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Abstract 

 

Urbanization and increasing population are primary sources of water degradation, 

increased flood risks, and channel morphological instability.  Impervious surface areas increase 

with urbanization and result in decreased infiltration capactities, increased stormwater runoff, 

and more rapid stormwater delivery, which in turn increase flood magnitudes and frequencies.  

Low impact development (LID) can provide volumetric detention storage to reduce flooding.  

This thesis reviews types of LID, their attributes and limitations, and examines how effectively 

they can abstract storm runoff volumes, reduce peak discharge, and delay stormwater arrival 

times for relatively frequent storm events in the Rocky Branch Watershed (RBW). 

The RBW is 50% impervious, with some of the sub-watersheds as high as 73% 

impervious.  The Gervais gage sub-basin, located in the headwaters of the Rocky Branch Creek, 

has an estimated peak discharge at the Gervais USGS gage site of 255 cfs.  LID implementation 

provides stormwater volumetric abstractions by mimicking the preexisting natural landscape 

e.g., stimulating infiltration.   LID volumetric abstractions within the Gervais gage sub-basin can 

potentially completely reduce peak discharge to zero cfs for the relatively frequent storm 

events; however, the purpose of this study is to mitigate the overbank flooding rather than 

eliminate natural flows.  
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Chapter 1 - Introduction 
 

Urbanization and increasing population are the main sources of water degradation 

(Walsh et al. 2005, Qadri 2012), increased flood risks (Leopold 1968, Burton and Pitt 2002, 

Hadden Loh 2012), and channel morphological instability (Chin 2006).  Urban streams can cause 

flashier hydrographs, higher concentrations of contaminants, and reduced species richness 

(Arnold et al. 2010; Walsh et al. 2005).  Surface-water degradation was first majorly attributed 

to point source pollution; however, since 1970 it has been realized a major contributor to 

impaired surface-water bodies is from nonpoint sources (Novotny and Olem 1994) such as 

construction sites, farmland, automobiles, and decomposing organic material.  Healthy 

watersheds provide ecosystem services like clean drinking water, fishing and swimming 

opportunities, erosion control, flood protection, and animal habitat (Brion 2008, Hadden Loh 

2012).   

Impervious surface areas increase with urbanization and result in increases in 

stormwater runoff (Olsen et al. 2012), which in turn increase flood magnitudes and frequencies 

(Schueler and Holland 1994).  The total runoff from a one-acre meadow during a one-inch 

rainstorm would fill a standard size office to a depth of about two feet (Schueler and Holland 

1994); however, if the same acre was completely impervious the same amount of rainfall would 

completely fill the office in addition to two more (Schueler and Holland 1994).  Urbanization 

encourages Hortonian overland flow, which is rapid runoff across the ground surface that occurs
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when precipitation intensities exceed infiltration capacity.  Figure 1.1 shows the typical water 

cycle within a watershed before and after urban development.   

 

   Figure 1.1. The Water Cycle for Pre-development and Post-development 

   (Source: Olsen et al. 2012) 

 

The Rocky Branch Watershed (RBW) located in Columbia, SC is an urbanized watershed 

with 50 percent impervious area.  Some sub-basins within the RBW have impervious cover as 

high as 73 percent.  RBW has rapid runoff, a well-established urban storm sewer system (USSS), 

and short lag times and time of concentration, which increases hydrograph response times.  

Highly urban areas often have low-base flows, higher peak discharges, and higher runoff 

volumes (Schueler 1987) for both large and small storm events.  The USSS channelizes the Rocky 

Branch Creek (RBC) allowing for quicker flow due to lower channel roughness.   

Runoff connectivity effects stormwater arrival times which will be calculated in Chapter 

4.  Two types of impervious cover are often described; i.e., total impervious area (TIA) and 

effective impervious area (EIA) (Schueler and Holland 1994).  TIA is what Wooten (2008) 

mapped as the total area of impervious surfaces.  EIA, also referred to as directly connected 
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impervious area (Novotny and Olem 1994), is the area of impervious surfaces that drain directly 

to channels or storm sewers.  EIA is rarely known and has not been mapped in the RBW.  

Modern low-impact development (LID) can minimize the RBW runoff and stormwater arrival 

times by incorporating detention/retention structures. 

