forming UV

selected galaxies (e.g., Shapely et al. 2004; Erb et al. 2006). The metallicities, rela-

tive abundances, and gas kinematics of DLAs/sub-DLAs provide unique indicators of

the star formation history, regardless of galaxy redshift or morphology. In the era of

precision cosmology, the snapshots of galaxy properties offered by DLAs/sub-DLAs

are crucial for constraining the cosmic densities of gas and metals and their evolution

(e.g., Kulkarni et al. 2007).

Owing to their high NHI , DLAs have historically been the focus of chemical abun-

dance studies (Prochaska & Wolfe, 2002; Kulkarni et al., 2005; Meiring et al., 2006).

However, most DLAs have been found to be metal poor, typically far below the solar

level (∼ 20%Z⊙ at z = 0) and below the model predictions for the mean metallicity

(see Section 1.3) at the corresponding redshifts at which they are seen (e.g, Kulkarni

et al. 2005, 2007, 2010; Péroux et al. 2006b; Battisti et al. 2012; Rafelski et al. 2012

and references therein). The mean metallicity of DLAs show little evolution with

time except a sharp drop at z ∼ 5 reported recently by Rafelski et al. (2014). Thus,

study of chemical evolution in galaxies using DLAs alone lead to a deficiency of met-

als in the low redshift Universe. A missing metals problem was also noted in high-z

DLAs from star formation rate (SFR) estimates based on C II* absorption (Wolfe et

al., 2003). In fact, after adding up the metal content of known DLAs, Ly-α forest,

UV-selected galaxies, and sub-mm galaxies, & 1/3 of the predicted metals at z ∼ 2

appear to be missing (e.g., Pettini 2006; Bouché et al. 2007).

Study of chemical abundances of sub-DLA systems had not attracted much atten-

tion until recently, although the CDDF suggests sub-DLAs to be ∼4 more numerous

than DLAs and therefore better probes of neutral gas in terms of availability. Péroux

et al. (2003b) suggested, based on a small sample of ∼ 20 sub-DLAs, that these lower
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column density absorbers could show a faster metallicity evolution than DLAs. How-

ever, their conclusion was based on metallicity measurements using Fe and therefore

could be affected by depletion. Subsequent studies of chemical abundance in sub-

DLAs at 0.6 . z . 1.5, using Zn or S as metallicity indicators, have shown that

chemical evolution of sub-DLAs is indeed different from that of DLAs (Péroux et al.

2006a; Meiring et al. 2007, 2008, 2009a,b; Nestor et al. 2008; Dessauges-Zavadsky

et al. 2009; and references therein). In this redshift range, sub-DLAs are typically

found to be more metal-rich and evolving marginally faster than DLAs. These find-

ings suggested that, at least in the observed redshift range, sub-DLAs and DLAs could

represent progenitors of different populations of present-day galaxies. One possibil-

ity is that the gas-poor, metal-rich sub-DLAs may be representing massive galaxies

which convert their gas mass into stars at an earlier epoch than the DLA galaxies.

In other words, the observed differences between the chemical evolution of DLAs and

sub-DLAs at 0.6 . z . 1.5 may be giving us glimpses of the mass downsizing in

galaxies where more massive galaxies undergo star formation more rapidly.

However, to obtain a better understanding of the nature of these quasar absorption

systems and the galactic chemical evolution they trace, one needs to compare their

behavior at a much wider redshift range. While DLAs have been studied extensively

over 0 . z . 5, several issues remain unanswered regarding the chemical evolution

of sub-DLAs at z < 0.6 and z > 1.5. An extrapolation of the z > 0.6 data to

lower redshifts suggests that the mean metallicity of sub-DLAs is solar at z ∼ 0

(e.g., Kulkarni et al. 2007, 2010; see also York et al. 2006; Prochaska et al. 2006). In

fact, sub-DLAs may contribute several times more than DLAs to the cosmic metal

budget at z < 1 (Kulkarni et al., 2007). However, one of the main issues is whether the

observed trends and the extrapolations are reliable, given the small-number statistics,

especially at z < 0.6, where the samples are particularly sparse. The sub-DLA

sample at z . 0.6 consists of a total of 6 Zn or S based metallicity measurements
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out of which only two are robust measurements from detected Zn/S lines while the

rest are upper-limit estimates. Study of the low-z sub-DLAs is crucial also because

they offer an unique opportunity to study their host galaxies via direct imaging and

emission spectra and therefore provide firm constraints on the connection between

these absorption line systems and their host galaxies. On the other hand, it is essential

to trace sub-DLA chemical evolution at z & 1.5 to investigate the effect of star

formation on the observed differences between DLAs and sub-DLAs, given that the

global SFR density attained its peak at z ∼ 2 − 3 (e.g., Bouwens et al. 2007; Reddy

& Steidel 2009). However, there exist a total of 17 metallicity measurements (Zn or

S based) at z > 1.5, out of which only 10 are based on line detections, resulting in

poor constraints on the chemical evolution trends of sub-DLAs in the high redshift

regime.

This work is devoted to the study of sub-DLA quasar absorbers at z . 0.6 and

z & 1.5, using UV spectra from the Hubble Space Telescope and high-resolution

optical echelle spectra from the Magellan Clay Telescope. Chapter 3 describes the

observations, data reduction and analysis techniques used in this work and presents

the measurements from our data. Chapter 4 discusses our observations in the context

of the properties of sub-DLAs in general. The conclusions made from this study are

presented in Chapter 5 along with an outline of futre work.

45



CHAPTER 3

Observations, Data Analysis and

Results

3.1 Sample Selection

With the motivation discussed in the previous chapter, we observed 5 sub-DLAs at

1.7 < z < 2.3, including 3 at z > 2, with the Magellan Inamori Kyocera Echelle

(MIKE) spectrograph on the Magellan Clay Telescope. It is to be noted that very

few abundance measurements exist for sub-DLAs at these redshifts, especially at

z > 2 (e.g., Dessauges-Zavadsky et al. 2003, 2009; Ellison & Lopez 2001; Ledoux et

al. 2006; Noterdaeme et al. 2008; Pettini et al. 1994). These absorbers were selected

based on their NHI values known previously either from the Large Bright Quasar

Survey or measured from the Lyαλ 1215.7 line seen in SDSS spectra. However, for

the absorbers with the Lyα 1215.7 line falling within the spectral coverage of our

MIKE observations (which is the case for all the systems except the absorber toward

Q1311-0120), we report NHI values determined from our high resolution data. The

H I column densities for the absorbers in our sample lie in the range 19.35 ≤ log

NHI ≤ 20.00. We aimed to determine the metallicities of these systems based on
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Zn. For the redshift range spanned by our sample, the absorption lines from Zn

fall roughly in the middle of the wavelength range covered by the spectrograph,

giving high sensitivity to our spectra. Our sample selection criteria also included the

brightness of the background quasar. We restricted the sample to moderately bright

sightlines (mV or mg < 18.5) to achieve moderate-to-high signal-to-noise ratio in our

spectra (necessary to measure the inherently weak absorption lines from Zn) without

being too observationally expensive.

We also observed four sub-DLAs at 0.1 < z < 0.5 toward quasars with reasonably

high NUV/FUV fluxes from GALEX (NUV mag =15.70-17.77 and FUV mag =16.36-

18.34) with the Cosmic Origins Spectrograph (COS) on board the Hubble Space

Telescope (HST). The NHI values were known for these absorbers from archival low-

resolution UV spectra from HST FOS/STIS (e.g., Rao, Turnshek, & Nestor 2006).

For the absorbers with the Lyα line falling within the spectral coverage of our COS

observations, we report NHI values determined from our higher resolution data. The

NHI for the absorbers in our sample lie in the range 19.18 ≤ log NHI ≤ 19.63. Our

observations were designed to obtain S based metallicities for these systems.

3.2 MIKE: Observations and Data Reduction

The MIKE spectrograph on the 6.5m Magellan Clay telescope at Las Campanas

Observatory is a double sided optical spectrograph (Bernstein et al., 2003). This

instrument consists of both a blue and a red camera, providing for simultaneous

wavelength coverage from ∼3340 Å to ∼9400 Å. The spectra of the quasars presented

here were obtained over 2 separate epochs, 2008 March and 2010 May, respectively.

The sightlines were observed in multiple exposures of 1800 to 2700 seconds each,

to minimize cosmic ray defects. During data acquisition, seeing was typically < 1′′,

averaging ∼ 0.7′′. The target QSOs were observed with the 1′′x5′′ slit and the spectra
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were binned 2x3 (spatial by spectral) during readout. The resolving power of the

MIKE spectrograph is ∼19,000 and ∼25,000 on the red and blue sides respectively

with a 1′′x5′′ slit. Table 3.1 gives a summary of the observations.

Our primary objective was to measure the absorption lines of Zn II, S II, Fe II,

Mg II, Si II, Si III, Si IV, C II, C II*, C IV, Cr II, Mn II, Al II and Al III. The wide

spectral coverage of MIKE also allowed us to cover lines of P II, C I, Fe III and Mg I

for some absorbers. The presence of multiple lines corresponding to most ions helped

to remove confusion with Ly-α forest lines and to correct for saturation effects and

blends with other absorption features. We designed our exposure times using the mV

or mg fluxes of the target quasars and the published performance characteristics of the

spectrograph. Our aim was to achieve a 3σ detection sensitivity of ∼ 0.1 solar level

of Zn abundance in our absorbers. Using the H I column density of each absorber,

we estimated, using the curve of growth, the corresponding equivalent width limit to

detect the Zn II λ2026 line at a 3σ level and designed the exposure times to reach

the signal-to-noise ratio (S/N) required for such a detection.

We reduced the spectra using the MIKE pipeline reduction code in IDL devel-

oped by S. Burles, J. X. Prochaska, and R. Bernstein. The MIKE software makes

use of the overscan region to perform bias subtraction and then flat-fields the data.

The software then performs sky-subtraction and extracts the spectral orders using

the traces from flat field images. The pipeline calibration code uses Th-Ar com-

parison lamp exposures, taken before and after each science exposure, to perform

wavelengths calibration. The software also corrects for heliocentric velocities and

converts the wavelengths to vacuum values. Each individual echelle order was then

extracted from the IDL structure created by the pipeline software and corresponding

orders from multiple exposures were combined in IRAF using rejection parameters

to reduce the effects of cosmic rays. The spectra from these combined orders were

then normalized individually, using the IRAF “CONTINUUM” task, with Legendre
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polynomial functions to fit the continuum. Typically, these functions were of order

five or less.

3.3 HST COS: Observations and Data Reduction

The Cosmic Origins Spectrograph on board the Hubble Space Telescope is capable of

producing low-to-medium resolution spectra of point sources with a wavelength cov-

erage of ∼1150 Å to ∼3200 Å (Holland et al., 2014). The observations can be carried

out with either the far-ultraviolet (FUV; 1150−2050 Å) or the near-ultraviolet (NUV;

1700−3200 ang) channel of COS. The spectra presented here were acquired as part of

the HST program GO 12536. The observations were obtained with the COS FUV or

NUV channels (depending on the redshift of the absorber) in the TIME-TAG mode

with the G130M, G160M, or G185M gratings. Each sightline was observed in multiple

exposures spanning four offset positions (FP-POS=1-4) for each central wavelength

setting in order to minimize the effects of fixed-pattern noise in the detector. For

Q0154+0448 and Q2131-1207, one exposure each (for 1412 s and 1462 s, respec-

tively) was lost due to an error in the fine guidance sensors. Table 3.1 summarizes

the observations.

Our main goal was to measure the absorption lines of Fe II, Fe III, S II, S III,

Si II, and Si III. In addition, our settings also covered lines of C II, C II∗, N I, N V,

O I, O VI, Si II∗, P II, Ar I, Mn II, and/or Ni II for some absorbers. The presence of

multiple lines for most ions helps to remove confusion with Ly-α forest lines and to

correct for saturation effects. The exposure times were designed using the COS online

Exposure Time Calculator and the FUV/NUV fluxes for our target quasars. Our goal

was to reach a 3σ sensitivity of 0.1 solar metallicity in our absorbers. Using the H I

column density of each absorber, we estimated the S II column density corresponding

to a 0.1 solar metallicity, and hence the corresponding equivalent width limit needed
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to detect the S II λ1253 line at a 3σ level. We designed the exposure times so as to

reach the corresponding S/N needed for each object to reach this limit.

The spectra were reduced and extracted with standard Image Reduction and

Analysis Facility (IRAF) and Space Telescope Science Data Analysis System (STS-

DAS) packages. The data were processed with CALCOS (version 2.19.7) during

retrieval via the “On the Fly Reprocessing” (OTFR) system. For Q0154+0448 and

Q2131-1207, the OTFR-processing included the compromised exposures mentioned

above; therefore these OTFR-processed files were not used in further analysis. The

raw data for these two sightlines, after retrieval, were reprocessed without the com-

promised exposures using CALCOS. The pipeline processed raw TIME-TAG data

from each exposure into a flat-fielded, background-subtracted, flux- and wavelength-

calibrated one-dimensional extracted (x1d) spectrum (see Massa et al. 2013 for a

detailed description of the data flow through FUV and NUV TIME-TAG spectro-

scopic pipelines). The x1d files corresponding to all the exposures from a single visit

were then co-added by the pipeline to produce a single one-dimensional spectrum.

The spectra from multiple visits for a sightline (where applicable) were then combined

using IRAF. The un-binned spectra used for the analysis have dispersions of ∼ 9.6

mÅ pixel−1 and ∼ 37 mÅ pixel−1 for FUV and NUV, respectively. The S/N near the

S II λλ 1250, 1253, 1259 triplet are in the range ∼ 7-8 pixel−1 for the FUV data and

∼ 17-30 pixel−1 for the NUV data. The spectra were continuum-fitted with cubic

spline or Legendre polynomial functions using the IRAF “CONTINUUM” task. The

continuum-normalized spectra were then used for identifying and measuring absorp-

tion features at the known sub-DLA redshifts.
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3.4 Determination of Column Densities

Column densities were determined by fitting the normalized absorption profiles using

the FITS6P package (Welty et al., 1991), which has evolved from the code by Vidal-

Madjar et al. (1977). FITS6P iteratively minimizes the χ2 value between the data

and a theoretical Voigt profile that is convolved with the instrumental profile. A

discussion of our profile-fitting technique can also be found in Khare et al. (2004).

The atomic data used in the identification of lines and profile fitting were adopted

from Morton (2003). While a few oscillator strengths have been improved recently

(see, e.g., Kisielius et al. 2014 for S II), the changes are relatively small (e.g., ≈ 0.04

dex for S II).

For the absorbers toward Q1039-2719, Q1103-2645, Q1551+0908, Q2123-0050,

Q0154+0448 and Q0441+4313, our data covered corresponding the H I Ly-α absorp-

tion lines. In these cases, the H I column densities were estimated using Voigt profile

fitting. These Voigt profile fits are shown in Figs. 3.1 - 3.3. Our NHI values match

within 1 − 2σ with those estimated from lower resolution SDSS or HST spectra in

past studies (e.g., Petitjean et al. 2000; Srianand & Petitjean 2001; Noterdaeme et

al. 2009; Kaplan et al. 2010; Rao, Turnshek, & Nestor 2006).

The fits to the metal line absorption profiles seen in our data used multiple com-

ponents, tailored to the individual system. For the central, core components, the

Doppler parameters (beff ) and radial velocities (with respect to the redshift deter-

mined from the Ly-α absorption) were determined from the weaker and less saturated

lines such as Fe II λ 1082, S II λ 1253, Fe II λ 2374 and Mg I λ 2852. For the weaker

components at higher radial velocities, the beff and component velocity values were

determined from stronger transitions such as N II λ 1084, Si II λ 1193, Fe II λλ

2344, 2382 and Mg II λλ 2796, 2803. Thus, a set of beff and v values were deter-

mined that provide reasonable fits to all of the lines observed in the system. For each
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absorber, we adopted the minimum number of velocity components that were neces-

sary to explain all the absorption lines observed. This was done to avoid over-fitting

and erroneous column density determinations, especially in the case of the moderate

spectral resolution and S/N spectra from COS.

If a multiplet was observed, the lines were fitted simultaneously. For all of the

high-z systems, the Fe II λ 2344, 2374, 2382 lines were fitted simultaneously to arrive

at a set of column densities that provide reasonable fits to the spectra. Similarly, the

Mg II λλ 2796, 2803 lines were also fitted together. At the resolution of our data, the

Zn II λ 2026 line is blended with the Mg I λ 2026 line. The Mg I contribution to the

blend was estimated using the Mg I λ 2852 line, for which fλ ∼32 times that of the Mg

I λ 2026 line. The Zn II contribution was determined by fitting the rest of the blend

while keeping the Mg I contribution fixed. NCrII was determined by simultaneously

fitting the Cr II λ 2056 line and the blended Cr II + Zn II λ 2062 line, where the

contribution from Zn II was estimated from the Zn II + Mg I λ 2026 line. In the case

of the low-z absorbers, the lines in multiplets such as S II λλ 1250, 1253, 1259; Si II

λλ 1021, 1193, 1260; N I λλ 1199.6, 1200.2, 1200.7, were fitted simultaneously. The

contribution from Si II, as obtained from the typically saturated Si II λ 1193 or Si II

λ 1260 (if the former was not available), to the blend between Si II λ 1190.2 and S

III λ 1190.4, was used to obtain an upper limit on the contribution from S III.

Figures 3.4 - 3.14 show the velocity plots (absorption profiles in velocity space)

along with the corresponding Voigt profile fits for the observed metal lines in the

various absorbers in our sample. Tables 3.2 - 3.12 list the Voigt profile fit parameters,

i.e., the radial velocities in km s−1, the effective Doppler parameters (beff , and column

densities for each component fitted to the various metal ions for each absorber. The

column densities in the weaker components that could not be well constrained due

to noise are each marked with “...” in these tables; their contributions to the total

column densities are negligible. Total column densities were determined from adding
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the column densities of individual components, and the uncertainties in the total

column densities were estimated by adding in quadrature the uncertainties in the

column densities of the individual components. Tables 3.13 - 3.17 list the total column

densities of various ions detected in the sub-DLAs in our sample.

In addition to the Voigt profile fitting method, the package SPECP, also developed

by D.E. Welty, was used to determine column densities via the apparent optical

depth method (AOD) (Savage & Sembach, 1996). The integrated column densities

thus determined were compared with the total column densities determined from the

Voigt profile fits and they are found to agree closely (see Tables 3.13 - 3.17). We used

SPECP to measure the equivalent widths of various transitions as well. We present

the rest-frame equivalent widths (W0) of various lines in Tables 3.18 and 3.19. The

1σ errors for the equivalent widths are also given and include the effect of both the

photon noise and the uncertainty in continuum placement. In the case a line was not

detected, the limiting equivalent width was determined from the local signal to noise

ratio (S/N), and a corresponding 3σ column density upper limit was determined,

assuming a linear curve of growth. Cells with “...” entries represent lines which could

not be measured due to one or a combination of the following: lack of coverage,

blending with Lyα forest lines, blending with atmospheric absorption bands, very

poor S/N due to spectrograph inefficiency at wavelength extremes and coincidence of

the line with damaged portions of the detectors.

3.5 Determination of Abundances

The total column density (NX) for an element X in an absorber, derived as described

in section 3.4, and the corresponding NHI were used to determine its abundance

[X/H] (relative to Solar) as,
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[X/H] = log(NX/NHI) − log(X/H)⊙,

where log(X/H)⊙ represents the Solar system abundance for the element in question.

We adopted Solar abundances from Asplund et al. (2009) for the abundance determi-

nations. The relation described above assumes that most of the hydrogen present in

the absorbing gas is in neutral state. In addition, the column density for the domi-

nant ion (the ionization stage expected to dominate the distribution of ions under the

physical conditions in the presence of neutral hydrogen) of an element was used in

the abundance determination, i.e., if XII is expected to be the dominant ionization

state for an element X, [XII/HI] ≡ [X/H]. The abundances of various elements in

the absorbers studied here are given in Tables 3.20 and 3.21. The metallicity for an

absorber was determined from NZnII (derived from measurements on Zn II λλ 2026,

2062 lines) or NSII (derived from the S II λλ 1250, 1253, 1259 lines). Sulphur was

adopted as the metallicity indicator when the Zn lines were not covered in our data

(in the case of the low-z absorbers) or when the Zn lines could not be detected (for

the absorbers toward Q1103-2645 and Q1551+0908).

3.6 Discussion of Individual Absorbers

3.6.1 Q1039-2719, zabs=2.139

The sightline to this moderately bright BAL QSO traces a strong sub-DLA system at

zabs = 2.139 in addition to a weak absorber at zabs = 2.082 and three broad absorption

systems at zabs = 1.518, 1.702, 1.757 (Srianand & Petitjean, 2001). The continuum

around the Lyman-α line of the sub-DLA is affected by Si IV absorption from the

BAL systems at zabs = 1.702 and 1.757 as well as N V absorption from the zabs =

2.082 absorber. A relatively un-affected part of the spectrum redward of the Lyman-α

line was used to constrain the continuum. We made use of the residual flux at ∼3815
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Å to eliminate contribution from the N V λλ 1239, 1243 lines in the zabs = 2.082

absorber as well as from the Lyα forest and to estimate log NHI = 19.55±0.15. The

Voigt profile fit to the Lyman-α line is shown in the upper panel of Figure 3.1.

The absorption profiles of this sub-DLA system show three strong components at

velocities -9, 10, and 46 km s−1 along with several weak satellites spanning a total ∼

430 km s−1. The sub-DLA is detected in absorption from several elements in multiple

ionization stages such Mg I, Mg II, Fe II, Fe III, Si II, Si III, Si IV, C I, C II, C IV, Al

II, Al III, P II, Cr II, Mn II, Ni II, S II and Zn II. Table 3.2 shows the column densities

in individual velocity components for various ions. Total column densities of various

ions detected in this system are listed in Table 3.13. The Voigt profile fits to some

of the lines of interest are shown in Figure 3.4. It is to be noted that, abundance

measurements for various elements in this absorber have previously been reported

by Srianand & Petitjean (2001). However, their results included measurements from

the two strongest absorption components only and contributions from the weaker

components, although small, were ignored. Therefore, the abundances were affected

by underestimation of column densities of various ions, including Zn II and S II. To

check the consistency of our abundance determinations from the MIKE spectra, we

derived column densities of various ions (e.g., log NSII = 14.76±0.09, log NFeII =

14.69±0.06, log NSiII = 14.99±0.01) using AOD measurements on the UVES spectra

from Srianand & Petitjean (2001) and compared them with our results. For most of

the ions, the column densities agree within 1σ uncertainties. We also detect C II*

λ 1335.7 in this sub-DLA, but the components of C II* at velocities -9 and 10 km

s−1 are blended with the C II λ 1334 line in our MIKE spectrum. Although, we were

able to measure the contribution from the component at 10 km s−1 using the higher

resolution UVES data from Srianand & Petitjean (2001), the component at -9 km s−1

could not be separated from the blend, resulting in the placement of only a lower limit

on the abundance of C II*. The C II* column densities listed in Table 3.2 are from our
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measurements on the UVES data. Photoionization calculations for this system, as

described in section 4.2, suggest that the observed metallicity ([Zn/H] = −0.02 dex)

and depletion ([Zn/Fe] = +0.28 dex) underestimate the true values significantly. The

corrected values for [Zn/H] and [Zn/Fe] were estimated to be +0.46 dex and +0.95

dex, respectively.

3.6.2 Q1103-2645, zabs = 1.839

This QSO sightline probes a sub-DLA at z = 1.839 (Petitjean et al., 2000). We

estimate log NHI = 19.52±0.04 for the absorber by fitting a Voigt profile to the

Lyman-α line (see the lower panel of Figure 3.1). Absorption features of various

elements in different ionization stages such as Mg I, Mg II, Fe II, C II, C II*, S II,

Si II, Si IV and Mn II, were detected in this system. The absorption profiles reveal

11 components ranging from -163 km s−1 to 39 km s−1 but most of the absorption

comes from two main components at -49 and -12 km s−1. Several key lines such as

C IV λλ 1548, 1550; Al IIλ 1670 and Ni II λ 1741 fell on a damaged portion near the

red end of the blue CCD of MIKE, preventing us from making reliable determination

of column densities.

Table 3.3 summarizes the results from profile fitting analysis for this system and

the velocity plots for some of the lines of interest are shown in Figure 3.5. Total

column densities are listed in Table 3.13. There was no detection of Zn with a S/N

∼ 45 near Zn II λ 2026. Based on the 3σ limiting rest equivalent width, Wrest =

3.9 mÅ, we estimate log NZnII < 11.3 and [Zn/H] < -0.82 for this absorber. S II

was detected in this system with log NSII = 13.9 and [S/H] = -0.82. We note that,

[S/H] for this system has also been reported by Petitjean et al. 2000 and their value

of -0.94±0.16 is consistent with our measurement within 1σ uncertainties. Ionization

modelling for this absorber indicates a moderate correction of -0.3 dex in S abundance

(see 4.2). The data also show presence of Mn II λ 2576 but this line is blended with
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an unidentified feature. Since no other Mn II lines were detected, we could only place

an upper limit on Mn abundance of this absorber.

3.6.3 Q1311-0120, zabs = 1.762

This QSO sightline has a sub-DLA absorber, identified in the LBQS survey (Wolfe et

al., 1995), at z = 1.762 with Lyman-α rest-frame equivalent width of 7.3±0.7 Å. The

Lyman-α line was partially covered in the extreme blue order of our echelle data and

because of the very poor S/N in that wavelength region, neutral hydrogen column

density could not be determined using a Voigt profile fit. Instead, we estimate log

NHI = 20.00±0.08 from the rest-frame equivalent width reported by Wolfe et al.

(1995), using the curve of growth for the H I Lyman-α line. This absorber shows a

relatively complex velocity structure and 12 components, spanning ∼ 550 km s−1

in velocity space were required to fit the observed absorption profiles. While most

of the absorption occurs in two component clusters appearing between -5 km s−1

and 200 km s−1, a weaker absorption complex, separated from the main components

by more than 500 km s−1, is detected in most of the strong transitions. Additional

weaker components, bridging the gap between the satellite and the main absorption,

are seen only in the strongest of transitions such as Fe II λ 2382 and Mg II λλ 2796,

2803. Results from the profile fitting analysis for this system are shown in Table 3.4,

while total column densities for the ions are listed in Table 3.13.

Our data near the extreme blue end of the spectral coverage were affected by

poor S/N owing to the combination of lower sensitivity and continuum absorption

form the Lyα forest clouds. Several of the lines of interest such as S II λλλ 1250,

1253, 1259; Si II λ 1304; Ni II λλ 1317, 1370; C II λ 1334; C II* λ 1336 and Si

IV λλ 1393, 1402 were located in this region and therefore could not be analyzed

reliably. Due to the high redshift of the background QSO, even lines with higher rest

wavelengths such as C IV λλ 1548, 1550 were blended with Lyα forest lines. Si II λ
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1526 was partly blended with forest lines resulting in the placement of only a lower

limit on Si II abundance. Zn II λ 2026 line was detected in several components in

this system. However, a part of the core component structure of the line is blended

with a strong unidentified feature and therefore, we report only a lower limit of log

NZnII > 12.57 and [Zn/H] > -0.06, based on the measurements of the un-blended

components. The component at 546 km s−1, unlikely to be associated with the main

absorber galaxy, contributes ∼ 15% of the observed Zn II column density. However,

the system is found to be metal rich ([Zn/H] > -0.14) even if contribution from this

high-velocity component is ignored. This near-solar metallicity absorber also shows

a high depletion with [Zn/Fe] > +1.18. Ni II λ 1741 and Al II λ 1670 were affected

by cosmetic defect in the chip, however, we were able to place a lower limit on Al II

abundance based on unaffected regions in the line. Velocity plots for several lines of

interest are shown in Figure 3.6.

3.6.4 Q1551+0908, zabs = 2.320

This QSO sightline has a sub-DLA absorber at z = 2.320 (Noterdaeme et al., 2009).

A Voigt profile fit to the Lyman-α line, shown in the upper panel of Figure 3.2, yields

log NHI=19.70±0.05. This sub-DLA is detected in absorption from Fe II, Fe III, Si

II, Si IV, C II, C III, C IV, Al II, Al III, S II, and Ni II. Mg I λ 2852 and Mg II

λλ 2796, 2803 were not covered. The observed absorption profiles show a relatively

simple velocity structure for this system requiring 5 components for an adequate fit.

Table 3.5 shows results from profile fitting analysis for this absorber. Zn II λ 2026

was not detected in our data with S/N ∼ 40 near the expected position of the line.

Our estimate of a 3 σ limiting rest-frame equivalent width of Wrest = 4.38 mÅ places

an upper limit on the Zn II column density at log NZnII < 11.38 and [Zn/H] < -0.95.

Measurement of the detected S II lines yield [S/H] = -0.46 and suggest significant

α-enhancement with [S/Zn] > 0.49. Figure 3.7 shows velocity plots for several lines
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of interest along with their Voigt profile fits. Table 3.13 summarizes the total column

densities.

3.6.5 Q2123-0050, zabs = 2.058

This quasar sightline traces a sub-DLA at z = 2.058 (Kaplan et al., 2010) with log

NHI = 19.35±0.10. The lower panel of Figure 3.2 shows the Voigt profile we used to

determine the neutral hydrogen column density for this system. A complex structure

with 13 components spanning more than 350 km s−1 in velocity was required to model

the absorption characteristics of the sub-DLA. Details of the absorption structure

analysis are given in Table 3.6. Table 3.13 summarizes the total column densities.

Absorption signatures from various ions such as Mg I, Mg II, Fe II, Si II, Si IV, Al

II, Al III, C II, C II*, C IV, Mn II, Ni II, S II and Zn II were detected in QSO

spectrum at the sub-DLA redshift. Figure 3.8 shows the velocity plots of several

lines of interest along with their Voigt profile fits. The metallicity of this system,

based on the observed Zn II column density of log NZnII = 12.23, is super-solar

([Zn/H] = +0.25), making it the most metal-rich sub-DLA QSO absorber known so

far at z > 2 (we note here, that higher metallicities in some lower-redshift sub-DLAs

have been reported by Meiring et al. 2007, 2008, 2009b; Péroux et al. 2006a, 2008;

Prochaska et al. 2006). In any case, due to the relatively low NHI of this absorber,

it is necessary to explore the extent of ionization effects on the metallicity value.

Indeed, the observed high values of column density ratios between adjacent ions such

as Al III/Al II, Si III/Si II, and Al III/Fe II in this absorber suggest a high level of

ionization. Our photoionization calculations indicate a correction of +0.59 dex for

[Zn/H] (see section 4.2 for further details on photonionization modelling).
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3.6.6 Q0154+0448, zabs = 0.1602

Bergeron et al. (1988) discovered two spiral galaxies of Sbc and Scd types at z =

0.1592 and z = 0.1597 with angular separations of 6.4′′ and 10.9′′ from the quasar

Q0154+0448, corresponding to impact parameters of 17.7 and 30.1 kpc, respectively.

They also discovered an Mg II absorption system at z = 0.1602 in the spectrum of

Q0154+0448, and suggested that this absorber was associated with either of the two

spiral galaxies.

From an analysis of archival HST FOS spectra, Rao & Turnshek (2000) found that

the z = 0.1602 system is not a DLA. Analysis of these archival HST spectra suggested

an H I column density of log NHI = 19.70+0.15
−0.22 (see Christensen et al. 2005). Our

HST COS observations gave a higher quality spectrum of the Ly-α line. The upper

panel of Figure 3.3 shows the result of Voigt profile fitting for this Ly-α line, from

which we obtain log NHI = 19.48± 0.10. Our COS data also targeted lines of S II, S

III, Si II, Si III, Fe II, C II, P II, N I, N V, O I, and O VI. Figs. 3.9 and 3.10 show

the velocity plots for the various metal lines in this absorber. Tables 3.7 and 3.8 list

the results of the Voigt profile fits for the lower ions and the higher ions, respectively.

Table 3.14 summarizes total column densities for various ions.

Strong N II, N V, and O VI absorption is detected in this system. The components

in the low ions show a velocity spread of ∼ 200 km s−1, while the higher ions extend

over a total of ∼ 460 km s−1. The O VI λ1032 profile is especially strong and striking,

and shows strong asymmetry, possibly suggesting the presence of outflows. The O

VI λ1037 line is consistent with O VI λ1032, but has additional absorption in some

components due to blends with other unrelated absorption. The implied O VI column

density is much higher than in diffuse interstellar clouds in the Milky Way, such as

that toward α-Vir (e.g., York & Kinahan 1979).
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3.6.7 Q0441+4313, zabs = 0.1012

This absorber is known to have strong absorption lines of Mg II, Fe II, Si II, Al II,

and C IV. A galaxy at z = 0.101 has been detected at an impact parameter of 7.6

kpc from the quasar (Petitjean etal, 1996; Chen et al., 2005). Petitjean etal (1996)

suggested that the Mg II absorber in this sightline is a DLA. Kanekar et al. (2001)

reported a weak 21-cm absorber in this sightline, with an estimated spin temperature

of & 730 K. Based on an absence of 21-cm emission, they estimate a 3σ upper limit

to the gas mass of the absorber of 2.25 × 109M⊙. Thus, they claim that this galaxy

is not a large, gas-rich spiral.

The lower panel of Figure 3.3 shows our Voigt profile fit to the Ly-α feature in

this absorber, which gives the H I column density of log NHI = 19.63 ± 0.15. Our

COS spectra of this absorber reveal lines of several metal ions, i.e. N I, N II, N V,

O VI, Si II, Si II*, P II, S II, S III, Ar I, Mn II, Fe II, and Fe III. Figs. 3.11 and 3.12

show the velocity plots for the various metal lines in this absorber. Table 3.9 lists the

Voigt profile fitting results for the lower ions, while Table 3.10 lists the results for the

higher ions. Column densities for various ions in this system are listed in Table 3.15.

This absorber shows strong N II absorption and also shows N V and O VI. This

indicates a significant amount of ionized gas in this absorber. The velocity spread of

the higher and lower ions is comparable, and relatively large (∼ 400 km s−1).

3.6.8 Q0456-2159, zabs = 0.4744

Rao, Turnshek, & Nestor (2006) report log NHI = 19.45+0.02
−0.03 for this absorber, based

on archival HST UV spectra. Robertson et al. (1988) reported the discovery of Mg II,

Ca II, and Fe II absorption in this absorber from moderate-resolution spectra obtained

at the Anglo-Australian Telescope (AAT). Based on curve of growth analysis, they

reported log NMgII = 15.48, log NCaII = 12.20, and log NFeII = 14.90. Based on

61



data from the Keck High-Resolution Echelle Spectrometer (HIRES), several velocity

components appear to be present in this system (Churchill et al., 2000). Churchill

& Vogt (2001) provide column density estimates for Mg I, Mg II, and Fe II from the

HIRES data. Using the apparent optical depth (AOD) method, they estimate total

column densities log NMgII > 14.27 and log NFeII > 14.52, which are consistent with

the estimates of Robertson et al. (1988). For Mg I, Robertson et al. (1988) estimated

log NMgI = 12.18, while Churchill & Vogt (2001) reported log NMgI = 12.53 ± 0.01.

The latter value is likely to be more accurate than the former, owing to the much

higher spectral resolution of the Keck data (0.09 Å) compared to that of the AAT

data (1.4-2.0 Å); in any case, both Mg I values are far smaller than the Mg II column

density. These measurements (without ionization corrections) would imply [Mg/H]

= 0.43, [Fe/H] = -0.05, and [Ca/H] = -1.59 dex. The relative abundances [Ca/Fe] =

-1.54 and [Ca/Mg] = -2.02 imply large depletions of Ca.

Figure 3.13 shows velocity plots from our HST COS data for the various metal

lines in this absorber. Table 3.11 lists the Voigt profile fitting results. Total col-

umn densities are summarized in Table 3.16. Our measurements indicate [S/H] =

0.45 ± 0.04, in close agreement with the [Mg/H] value estimated from the data of

Robertson et al. (1988). Likewise, our measurement of [Ni/H] = 0.01 ± 0.08 is in

close agreement with [Fe/H] = -0.05 estimated by Robertson et al. (1988). This

agreement is reassuring, given that S and Mg are both α elements, while Ni and Fe

are both Fe-group elements. Nucleosynthetic differences are not expected between S

and Mg, or between Fe and Ni. [Mg/S] = -0.02 would suggest that dust depletion

may not play a significant role in this absorber. Moreover, this absorber appears to

show an intrinsic nucleosynthetic enhancement of the α-elements with respect to the

Fe-group elements.

The components detected in the low ions covered in our data show a velocity

spread of ∼ 170 km s−1. Our data did not cover N II λ1084, or lines of higher ions
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such as N V λ λ1239, 1243, O VI λ λ1032, 1037 or Si III λ1207 in this absorber.

3.6.9 Q2131-1207, zabs = 0.4297

This system was originally reported by Weymann et al. (1979). Bergeron (1986) dis-

covered a galaxy at a redshift 0.430, located 8.6′′ away from the quasar, corresponding

to an impact parameter of 48.2 kpc. Rao, Turnshek, & Nestor (2006) reported log

NHI = 19.18± 0.03 for this system based on archival HST UV spectra. Keck HIRES

data covering Mg I, Mg II, and Ca II are available for this system. Churchill & Vogt

(2001) showed that this system has primarily low-velocity components. They fitted 4

velocity components over a velocity interval of about 52 km/s (with one component

dominating by far compared to the others) and reported total column densities of

log NMgI = 12.31 and log NMgII = 15.25 ± 0.52. However, with the AOD method,

they derived log NMgI = 12.25 and log NMgII = 13.47 ± 0.003. (We note that there

is a large discrepancy between the Voigt profile fitting value and the AOD value of

Churchill & Vogt (2001) for NMgII . We believe the AOD value to be more accurate

in this case, for the reasons given below.)

Figure 3.14 shows velocity plots from our COS data for the various metal lines in

this absorber. Table 3.12 lists the Voigt profile fitting results. Total column densities

for various ions in this systems are given in Table 3.17. We detect S II, Si II, and

C II clearly in this absorber, with mutually consistent velocity structures. We also

constrain the column density of S III, based on the λ1190.2 line. Owing to the blend

with Si II λ1190.4, we can only put an upper limit on the S III column density. Our

results indicate that the S abundance is near-solar in this absorber, while both Si and

C are considerably sub-solar. This is not an artifact of saturation as S II λ λ1253, 1259,

Si II λ λ1190, 1260 and C II λ1334 all appear to be relatively unsaturated. The low

Si and C abundances do not appear to be a result of ionization effects either (see

section 4.3). The low abundance of Si relative to S suggests significant depletion. We
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note that our value of [Si/H] = −1.33±0.04 is comparable to [Mg/H] = −1.24±0.03

deduced (without ionization correction) from the AOD values of Churchill & Vogt

(2001). We also note that the Voigt profile fitting value of NMgII from Churchill &

Vogt (2001) would imply [Mg/H] = +0.54 dex, higher than even [S/H], which seems

unlikely. Higher resolution and higher S/N data may help to resolve this issue.