Low-impact development 

 

By definition, low impact development (LID) is a design strategy that encourages storage 

and infiltration of runoff and groundwater recharge through widely distributed, “micro-scale 

stormwater retention and detention areas, reduction of impervious surfaces, and the 

lengthening of flow paths and runoff time (Coffman, 2000)” (EPA 2000).  LID employs site 

specific designs intended to mimic the preexisting natural landscape before development.  LID 

techniques, pioneered by Prince George’s County, Maryland in the early 1990s (EPA 2000), try to 

recreate surface hydrologic conditions of the natural landscape and to reduce surface 

imperviousness in order to increase infiltration and minimize stormwater surface runoff.  This 

section describes bioretention cells and rain gardens, green roofs, cisterns, rain barrels, rain 

pillows, and permeable pavement as common examples of LID.  Bioremediation and cover 

cropping are also discussed, which are techniques used for soil treatment and will play a role in 

stormwater runoff management discussed later; bioremediation and cover cropping are 

traditionally used for water and soil quality treatments but this thesis focuses on a volumetric 

analysis.   

Bioretention and Rain Gardens 

Bioretention cells are areas constructed with underlying drainage lines, a combination 

of different soil structures, and topped with a variety of native plants.  They are designed to 



 

improve water quality of stormwater runoff, restore the hydrologic condition of the surrounding 

area, and improve aesthetics (Zimmer 2006

features also designed to capture stormwater runoff but, unlike bioretentio

not require heavy machinery to create 

terrestrial-based water quality and 

predevelopment hydrologic regimes 

of the design which restores the hydrologic condition by encouraging infiltration and slowing the 

delivery of runoff by minimizing Hortonian overland flow.  As with all LID strategies, these 

systems are effective when they are employed broadly across waters

channels.   

    Figure 1.2. Bioretention Design (Source: Brown 2011)

Bioretention systems can be scaled for both commercial and residential benefits 

(Ahiablame 2012).  In North Carolina, pollutant removal credits have been awarded for the 

construction of bioretention cells that 

coastal counties and 1.0 inch (2.54 cm) everywhere else

Kentucky, Minnesota, Ohio, Texas, and Washington also provide stormwater utility credits 

and Lindsey 1999).  The chemical, physical, and biological properties of soils help remove 
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improve water quality of stormwater runoff, restore the hydrologic condition of the surrounding 

Zimmer 2006, Brown 2011).  Rain gardens are smaller landscape 

features also designed to capture stormwater runoff but, unlike bioretention cells, typically do 

not require heavy machinery to create (Stringer 2011).  Like most LID systems bioretention is a 

based water quality and stormwater reduction system designed to mimic 

hydrologic regimes (Prince George's County 2007).  Figure 1.2 is an illustration 

of the design which restores the hydrologic condition by encouraging infiltration and slowing the 

of runoff by minimizing Hortonian overland flow.  As with all LID strategies, these 

systems are effective when they are employed broadly across watershed areas upland of 

 

Figure 1.2. Bioretention Design (Source: Brown 2011) 

systems can be scaled for both commercial and residential benefits 

North Carolina, pollutant removal credits have been awarded for the 

bioretention cells that are large enough to capture 1.5 inches (3.81 cm) 

coastal counties and 1.0 inch (2.54 cm) everywhere else (Brown 2011).  Florida, Kansas, 

o, Texas, and Washington also provide stormwater utility credits 

The chemical, physical, and biological properties of soils help remove 

improve water quality of stormwater runoff, restore the hydrologic condition of the surrounding 

Rain gardens are smaller landscape 

n cells, typically do 

Like most LID systems bioretention is a 

system designed to mimic 

2 is an illustration 

of the design which restores the hydrologic condition by encouraging infiltration and slowing the 

of runoff by minimizing Hortonian overland flow.  As with all LID strategies, these 

hed areas upland of 

systems can be scaled for both commercial and residential benefits 

North Carolina, pollutant removal credits have been awarded for the 

(3.81 cm) in 

Florida, Kansas, 

o, Texas, and Washington also provide stormwater utility credits (Doll 

The chemical, physical, and biological properties of soils help remove 
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stormwater pollutants through the four processes of settling, chemical reactions in the soil, 

plant uptake, and biological degradation in the root zones (Holmes 2012).   In addition to 

pollutant removal, bioretention facilitates interception, infiltration, evaporation, transpiration, 

and assimilation (Prince George's County 2007).  Together these functions help reduce runoff 

rates by increasing storage and evapotranspiration.  A case study at Oak Terrace Preserve, North 

Charleston, South Carolina concluded that bioretention placed alongside front yards within the 

easement temporarily stored 5 cm of runoff (Vandiver 2010).   