HST FOS spectra showed the presence of relatively weak C IV and possibly Si

IV absorption in this absorber (Churchill et al., 2000). Our data did not cover the

N II λ1084, Si III λ1207, or O VI λ λ1032, 1037 lines. Our data did cover N V

λ1239, 1243, but these lines were not detected. Overall, this absorber appears to be

relatively modestly ionized. The components in the ions detected in our data ( C II,

Si II, S II) show a spread of ∼ 100 km s−1. Compared to the more strongly ionized

absorbers toward Q0154+0448 and Q0441+4313, this absorber appears to have a

narrower velocity spread in the low ions.
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Figure 3.1 Upper panel: Lyman-α absorption feature in the zabs = 2.139 system
towards Q1039-2719. The solid green curve is the Voigt profile for log NHI = 19.55.
The blue dotted and dashed curves above and below the green curve are Voigt profiles
for log NHI = 19.40 and 19.70, respectively. The red dashed line represents the
normalized continuum while the black dotted line denotes the profile center. The
vertical dashed lines denote the locations of the N V λλ 1239, 1243 lines from the
zabs = 2.082 absorber. Lower panel: The Lyman-α line in the zabs = 1.839 system
towards Q1103-2654. The solid green curve shows the Voigt profile for log NHI =
19.52 while the blue dotted-dashed curves represent an uncertainty of 0.04.
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Figure 3.2 Upper panel: The Lyman-α line in the zabs = 2.320 system towards
Q1551+0908. The solid green curve shows the Voigt profile for log NHI = 19.70
while the blue dotted-dashed curves represent an uncertainty of 0.05. Lower panel:

The Lyman-α line in the zabs = 2.058 system towards Q2123-0050. The solid green
curve shows the Voigt profile for log NHI = 19.35 while the blue dotted-dashed curves
represent an uncertainty of 0.10.
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Figure 3.3 Upper panel: The Lyman-α line in the zabs = 0.1602 system towards
Q0154+0448. The solid green curve shows the Voigt profile for log NHI = 19.48
while the blue dotted-dashed curves represent an uncertainty of 0.10. Lower panel:

The Lyman-α line in the zabs = 0.1012 system towards Q0441-4313. The solid green
curve shows the Voigt profile for log NHI = 19.63 while the blue dotted-dashed curves
represent an uncertainty of 0.15.
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Figure 3.4 Velocity plots for several lines of interest in the z =2.139 system in the
spectrum of Q1039-2719. The solid green line indicates the theoretical profile fit to
the spectrum, and the dashed red line is the continuum level. The vertical dotted
lines indicate the positions of the components that were used in the fit. In the cases of
the Zn II λλ 2026,2062 lines, which have other lines nearby, the long dashed vertical
lines indicate the positions of the components for Mg I (former case), and Cr II (latter
case). The regions shaded in gray in some of the panels represent features unrelated
to the absorption systems presented here. In the “CII 1334” panel, the solid green
line represents the blend between C II λ 1334.5 and C II∗ λ 1335.7 lines while the
solid blue line represents the contribution from C II∗ λ 1335.7 to this blend.
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Figure 3.5 Same as Fig. 3.4, but for the zabs=1.839 system in the spectrum of Q1103-
2654. In the “SII 1259” panel, the solid green line represents the total contribution
from the S II λ 1259.5 and the Si II λ 1260.4 lines. The contribution from S II λ
1259.5 alone is shown with the blue dotted line.
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Figure 3.6 Same as Fig. 3.4, but for the zabs=1.762 system in the spectrum of Q1311-
0120.
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Figure 3.7 Same as Fig. 3.4, but for the zabs= 2.320 system in the spectrum of
Q1551+0908.
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Figure 3.8 Same as Fig. 3.4, but for the zabs=2.058 system in the spectrum of Q2123-
0050. In the “CII∗1336” panel, the shaded region represents absorption from the C
II λ 1334.5 line.
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Figure 3.9 Same as Fig. 3.4, but for the zabs=0.1602 system in the spectrum of
Q0154+0448. In the S III 1190.2 + Si II 1190.4 panel (with velocity scale shown
for Si II λ1190.4), the solid green curve represents the combined contributions from S
III λ 1190.2 and Si II λ 1190.4 lines while the contribution from Si II λ 1190.4 alone
to this blend, as determined from the Si II λ 1193.3 line, is represented by the dashed
orange curve. We obtained an upper limit on the column density of S III by fitting
the rest of the blend. The simultaneous fits to the N I λλ 1199.6, 1200.2, 1200.7
lines are shown in the N I 1199 panel using solid green, solid orange and dashed blue
curves, respectively, and the velocity scale is shown for N I λ 1199.6.
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Figure 3.10 Same as Fig 3.9, but for Si III, N V and O VI absorption from the
zabs=0.1602 system in the spectrum of Q0154+0448. The absorption components
common to these ions and lower ions are indicated by the dotted vertical lines in
black, while the components seen in the higher ions only are indicated by the blue
vertical dotted lines.
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Figure 3.11 Same as Fig. 3.4, but for the zabs=0.1012 system in the spectrum of Q0441-
4313. In the N I 1199.6+1200.2+1200.7 panel, the solid green curve represents the
total contribution from the N I λλ 1199.6, 1200.2, 1200.7 lines. The individual fits
to N I λ 1199.6, N I λ 1200.2 and N I λ 1200.7 are shown using the dotted red, solid
orange, and dashed blue curves, respectively, and the velocity scale is shown for N I
λ 1200.2. The solid green curve in the S III 1190 panel (with velocity scale shown
for S III λ1190.2) represents the combined contributions from S III λ 1190.2 and Si
II λ 1190.4 lines while the contribution from Si II λ 1190.4 alone to this blend, as
determined from the Si II λ 1193.3 line, is represented by the dashed orange curve.
We obtained an upper limit on the column density of S III by fitting the rest of the
blend.
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Figure 3.12 Same as Fig. 3.11 but for N V and O VI absorption in the z = 0.1012
system in the spectrum of Q0441-4313.
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Figure 3.13 Same as Fig. 3.4 but for the absorption in the z = 0.4744 system in the
spectrum of Q0456-2159.
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Figure 3.14 Same as Fig. 3.4 but for the absorption in the z = 0.4297 system in the
spectrum of Q2131-1207. The solid green curve in the Si II 1190 panel (with velocity
scale shown for Si II λ1190.4) represents the combined contributions from S III λ
1190.2 and Si II λ 1190.4, while the contribution from Si II λ 1190.4 alone to this
blend, as determined from Si II λ 1260.4, is represented by the dashed orange curve.
We obtained an upper limit on the column density of S III by fitting the rest of the
blend.
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Table 3.1 Summary of Observations.
QSO RA Dec Mag zem zabs log NHI NHI

J2000 cm−2 Reference
Q1039-2719 10:39:21.83 -27:19:16.0 17.4 (mV ) 2.193 2.139 19.55±0.15 1
Q1103-2645 11:03:25.29 -26:45:15.7 16.0 (mV ) 2.145 1.839 19.52±0.04 1
Q1311-0120 13:11:19.26 -01:20:30.9 17.5 (mV ) 2.585 1.762 20.00±0.08 2
Q1551+0908 15:51:03.39 +09:08:49.3 17.9 (mV ) 2.739 2.320 19.70±0.05 1
Q2123-0050 21:23:29.47 -00:50:53.0 16.7 (mV ) 2.262 2.058 19.35±0.10 1
Q0154+0448 01:54:28.00 +04:48:18.3 18.27 (FUV) 0.404 0.1602 19.48±0.10 1
Q0441+4313 04:41:17.30 -43:13:43.00 18.34 (FUV) 0.593 0.1012 19.63±0.15 1
Q0456-2159 04:56:08.90 -21:59:09.00 15.71 (NUV) 0.534 0.4744 19.45±0.02 3
Q2131-1207 21:31:35.30 -12:07:04.80 15.70 (NUV) 0.501 0.4297 19.18±0.03 3

QSO Instrument Setup λc/λrange Exposure Time Epoch
J2000 Å sec
Q1039-2719 MIKE-Magellan Standard λrange=3340-9400 7100 2008 March 16
Q1103-2645 MIKE-Magellan Standard λrange=3340-9400 3600 2008 March 16
Q1311-0120 MIKE-Magellan Standard λrange=3340-9400 8100 2008 March 16
Q1551+0908 MIKE-Magellan Standard λrange=3340-9400 6300 2010 May 06
Q2123-0050 MIKE-Magellan Standard λrange=3340-9400 4800 2010 May 06
Q0154+0448 COS-HST G130M λc=1327 13128 2013
Q0441+4313 COS-HST G130M λc=1291 13680 2013
Q0456-2159 COS-HST G185M λc=1850 24800 2013
Q2131-1207 COS-HST G160M λc=1786 23362 2013

NHI References. – (1) This Work, (2) Wolfe et al. (1995), (3) Rao, Turnshek, & Nestor (2006)
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Table 3.2 Column densities in individual velocity components for the z=2.139 absorber with log NHI=19.55 in Q1039-2719.
Velocities and beff values are given in units of km s−1. Column densities are in units of cm−2 and 1σ errors in column densities
are given.

Vel beff Mg I Mg II Fe II Zn II Ni II C II*
-103 6.6 - (1.79±0.57)E+12 (5.28±3.04)E+11 - - -
-70 9.5 - (1.42±0.50)E+12 (6.10±3.21)E+11 - - -
-42 10.4 (7.23±2.83)E+11 (1.05±0.65)E+12 - - - -
-9 8.7 (9.03±4.13)E+11 >6.59E+14 (7.37±0.51)E+13 - (7.22±2.36)E+12 -a

10 11.5 (4.90±1.69)E+12 (2.02±0.64)E+15 (2.59±0.35)E+14 (5.31±1.32)E+11 (2.61±0.38)E+13 (1.89±0.27)E+13
46 8.5 (2.47±0.87)E+12 >4.06E+14 (1.85±0.31)E+14 (4.42±1.26)E+11 (1.89±0.33)E+13 (2.02±0.26)E+13
73 6.2 (3.28±2.56)E+11 >8.77E+12 (2.46±0.25)E+12 - (5.63±1.92)E+12 -
86 8.0 - >4.60E+12 (1.38±0.25)E+12 (2.23±1.17)E+11 (3.00±1.96)E+12 -
104 9.0 (3.86±2.77)E+11 (1.78±0.61)E+12 - - - -
125 4.4 - (4.71±1.09)E+12 (6.12±1.66E+11 - - -
140 6.4 (3.06±2.04)E+11 (1.91±0.59)E+12 (5.06±1.68)E+11 - - -
172 3.6 - (3.80±0.99)E+12 (7.94±1.55)E+11 (2.46±1.04)E+11 - -
265 5.6 - (1.19±0.49)E+12 (4.40±1.41)E+11 - - -
330 6.1 - (1.31±0.50)E=12 (3.4±1.41)E+11 - - -

aThis component is blended with the C II λ 1334.5 line.
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Table 3.3 Same as Table 3.2, but for the zabs=1.839 absorber with log NHI=19.52 in Q1103-2645.
Vel beff Mg I Mg II Fe II C II S II
-163 2.7 - (4.54±6.74)E+11 (2.48±7.14)E+11 (3.46±2.05)E+12 -
-139 8.2 - (2.92±0.22)E+12 (6.08±8.34)E+11 (2.12±0.33)E+13 -
-78 11.7 - (5.86±0.28)E+12 (1.31±0.16)E+12 (4.17±0.34)E+13 -
-67 2.2 - - - (1.19±0.21)E+13 -
-49 5.9 (2.07±0.33)E+11 >3.09E+13 (7.77±0.48)E+12 >3.44E+14 (2.02±1.72)E+13
-31 6.1 (4.46±3.07)E+10 >1.60E+13 (3.52±0.40)E+12 >1.89E+14 (1.82±1.78)E+13
-12 4.5 (2.79±0.34)E+11 >5.45E+13 (1.56±0.08)E+13 >3.34E+14 (3.97±1.88)E+13
4 5.6 (6.67±3.01)E+10 - - (1.73±0.11)E+13 -
15 5.8 - >5.27E+12 (3.60±0.21)E+12 >2.68E+13 -
28 4.7 (1.12±0.37)E+11 (4.33±0.33)E+12 (2.22±0.18)E+12 (2.19±0.13)E+13 -
39 6.0 - - - (1.36±0.09)E+13 -
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Table 3.4 Same as Table 3.2, but for the zabs=1.762 absorber with NHI=20.00 in Q1311-0120.
Vel beff Mg I Mg II Fe II Zn II Cr II
-5 3.8 (1.80±0.63)E+11 >5.93E+012 (6.07±1.40)E+12 - -
24 3.8 (5.01±5.24)E+10 >4.71E+013 (2.40±0.32)E+13 - -
45 6.1 (6.25±0.86)E+11 >1.80E+014 (1.04±0.13)E+14 (1.22±0.91)E+012 (8.72±2.44)E+12
115 8.6 (1.16±0.63)E+10 (3.06±0.68)E+12 (1.16±0.29)E+12 (6.28±0.86)E+011 -
169 8.0 (8.87±6.03)E+10 >2.97E+013 (1.44±0.15)E+13 -a -
184 7.3 (3.07±0.70)E+11 >2.72E+013 (4.92±1.09)E+12 -a -
244 3.9 (7.91±5.26)E+10 >1.55E+013 (3.09±0.41)E+12 -a -
275 7.9 - >9.13E+012 (1.89±0.32)E+12 - -
294 8.4 - >8.57E+012 (1.33±0.32)E+12 (7.86±0.93)E+011 -
317 8.5 - (2.23±0.62)E+12 (1.30±0.31)E+12 - -
525 6.0 (2.06±0.61)E+11 >1.32E+013 (6.01±1.30)E+12 - -
546 2.9 (2.28±0.70)E+11 >4.40E+012 (2.01±0.37)E+12 (5.76±0.82)E+011 -

aThis component is blended with an unidentified feature.
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Table 3.5 Same as Table 3.2 but for the zabs=2.320 absorber with log NHI=19.70 in Q1551+0908.
Vel beff Fe II Si II C II Al II S II
-11 3.1 (4.54±0.94)E+012 (1.46±0.49)E+13 (3.49±2.20)E+14 (6.00±1.13)E+11 -
-2 7.0 (1.99±0.28)E+013 (3.93±0.48)E+13 >2.37E+14 (1.73±0.13)E+12 (9.72±3.28)E+13
15 5.8 (1.10±0.24)E+013 (2.20±0.31)E+13 >1.45E+14 (8.33±0.71)E+11 (1.02±0.28)E+14
32 3.0 (3.21±2.26)E+011 (3.14±1.85)E+12 (2.49±1.04)E+12 (6.56±4.15)E+10 (4.72±2.38)E+13
85 7.2 (6.04±2.57)E+011 (2.95±1.28)E+12 - - -
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Table 3.6 Same as Table 3.2, but for the zabs=2.058 absorber with log NHI=19.35 in Q2123-0050.
Vel beff Mg I Fe II Si II S II Zn II Mn II
-116 5.8 (2.20±0.29)E+11 (8.84±0.45)E+12 (2.69±1.10)E+13 - - -
-101 1.4 - (2.38±0.42)E+12 (4.04±8.30)E+13 - - -
-86 5.1 (1.22±0.26)E+11 (5.16±0.38)E+12 (1.87±0.88)E+13 - - -
-57 3.3 (1.71±0.43)E+11 (5.11±0.40)E+12 (1.07±0.73)E+13 - - -
0 8.2 - (1.08±0.26)E+12 (3.06±0.56)E+12 - - -
32 5.6 - (1.28±0.24)E+12 (4.87±0.56)E+12 - - -
74 2.3 (8.35±2.6)E+10 (2.77±0.45)E+12 (6.76±0.73)E+12 (5.64±1.50)E+13 - -
91 5.1 (2.94±0.32)E+11 (7.65±0.53)E+12 (2.17±0.11)E+13 (1.19±0.17)E+14 (9.56±9.00)E+010 -
128 6.6 (2.12±0.1E)+12 (3.35±0.30)E+13 (3.71±0.35)E+14 (3.87±0.22)E+14 (7.88±1.11)E+011 (4.17±1.40)E+011
148 7.3 (1.11±0.06)E+12 (1.99±0.09)E+13 (8.51±4.10)E+13 (1.24±0.17)E+14 - (5.16±1.44)E+011
175 4.4 (3.21±0.35)E+11 (7.71±0.55)E+12 (2.06±0.12)E+13 (5.77±1.90)E+13 (6.48±1.08)E+011 (3.44±1.28)E+011
212 4.1 (7.19±0.59)E+11 (2.69±0.17)E+13 (5.96±0.47)E+13 (1.12±0.10)E+14 - -
240 4.9 (9.43±2.6)E+10 (9.82±2.50)E+11 (2.36±0.49)E+12 (6.08±1.80)E+13 - -
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Table 3.7 Same as Table 3.2, but for the zabs=0.1602 absorber with log NHI=19.48 in Q0154+0448.
Vel beff NSII NSiII NSiII∗ NFeII

-227.6 17.0 ... 2.24 ± 0.28 × 1013 ... 1.36 ± 1.16 × 1014

-180.2 24.7 2.47 ± 1.04 × 1014 3.31 ± 0.73 × 1014 ... ...
-145.7 19.1 1.96 ± 0.98 × 1014 3.70 ± 0.76 × 1014 ... 1.01 ± 1.21 × 1014

-111.7 20.6 2.47 ± 0.95 × 1014 3.49 ± 0.74 × 1014 ... 2.40 ± 1.40 × 1014

-85.4 7.0 ... 2.32 ± 1.78 × 1012 2.64 ± 0.95 × 1012 ...
-71.0 7.8 ... 7.94 ± 1.72 × 1012 ... 9.82 ± 8.99 × 1013

-50.7 11.0 ... 2.72 ± 0.79 × 1013 ... ...
-30.8 6.5 ... 3.85 ± 0.97 × 1012 ... ...

Vel beff NCII NPII NNII NNI NOI

-227.6 17.0 > 3.48 × 1013 8.88 ± 5.37 × 1012 8.35 ± 2.31 × 1013 8.02 ± 4.83 × 1012 3.57 ± 2.50 × 1014

-180.2 24.7 > 6.40 × 1014 ... 2.17 ± 0.59 × 1014 9.40 ± 8.53 × 1012 ...
-145.7 19.1 > 4.14 × 1014 ... 2.89 ± 0.99 × 1014 4.17 ± 1.85 × 1013 ...
-111.7 20.6 > 4.61 × 1014 1.24 ± 0.61 × 1013 3.35 ± 1.23 × 1014 1.12 ± 0.24 × 1014 > 2.35 × 1015

-85.4 7.0 > 1.50 × 1014 ... 2.83 ± 2.22 × 1013 ... 3.48 ± 3.14 × 1014

-71.0 7.8 > 9.81 × 1013 ... 2.08 ± 0.94 × 1013 8.41 ± 4.04 × 1012 ...
-50.7 11.0 > 1.23 × 1014 5.76 ± 4.38 × 1012 9.79 ± 3.05 × 1013 5.02 ± 4.18 × 1012 ...
-30.8 6.5 7.07 ± 6.74 × 1013 ... 2.27 ± 0.82 × 1013 ... ...
-16.6 12.3 6.50 ± 3.43 × 1013 .. ... ... ...
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Table 3.8 Same as Table 3.7, but for higher ions in the zabs=0.1602 absorber with log NHI=19.48 toward Q0154+0448.
Vel beff NSIII NSiIII NNV NOV I

-366.0 25.7 ... 8.25 ± 0.75 × 1012 9.30 ± 3.37 × 1012 1.93 ± 1.06 × 1013

-301.9 12.6 ... 3.51 ± 0.49 × 1012 5.37 ± 2.41 × 1012 2.55 ± 0.93 × 1013

-259.6 10.7 ... 1.76 ± 0.40 × 1012 9.13 ± 2.48 × 1012 2.27 ± 0.93 × 1013

-227.6 17.0 < 4.51 × 1013 > 2.05 × 1013 2.39 ± 0.35 × 1013 9.68 ± 2.24 × 1013

-180.2 24.7 < 1.68 × 1014 > 4.38 × 1013 3.38 ± 0.44 × 1013 > 3.40 × 1014

-145.7 19.1 < 1.94 × 1014 > 2.86 × 1013 1.52 ± 0.38 × 1013 > 1.79 × 1014

-111.7 20.6 < 3.46 × 1013
> 3.57 × 1013 2.36 ± 0.38 × 1013

> 2.66 × 1014

-85.4 7.0 < 1.38 × 1014 > 1.19 × 1013 5.72 ± 2.23 × 1012 > 5.47 × 1013

-71.0 7.8 < 3.65 × 1014 > 1.27 × 1013 6.04 ± 2.20 × 1012 5.91 ± 2.62 × 1013

-50.7 11.0 < 3.36 × 1014 > 2.35 × 1013 1.01 ± 0.26 × 1013 1.20 ± 0.38 × 1014

-30.8 6.5 < 4.97 × 1013 > 2.52 × 1012 5.38 ± 2.15 × 1012 4.35 ± 2.42 × 1013

-16.6 12.3 ... 2.75 ± 0.58 × 1012 5.51 ± 2.68 × 1012 6.42 ± 2.20 × 1013

10.9 18.0 ... 6.56 ± 0.75 × 1012 3.61 ± 2.86 × 1012 8.29 ± 2.03 × 1013

54.4 26.1 ... ... 3.57 ± 3.31 × 1012 1.03 ± 0.19 × 1014

93.3 11.0 ... ... 2.52 ± 2.19 × 1012 2.17 ± 0.96 × 1013
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Table 3.9 Same as Table 3.2, but for the zabs=0.1012 absorber with log NHI=19.63 toward Q0441+4313.
Vel beff NSII NSiII NSiII∗ NFeII