The design depths of each rain garden or bioretention cell depend on the slope of the 

drainage area.  If the slope is less than 4% rain gardens can be less than 5 inches (12.7 cm) deep, 

between 5 and 7% slope the depth should be between 6 and 7 inches (15-18cm), and at slopes 

greater than 8% depth should be greater than 8 inches (20 cm) (Stringer 2011).  If infiltrated 

water in bioretention and rain gardens can percolate completely between rain events 

groundwater recharge will increase.  This is highly beneficial to groundwater sustainability, so 

many states enforce groundwater recharge requirements (Brown 2011).   

Green Roofs 

Green roofs are a combination of different types of vegetation systems installed on 

rooftops (Stringer 2011).  Green roofs are constrained by flat rooftop space, but still show 

potential in less energy costs and stormwater runoff (USACE 2013).  Figure 1.3 is an example of 

a green roof which is designed to compensate for the vegetation that was removed when the 

building was constructed (Ahiablame 2012).  They are comprised of three components: 

subsurface drainage, growth media or soil, and vegetation on top (EPA 2000).  Designed to 

mimic the natural landscape green roofs drastically improve permeability and aesthetics (Kloss 

and Calarusse 2006).  Green roofs have the potential to improve air quality, minimize the urban 



 

heat island effect, and store precipitation that would otherwise become runoff 

Up to 85% of dust particles can be filtered out and removed from the air 

Vegetative rooftops will mediate air temperatures allowing for cooler summers and warmer 

winters on buildings incorporating the design.  The average rainfall retention by green roofs 

varies between 20% and 100% based upon rainfall intensity, duration, and depth of material.  

Furthermore, measurements of extensive green roofs reducing stormwater show that they 

intercept, retain, and evapotranspire between 34% and 69% of precipitation (Gregoire and 

Clausen 2011) if there is a fair amount of antecedent dry days preceding the rainfall even

soil media has a low bulk density.  A 3

inches (1.5 cm) of rain for each rainfall event and a 4

total rainfall over multiple storm events 

                                Figure 1.3. Gr

                                (Source: sustainablestormwater.org)

 

A 3000 ft2 (286 m2) rooftop in Philadelphia was fitted with a vegetated rooftop and 

witnessed 44 inches of rainfall within a nine month period.  Only 15.5 inches (39.37 cm) of 
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and store precipitation that would otherwise become runoff (Coffman 

Up to 85% of dust particles can be filtered out and removed from the air (Coffman 

ate air temperatures allowing for cooler summers and warmer 

winters on buildings incorporating the design.  The average rainfall retention by green roofs 

varies between 20% and 100% based upon rainfall intensity, duration, and depth of material.  

re, measurements of extensive green roofs reducing stormwater show that they 

intercept, retain, and evapotranspire between 34% and 69% of precipitation (Gregoire and 

Clausen 2011) if there is a fair amount of antecedent dry days preceding the rainfall even

soil media has a low bulk density.  A 3-inch (7.6 cm) green roof can retain approximately 0.6 

inches (1.5 cm) of rain for each rainfall event and a 4-inch (10 cm) green roof can retain 50% of 

total rainfall over multiple storm events (Stringer 2011, Ahiablame 2012).   

 

3. Green Roof in Paris, France  

(Source: sustainablestormwater.org) 

) rooftop in Philadelphia was fitted with a vegetated rooftop and 

witnessed 44 inches of rainfall within a nine month period.  Only 15.5 inches (39.37 cm) of 

Coffman 2000).   

Coffman 2000).  

ate air temperatures allowing for cooler summers and warmer 

winters on buildings incorporating the design.  The average rainfall retention by green roofs 

varies between 20% and 100% based upon rainfall intensity, duration, and depth of material.  

re, measurements of extensive green roofs reducing stormwater show that they 

intercept, retain, and evapotranspire between 34% and 69% of precipitation (Gregoire and 

Clausen 2011) if there is a fair amount of antecedent dry days preceding the rainfall event or the 

inch (7.6 cm) green roof can retain approximately 0.6 

inch (10 cm) green roof can retain 50% of 

) rooftop in Philadelphia was fitted with a vegetated rooftop and 

witnessed 44 inches of rainfall within a nine month period.  Only 15.5 inches (39.37 cm) of 
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runoff was generated; however, 90% of rainfall events in Philadelphia on average have 

intensities less than 2 inches (5 cm) per day (EPA 2000).  Larger, more intense storm events 

cannot be extrapolated from the data gathered in the case study, but clear benefits are shown 

for smaller rain events.   

Figure 1.4 is a before and after proposal in Washington, DC where buildings over 10,000 

ft2 (930 m2) are covered by 20% vegetation.  A proposed 20-year program is required to install 

green roofs on 20% of the city buildings over 10,000 ft2 (Kloss and Calarusse 2006).  There are 

265 buildings within the RBW greater than 10,000 ft2; therefore the potential is there.  

 

     Figure 1.4 Washington, DC 20% Green Roof Program (Source: Kloss & Calarusse 2006) 

 

Cisterns, Rain Barrels, and Rain Pillows 

Cisterns and rain barrels are rainwater harvesting devices primarily used for 

landscaping, livestock watering, car washing, and nonpotable water uses, such as toilet flushing 

to provide detention storage volume (Coffman 2000, Donaldson 2009).  Gutters must be 

installed to channel the rainwater running off the eaves of a building to these containers 



 

(Krishna et al. 2005).  Cisterns are often used on larger buildings whereas rain barrels are 

optimal for smaller single-family homes (see 

               Figure 1.5. Cistern (left) and Rain Barrel (right) (Source: Donaldson 2009)

Both are storage containers that can be placed above or below ground 

Different types of cisterns include: 

concrete, and ferrocement (a combination of steel and mortar)

must be a hardwood that can easily retain water, such as redwoods, fir, and cypress.  The metals 

must be galvanized to prevent rusting from inundation.  Fiberglass tanks can range from 50 to 

15,000 gallons (189-56,800 liters), but are more cost efficient at the large

opaque to inhibit algae growth 

design which has available capacities ranging from 700 to 37,000 gallons (2,650

(Krishna et al. 2005).  Wooden designs are costly due to the limited choices of wood material; 

however, they are the best for aesthetics. 

Rain barrels target smaller

ranging usually from 20-75 gallons (76

2005).  Rain barrels are typically only stored above ground, used for residential applications, and 
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.  Cisterns are often used on larger buildings whereas rain barrels are 

family homes (see Figure 1.5).   

5. Cistern (left) and Rain Barrel (right) (Source: Donaldson 2009)

 

Both are storage containers that can be placed above or below ground (Zimmer 2006

Different types of cisterns include: Fiberglass, wood, polypropylene, galvanized metal, 

ferrocement (a combination of steel and mortar) (Krishna et al. 2005

must be a hardwood that can easily retain water, such as redwoods, fir, and cypress.  The metals 

must be galvanized to prevent rusting from inundation.  Fiberglass tanks can range from 50 to 

56,800 liters), but are more cost efficient at the large-scale, and should be 

opaque to inhibit algae growth (Krishna et al. 2005).  Another large-scale cistern is the wooden 

design which has available capacities ranging from 700 to 37,000 gallons (2,650-140,000 liters) 

ooden designs are costly due to the limited choices of wood material; 

however, they are the best for aesthetics.  

Rain barrels target smaller-scaled impervious areas due to their smaller capacities 

75 gallons (76-284 liters), similar to municipal trash bins (Krishna et al. 

.  Rain barrels are typically only stored above ground, used for residential applications, and 

.  Cisterns are often used on larger buildings whereas rain barrels are 

 

5. Cistern (left) and Rain Barrel (right) (Source: Donaldson 2009) 

Zimmer 2006).  

Fiberglass, wood, polypropylene, galvanized metal, stone, 

Krishna et al. 2005).  The wood 

must be a hardwood that can easily retain water, such as redwoods, fir, and cypress.  The metals 

must be galvanized to prevent rusting from inundation.  Fiberglass tanks can range from 50 to 

scale, and should be 

cale cistern is the wooden 

140,000 liters) 

ooden designs are costly due to the limited choices of wood material; 

scaled impervious areas due to their smaller capacities 

Krishna et al. 