-125.1 28.1 ... 2.02 ± 0.38 × 1013 8.07 ± 4.93 × 1011 9.81 ± 2.11 × 1013

-66.7 27.9 4.81 ± 0.57 × 1014
> 1.81 × 1014 5.62 ± 0.64 × 1012 2.73 ± 0.43 × 1014

-4.1 22.4 5.87 ± 0.59 × 1014 > 1.22 × 1014 7.99 ± 4.38 × 1011 3.55 ± 0.45 × 1014

50.2 16.4 ... 1.21 ± 0.26 × 1013 ... 5.84 ± 0.88 × 1013

153.1 42.5 ... 4.70 ± 0.72 × 1013 2.99 ± 0.63 × 1012 ...
173.2 14.8 ... 8.52 ± 6.18 × 1012 ... 5.28 ± 0.84 × 1013

218.4 18.0 ... 1.57 ± 0.38 × 1013 ... ...
253.2 25.4 ... 1.27 ± 0.28 × 1013 ... ...

v1 b1
eff NPII NNII NArI NNI NMnII

-125.1 28.1 ... 2.30 ± 0.22 × 1014 ... 8.68 ± 1.14 × 1013 2.13 ± 0.94 × 1013

-66.7 27.9 9.33 ± 2.42 × 1012 1.79 ± 0.66 × 1015 ... 3.53 ± 0.47 × 1014 9.13 ± 8.25 × 1012

-4.1 22.4 1.36 ± 0.24 × 1013 5.04 ± 0.70 × 1014 1.86 ± 0.64 × 1013 3.23 ± 0.52 × 1014 1.41 ± 0.80 × 1013

50.2 16.4 ... 6.38 ± 0.77 × 1013 ... ... ...
153.1 42.5 ... 4.45 ± 0.28 × 1014 ... 1.05 ± 0.16 × 1014 ...
173.2 14.8 ... 4.33 ± 1.06 × 1013 ... ... ...
218.4 18.0 ... 1.04 ± 0.14 × 1014 ... 1.83 ± 1.47 × 1013 1.55 ± 0.87 × 1013

253.2 25.4 ... 2.31 ± 1.07 × 1013 ... 1.01 ± 1.18 × 1013 3.02 ± 1.09 × 1013
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Table 3.10 Same as Table 3.9, but for higher ions in the zabs=0.1012 absorber with
log NHI=19.63 toward Q0441+4313.

Vel beff NSIII NFeIII NNV NOV I

-125.1 28.1 < 6.64 × 1013 4.47 ± 1.77 × 1013 3.17 ± 0.40 × 1013 1.99 ± 0.44 × 1014

-66.7 27.9 < 3.13 × 1014 2.02 ± 0.20 × 1014 ... ...
-45.4 12.8 ... 1.09 ± 0.20 × 1014 5.34 ± 0.48 × 1013 3.92 ± 1.06 × 1014

-4.1 22.4 < 1.23 × 1015 4.09 ± 0.36 × 1014 ... ...
18.6 22.4 ... ... 3.40 ± 0.39 × 1013 2.23 ± 0.58 × 1014

50.2 16.4 < 5.99 × 1014 1.29 ± 0.15 × 1014 ... ...
74.2 16.4 ... ... 1.22 ± 0.29 × 1013 5.64 ± 2.14 × 1013

137.3 42.5 ... ... 3.73 ± 0.51 × 1013 1.92 ± 0.41 × 1014

153.1 42.5 < 1.10 × 1014 ... ... ...
173.2 14.8 ... 3.41 ± 0.96 × 1013 4.68 ± 3.09 × 1012 5.00 ± 3.17 × 1013

218.4 18.0 ... ... 2.49 ± 0.38 × 1013 8.97 ± 3.42 × 1013

253.2 25.4 < 9.95 × 1013 ... 1.55 ± 0.36 × 1013 7.54 ± 2.41 × 1013

Table 3.11 Same as Table 3.2, but for the z = 0.4744 sub-DLA toward Q0456-2159.
Vel beff NSII NSiII NCII

-71.5 20.8 2.41 ± 0.35 × 1014
> 1.41 × 1013

> 8.98 × 1013

-39.0 10.9 1.59 ± 0.28 × 1014 > 2.08 × 1013 > 2.73 × 1014

-10.3 11.8 3.14 ± 0.32 × 1014 > 5.21 × 1013 > 1.83 × 1014

20.2 16.0 2.75 ± 0.34 × 1014 > 2.92 × 1013 > 2.09 × 1014

44.8 8.2 ... > 1.86 × 1013 > 7.58 × 1013

73.9 13.8 9.77 ± 2.82 × 1013 > 1.34 × 1013 > 1.41 × 1014

102.5 14.3 ... > 3.35 × 1012 > 2.37 × 1013

Vel beff NNI NNiII NSIII

-71.5 20.8 ... ... < 1.10 × 1014

-39.0 10.9 ... 6.51 ± 3.44 × 1012 < 7.46 × 1013

-10.3 11.8 3.92 ± 2.02 × 1013 1.63 ± 0.39 × 1013
< 1.42 × 1014

20.2 16.0 1.64 ± 1.56 × 1013 8.53 ± 3.71 × 1012 < 2.74 × 1014

44.8 8.2 ... 4.46 ± 3.64 × 1012 < 2.01 × 1014

73.9 13.8 ... 6.24 ± 4.29 × 1012 < 5.15 × 1014

102.5 14.3 ... 6.48 ± 3.45 × 1012 < 1.96 × 1014

Table 3.12 Same as Table 3.2, but for the z = 0.4297 sub-DLA toward Q2131-1207.
Vel beff NSII NSiII NCII NSIII

-0.3 23.6 ... 8.26 ± 0.58 × 1012 7.47 ± 0.73 × 1013 ...
24.0 8.2 ... 2.29 ± 0.65 × 1012 5.23 ± 1.30 × 1013 ...
40.4 13.7 1.52 ± 0.28 × 1014 7.02 ± 0.77 × 1012 5.33 ± 0.85 × 1013 < 6.86 × 1013

65.5 17.7 ... 2.57 ± 0.40 × 1012 2.26 ± 0.52 × 1013 < 7.68 × 1013

103.9 22.1 4.98 ± 2.95 × 1013 2.59 ± 0.37 × 1012 2.91 ± 0.45 × 1013 < 2.55 × 1014
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Table 3.13 Total column densities for the absorbers in the MIKE sample. Cells with “...” entries represent undetermined column
densities.

QSO zabs log NHI log NMgI log NMgII log NAlII log NAlIII log NCII log NCII∗ log NCIV log NSII

cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2

Q1039-2719 2.139 19.55±0.15 13.02±0.09 >15.49 >13.88 13.53±0.02 >15.78 >13.35 ... 14.76±0.03

AOD 12.98±0.01 >15.16 >13.66 13.52±0.01 >15.08 14.75±0.04

Q1103-2645 1.839 19.52±0.04 11.86±0.05 >14.08 ... 12.74±0.07 >15.01 >12.93 ... 13.89±0.17

AOD 11.84±0.05 >13.79 12.64±0.06 >14.69 >12.30 13.73±0.14

Q1311-0120 1.762 20.00±0.08 12.27±0.04 >14.55 >13.03 <11.85 ... ... ... ...

AOD 12.25±0.14 >14.15 >12.90

Q1551+0908 2.320 19.70±0.05 ... ... 12.55±0.02 12.05±0.08 >14.87 <12.17 13.81±0.02 14.43±0.09

AOD 12.53±0.01 12.14±0.13 >14.51 13.77±0.03 14.47±0.07

Q2123-0050 2.058 19.35±0.10 12.74±0.01 >14.50 >15.24 13.45±0.07 >15.99 >13.82 >14.62 15.05±0.02

AOD 12.72±0.01 >14.27 >13.47 13.14±0.02 >15.16 >13.80 >14.57 15.01±0.04

QSO zabs log NHI log NSiII log NSiIII log NSiIV log NCrII log NMnII log NNiII log NFeII log NZnII

cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2 cm−2

Q1039-2719 2.139 19.55±0.15 15.30±0.03 >14.48 >14.50 13.07±0.04 12.48±0.06 13.79±0.04 14.72±0.04 12.16±0.07

AOD 15.31±0.05 >14.30 >14.50 12.99±0.07 12.54±0.06 13.75±0.07 14.74±0.02 12.40±0.08

Q1103-2645 1.839 19.52±0.04 14.07±0.02 >14.64 13.84±0.01 <11.91 <12.46 <12.34 13.54±0.02 <11.33

AOD 14.00±0.01 >14.12 13.82±0.01 <12.37 13.52±0.04

Q1311-0120 1.762 20.00±0.08 >14.38 ... ... 12.94±0.12 <11.65 ... 14.23±0.35 >12.57

AOD >14.26 12.87±0.09 14.09±0.06 >12.75

Q1551+0908 2.320 19.70±0.05 13.91±0.04 13.34±0.01 <12.15 <11.40 13.01±0.32 13.56±0.05 <11.38

AOD 13.97±0.02 >13.69 13.31±0.02 13.11±0.04 13.57±0.07

Q2123-0050 2.058 19.35±0.10 14.89±0.06 >14.72 >13.99 <11.90 12.11±0.08 13.12±0.08 14.09±0.01 12.23±0.06

AOD 14.85±0.06 >14.15 >13.95 12.04±0.06 13.01±0.10 14.01±0.01 12.44±0.06
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Table 3.14 Total Column Densities for the z = 0.1602 absorber toward Q0154+0448.

Ion log Nfit log NAOD

H I 19.48 ± 0.10 ...
S II 14.84 ± 0.11 14.81 ± 0.07
S III < 15.12 ...
Si II 15.05 ± 0.05 15.13 ± 0.07
Si II* 12.42 ± 0.16 12.41 ± 0.14
Si III > 14.31 > 14.27
Fe II 14.76 ± 0.18 14.77 ± 0.15
Mn II < 12.58 ...
C II > 15.31 > 15.28
P II 13.43 ± 0.15 13.60 ± 0.16
N I 14.27 ± 0.08 ...
N II 15.04 ± 0.07 15.04 ± 0.01
N V 14.21 ± 0.03 14.25 ± 0.13
O I > 15.48 > 15.51

O VI > 15.18 > 15.20

Table 3.15 Total Column Densities for the z = 0.1012 absorber toward Q0441+4313.

Ion log Nfit log NAOD

H I 19.63 ± 0.15 ...
S II 15.03 ± 0.03 15.02 ± 0.06
S III < 15.38 ...
Si II > 14.62 > 14.54
Si II* 13.01 ± 0.05 13.04 ± 0.12
Fe II 14.92 ± 0.03 14.83 ± 0.06
Fe III 14.97 ± 0.02 15.05 ± 0.04
Mn II 13.65 ± 0.15 13.75 ± 0.11
P II 13.36 ± 0.06 13.43 ± 0.14
Ar I 13.27 ± 0.15 13.19 ± 0.13
N I 14.95 ± 0.04 ...
N II > 15.51 > 15.41
N V 14.33 ± 0.02 14.34 ± 0.06
O VI 15.11 ± 0.05 15.14 ± 0.03
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Table 3.16 Total Column Densities for the z = 0.4744 absorber toward Q0456-2159.

Ion log Nfit log NAOD

H I 19.45 ± 0.02 ...
S II 15.04 ± 0.03 14.98 ± 0.05
S III < 15.18 ...
Si II > 14.18 > 14.13
Si II∗ < 11.86
C II > 15.00 > 14.92
C II∗ < 12.57
N I 13.75 ± 0.20 13.75 ± 0.04
Ni II 13.69 ± 0.08 13.63 ± 0.07

Table 3.17 Total Column Densities for the z = 0.4297 Absorber toward Q2131-1207.

Ion log Nfit log NAOD

H I 19.18 ± 0.03 ...
S II 14.31 ± 0.09 14.34 ± 0.10
S III < 14.60 ...
Si II 13.36 ± 0.02 13.35 ± 0.01
C II 14.37 ± 0.03 14.36 ± 0.02
C II∗ < 12.85 ...
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Table 3.18 Rest-frame equivalent widths of key metal lines from the MIKE sample. Measured values and 1σ errors are in mÅ
units.

QSO zabs Mg I Mg II Mg II Al II Al III Al III S II S II S II Si II Si II

2852 2796 2803 1670 1854 1862 1250 1253 1259 1526 1808

Q1039-2719 2.139 749±11 1527±54 1365±66 572±14 <933b 212±8 39±4 <111b 103±3 529±16 108±12

Q1103-2645 1.839 86±10 1034±10 768±12 ... 67±10 ... 6±3 <42b 12±4 213±5 <5

Q1311-0120 1.762 213±73 2230±53 1601±53 ... <12 <12 ... ... ... >306a ...

Q1551+0908 2.320 ... ... ... 114±3 23±7 ... 21±3 ... ... 120±10 5±2

Q2123-0050 2.058 527±16 1946±6 1655±6 654±10 197±12 103±13 70±6 196±10 ... 546±9 40±6

QSO zabs Cr II Mn II Mn II Mn II Fe II Fe II Fe II Fe II Fe II Zn IIc Zn IId

2056 2576 2594 2606 2344 2374 2382 2586 2600 2026 2062

Q1039-2719 2.139 36±6 70±9 ... <113b 568±5 414±15 747±15 575±13 1478±244 48±12 23±4

Q1103-2645 1.839 <3 <46b <21b <6 139±6 56±12 327±9 124±10 303±7 <4 <3

Q1311-0120 1.762 25±5 <10 <93b ... 384±49 154±25 766±53 305±53 <1281b >94 >26

Q1551+0908 2.320 <6 <5 ... ... 129±5 44±4 250±10 193±9 273±7 <4 <4

Q2123-0050 2.058 <3 23±3 <4 15±6 445±8 221±72 862±216 328±20 772±16 47±6 21±18

aThis line is partially blended with Lyα forest lines. bThis line is blended with another feature. cThis line is blended with Mg I λ 2026. Therefore,
the measured value represents the total equivalent width of the blend. However, the Mg I contribution is judged to be insignificant in all cases.
dSince this line is blended with the Cr II λ 2062 line, the measured value represents the total equivalent width of the blended feature.
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Table 3.19 Rest-frame equivalent widths of key metal lines from the HST COS sample. Measured values and 1σ errors are in
mÅ units.

QSO zabs C II C II N I N II N V N V O I O VI Ar I

1036 1334 1199 1084 1239 1243 1039 1032 1048

Q0154+0448 0.1602 677 ± 36 ... ... 569 ± 14 301 ± 98 174 ± 87 171 ± 57 929 ± 128 ...

Q0441+4313 0.1012 ... ... ... 1094± 23 388 ± 55 ... ... 888 ± 52 33 ± 10

Q0456-2159 0.4744 ... 727 ± 13 78 ± 8 ... ... ... ... ... ...

Q2131-1207 0.4297 ... 310 ± 13 ... ... ... ... ... ... ...

QSO zabs Si II Si II Si II Si II* Si III P II S II S II S II

1021 1193 1260 1265 1207 1153 1250 1253 1259

Q0154+0448 0.1602 162 ± 24 690 ± 12 838 ± 15 30 ± 11 1192± 28 97 ± 38 ... ... 122 ± 19

Q0441+4313 0.1012 ... 1039± 30 1279 ± 22 136 ± 42 ... 67 ± 22 77 ± 18 131 ± 16 177 ± 15

Q0456-2159 0.4744 ... 534 ± 14 747 ± 7 ... ... ... 68 ± 8 ... 111 ± 4

Q2131-1207 0.4297 ... ... 266 ± 6 ... ... ... ... 32± 7 36 ± 6

QSO zabs Mn II Fe II Fe II Fe II Fe II Fe II Fe II Fe III Ni II

1197 1082 1097 1112 1125 1143 1145 1123 1317

Q0154+0448 0.1602 < 10 65 ± 23 ... 137 ± 13 ... ... ... ...

Q0441+4313 0.1012 127 ± 35 ... ... ... 136 ± 30 124 ± 15 713 ± 23 490 ± 51 ...

Q0456-2159 0.4744 ... ... ... ... ... ... ... ... 47± 8

Q2131-1207 0.4297 ... ... ... ... ... ... ... ... ...
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Table 3.20 Observed element abundances relative to Solar and abundance ratios for the systems in the MIKE sample. Abundance
estimates are based on the dominant metal ionization state and H I. The solar value of the ratios are given in the first row.

QSO zabs log NHI [Zn/H] [S/H] [Fe/H] [S/Zn] [Zn/Fe] [Si/Fe] [Cr/Fe]

log (X/Y)⊙ −7.44 −4.88 −4.50 +2.56 −2.94 +0.01 −1.86

Q1039-2719 2.139 19.55±0.15 −0.02±0.17 +0.02±0.15 −0.30±0.16 +0.04±0.08 +0.28±0.08 +0.51±0.05 +0.17±0.05

Q1103-2645 1.839 19.52±0.04 <−0.82 −0.82±0.19 −1.45±0.04 >+0.01 <+0.62 +0.46±0.03 <+0.19

Q1311-0120 1.762 20.00±0.08 >−0.06 ... −1.24±0.09 ... >+1.18 >+0.08 +0.53±0.13

Q1551+0908 2.320 19.70±0.05 <−0.95 −0.46±0.10 −1.61±0.07 >+0.49 <+0.66 +0.28±0.06 <+0.41

Q2123-0050 2.058 19.35±0.10 +0.25±0.12 +0.51±0.10 −0.73±0.10 +0.26±0.06 +0.98±0.06 +0.73±0.06 <−0.38

QSO zabs log NHI [Mn/Fe] Al III/Al IIa Fe II/Al IIIa Mg II/Al IIIa Mg II/Mg Ia Si III/Si IIa Si IV/Si IIa

log (X/Y)⊙ −2.07

Q1039-2719 2.139 19.55±0.15 −0.27±0.07 <−0.35 +1.20±0.04 >+1.97 >+2.48 >−1.01 >−0.81

Q1103-2645 1.839 19.52±0.04 <+0.89 ... +0.90±0.06 >+1.44 >+2.22 >+0.05 −0.23±0.02

Q1311-0120 1.762 20.00±0.08 <−0.61 <−1.05 >+2.38 >+2.70 >+2.28 ... ...

Q1551+0908 2.320 19.70±0.05 <−0.19 −0.41±0.14 +1.42±0.14 ... ... >−0.23 −0.58±0.04

Q2123-0050 2.058 19.35±0.10 −0.01±0.08 <−0.01 +0.64±0.07 >+0.82 >+1.53 >−0.73 >−0.89
aRatio of column densities.
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Table 3.21 Observed element abundances relative to Solar for the systems in the HST
COS sample. Abundance estimates are based on the dominant metal ionization state
and H I.