.  Rain barrels are typically only stored above ground, used for residential applications, and 
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should be equipped with mosquito screens and drain spigots (Coffman 2000, Zimmer 2006).  A 

capacity goal when designing a cistern or rain barrel is to divert at least 10 gallons (37.9 liters) 

for every 1000 ft2 (93 m2) of impervious rooftop catchment area (Stringer 2011).  Another 

capacity approximation to consider providing is 0.62 gallons (2.35 liters) per ft2 (0.09 m2) of 

building surface area per inch (2.54 cm) of rainfall (Krishna et al. 2005).  An easy formula to use 

when trying to determine how large of a cistern a building needs is: 

                                                             Volume = A*Rft*0.9*7.5                                                  Equation 1 

where volume is given in gallons, A is building surface area in square feet, Rft is the rainfall depth 

in feet, 0.90 is a compensation factor allowing for evaporation, and 7.5 converts cubic feet to 

gallons (Donaldson 2009).  For example, the Swearingen engineering building on the University 

of South Carolina’s campus has a roof area of 67,500 ft2 (6,271 m2).  A one-inch rainfall event on 

campus would create almost 38,000 gallons (144 m3) of potential rainfall storage.  Buildings this 

large would require multiple cisterns if a total storage of precipitation is desired.   

Rain Pillows  

 Rain pillows are a horizontal design to fit wasted space in many homes and buildings 

with a gutter system.  The pillows can be installed in many unused crawl spaces (Figure 1.6), 

basements, or above ground (Betsy Kaemmerlen written communication).  Pumps are fitted to 

the pillow in order to apply collected rainwater to outdoor irrigation and can be designed as an 

automated irrigation system (RCS ND).  In addition, a filtration system can be added for potable 

uses and treat the water to EPA drinking water standards.  Rain pillows can be designed based 

on any buildings’ footprint and can store up to 200,000 gallons (757 m3).  A variety of styles for 

single-family home use are available on the market with capacities ranging from 100 to 3,000 

gallons (0.4 to 4 m3) with or without plumping and pumps.   



 

             Figure 1.6. Rain Pillow (Source: RCS ND)

Permeable Pavement 

Permeable pavements are blocks of asphalt with tiny areas of grass or sand separating 

each block.  In areas with higher infiltration rates like the Midwestern United States permeable 

pavements do not require underlying drain systems whereas areas w

drain systems are needed (Brown 2007).  The permeable pavements are primarily used t

reduce runoff rates; however, they can also be coupled with 

(Ahiablame 2012).   

Permeable pavement can reduce runoff up to 72% from ten recent studies; however, 

pore spaces can become clogged 

a 1x1 m2 permeable pavement parcel runoff reductions can be as high as 1 mm/hr

2007); the best reductions occur during the first flush of rainfall (Sansalone et al. 2012).  
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6. Rain Pillow (Source: RCS ND) 

 

Permeable pavements are blocks of asphalt with tiny areas of grass or sand separating 

s with higher infiltration rates like the Midwestern United States permeable 

pavements do not require underlying drain systems whereas areas with slower infiltration rates 

(Brown 2007).  The permeable pavements are primarily used t

however, they can also be coupled with rainwater storage for reuse 

Permeable pavement can reduce runoff up to 72% from ten recent studies; however, 

pore spaces can become clogged (Ahiablame 2012, Sansalone et al. 2012, Yong et al. 2013).  For 

permeable pavement parcel runoff reductions can be as high as 1 mm/hr

2007); the best reductions occur during the first flush of rainfall (Sansalone et al. 2012).  

 

Permeable pavements are blocks of asphalt with tiny areas of grass or sand separating 

s with higher infiltration rates like the Midwestern United States permeable 

ith slower infiltration rates 

(Brown 2007).  The permeable pavements are primarily used to 

rainwater storage for reuse 

Permeable pavement can reduce runoff up to 72% from ten recent studies; however, 

2012, Yong et al. 2013).  For 

 (Brown 

2007); the best reductions occur during the first flush of rainfall (Sansalone et al. 2012).   
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Bioremediation & Protective Covering 

 While bioremediation and protective covering are not LID practices, they can lower 

curve numbers (CNs), increase infiltration, minimize surface runoff, and improve water quality.  

This thesis does not focus on water quality but these concepts are well-known and important to 

discuss.  Bioremediation and protective covering do not require conventional tillage (Olsen et al. 