QSO zabs log NHI Element [X/H]

(cm−2)

Q0154+0448 0.1602 19.48 ± 0.10 S 0.22 ± 0.15

Si 0.06 ± 0.11

Fe −0.17 ± 0.21

P 0.59 ± 0.18

C > −0.56

N −0.99 ± 0.13

O > −0.66

Q0441+4313 0.1012 19.63 ± 0.15 S 0.26 ± 0.15

Si > −0.52

Fe −0.16 ± 0.15

Mn 0.63 ± 0.21

P 0.37 ± 0.16

Ar −0.54 ± 0.21

N −0.46 ± 0.16

Q0456-2159 0.4744 19.45 ± 0.03 S 0.45 ± 0.04

Si > −0.78

C > −0.84

N −1.48 ± 0.20

Ni 0.01 ± 0.08

Q2131-1207 0.4297 19.18 ± 0.03 S −0.01 ± 0.09

Si −1.33 ± 0.04

C −1.20 ± 0.04
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CHAPTER 4

Discussion

The results from our observations presented in Chapter 3 are discussed here in the

context of sub-DLA properties in general. Combining our data with those from the

literature, we shall explore the nature of sub-DLAs in contrast with the DLAs, and

discuss the implications of the observed trends for understanding the chemical and

kinematic properties of the galaxies traced by these systems.

4.1 Abundance Patterns

As shown in Tables 3.20 and 3.21, for most of the sub-DLAs in our observed sample,

the measured abundance of the primary metallicity indicator Zn or S was found to

be near-solar or super-solar. Zn was detected in three of the sub-DLA absorbers in

our high-z sample, and for the rest of the systems we place 3σ upper limits on the Zn

abundance. All of the absorbers, for which Zn was detected, were found to be metal-

rich ([Zn/H] = −0.02 for Q1039-2719 at zabs = 2.139; > −0.06 for Q1311-0120 at

zabs = 1.762 and +0.25 for Q2123-0050 at zabs = 2.058). These absorbers are among

the most metal-rich sub-DLAs at z & 1 and are the only near-solar or super-solar

metallicity sub-DLA QSO absorbers at z & 2. The Zn abundance upper limits for

Q1103-2645 (zabs = 1.839) and Q1551+0908 (zabs = 2.320) place their metallicities
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at < −0.82 and < −0.95, respectively. Sulphur was detected in these two systems and

their metallicities based on S abundances are −0.82 (for Q1103-2645) and −0.46 (for

Q1551+0908). All of the absorbers in our low-z sample were found to be metal-rich

based on their S abundances. With [S/H] = 0.45, the sub-DLA at z = 0.4744 towards

Q0456-2159 is the highest metallicity quasar absorption line system discovered so far

at z < 0.6. The systems towards Q0441+4313, Q0154+0448 and Q2131-1207 (at z =

0.1012, 0.1602, 0.4297; with [S/H] = 0.26, 0.22, −0.01, respectively), along with the

one towards Q0456-2159 are the only near-solar or super-solar metallicity sub-DLAs

in this redshift regime.

In addition to the metallicities, abundance ratios such as [Fe/Zn], [Mn/Fe], [S/Zn],

[N/S] have been determined from the column densities of various elements detected in

these absorbers. Abundance ratios in the interstellar gas are affected by dust deple-

tion and nucleosynthetic differences, and therefore, provide important clues regarding

dust content, nucleosynthetic processes and star formation history in the ISM of the

absorber galaxies. The remainder of this section discusses various abundance ratios

derived from our data and compares them with the overall trends seen previously in

DLAs and sub-DLAs.

4.1.1 Dust Depletion

Depletion of refractory elements into dust grains affects the abundances of these el-

ements relative to non-refractory elements, and the amount of dust depletion can be

estimated from the abundance ratio between a pair of refractory and non-refractory

elements provided there is no difference between their nucleosynthetic yields. The

abundances of the iron peak elements (Cr, Fe, Ni, Zn) are found to match each

other closely over a wide range of metallicities (−2 < Z < 0) in Milky Way stars

(Chen et al., 2000; Reddy, Lambert & Prieto, 2006), suggesting that they have lit-

tle or no nucleosynthetic differences among them. Therefore, in absence of dust

97



grains, abundance ratios of these elements should be very close to the solar level, i.e.,

[Zn/Cr]∼[Fe/Zn]∼[Ni/Fe]∼0. However, Fe and Cr have much higher condensation

temperatures compared to Zn, and in the typical ISM environment, are much more

likely to condense out of the gas phase and into dust grains. Observational evidence

for the depletion of Fe and Cr can be found in Milky Way’s ISM (see Figure 2.5)

where Fe and Cr are found to be less abundant compared to Zn by ∼ 1−2 dex. This

suggests that only ∼ 1 − 10% of these elements may remain in gas phase while the

rest gets locked in dust grains. Therefore, the ratios [Fe/Zn] and [Cr/Zn] can be used

to estimate the depletion level in the ISM of absorber galaxies.

An anti-correlation between [Cr/Zn] and [Zn/H] in DLAs has been reported in

previous studies (Pettini et al., 1997; Prochaska et al., 2002; Akerman et al., 2005)

suggesting that the level of depletion increases with rising metallicity in the absorbing

gas. This is expected given that dust grains are composed of the atoms and ions

of metals. We have explored the variation of [Fe/Zn] with [Zn/H] by combining

data from our high-z sample with measurements for DLAs and sub-DLAs from the

literature and the results are plotted on Figure 4.1. Only measurements based on

Fe and Zn detections were considered for clarity. Our results show that, similar to

the [Cr/Zn] vs. [Zn/H] trend, an anti-correlation exists between [Fe/Zn] and [Zn/H]

as well. A Spearman rank-order correlation test on the data reveals the Spearman

rank-order coefficient ρs to be −0.57 while the probability that this coefficient can

be obtained by chance is P(rS) < 0.001. Kendall’s τ for our data was found to be

τ = −0.81 with the probability of no correlation being < 0.001. Our findings are

found to be consistent with a similar trend reported by Meiring et al. (2009b).

In the absence of Zn in the low-z sub-DLAs, we estimated depletion based on

the abundance ratios between S and other detected elements since S, like Zn, is

also nearly undepleted in typical ISM environments. However, unlike [Fe/Zn], [Fe/S]

alone can not be used to determine depletion as this ratio can also be affected by α/Fe
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Figure 4.1 [Fe/Zn] vs. [Zn/H] for DLAs and sub-DLAs.

enhancement. Instead, we used ratios such as [C/S] or [Si/S] to estimated depletion

in these systems. In the absorber toward Q2131-1207, the abundances of both C and

Si are considerably sub-solar compared to S. This does not appear to be an ionization

or saturation effect, and may suggest significant dust depletion in this absorber. In

the absorbers toward Q0154+0448 and Q0441+4313, Fe is mildly under-abundant

with respect to S, suggestive of modest dust depletion or α/Fe enhancement. In the

absorber toward Q0456-2159, combining our results with Mg and Fe abundances from

the literature suggests that dust depletion is not important, and that there may be

nucleosynthetic α/Fe enhancement. We have detected P in two of the low-z sub-DLAs

and P being weakly depleted, the abundance ratio between S and P should be free

from depletion effects. This allows us an opportunity to investigate nucleosynthetic
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differences between S and P. We measured [S/P] = −0.23 ± 0.23 in the absorber

toward Q0154+0448 and −0.03 ± 0.22 in the absorber toward Q0441+4313. The S

and P abundances are thus consistent with being in the solar ratio. This is roughly

similar to the finding of Battisti et al. (2012), who reported [S/P] = 0.19 ± 0.16 and

0.19 ± 0.21 for two other sub-DLAs at z < 0.3. Thus, our values do not suggest a

profound odd-even effect between these two elements.

4.1.2 Manganese to Iron Ratio

With the condensation temperatures of Mn and Fe being similar, the abundance

ratio between these two elements is expected to be primarily governed by differences

in their nucleosynthesis. The Mn abundance shows a strong metallicity dependence

in Milky Way stars. [Mn/Fe] is found to be correlated with [Fe/H] in the sense that

[Mn/Fe] increases with increasing [Fe/H] (e.g., Nissen et al. 2000; McWilliam et al.

2003; Gratton et al. 2004). This may suggest that Mn is produced primarily in Type

Ia supernovae and the nucleosynthetic yield of Mn is higher than that of Fe in these

explosions. As much as ∼ 75% of Mn could be produced in Type 1a supernovae

explosions (Samland, 1998). We note that an opposite trend is seen between [α/Fe]

and [Fe/H] in Milky way stars in the sense that [α/Fe] decreases with increasing

[Fe/H]. As discussed in section 1.2, this α-enhancement in metal-poor gas suggests

that Type II supernovae are the primary producers of α-elements while the majority

of Fe is produced in Type Ia explosions. Since the abundance ratio between Mn and

Fe is much less affected by differential depletion than [Si/H], the most widely used

[α/Fe] indicator, [Mn/Fe] vs. [Fe/H] can be used as a proxy for [α/Fe] vs. [Fe/H] to

understand the star formation history of the ISM.

A trend (similar to the one seen between [Mn/Fe] and [Fe/H] in Milky Way’s

stars) between [Mn/Fe] and [Zn/H] was reported to be present in DLAs and sub-

DLAs by previous studies (e.g., Meiring et al. 2009b). To explore this further, we
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have combined the [Mn/Fe] versus [Zn/H] data for the high-z absorbers observed

by us with the data for DLAs and sub-DLAs taken from the literature, and plotted

the combined sample in Figure 4.2. Data from Reddy, Lambert & Prieto (2006) for

Milky Way stars and the interstellar abundance data for the Small Magellanic Cloud

(SMC) from Welty et al. (2001) are also shown overlayed on the same plot. The

trend of increasing [Mn/Fe] with increasing [Zn/H], seen in the Milky Way stars, is

clearly present in the absorber galaxies as well. Kendall’s τ for the complete absorber

sample (DLA + Sub-DLA) was determined to be τ = 0.724 with the probability of

no correlation being 0.002. A Spearman rank correlation test gave the correlation

coefficient ρs = 0.521 with the probability of no correlation of 0.006. Although the

absorber sample shows a general correlation, the dispersion in the absorber data is

larger compared to the stellar sample from Reddy, Lambert & Prieto (2006). The fact

that galaxies detected through absorption represent various morphological types is

likely to cause this dispersion with additional contribution from differential depletion

onto dust grains between Mn and Fe. To explore this further, Kendall’s τ for the DLA

sample alone was determined to be τ = 0.917 (with a probability of no correlation

being 0.006), while τ = 0.872 for the sub-DLAs with a probability of obtaining this

value by chance being 0.026. There seems to be evidence for different [Mn/Fe] versus

[Zn/H] trends between DLAs and sub-DLAs. While the DLA measurements are

similar to the interstellar abundance data from the SMC, the sub-DLA data bear

resemblance with the Mn and Fe abundance pattern seen in the Galactic bulge stars

(see e.g, McWilliam et al. 2003). The linear regression slopes for the [Mn/Fe] vs.

[Zn/H] data, being 0.12± 0.04 and 0.27± 0.03 for DLAs and sub-DLAs, respectively,

differ at ∼ 3 σ level. However, larger samples are needed to confirm this difference.

A difference in the [Mn/Fe] vs. [Zn/H] relations for DLAs and sub-DLAs may suggest

a difference in the stellar populations in these two classes of absorbers.

For the z = 0.1012 absorber toward Q0441+4313, [Mn/H] appears to be super-
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Figure 4.2 [Mn/Fe] vs. [Zn/H] for the sub-DLAs from this sample, as well as for sub-
DLAs and DLAs from the literature. Milky Way stellar abundance data from Reddy,
Lambert & Prieto (2006) are shown overplotted. Also shown are the interstellar
abundance data for SMC from Welty et al. (2001).

solar and this system shows [Mn/Fe] = 0.79 ± 0.15. Although we did not include

this measurement in the analysis described above as the metallicity is based on S, it

resembles the high [Mn/Fe] values seen in higher redshift metal-rich sub-DLAs and is

consistent with the [Mn/Fe] vs. metallicity trend for sub-DLAs that is steeper than

that for DLAs.

4.1.3 Nitrogen Abundances

The abundance of N relative to O or other α-elements in DLAs/sub-DLAs is of great

interest because it can provide insights into the nucleosynthetic production of N. It is
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believed that N is produced through both a primary process from C synthesized in the

star itself, and a secondary process involving C and O from previous star formation

(i.e., from C and O inherited by the star from the interstellar medium that it formed

out of). Primary N is believed to be produced in mainly intermediate-mass stars,

while secondary N production can occur in stars of all masses. The α-elements are

believed to be produced predominantly in high-mass stars. The primary component is

expected to dominate at low metallicities, while the secondary component is expected

to dominate at high metallicities. Indeed, the ratio [N/α] observed in H II regions can

be accounted for by primary N production in nearby low-luminosity galaxies (e.g.,

Van Zee & Haynes 2006) or blue compact dwarf galaxies (Izotov & Thuan, 2004),

and by secondary N production in the more metal-rich nearby spiral galaxies (e.g.,

Van Zee et al. 1998).

In all three sub-DLAs where our data covered lines of N (see Table 3.21), the

measured abundance of N is found to be much lower than that of S, with [N/S] ranging

between -1.94 and -0.72 dex. This finding is similar to, but even more extreme than,

that of Battisti et al. (2012), who found [N/S] between -1.12 and -0.58 dex for the sub-

DLAs in their sample. For these high-metallicity absorbers, the observed [N/S] values

lie much below the level expected from secondary N production. Part of this deficit in

[N/α] could, in principle, arise from ionization effects but photoionization modelling

for these absorbers (see section 4.2) find the ionization corrections to be insufficient

to explain the observed low abundances. In general, the [N/α] vs. [α/H] data for sub-

DLAs at z < 0.5 (from our work and Battisti et al. 2012) appear distinct from those

for sub-DLAs at z > 2 (from Zafar et al. 2014). Our findings may suggest a different

nucleosynthetic origin for N in these low redshift absorbers. Indeed, a tertiary N

production mechanism has been suggested (e.g, Henry et al. 2000). Alternately, the

low [N/α] values may simply represent the lower end of the scatter around the mean

trend expected for secondary N production, possibly arising due to a delay in the
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release of the secondary N (e.g., Vila-Costas & Edmunds 1993).

4.2 Ionization Corrections

The gas in the high H I column density absorbers is usually expected to be largely

neutral due to the self-shielding of photons with hν > 13.6 eV. Zn and S in these sys-

tems are expected to be predominantly singly ionized. Consequently, the metallicities

reported for such high NHI absorbers are estimated from NZnII/NHI or NSII/NHI ra-

tios.1 For absorbers with lower NHI , such estimates may not be correct if they have

non-negligible contributions from higher ionization stages. Several studies investigat-

ing the effect of ionization in DLAs (e.g., Howk & Sembach 1999; Vladilo et al. 2001;

Prochaska et al. 2002) have found that in most cases the ionization correction factor,

defined here as

ǫ = [X/H]total − [X+/H0], (4.1)

where [X/H]total include contributions from all ionization stages, is . 0.2 dex for

most elements. Sub-DLA systems, by virtue of lower H I in them, might be expected

to show higher level of ionization. However, it has previously been shown that the

ionization corrections are, in general, small for the sub-DLA systems as well (e.g.,

Dessauges-Zavadsky et al. 2003; Meiring et al. 2007, 2008).

To estimate the effect of ionization on the sub-DLA abundances presented here,

we carried out photoionization modelling of these systems using version 13.01 of the

CLOUDY photoionization code (Ferland et al., 2013). The models were generated

assuming that the ionizing radiation incident on the gas cloud is a combination of

extragalactic UV background and a radiation field produced by O/B type stars. The

1For an element X, X II is the spectroscopic convention for representing X+, while H I represents
H0.
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extragalactic UV background is adopted from Haardt & Madau (1996) and Madau,

Haardt, & Rees (1999), evaluated at the redshift of the absorber. The O/B type

stellar radiation field is based on a Kurucz model stellar spectrum for a temperature

of 30,000 K. These radiation fields were mixed in equal parts to generate the incident

radiation field. It has been suggested that the contribution from local sources to

the ionization of DLA systems may not be negligible in comparison with the back-

ground ionizing radiation (Schaye 2006). In addition, we also include the cosmic

microwave background at the appropriate redshift of the absorber, and the cosmic

ray background in our simulation. We note however, that radiation from local shocks

originating from white dwarfs compact binary systems or supernovae was not in-

cluded in our models. For each of our absorbers, grids of photoionization models

were produced by varying the ionization parameter, defined as

U =
nγ

nH
=

Φ912

cnH
(4.2)

(where nH is the density of hydrogen, nγ is the density photons capable of ionizing

hydrogen, and Φ912 is the flux of radiation with hν > 13.6 eV), from 10−6 to 1. The

models assumed the solar abundance pattern for the absorbers and were tailored

to match the observed NHI and the observed metallicity based on NZnII or NSII .

Column density ratios between various ions resulting from these grids of simulation

were then compared with the observed values (determined from the column densities

of various ions in several ionization stages listed in Tables 3.13 - 3.17) to constrain the

ionization parameter and derive the ionization correction values. We note, however,

that ionization in the gas depends strongly on the shape of the ionizing spectrum and

our assumption for the incident spectrum is one among many possibilities. Given

the assumptions described above, we can only arrive at some general conclusions

regarding the strength of ionization in the gas. However, as we note in section 4.3, the

model results appear to be consistent with the observational constraint on electron
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density from a Si II fine structure line in at least one absorber where we have a

robust measurement of Si II∗ and Si II. An example of the determination of ionization

correction for the sub-DLAs in our sample is given in Figure 4.3 which describes the

results for Q2123-0050.

4.2.1 Q2123-0050, zabs = 2.058

With log NHI = 19.35, this sub-DLA is one of the lowest NHI systems in our sample.

The observed ratios of column densities in higher ionization stages to those in the

lower ionization stages are relatively high in this system, suggesting significant ion-

ization in the absorbing gas. Column density ratios of the adjacent ions of the same

element are more reliable observational constraints than the ratios involving different

elements as the latter may be affected by differential depletion or intrinsic nucleosyn-

thetic differences. Al and Si were the elements detected in this system with multiple

ionization stages. We used the observed lower limit of the NSi++ to NSi+ ratio to

obtain a lower limit on the ionization parameter at log U > -2.6. Furthermore, the

observed upper limit on NAl++/NAl+ implies log U < -2.1. These results suggest that

the observations underestimate the metallicity significantly as the ionization correc-

tion for [Zn/H] ranges between +0.54 dex to +0.63 dex. We adopt the correction to

metallicity to be +0.59 dex derived for log U = -2.35, the mean value of the ionization

parameter range described above. The corrections for [Fe/H] and [Mn/H] are derived

to be -0.28 dex and -0.18 dex, respectively, suggesting a corrected value of +0.09 dex

for [Mn/Fe]. The suggestion that the true depletion is much higher than observed

(based on Zn II and Fe II) in a significantly ionized system (Meiring et al. 2008)

seems to be true for this system as the corrected [Zn/Fe] is ∼ +0.9 dex higher than

the observed [Zn/Fe] = +0.98 dex.
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Figure 4.3 Results of the photoionization simulations for the sub-DLA toward Q2123-
0050. The top panel shows the simulated logarithmic column density ratios of
Al++/Al+, Si++/Si+ and Al++/Fe+, plotted vs. the ionization parameter. The ob-
served upper limit for Al++/Al+ and the lower limit for Si++/Si+ are also plotted
in the same panel. The lower and upper limits on log U, determined by comparing
the simulated and observed data, are represented by the vertical solid green and blue
lines, respectively. The vertical dotted line represents the mean of these limits. The
panel in the middle shows the ionization correction factors for Zn, S, Mn and Fe
abundances in dex. The bottom panel shows column density predictions from a grid
of models with the corrected metallicity incorporated in them. The comparison of
the predictions with the observed column densities of Zn+ and Mg0, also shown in
the bottom panel using horizontal dot-dashed black and purple lines, respectively,
suggests that the adopted ionization correction to metallicity is fairly reasonable.
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4.2.2 Q1039-2719, zabs = 2.139

The observed limits on NAl++/NAl+ and NSi++/NSi+ in this log NHI = 19.55 absorber

suggest -3.1 < log U < -2.7. This implies a correction for [Zn/H] between +0.45 dex

and +0.51 dex. The ionization corrections for [Zn/H], [S/H], [Mn/Fe] and [Zn/Fe],

derived at the mean log U = -2.9, are +0.48 dex, -0.20 dex, +0.08 dex and +0.67

dex, respectively.