2013) and can be applied in highly urban areas similar to RBW. 

Bioremediation is a set of waste-management tools for breaking down pollutants at 

contaminated sites.  It becomes relevant to LID and conventional stormwater retention where 

storage of rainwater is associated with water quality issues.  In particular, bioremediation can be 

used to pretreat stormwater before it reaches detention storage facilities or post-treat water 

after it is stored.  Toxic organic and inorganic chemicals from urban runoff are major 

contributors to water contamination (Singh 2008).  These chemicals found in the soil can be 

consumed by plants through a process called immobilization, (Kohnke and Franzmeier 1995; 

Novotny 2003) which is the conversion of an element from the inorganic to the organic form.  

The bioremediation process uses the normal functions of bacteria, fungi, and plants to break 

down these contaminants (Donlon and Bauder 2007).   

Protective covering is traditionally designed to protect otherwise bare soil from erosion 

(Dabney et al 2001) and loss of plant nutrients through runoff.  Covering an exposed surface 

area can increase hydrological storage (Novotny and Olem 1994) and increase surface 

roughness, which slows down stormwater arrival times.  Covering bare soils or compacted 

grasses can also stimulate infiltration through root growth.  Roots provide a pathway and 

habitat for soil organisms to break down organic matter (Kohnke and Franzmeier 1995), 

strengthening the soil structure and increasing the depth of the O and A soil horizons.  Urban 
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permeable areas can become compacted over time by anthropogenic trampling, therefore it is 

important to establish a permanent root system to encourage pore space in the top soil layers.  

The O (organic) horizon and the A (surface soil) both contain high void space, porosity, and 

permeability, which is where the majority of the root system is located.  These principles are 

well understood and commonly managed in rural and agricultural watersheds, and their 

applicability to urban areas should not be forgotten as a potential management tool.  Although 

land use is much more finely fragmented in urban areas, increasing pore space and infiltration in 

soils within urban areas like RBW can minimize sheet flow and increase natural recharge.   

Modelling Stormwater Runoff 

 

The impacts of urbanization on hydrologic response to rainfall can be stimulated by 

computer models. A great variety of such models exist that range in complexity and how they 

operate.  This study employs a few simple model simulations to explore runoff responses to 

scenarios of LID employment.  These models, briefly introduced here, include the rational 

method, the curve number (CN) method, and the TR-55 modeling system that is based on the 

CN method.  Most conventional rainfall-runoff models use measures of land use or soil 

properties to estimate infiltration abstractions and runoff.  In urban areas, impervious surface 

areas may drive runoff response, as well as water quality and the health of aquatic ecosystems 

(Schueler, 2000; Walsh et al., 2005; 2012).  Areas of impervious surfaces are analyzed in this 

study; therefore, to provide an index or the degree of urbanization that should help to predict 

runoff response.   

The rational method is an empirical relation between rainfall intensity and peak flow 

(Hayes and Young 2006).  It uses a runoff coefficient (C), rainfall intensity, and watershed area to 

calculate peak discharge.  Runoff coefficients are determined by infiltration, depression storage, 
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evapotranspiration, and interception (Hayes and Young 2006) and have been tabulated for 

urban land uses.  They range from 0 to 1.0, where 0 indicates zero runoff and 1.0 indicates all 

rainfall generates runoff.  The rational method considers the following assumptions (Wanielista 

and Yousef 1993; Hayes and Young 2006): 

1. Rainfall intensity is constant over the time it takes for runoff to reach the 

outlet from the most distant point of the watershed (time of concentration). 

2. The runoff coefficient remains the same during the time of concentration. 

3. The watershed area does not change during the rain event. 

The runoff curve number (CN) method was developed by the USDA Natural Resources 

Conservation Service (NRCS), formerly known as the Soil Conversation Service (SCS), and is used 

to determine infiltration rates (Zhan and Huang 2004) and runoff volumes (Mishra et al. 2006; 

Patil et al. 2008; Soulis et al. 2009) for a single rainfall event.  The hydrologic soil group, 

vegetation cover (Wanielista and Yousef 1993), and land-use are used to determine the CN.  