4.2.3 Q1103-2645, zabs = 1.839

Adjacent-ion column density ratios in the log NHI = 19.52 absorber toward Q1103-

2645 also suggest moderate ionization correction to the observed abundances. The

observed lower limit on the NSi++ to NSi+ ratio allowed us to place a lower limit on

the ionization parameter at log U > -3. As the Al II line was not detected in this

system, we used the NAl++/NFe+ ratio to further constrain the ionization parameter

at log U = -2.6. The predicted correction for [S/H] was found to be -0.31 dex. Mn

and Fe abundances were only mildly affected by ionization as shown by the estimated

correction factors of -0.10 dex and -0.13 dex for [Mn/H] and [Fe/H], respectively.

We note that using the Al++/Fe+ ratio to estimate the ionization parameter may

introduce uncertainties due to differential depletion or nucleosynthetic differences

between the elements (see Meiring et al. 2007 for a more detailed discussion on the

use of adjacent ion ratios in photoionization modelling).

4.2.4 Q1511+0908, zabs = 2.230

The models for this log NHI = 19.70 sub-DLA suggest little effect of ionization on the

observed abundances. The observed value of NAl++/NAl+ = -0.41 suggests corrections

of only -0.16 dex and -0.10 dex for [S/H] and [Fe/H], respectively.
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4.2.5 Q1311-0120, zabs = 1.762

With log NHI = 20.00, the sub-DLA toward Q1311-0120 is the highest NHI sub-DLA

in our sample and is found to be the least ionized. The limits on the column density

ratios between Al++/Al+ and Si++/Si+ constrain the ionization parameter between

-4.7 dex and -4.3 dex, limiting the correction for [Zn/H] between +0.10 dex and +0.18

dex (+0.14 dex at the mean ionization parameter of log U = -4.5). The ionization

corrections for [Mn/H] and [Fe/H] were found to be negligibly small.

4.2.6 Q0154+0448, zabs = 0.1602

For this system with log NHI = 19.48, we used the observed lower limit on the NSiIII

to NSiII ratio to obtain a lower limit on the ionization parameter of log U > -2.75.

Furthermore, the observed upper limit on NSIII/NSII implies log U < -2.45. These

results suggest that the ionization correction for [S/H] ranges between -0.24 dex to

-0.29 dex. We adopt the correction to metallicity to be -0.26 dex derived for log

U = −2.60 (the mean value of the ionization parameter range), which implies an

ionization-corrected value of [S/H] = -0.04. The corresponding ionization correction

for the N abundance derived from N I/ H I is +0.05 dex. For C, the ionization

correction for the abundance derived from C II/ H I is -0.40 dex, i.e., the ionization-

corrected [C/H] is > −0.96 dex.

4.2.7 Q0441+4313, zabs = 0.1012

The observed ratio of NFeIII/NFeII in this log NHI = 19.63 absorber suggests log

U = −2.3. This implies a correction of -0.18 dex for [S/H], i.e. an ionization-

corrected [S/H] of 0.08 dex. The corresponding corrections for Ar and N are +0.91

dex and +0.05 dex. After making the large Ar ionization correction, [Ar/H] is 0.37

dex, consistent within ∼ 1σ with [S/H]. In other words, the observed low value for
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Ar I/H I in this system can be explained as an ionization effect.

4.2.8 Q0456-2159, zabs = 0.4744

For this system with log NHI = 19.45, S is the only element available in multiple

ionization stages. The upper limit on NSIII/ NSII allowed us to place an upper limit

on the ionization parameter of log U < -2.6. This implies that the ionization-corrected

[S/H] could be lower by at most 0.20 dex, i.e., [S/H] > 0.25 dex. For N, the correction

is . 0.06 dex. For C, the ionization-corrected [C/H] could be lower by . 0.24 dex.

4.2.9 Q2131-1207, zabs = 0.4297

With log NHI = 19.18, this sub-DLA has the lowest NHI value in our sample. The

observed upper limit on the NSIII to NSII ratio allowed us to place an upper limit on

the ionization parameter of log U < -2.8, which, in turn, suggests that the observed

[S II/ H I] could overestimate the true [S/H] by < 0.46 dex. We note, however, that

the true ionization correction is likely to be much smaller. This is because the S

III λ1190.2 line in this absorber is very noisy, and may be blended with not only

Si II λ1190.4, but possibly also with Ly-α forest lines and/or noise. Thus, NSIII

and hence the S ionization correction are likely to be smaller. The corresponding

estimate of the C ionization correction implies that the C abundance could be lower

than that estimated from C II/H I by at most 0.5 dex. This means that the much

lower observed abundance of C compared to S cannot be explained as an ionization

effect.

Our photoionization models reveal that the ionization corrections to Zn based

metallicity are positive in most cases while the observed S based metallicities may

overestimate the true values. However, for most of the absorbers studied here, the

ionization corrections to metallicity are found to be modest . ±0.2 dex. Our simula-

tions also suggest that the corrections towards Mn and Fe abundances are generally
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small and do not have any significant effect on the [Mn/Fe] vs. [Zn/H] trend dis-

cussed in section 4.1.2. In addition, the estimated corrections to N abundances prove

insufficient to explain the low [N/S] ratios seen in some of the absorbers studies here.

4.3 Si II∗ Absorption And Electron Density

The electron density of the absorbing gas can be estimated using fine structure ab-

sorption lines, for an assumed gas temperature. This is because the Si II upper level

is expected to be populated predominantly by collisional excitation, and depopulated

predominantly by radiative de-excitation. Si II∗ absorption has been detected in

gamma-ray burst afterglows (e.g., Savaglio et al. 2012 and references therein), but is

rare in quasar absorbers. Kulkarni et al. (2012) reported the first Si II∗ absorption

in an intervening quasar DLA. Here we detect Si II∗ λ1264.7 absorption in the two

low-z sub-DLAs toward Q0154+0448 and Q0441+4313. The corresponding Si II ∗ λ

1194.5 lines are, unfortunately, hard to deblend from the red components of the Si II

λ1193.3 lines. The Si II ∗ λ1197.4 lines in these absorbers are located in noisy regions;

but we have checked that these noisy regions are consistent with the expected Si II∗

λ1197.4 absorption based on the column density of Si II∗ derived from the λ1264.7

line.

In the sub-DLA at z = 0.1602 toward Q0154+0448, we find NSiII∗/NSiII =

2.3 × 10−3. In the sub-DLA at z = 0.1012 toward Q0441+4313, the Si II∗ λ1265 line

is well-detected, but the Si II λ1260 line is saturated, allowing only an upper limit

NSiII∗/NSiII < 2.4 × 10−2.

In order to estimate the electron density, we assume equilibrium between colli-

sional excitation and spontaneous radiative de-excitation. In terms of the collisional

excitation rate C12 and spontaneous radiative de-excitation rate A21, the electron

density is then given by
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ne = (NSiII∗/NSiII)A21/C12. (4.3)

We use the collisional excitation rate for Si II, C12 = 3.32×10−7 (T/10, 000)−0.5exp(−413.4
T

)

cm3 s−1, and the spontaneous radiative de-excitation rate for Si II∗, A21 = 2.13×10−4

s−1 (Srianand & Petitjean, 2000). Given the temperature dependence of C12, we con-

sider two illustrative cases of T = 500 K and T = 7000 K.

For the z = 0.1602 absorber toward Q0154+0448, we estimate the electron density

to be ne = 0.77+0.48
−0.30 cm−3 for T = 500 K or 1.33+0.83

−0.51 cm−3 for T = 7000 K. We

compare this electron density to the density of H+ found by our photoionization model

for this absorber. Based on the fraction of ionized H corresponding to the ionization

parameter range suggested by our model, the ionized H density nH+ is estimated to

be in the range 0.73 to 0.86 cm−3 with the value of 0.79 cm−3 at the mean log U of the

range. This value is in good agreement with the electron density ne = 0.77+0.48
−0.30 cm−3

estimated above. It thus appears that despite the various simplifying assumptions in

our photoionization model, it describes several observational constraints reasonably

well. It is also interesting to note that the electron density in the sub-DLA toward

Q0154+0448 is comparable to that in the z = 2.2 DLA with log NHI = 22.05 toward

J11350-0010 (0.53-0.91 cm−3, Kulkarni et al. 2012).

For the absorber toward Q0441+4313, using the upper limit on Si II∗/ Si II,

we obtain only a weak upper limit on the electron density, i.e., ne < 8.0 cm−3 for

T = 500 K or ne < 13.9 cm−3 for T = 7000 K. We note that the electron density

in this absorber is likely to be much lower than this limit. This is because the Si II

lines in this latter absorber are heavily saturated; therefore the Si II column density

is likely to be much higher, and the NSiII∗/NSiII ratio is likely to be much lower.

For the absorber toward Q0456-2159, we place a 3σ upper limit on the Si II∗

column density of log NSiII∗ < 11.86 from the non-detection of the Si II∗ λ 1194.5 line.

Combining this with the lower limit on the Si II column density of log NSiII > 14.18,
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we obtain an upper limit on the electron density of ne < 1.6 cm−3 for T=500 K or

ne < 2.7 cm−3 for T=7000 K.

4.4 Metallicity Evolution

One of the main goals of this dissertation has been the study of sub-DLA metallicities

at z < 0.6 and z > 1.5 to provide better constraints on the metallicity evolution of

sub-DLAs and to compare that with DLA metallicity evolution. Here, we examine

metallicity evolution in sub-DLAs and DLAs, by combining our data with sub-DLA

and DLA metallicity measurements from the literature (Akerman et al. 2005; Battisti

et al. 2012; Boissé et al. 1998; Centurión et al. 2003; de la Varga et al. 2000; Dessauges-

Zavadsky et al. 2003, 2009; Ellison & Lopez 2001; Fynbo et al. 2011; Ge et al. 2001;

Khare et al. 2004; Kulkarni et al. 1999, 2005; Ledoux et al. 2006; Lopez et al. 1999,

2002; Lopez & Ellison 2003; Lu et al. 1995, 1996; Meiring et al. 2006, 2007, 2008,

2009a; Meyer & York 1992; Meyer et al. 1995; Molaro et al. 2000; Nestor et al. 2008;

Noterdaeme et al. 2008; Péroux et al. 2002, 2006a,b, 2008; Petitjean et al. 2000;

Pettini et al. 1994, 1997, 1999, 2000; Prochaska & Wolfe 1998, 1999; Prochaska et al.

2001, 2002, 2003a,c; Rafelski et al. 2012; Rao et al. 2005; Srianand & Petitjean 2001).

We note that, Rafelski et al. (2012) presented metallicity vs. redshift relation for a

larger DLA sample (242 systems) but many of their metallicity measurements come

from Si and Fe, elements prone to depletion. As discussed previously in section 2.2, Si

and Fe are not preferred as metallicity indicators owing to the ambiguity in estimating

dust depletion corrections. Therefore, the analysis presented here does not include

Si or Fe measurements and is restricted to metallicities based on Zn or S (in cases

where Zn was not detected or could not be covered by the spectra due to observational

constraints) only. To the best of our knowledge, the metallicity evolution in sub-DLAs

and DLAs presented here is based on the most comprehensive sample of depletion-free
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metallicities for these systems consisting of 72 sub-DLAs and 195 DLAs. In addition

to metallicities measured from Zn or S lines, this sample includes systems for which

Zn and/or S lines could not be detected in their spectra but 3σ upper limits on Zn

or S abundances could be obtained. Figure 4.4 shows the metallicity evolution for

the DLA and sub-DLAs samples. The data have been binned in redshift, with 11-13

systems per sub-DLA bin and 16-17 systems per DLA bin. For each redshift bin,

the combination of metallicity measurements and limits was treated with survival

analysis using the non-parametric Kaplan-Meier estimator (Kaplan & Meier, 1958)

and the NHI-weighted mean metallicity along with its 1σ uncertainty (including both

sampling and measurement uncertainties) were calculated following the procedures

described in Kulkarni & Fall (2002).

We performed linear regression fits to the binned NHI-weighted mean metallicity

vs. median redshift relations for both DLAs and sub-DLAs. The slope of this fit gives

a measure of the rate of the global mean metallicity evolution, while the intercept is

the predicted mean metallicity at zero redshift. For DLAs, the best-fitting relation

has a slope of −0.192 ± 0.047 and an intercept of −0.701 ± 0.114. For sub-DLAs,

the best-fitting relation has a slope of −0.311 ± 0.095 and an intercept of 0.047 ±

0.159. This suggests that DLAs and sub-DLAs show metallicity evolution at the 4.1σ

and 3.3σ levels, respectively. We note, however, that the lower significance of the

presence of evolution in sub-DLAs is most likely to result from larger uncertainties

in the slope owing to the smaller sample size. It is interesting to note that the mean

metallicities of DLAs and sub-DLAs appear to evolve at similar rates, differing only

at the 1.1σ level. However, the mean metallicity of sub-DLAs at zero redshift is

clearly higher than that for DLAs, since the intercepts of the two relations differ

at the 3.8σ level. We emphasize that, despite the small size of our HST sample

of low-z sub-DLAs, the addition of these data has increased the previously existing

extremely sparse sample of metallicity measurements at z . 0.6 by factor of ∼ 4.
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Figure 4.4 N(HI)-weighted mean metallicity vs. look-back time relation for 195
DLAs and 72 sub-DLAs with Zn or S measurements. The corresponding redshift
scale is shown along the top axis of the figure. Filled circles show 12 bins with 16 or
17 DLAs each. Filled squares denote 6 bins with 11 - 13 sub-DLAs each. Horizontal
bars denote ranges in look-back times covered by each bin. Vertical errorbars denote
1σ uncertainties. The bold solid and dashed curves show the best fits obtained
from linear regression of the metallicity vs. redshift data for sub-DLAs and DLAs,
respectively. The light dot-dashed and dot-double-dashed curves show, respectively,
the mean metallicity in the models of Pei et al. (1999) and Somerville et al. (2001).
Sub-DLAs appear to be more metal-rich and marginally faster-evolving than DLAs,
at all redshifts where both DLA and sub-DLA metallicity data exist (z . 3).
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Our observations put firm constraints on the metallicity evolution of sub-DLAs at

low redshifts which could otherwise be estimated only by extrapolation form higher

redshift studies (e.g, Kulkarni et al. 2007; Meiring et al. 2009b; Som et al. 2013). Our

observed sample has improved the accuracy of the sub-DLA intercept determination

by ∼ 45%. On the other hand, our observations of sub-DLAs at z > 1.5 have increased

the previously existing sample at this redshift regime by ∼ 50% providing better

constraints on the metallicity evolution of sub-DLAs at high redshifts, especially at

z > 2. Earlier studies had suggested that the trend of higher mean-metallicity in

sub-DLAs compared to DLAs, seen at 0.6 < z < 1.5, might disappear at z > 2

(Kulkarni et al., 2007; Meiring et al., 2009b). In contrast, as shown in Fig. 4.4, the

mean metallicity of the sub-DLA bin between 2 . z . 3 is found to be significantly

higher than the mean metallicities of all the DLA bins in this redshift range. This

suggests that sub-DLAs, on average, continues to be more metal rich than DLAs at

z . 3. Our observations of the low and high redshift sub-DLAs have also improved

the accuracy of the global mean metallicity evolution rate in sub-DLAs by ∼ 45%.

Figure 4.4 also shows the comparison of the observations with theoretical model

predictions for evolution of global interstellar metallicity. The mean interstellar metal-

licity from the chemical evolution model of Pei et al. (1999) is shown using the light

dot-dashed curve (PFH 1999). This model calculates the coupled global evolution

of stellar, gaseous, and metal contents of galaxies by incorporating the optimum fit

for the cosmic infrared background intensity and observational constraints derived

from optical galaxy surveys and the comoving H I density inferred from DLA data.

The light dot-double-dashed curve (SPF 2001) represents the mean metallicity evo-

lution of interstellar cold gas predicted by a semi-analytic model of galaxy formation

in the cold dark matter merging hierarchy by Somerville et al. (2001). This model

assumes a constant-efficiency quiescent star formation in addition to starbursts trig-

gered by galaxy mergers. It is evident from Fig. 4.4, that the metallicity evolution in
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sub-DLAs is consistent with the chemical evolution models over most of the redshift

range probed so far, and especially at low redshifts, reaching solar level at z = 0.

The sub-DLA trend bears a closer resemblance with the merger driven ‘collisional

starburst model’ by Somerville et al. (2001). On the other hand, the DLA data are

in poor agreement with the model predictions and DLA metallicity reaches only ∼

1/5th of the solar value at z = 0. The DLA trend becomes consistent with PFH

1999 only at z & 2. Some recent studies (e.g., Davé & Oppenheimer 2007) predict

a low DLA metallicity at z = 0, but do not correctly predict the higher redshift

DLA metallicities. The difference in the metallicity evolution trends in DLAs and

sub-DLAs may suggest that the galaxies traced by these absorbers follow separate

evolutionary tracks established as early as ∼2 Gyrs after the Big Bang. However,

given the small difference between the slopes of the trends, the observed difference

can extend further back in time. Sub-DLA data at redshifts higher than 3 are es-

sential to provide further constraints on the epoch of establishment of these distinct

evolutionary tracks.

Comparing the metallicities for DLAs and sub-DLAs with those for galaxies de-

tected in emission can provide clues to the understanding of the nature of the absorb-

ing galaxies. It is well-known that galaxies detected in emission show a correlation

between their stellar mass and the gas metallicity (e.g., Tremonti et al. 2004; Erb et

al. 2006). Furthermore, the mass-metallicity relation is found to evolve with redshift.

Maiolino et al. (2008) found that for star forming galaxies at M∗ ∼ 1010M⊙, the

metallicity at z ∼ 2.2 is lower by a factor of about 2.5 with respect to that at z ∼ 0.

The drop is less steep for more massive galaxies, indicating that the latter got en-

riched at earlier epochs, consistent with the mass-downsizing scenario. Interestingly,

the sub-DLA metallicity evolution shown in Fig. 4.4 seems to resemble the trend

found by Maiolino et al. (2008) for star forming galaxies with M∗ ∼ 1010M⊙. The

metallicity evolution in DLAs, however, does not resemble any of the trends found by
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Maiolino et al. (2008) for star forming galaxies with 9 < logM∗/M⊙ < 11, suggesting

that DLA host galaxies have not undergone much star formation and chemical en-

richment even by the current epoch. This is consistent with the observed agreement

of DLA metallicity distribution with that for the Milky Way halo stars, suggesting

that most DLAs are not representative of the disks of Milky Way-type galaxies (e.g.,

Pettini 2004).

We note here that the ionization corrections described in section 4.2 were not con-

sidered while calculating the metallicity-redshift relation since the majority of values

from the literature do not include ionization corrections. Moreover, it is not possible

to obtain homogeneously ionization-corrected measurements by just compiling values

from multiple studies, given the various uncertainties associated with the radiation

field, depletion pattern, etc. The only way to obtain such a homogeneous dataset

would be to run ionization models in a consistent manner on all systems in the liter-

ature. This would be a much broader study that is beyond the scope of the present

work. However, we note that the ionization corrections are found to be modest (. 0.2

dex) in most sub-DLAs studied here and in other studies (e.g., Meiring et al. 2007,

2009b; Battisti et al. 2012). We also emphasize that even if the metallicities are ad-

justed for ionization corrections in the few cases where these corrections are available,

the mean sub-DLA metallicity trend is not expected to be lower than that shown in

Fig. 4.4. This is because, while the S metallicities may be lower by at most ∼ 0.2 dex

on average, the Zn metallicities (which constitute the majority of the sample) are ex-

pected to offset this effect, since the ionization corrections for Zn are generally found

to be positive (see section 4.2). Thus, the large difference between the intercepts of

the best-fitting metallicity-redshift relations derived above for DLAs and sub-DLAs

is expected to still persist, or perhaps even increase, after incorporating ionization

corrections for all the absorbers in the sample.
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4.5 Investigation of Selection Bias

As discussed in Section 3.1, the systems selected for our observations were confirmed

sub-DLAs based on their measured NHI values. The availability of NHI was the

primary selection criterion for our observed sample. This is true also for most of

the earlier studies of sub-DLAs (e.g., Meiring et al. 2009b and references therein).

However, majority of the H I column density measurements for the absorbers at

z . 1.5 came from HST STIS/FOS spectra of DLAs and sub-DLAs (Rao, Turnshek,

& Nestor 2006) that were selected for observation based on the presence of strong Mg

II λ2796 and Fe II λ2599 lines (W2796 > 0.5 Å; W2599 > 0.5 Å) in their optical spectra.

This could potentially introduce a bias toward more metal-rich systems in the sub-

DLAs based on the argument that a system with large W2796 and W2599 would have

large NMgII and NFeII (hence a large NZnII), and therefore a higher metallicity for

low NHI . However, Kulkarni et al. (2010) showed that the selection of systems with

strong Mg II lines does not introduce any such bias. Here, we explore the possibility of

a bias due to the selection based on strong Fe II lines. Upon considering the observed

metallicity vs. W2599 data for sub-DLAs and DLAs, we find a correlation between

the observed metallicity and the strength of Fe II λ2599 line for DLAs (Kendall’s τ

value of 0.744, P (τ) = 0.0005), but not for sub-DLAs (τ = 0.171, P (τ) = 0.302).

This suggests that the sub-DLA data have no systematic bias toward high metallicity

systems.

To investigate this issue further, we explored the variation ofW2599 with metallicity

by simulating Fe II λ2599 line profiles in DLAs and sub-DLAs considering a variety

of physical conditions of the absorbing gas. In our simulations, the H I column

density values were chosen to resemble the observed ranges in the DLA and sub-

DLA samples: randomly in the range 20.3-22.0 for DLAs, and for sub-DLAs, 75%

of all the NHI values were randomly selected from the range 19.7-20.3 while the rest
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were selected from range 19.0-19.7. For each value of NHI , the metallicity [X/H]

was chosen randomly to be between -2.5 and +1.0, and the depletion factor for Fe

was selected randomly within a range of -0.6 to -1.2 dex. This Fe depletion range

is fairly conservative considering the observed range of -0.1 to -1.6 dex for [Fe/Zn]

in low-z sub-DLAs with Zn detections (e.g., Meiring et al. 2009b). The number of

velocity components in each artificial profile was chosen randomly between 3 and 15

having random velocity values within a range constrained by the selected number of

components (the maximum range being -375 to 375 km s−1 for 15 components). Each

velocity component was assigned a Doppler b parameter value selected randomly from

a range of 3-20 km s−1. Finally, the equivalent width of the resulting Fe II λ2599 line

profile was measured. The measurements from 30,000 artificial line profiles generated

in this way were then binned over metallicity into 0.25 dex bins. Figure 4.5 shows

the results from our simulations in comparison with the observed data.

Figure 4.5 suggests that a trend of gradually increasing W2599 with increasing

metallicity is expected to be observed. The observed DLAs do show a correlation

resembling the median simulated trend, except that no significantly super-solar DLAs

are seen. In contrast, although most sub-DLA detections lie within the ±1σ range

of the simulated trend, they do not seem to follow the median simulated trend. It is

clear from the upper panel of Figure 4.5 that an observed sample with W2599 > 0.5

Å can have sub-DLAs with [X/H] as low as -1.1 dex even for the relatively large

depletion factors assumed above. All of the observed metallicities for sub-DLAs (with

detections) appear to be considerably higher than that. Our simulations show that

Fe II selection can not explain the observed super-solar metallicities in sub-DLAs and

the lack of that in DLAs. We, therefore, conclude that the higher mean sub-DLA

metallicities compared to DLAs do not appear to be due to an Fe II selection bias. We

note that our conclusion is consistent with the lack of Mg II selection bias suggested

by Kulkarni et al. (2010), since Fe II λ 2599 is close in strength to Mg II λ 2796
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(log λf = 2.793 for Fe II λ 2599 and 3.236 for Mg II λ 2796). We also note that,

the chemical evolution of DLAs and sub-DLAs described in section 4.4 show that

sub-DLAs are, on average, more metal rich than DLAs even at z > 1.5, where the

observed samples are selected based only on the absorption cross-section of neutral

gas, without any prior knowledge of the strengths of metal lines.

4.6 H I Column Density vs. Metallicity Trend

Our work has shown that the lower NHI sub-DLAs, on average, are more metal rich

that the higher NHI DLAs over 0 < z . 3. Naturally the question arises whether

this is a manifestation of an underlying relation between H I column density and

metallicity, or, in other words, whether an anti-correlation between NHI and metal-

licity exists in quasar absorber galaxies. Moreover, Lehner et al. (2013) suggested

that the metallicity distribution of Lyman-limit systems at z < 1 is bimodal, with

a metal-rich branch tracing outflows and a metal-poor branch tracing inflowing cold

accretion streams. If sub-DLAs and DLAs also arise in inflows and outflows, as indeed

suggested by some hydrodynamical simulation models of structure formation, they

should exhibit a similar bimodality and an anti-correlation between NHI and metallic-

ity should not exist for these systems. York et al. (2006) reported an anti-correlation

between H I column density and metallicity based on a sample of ∼800 QSO ab-

sorbers observed in the SDSS. Similar trends were suggested by Khare et al. (2007)

and Meiring et al. (2009b) using only Zn based metallicities (both measurements and

upper limits) for DLAs and sub-DLAs primarily at z > 0.6.

Here, we explore the NHI -metallicity relation using the Zn or S metallicity sample

introduced in section 4.4. We emphasize that, in comparison with the earlier studies,

the DLA and sub-DLA sample used in this analysis is both larger and and represents

a wider redshift baseline. As shown in Figure 4.6, the data for the entire sample
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Figure 4.5 Simulated and observed data for metallicity vs. rest-frame equivalent
width of Fe II λ2599, for sub-DLAs (upper panel), and DLAs (lower panel). Squares,
triangles, and circles represent the observed data while the diamonds show median
W2599 values from 30,000 simulations, in bins of 0.25 dex in [X/H], plotted as a
function of metallicity. The dashed horizontal error bars on the diamonds show the
±1 σ ranges in the W2599 values generated in the simulations. The DLA data follow
the simulated trend and show a correlation between the metallicity and W2599, but
the sub-DLA data do not show a correlation.
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(including upper limits which account for ∼ 40 % and ∼ 50 % of DLA and sub-DLA

metallicities, respectively) appear to be moderately anti-correlated (Spearman rank-

order correlation coefficient ρs = −0.292 with a < 0.001 probability of no correlation)

while the trend is stronger (ρs = −0.512 with a < 0.001 probability of no correlation)

for the data containing metallicity measurements based on Zn or S detections only.

However, the existence of a bimodal metallicity distribution for DLAs and sub-DLAs

can not be ruled out by an analysis which includes the upper limits or simply omits

them. If a bimodality truly existed and the systems with non-detections of Zn or S in

fact belonged to a metal-poor branch, with metallicities much lower than suggested

by the Zn or S upper limits, the anti-correlations seen in Fig. 4.6 would not represent

the true nature of the sample.

To account for this possibility, we revised our sample by including metallicity

measurements based on Si or Fe (in the absence of Si), where available, for those

sub-DLAs that have non-detections of both Zn and S. The Si or Fe based metallicity

measurements replace ∼ 75 % of the Zn or S upper limits in the original sample. The

revised sample thus produced consists of 245 metallicity measurements in the range

from ∼ −2.7 dex to ∼ 0.8 dex while the log NHI values range from 19.04 dex to 21.85

dex. The revised log NHI vs. [X/H] data are shown in Figure 4.7.

As seen in Figure 4.7, the anti-correlation in the NHI -metallicity data persists

even after including the Si or Fe measurements in lieu of the the Zn or S upper

limits. Spearman’s ρs for the data is found to be −0.459 with the probability that

such an anti-correlation can be found by chance being < 0.001 while Kendall’s τ =

−0.619 (with P (τ) < 0.001). To test the accuracy of these statistics, we created

an artificial sample for the NHI-metallicity data which had the same H I column

density distribution as the observed sample but the metallicity assigned to each NHI

value was chosen randomly from the range of metallicities mentioned above. The

statistical tests, as expected, suggest no correlation for the artificial sample (ρs =
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Figure 4.6 Upper panel: log NHI vs. [X/H] data for our entire Zn or S based sample
(including Zn or S upper limits). Lower panel: log NHI vs. [X/H] data based on Zn
or S detections only. The vertical blue dashed line represents the threshold between
DLAs and sub-DLAs.
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Figure 4.7 log NHI vs. [X/H] data for the revised sample.

0.001, P (ρs) = 0.983; τ = 0.011, P (τ) = 0.895). We note that the scatter in the

observed trend in largely due to the mixing of “depletion-free” metallicities (from Zn

or S) with metallicities affected by depletion (from Si or Fe). In fact, NHI -metallicity

data from the smaller sub-sample of Si or Fe based metallicities alone appear to show

a strong anti-correlation (ρs = −0.637, P (ρs) < 0.001; τ = −0.901, P (τ) < 0.001)

and follows a trend very similar to the one shown by the depletion-free metallicities

but shifted down the metallicity axis due to depletion.

Our results strongly suggest the existence of a log NHI -metallicity anti-correlation
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even when using non-uniform metallicity indicators and not correcting for depletion.

We thus believe that the anti-correlation is not an artifact of insufficient detection

sensitivity. The higher incidence of metal-rich sub-DLAs could be partly explained

as a stronger dust obscuration bias for DLAs than for sub-DLAs, if dust extinction

depends strongly on the metal column density (Vladilo & Péroux, 2005). In other

words, while metal-rich, dusty DLAs could obscure their background quasars more,

leading to a deficit of such systems in the observed samples, such a selection effect

would be weaker for sub-DLAs. Another possibility is that the deficit of high-NHI ,

high-metallicity DLAs may arise from H I becoming predominantly H2 above an

NHI threshold that decreases with increasing metallicity (Schaye, 2001; Krumholz et

al., 2009), but that such an effect is not as relevant at the smaller NHI of the sub-

DLAs. Alternatively, the gas-poor, metal-rich sub-DLAs may arise in more massive

galaxies than the gas-rich but metal-poor DLAs, or in other words, the observed

NHI -metallicity anti-correlation may suggest that the more massive absorber galaxies

undergo star formation earlier than the their less massive counterparts.

4.7 Kinematics of Absorber Galaxies

Based on a sample of star-forming galaxies at z∼0.1, Tremonti et al. (2004) found a

correlation between stellar mass and gas-phase metallicity for these galaxies. Similar

mass-metallicity relations have been suggested by Savaglio et al. (2005) for 0.4 <

z < 1.0 galaxies selected from the Gemini Deep Deep Survey and the Canada-France

Redshift Survey and by Erb et al. (2006) for UV-selected star forming galaxies at

z ∼ 2.3. Nestor et al. (2003) and Turnshek et al. (2005) noticed a correlation between

the Mg II λ 2796 equivalent width and the metallicity for strong Mg II absorbers

at 1 . z . 2. The possible existence of a mass metallicity relationship for DLA

absorbers, assuming the velocity width of optically thin lines to be proportional to
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the mass, has been put into evidence recently (Péroux et al., 2003a; Ledoux et al.,

2006). As the velocity width of the low-ionization absorption lines potentially probes

the depth of the underlying gravitational potential well of the DLA systems, this

quantity can be used as a proxy for the stellar mass of these systems, which has been

difficult to measure. Bouché et al. (2006), however, find an anti-correlation between

the Mg II equivalent width and the estimated halo mass based upon an indirect mass

indicator. Also, Zwaan et al. (2008) show that the velocity width and mass do not

correlate well in local analogues of DLAs.

To investigate the velocity width-metallicity relation in sub-DLAs, we measured

the velocity width values for the systems in our sample following the analysis of

Wolfe & Prochaska (1998). The velocity width for a system was measured using an

absorption profile (in velocity space) from a low-ion transition seen in the system.

High-ionization lines are not suitable for this analysis as their velocity widths are

likely to be dominated by large scale thermal motions in the gas. The measurement

method involved the conversion of the low-ion transition profile, Iobs(v), into the

corresponding apparent optical depth profile, τ(v)a, through the following relation

τ(v)a = ln[I0(v)/Iobs(v)], (4.4)

where I0(v) represents the continuum level, and Iobs(v) is the observed intensity of the

normalized transition profile in velocity space. The apparent optical depth was then

integrated over the entire line profile to yield τint, the total optical depth within the

absorption profile. Finally, the velocity width was determined as ∆v90 = [v(95%) −

v(5%)], where v(95%) and v(5%) define the velocity range within which 90% of τint

was contained.

In the case of very strong line profiles, the optical depth can not be measured

accurately and the velocity width determined using such a line can be overestimated.

On the other hand, velocity width measured from a very weak line becomes highly
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sensitive to the continuum noise and can be underestimated, as part of the absorbing

gas can remain undetected. To select profiles which are neither strongly saturated

nor too weak, we required the transitions profiles used to measure the velocity widths

to satisfy 0.1 < Imin/Ic < 0.6, where Ic is the continuum level intensity, and Imin

is the intensity at the location of the strongest absorption in the line profile. After

selecting a profile, we visually inspected the strongest low-ion transitions to ascertain

the velocity range over which the selected profile should be integrated to determine

∆v90. Figure 4.8 shows an example of ∆v90 determination. Table 4.1 lists the velocity

width measurements from our systems along with the line profiles used.

Figure 4.9 shows the velocity dispersion versus metallicity data our sample as well

as for DLAs and sub-DLAs from the literature. Only systems for which Zn or S was

detected have been plotted. A general trend of increasing ∆V90 with higher metallicity

can be seen considering the sub-DLAs and DLAs together. A Spearman rank-order

correlation test on the entire sample containing 51 DLAs and 29 sub-DLAs reveal

the correlation co-efficient to be ρs = 0.59 with very little probability (<0.001) of no

correlation. The Kendall’s τ for this sample is 0.84 (the probability of no correlation,

P (τ) < 0.001). This further strengthens the argument that velocity dispersion offers

a good measure of the mass of the absorber galaxies provided an underlying mass-

metallicity relation exists for them. The correlation for the DLA sample alone is

much stronger (ρs = 0.74, P (ρs) < 0.001; τ = 1.1, P (τ) < 0.001) while the sub-DLA

sample appears to be less correlated (ρs = 0.28, P (ρs) = 0.14; τ = 0.42, P (τ) = 0.11).

An inherent scatter in the data is indeed to be expected as they represent a collection

of random sightlines through galaxies at various inclinations and impact parameters.

Moreover, the observed velocity width includes effects of local velocities and turbulent

motion in the gas on top of the velocity dispersion due to the underlying gravitational

potential well. Therefore, the large scatter in the sub-DLA data, although in part

due to the relatively smaller sample size, could indicate higher levels of turbulence in
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Figure 4.8 Determination of velocity dispersion for the z = 1.839 sub-DLA towards
Q1311-0120. The upper panel shows the apparent optical depth profile for the Fe
II λ 2600 line selected for the measurement of ∆V90. The lower panel shows the
corresponding integrated apparent optical depth. The dashed vertical green lines
represent the limits of integration while the vertical dashed orange lines indicate the
region in velocity where 90 % of the absorption takes place.

these systems compared to DLAs. A linear regression fit for the sub-DLAs gives

[X/H] = (0.70 ± 0.07) log ∆v90 − (1.54 ± 0.14), (4.5)

while a fit to the DLA data yields a slope of 1.11±0.03 and an intercept -3.40±0.06.

The two slopes are different at > 5σ level suggesting different mass-metallicity re-

lations obeyed by the populations of galaxies traced by sub-DLAs and DLAs. If

galaxies detected in absorption follow mass-metallicity relations similar to what seen

for galaxies in emission, our results suggest that sub-DLAs and DLAs trace distinct
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Table 4.1 Velocity width values for the absorbers in our sample.

QSO zabs [Zn/H]/ ∆v90 Selected

[S/H] km s−1 transition line

Q1039-2719 2.1390 −0.02±0.17 70 Fe II λ 2374

Q1103-2645 1.8390 <−0.82 81 Fe II λ 2600

Q1311-0120 1.7620 >−0.04 152 Fe II λ 2374

Q1551+0908 2.3200 <−0.95 32 Fe II λ 2344

Q2123-0050 2.0580 +0.25±0.12 321 Fe II λ 2344

Q0154+0448 0.1602 +0.22±0.15 152 Fe II λ 1082

Q0441+4313 0.1012 +0.26±0.15 275 P II λ 1153

Q0456-2159 0.4744 +0.45±0.04 155 S II λ 1250

Q2131-1207 0.4297 −0.01±0.09 92 S II λ 1259

populations of galaxies and metal rich sub-DLAs are likely to trace more massive

galaxies compared to DLAs.

4.8 C II∗ Absorption and Cooling Rate

Most of the cooling in the Milky Way’s interstellar medium takes place through the

fine-structure line emission of [C II] λ158 µm. This line arises from the 2P3/2 to 2P1/2

transition in the ground state 2s2 2p term of C II. Following Pottasch, Wesselius, &

van Duinen (1979), the rate of cooling per H atom in gas detected in absorption can

be expressed as:

lc =
NCII∗hνulAul

NHI
ergs s−1, (4.6)

where NCII∗ is the column density of the C II ions in the 2P3/2 state, NHI is the

H I column density, while hνul and Aul are the energy of the 2P3/2 to 2P1/2 tran-

sition and coefficient for spontaneous photon decay, respectively. UV transitions of

C II∗ λ1335.7 and Lyα λ1215.7 can be used to infer NCII∗ and NHI , respectively, for

the determination of lc in the interstellar medium detected in absorption.

Our data shows the presence of C II∗ λ1335.7 in the sub-DLAs toward Q1039-2719,

Q1103-2645 and Q2123-0050. However, this line is partially blended with C IIλ1334 in
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Figure 4.9 Velocity dispersion (∆V90) vs. Metallicity relations for sub-DLAs and
DLAs. Linear regression fits to the sub-DLA and DLA data are shown as dashed and
dashed-dotted lines respectively.

Q1039-2719 and Q2123-0050 (see Figures 3.4 and 3.8, respectively) while for Q1103-

2645, it is partially blended with a Lyα forest feature. As a result, only a lower limit

on NCII∗ could be placed for each of these absorbers. However, the absorption profile

structures of these systems suggest that the true NCII∗ values are unlikely to be much

higher than the corresponding lower limits. For the sub-DLAs toward Q1551+0908,

Q0456-2159 and Q2131-1207, C II∗ λ1335.7 was not detected and we placed 3σ upper

limits on NCII∗ based on the S/N near the line. Poor S/N in the region of the

transition did not allow us an estimate of C II∗ abundance in the sub-DLA toward

Q1311-0120. For Q0441+0448 and Q0441+4313, C II∗ was not covered in our spectra

Table 4.2 lists the NCII∗ and the corresponding lc values for the sub-DLAs in this
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Table 4.2 Cooling rate values for the absorbers in this sample

QSO log NHI NCII∗ lc
cm−2 cm−2 ergs s−1 per H atom

Q1039-2719 19.55±0.15 > 3.92 × 1013 > 3.33 × 10−26

Q1103-2645 19.52±0.01 > 8.53 × 1012 > 7.80 × 10−27

Q1551+0908 19.70±0.05 < 1.48 × 1012 < 8.93 × 10−28

Q2123-0050 19.35±0.10 > 6.60 × 1013 > 8.90 × 10−26

Q0456-2159 19.45±0.02 < 3.72 × 1012 < 3.98 × 10−27

Q2131-1207 19.18±0.03 < 7.08 × 1012
< 1.41 × 10−26

sample.

The cooling rate versus H I column density data for these sub-DLAs are plotted in

Figure 4.10, along with the corresponding measurements for DLAs from Wolfe et al.

(2003) and for interstellar clouds in the Milky Way adopted from Lehner et al. (2004).

The Milky Way’s ISM measurements are shown separately for low, low+intermediate,

intermediate, and high-velocity clouds. To the best of our knowledge, this work pro-

vides the first ever cooling rate estimates for sub-DLAs Although our measurements

could only provide limits on the sub-DLA cooling rates, it can immediately be in-

ferred from Figure 4.10 that, for some sub-DLAs, the interstellar cooling rate is higher

than the entire DLA sample and similar to the values seen in Milky Way’s interstel-

lar clouds. Under the assumption of thermodynamic equilibrium in the absorbing

gas, the interstellar cooling rate should equal the rate of energy production by star

formation activity. Therefore, cooling rate can be used as an indicator for the star

formation rate (SFR) in these absorbers. We also note that the sub-DLAs with high

cooling rates are also near-solar or super-solar in metallicity. Unfortunately, for the

two metal-rich sub-DLAs towards Q0456-2159 and Q2131-1207, we could not place

sensitive upper limits on their cooling rates owing to the relatively low S/N in our

HST spectra. It is also interesting to note that the sub-DLA towards Q1551+0908

seems to have the lowest cooling rate among the systems in our high S/N MIKE

sample and it is also the most metal-poor absorber. Our results suggest that at least

some metal-rich sub-DLAs may have higher SFRs compared to DLAs and that the
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Figure 4.10 Cooling rate estimated from C II∗ absorption plotted vs. H I column
density. The open red triangles represent the sub-DLAs from our sample. The filled
black circles and triangles denote the sample of QSO DLAs in Wolfe et al. (2003). The
filled squares and striped triangles represent the measurements for low, intermediate,
low+intermediate, and high-velocity interstellar H I clouds in the Milky Way compiled
in Lehner et al. (2004).

interstellar cooling rates in sub-DLAs may depend on metallicity. However, a de-

tailed investigation of the metallicity dependence of cooling rate in sub-DLAs and

the comparison of SFRs between DLAs and sub-DLAs warrant a much larger sample

with precise column density determinations.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

We studied sub-DLAs at z < 0.6 and z > 1.5 using spectra from HST-COS and

Magellan-MIKE, respectively. Prior to this work, properties of sub-DLAs in these

redshift regimes remained largely unexplored. Our observations have increased the

sub-DLA metallicity sample at z < 0.6 by ∼ 4 and added ∼ 50 % more to the metal-

licity data at z > 1.5, providing improved constraints on the metallicity evolution of

sub-DLAs at these redshift regimes. All of the low redshift sub-DLAs in our sample

are found to be of near or super solar metallicity in agreement with the predictions

from galactic chemical evolution models. Among the sub-DLAs observed at z > 1.5,

one system at zabs = 1.76 was found with [Zn/H]> −0.06 and, more surprisingly, two

systems with [Zn/H]= +0.25 dex and [Zn/H]= −0.02 dex were found at zabs > 2.

These two systems are the most metal-rich sub-DLAs known so far at zabs & 2 and

our observations suggest that metal-rich sub-DLAs appear at high redshifts as well.

In addition to determining the S or Zn based metallicities for these absorbers, we

measured abundances of various elements from our spectra. Combining our data

with those for sub-DLAs from the literature, we studied various chemical and kine-
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matic properties of the sub-DLA population as a whole and compared their behavior

with that of DLAs. The main conclusions derived from this work are summarized as

follows:

• DLAs and sub-DLAs show evolution in their NHI-weighted mean metallicities

over the redshift ranges for which their data are available (0 < z . 5 for DLAs

and 0 < z . 3 for sub-DLAs). At 0 < z . 3, sub-DLAs, on average, have been

found to be more metal-rich than DLAs and show metallicity evolution at a

rate similar to that for DLAs. We also find that while metallicity evolution in

DLAs does not resemble the expected mean trend for chemical enrichment in

galaxies, the sub-DLA data are consistent with the chemical evolution models at

all redshifts probed so far. We note that our study of the metallicity evolution in

DLAs and sub-DLAs is based on the most comprehensive sample of depletion-

free metallicity measurements.

• Simple photoionization calculations suggest that while there is a significant

amount of ionized gas in some of our absorbers, the ionization corrections to

the element abundances are relatively modest (. 0.2 dex). Thus, ionization

corrections cannot explain the high sub-DLA metallicities.

• The observed difference between the metallicities of DLAs and sub-DLAs can

not be explain by the presence of a selection (based on strong metal lines) bias

in the low-z samples. The high redshift samples are selected based on neutral

gas absorption cross-section only, and therefore, should not have any effect of

such a selection bias.

• For DLAs and sub-DLAs, the metallicity of the absorbing gas is anti-correlated

with the H I column density. This anti-correlation is evident even for a non-

homogeneous sample of metallicity measurements based on several different
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heavy elements (Zn, S, Si, Fe). This provides evidence against the existence of

a bimodal metallicity distribution in DLAs and sub-DLAs.

• DLA and sub-DLA absorbers show a correlation between metallicity (based on

Zn) and depletion (estimated from the abundance ratio between Fe and Zn),

suggesting that more metal-rich absorbers are also likely to have a higher dust-

to-gas ratio. There could be a stronger dust obscuration bias for DLAs than for

sub-DLAs if total dust content and therefore dust extinction depends strongly

on metal column density.

• DLAs and sub-DLAs show different [Mn/Fe] vs. metallicity trends, suggest-

ing different stellar populations in the galaxies traced by these two classes of

absorbers.

• The velocity dispersion (∆v90) vs. metallicity data for DLAs and sub-DLAs

taken together appear to show a correlation suggesting that more massive ab-

sorber galaxies are likely to be more metal-rich as well. Furthermore, the ∆v90

vs. metallicity relations for sub-DLAs and DLAs appear to be different from

each other. If ∆v90 is an indicator of the mass of the absorbing galaxy, then our

finding suggests that the populations of galaxies traced by DLAs and sub-DLAs

obey different mass-metallicity relations and that sub-DLAs are likely to trace

more massive galaxies than DLAs.

• We present preliminary evidence that at least in the case of some metal-rich sub-

DLAs, the interstellar cooling rate (and also possibly the SFR) can be higher

than that seen in DLAs.

Thus, the DLA and sub-DLA quasar absorber line systems, in addition to the

difference in their H I column densities, appear to be distinct from each other in

various aspects such as metallicity, stellar populations and gas kinematics. It is very
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likely that the gas-rich and metal-poor DLAs trace different populations of galaxies

than the metal-rich but gas-poor sub-DLAs. It is possible that the sub-DLAs arise

in more massive galaxies while DLAs represent gas-rich dwarf galaxies with low star

formation rates. Continued study of the properties of DLA and sub-DLA quasar

absorbers across cosmic time can thus give new insights into the processes driving

galaxy evolution.

5.2 Future Work

Although significant progress has been made towards understanding the properties of

DLA and sub-DLA absorbers, many questions remain open regarding their connection

to galaxies at different epochs of cosmic evolution. The galaxies traced by DLAs and

sub-DLAs seem to follow separate evolutionary tracks established as early as ∼ 2

Gyrs after the Big Bang. However, given the similarities between their rates of

metallicity evolution, the observed difference can extend further back in time. For

a better understanding of early evolution in galaxies, it is essential to constrain the

epoch when these different evolutionary tracks emerged. Although metallicity data

for DLAs exist over 0 < z . 5, sub-DLAs have not been explored at z & 3. Therefore,

one of the main priorities for our continuing study of quasar absorption line systems

is to expand the redshift baseline for sub-DLA data much beyond z ∼ 3. At the

same time, samples of sub-DLAs and DLAs at z < 0.6 remain small. Observations

of more sub-DLAs and DLAs at low redshifts are essential to shed further light

on how these systems compare with their high-z analogs and with the Milky Way

ISM, and how they evolve with time. The study of low redshift quasar absorbers

is particularly interesting as it is easier to detect their host galaxies in emission,

providing important clues to understand the galaxy-absorber relationship. Follow-up

imaging and Integral Field Spectroscopy of DLAs and sub-DLAs have been actively
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pursued in recent years but much more work is needed to arrive at a clear picture

regarding the galaxy-absorber connection at low redshifts. Furthermore, such studies

have the potential to be extended to higher redshifts in the upcoming exciting era of

30 meter class telescopes.

As discussed in section 4.2, the study of the effects of ionization on element abun-

dances in sub-DLAs requires further attention. We plan to carry out photoionization

modelling in a consistent manner on all systems in the literature. The aim for this

study is to produce a homogeneous dataset of ionization-corrected abundances for

sub-DLAs. This will help us to carry out a detailed investigation of ionization effects

on the observed metallicity difference between DLAs and sub-DLAs. The uniform

analysis will also help us to explore the redshift and H I column density variation of

the ionization level in sub-DLAs.

Metallicity gradients within galaxies, if present, can also contribute towards metal-

licity variation along different sight lines. If the sub-DLA systems are sampled system-

atically by sightlines passing through more metal rich regions of galaxies compared

to DLAs, metallicity difference between these two classes of quasar absorbers can

exist even if they trace the same population of galaxies. This issue can be addressed

with a study of the distribution of impact parameters (i.e., the projected distances of

the sightline from the center of the galaxy hosting a DLA/sub-DLA) for DLAs and

sub-DLAs. However, for two low-z sub-DLAs in our observed sample, our measure-

ments of the absorption-line metallicities along the quasar sightlines are consistent

with measurements (from the literature) of the emission-line metallicities near the

centers of the foreground absorbing galaxies (Som et al., 2014). This suggests that

metallicity gradients may not be significant in these galaxies. A study of impact

parameter distribution, besides exploring possible metallicity gradients, can provide

a statistical description of the structure of interstellar gas in absorber galaxies. This

can be achieved through follow-up imaging for low redshift absorbers. A powerful
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alternative is to study the detailed structure of individual galaxies using sightlines

towards close quasar-pairs or gravitationally lensed quasars. Gravitationally lensed

quasars (GLQ) or close quasar-pairs sample multiple sightlines at different impact

parameters through foreground galaxies and observing these sightlines can provide

information on the properties of interstellar gas in different regions of these galax-

ies. We have recently been awarded observing time with HST to study Lyman-α

absorption properties along sightlines towards multiple low-z GLQs. For all of these

GLQs, the lensing galaxy has been well detected in images and therefore, the impact

parameters for each sightline is also known. For most of these GLQs, several metal

absorption lines along each sightline have already been detected from ground based

spectroscopy. The UV spectra from HST, once available, will be used in conjunction

with the ground based data to provide detailed description of the properties of the

lensing galaxies at multiple impact parameters.
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Davé R., Oppenheimer B. D., 2007, MNRAS, 374, 427

de la Varga A., Reimers D., Tytler D., Barlow T., Burles S., 2000, A&A, 363, 69

Dessauges-Zavadsky M., Péroux C., Kim T.-S., D’Odorico S., McMahon R. G., 2003,
MNRAS, 345, 447

Dessauges-Zavadsky M., Ellison S. L., Murphy M. T., 2009, MNRAS, 396, L61

Ellison S. L., Lopez S., 2001, A&A, 380, 117

Erb D. K., Shapley A. E., Pettini M., Steidel C. C., Reddy N. A., Adelberger K. L.,
2006, ApJ, 644, 813

Ferland G. J., Porter R. L., van Hoof P. A. M., Williams R. J. R., Abel N. P., Lykins
M. L., Shaw G., Henney W. J., Stancil P. C., 2013, RMxAA, 49, 137

Fynbo J. P. U., Ledoux C., Noterdaeme P., Christensen L., Møller P., Durgapal A.
K., et al., 2011, MNRAS, 413, 2481

Ge J., Bechtold J., Kulkarni V. P., 2001, ApJ, 547, L1

141



Gharanfoli S., Kulkarni V. P., Chun M. R., Takamiya M., 2007, ApJ, 133, 130

Gibson B.K., Fenner Y., Renda A., Kawata D., Lee H., 2003, PASA, 20, 401

Gratton R. G., Caretta E., Claudi R., Lucatello S., Barbieri M., 2004, A&A, 404, 187

Haardt F., Madau P., 1996, ApJ, 461, 20

Henry R. B. C., Edmunds M. G., Koppen J., 2000, ApJ, 541, 660

Holland S. T., et al. 2014, “Cosmic Origins Spectrograph Instrument Handbook,
Version 6.0” (Baltimore: STScI)

Howk J.C., Sembach K.R., 1999, ApJ, 523, L141

Jenkins E.B., Bowen D.V., Tripp T.M., Sembach K.R., 2005, ApJ, 623, 767

Izotov Y. I., Thuan T. X., 2004, ApJ, 602, 200

Kaplan E.L., Meier P., 1958, JASA, 53, 282

Kaplan K. F., Prochaska J. X., Herbert-Fort S. Ellison S. L., Dessauges-Zavadsky
M., 2010, PASP, 122, 619

Kanekar N., Chengalur J. N., Subrahmanyan R., Petitjean, P., 2001, A&A, 367, 46

Karakas A., Lattanzio J.C., 2007, PASA, 24, 103

Khare P., Kulkarni V. P., Lauroesch J. T., York D. G, Crotts P. S., Nakamura O.,
2004, ApJ, 616, 86

Khare P., Kulkarni V. P., Péroux C., York D. G., Lauroesch J. T., Meiring J. D.,
2007, A&A, 464, 487

Kim T.-S.,Carswell R.F., Cristiani S., D’Odorico S., Giallongo E., 2002, MNRAS,
335, 555

Kisielius R., Kulkarni V. P., Ferland G. J., Bogdanovich P., Lykins M. L., 2014, ApJ,

142



780, 76

Krumholz M. R., Ellison S. L., Prochaska J. X., Tumlinson J., 2009, ApJ, 701, L12

Kulkarni V. P., Bechtold J., Ge J., 1999, in Proc. ESO Workshop, Chemical Evolution
from Zero to High Redshifts, ed. M. Rosa & J. Walsh (Berlin: Springer), 275

Kulkarni V. P., Fall S. M., 2002, ApJ, 580, 732

Kulkarni V. P., Fall S. M., Lauroesch J. T., York D. G, Welty D. E, Khare P., Truran
J. W., 2005, ApJ, 618, 68

Kulkarni V. P., Khare P., Péroux C., York D. G., Lauroesch J. T., Meiring J. D.,
2007, ApJ, 661, 88

Kulkarni V. P., Khare P., Som D., Meiring J., York D. G., Péroux C., Lauroesch J.
T., 2010, NewA, 15, 735

Kulkarni V. P., Meiring J., Som D., Péroux C., York D. G., Khare P., Lauroesch J.
T., 2012, ApJ, 749, 176

Lanzetta K. M., Turnshek D. A., Wolfe A. M., 1995, ApJ, 440, 435L

Ledoux C. Petitjean P., Møller P., Fynbo J., Srianand R., 2006, A&A, 457, 71

Lehner N., Wakker B. P., Savage B. D., 2004, ApJ, 615, 767

Lehner N., Howk J. C., Tripp T. M., Tumlinson J., Prochaska J. X., O’Meara J. M.,
Thom C., Werk J. K., Fox A. J., Ribaudo J., 2013, ApJ, 770 138

Lopez S., Reimers D., Rauch M., Sargent W. L. W., Smette A., 1999, ApJ, 513, 598

Lopez S., Reimers D., D’Odorico S., Prochaska J. X., 2002, A&A, 385, 778

Lopez S., Ellison S. L., 2003, A&A, 403, 573

Lu L., Savage B. D., Tripp T. M., Meyer D. M., 1995, ApJ, 447, 597

143



Lu L., Sargent W. L. W., Barlow T. A., Churchill C. W., Vogt S. S., 1996, ApJS,
107, 475

Madau P., Haardt F., Rees M.J., 1999, ApJ, 514, 648

Maiolino R., Nagao T., Grazian A., Cocchia F. et al., 2008, A&A, 488, 463

Massa D., York B. et al. 2013, “COS Data Handbook”, Version 2.0, (Baltimore:
STScI)

McWilliam A., Rich R. M., Smecker-Hane T. A., 2003, ApJ, 592, L21

Meiring J. D., Kulkarni V. P., Khare P., Bechtold J., York D. G., Cui J., Lauroesch
J. T., Crotts A. P. S., Nakamura O., 2006, MNRAS,370, 43

Meiring J. D., Lauroesch J. T, Kulkarni V. P., Péroux C., Khare P., York D. G.,
Crotts A. P. S., 2007, MNRAS,376, 557

Meiring J. D., Kulkarni V. P., Lauroesch J. T., Péroux C., Khare P., York D. G.,
Crotts A. P. S., 2008, MNRAS,384, 1015

Meiring J. D., Kulkarni V. P., Lauroesch J. T., Péroux C., Khare P., York D.G.,
2009, MNRAS, 393, 1513

Meiring J. D., Lauroesch, J. T., Kulkarni, V. P., Péroux C., Khare P., York, D. G.,
2009, MNRAS, 397, 2037

Meyer D. M., York D. G., 1992, ApJ, 399, L121

Meyer D. M., Lanzetta K. M., Wolfe A. M., 1995, ApJ, 451, L13

Mihalas D., ”Stellar Atmospheres”, 1970, W.H. Freeman and Company, San Fran-
cisco, CA, USA

Momjian E., Carilli C. L., Walter F., Venemans B., 2014, AJ, 147, 6

Molaro P., Bonifacio P., Centurión M., DŎdorico S., Vladilo G., Santin P., Di Mar-
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APPENDIX A

The Cosmological Redshift

Observationally, the redshift is measure of how much the wavelength of light from an
object shift towards the red end of the spectrum during its passage to the observer.
In terms of Cosmology, the redshift is a parametric representation of the expansion
of the Universe. Considering the Friedmann-Robertson-Walker-Lemâıtre (FRWL)
metric (see, e.g., Peebles 1976) a radially moving light ray (ds ≡ 0) can be described
as

dt2 = a2(t)
dr2

1 − kr2
, (A.1)

where k is the curvature parameter and a(t) is the dimensionless scale factor of
expansion. For the crest of a light wave emitted from some galaxy at a distance
r = r1 and time t = t1 and reaching us at r = 0 and t = t0, we can write

∫ 0

r1

dr√
1 − kr2

=

∫ t0

t1

dt

a(t)
. (A.2)

Now, if wavelength of the emitted light is λrest and that of the observed light is λobs,
then the next wave crest leaves the same galaxy at time t1 +(λrest/c) and reaches the
observer at time t0 + (λobs/c). Therefore,

∫ 0

r1

dr√
1 − kr2

=

∫ t0+
λobs

c

t1+
λrest

c

dt

a(t)
. (A.3)

Subtracting equation A.2 from A.3 and assuming a(t) remains unchanged over a small
time interval δt = λ/c we obtain,

λobs

a(t0)
=
λrest

a(t1)
. (A.4)

The cosmological redshift is defined as

z =
λobs − λrest

λrest
. (A.5)

Combining equations A.4 and A.5 we get the relation between the observed redshift
z and the scale factor a(t) as
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z =
a(t0)

a(t1)
− 1. (A.6)

In other words, the ratio of the sizes of the Universe at the epochs of emission and
detection of the photon is given by 1 + z. For an expanding Universe, the ratio
is positive and therefore, redshift can also be viewed as the stretching of the light
wave during its propagation due to the expansion of the Universe. The cosmological
redshift can also be thought of as resulting from the recessional velocity of the source,
i.e., it can be identified with the Doppler redshift which is given by

λobs = λrest

√

1 + β

1 − β
, (A.7)

where, β = (v/c) and v is the apparent speed of the source being observed relative to
the observer. For very small velocities v << c, the redshift can be written simply as

z =
λobs − λrest

λrest
=
v

c
. (A.8)
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APPENDIX B

Solar System Abundances

Table B.1 Solar system abundances (from Asplund et al. 2009), in logarithmic units,
for various elements commonly seen in the ISM.

Element Solar Abundance
Relative to H

He -1.07
C -3.57
N -4.17
O -3.31
Na -5.76
Mg -4.40
Al -5.55
Si -4.49
P -6.59
S -4.88
Cl -6.50
Ar -5.60
Ca -5.66
Ti -7.05
Cr -6.36
Mn -6.57
Fe -4.50
Co -7.01
Ni -5.78
Cu -7.81
Zn -7.44

153


	GALAXIES IN ABSORPTION: A STUDY OF CHEMICAL AND KINEMATIC PROPERTIES OF SUB-DAMPED LYMAN-ALPHA QUASAR ABSORBERS
	Recommended Citation

	dsom.dvi