Figure 1.7 shows typical CN values for urban areas provided by (Cronshey 1986).  CNs will be 

spatially assigned using standard tabulated values from (Cronshey 1986) based on the 2013 

impervious surface map layers that distinguish between buildings, sidewalks and parking lots, 

and streets.  Connectivity will affect CNs based on USSS, impervious surface area, distance to the 

drainage system, zoning district, and hydrologic soil group.   
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           Figure 1.7. Typical CN Values for Urban Areas (Source: Cronshey 1986) 

 

A hydrologic soil group (HSG) is classified using map units that are collections of areas with 

similar soil components or miscellaneous areas (USDA 2007) and assigned by similarities in 

physical and runoff characteristics (USDA 2007).  The HSGs are based on measured rainfall, 

runoff, and infiltrometer data and are usually grouped within a climatic region with similar 

textures, structures, water table depths, and runoff responses (USDA 2007); however, 

infiltration rate is the primary grouping factor (Pilgrim and Cordery 1993).  There are four HSGs 

(A, B, C, and D) (Putnam 1972, Pilgrim and Cordery 1993, USDA 2007): 

1. Group A soils have high infiltration rates, a low runoff probability, typically made up 

of less than 10 percent clay and more than 90 percent sand or gravel, and contain 

loams. 
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2. Group B soils have moderately low runoff potential when thoroughly wet, contain 

moderately fine to moderately coarse textures, and have a low bulk density.  

3. Group C soils have a moderately high runoff potential with less than 50 percent 

sand and 20 to 40 percent clay.  C soils are normally moderately fine to fine texture 

typically including sandy clay loams.   

4. Group D soils have high runoff potentials with very restricted infiltration due to clay 

content higher than 40 percent.  D soils contain shrink-swell potential, have a water 

table within 60 centimeters of the surface, have a drainage problem, and are mostly 

made up of clay loams, silty clay loams, and clays.   

Using map units to list HSGs is preferred over listing them by soil series because soil series are so 

frequently re-defined that maintaining a single functioning list is nearly impossible (USDA 2007).  

Moreover, most soil maps depict soils in groups of soil series (map units) and maps of the 

specific soil series are not generally available.   

TR-55 Runoff Model 

 

 Technical Release 55 (TR-55) is a simplified computer model widely used in the United 

States to calculate storm runoff volume, peak discharge, storm hydrographs, and storage 

volumes detention structures (Cronshey 1986).  The model begins with a uniform rainfall event 

and calculates runoff using the runoff CN, which is then transformed into a hydrograph using 

unit hydrograph theory (Cronshey 1986) dependent on runoff travel times through the 

watershed.  TR-55 is not used in this thesis because the majority of the Rocky Branch Creek is 

connected through the USSS.  
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Study Area 

 

The Rocky Branch Watershed (RBW) is a small, urban sub-watershed of the Upper 

Congaree watershed with a drainage area of formerly approximate 10.3 km2 (Wooten 2008) in 

2007.   After drainage divide revisions, which will be discussed later, the RBW drainage area is 

currently 10.82 km2.  The creek is susceptible to flash flooding due to a high impervious area of 

49 percent (Wooten 2008) for the entire RBW and 51 percent (Logan et al. 1995) above the At 

Pickens gage.  Rocky Branch Creek (RBC) is over 6.5 km long and flows through the Five Points 

district and the University of South Carolina (Figure 1.8).  The Gregg Street, University Hill, USC 

Campus Northwest, and 5-Points Junction sub-divides (Figure A.1) are dominantly designated for 

commercial land use.  The percent impervious area within the commercial zoning districts is 

drastically higher than in residential and industrial zones.  The eastern sub-divides are primarily 

residential and contain a higher proportion of green space.  The RBC discharges into the 

Congaree River above Congaree National Park so pollutants and sediments pose a threat to 

interests outside the RBW.   

Two rain gages are located within the RBW: the University of South Carolina gage is 

located behind Bates House Dormitory and the Richland County gage is located on the top of the 

Richland County parking structure near Hampton and Harden Streets.  Richland County rainfall 

data is provided by Ken Aucoin and have not yet been calibrated.  In addition, four streamflow 

gages located along the RBC; however, none of the streamflow gages are fully calibrated.  Three 

streamflow gages have been operating since October 2007 providing flow-stage data that can be 

used to characterize the timing of stormwater delivery and the frequency of overbank flows.   
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      Figure 1.8. Rocky Branch Watershed 
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A fourth gage at Pickens Street has been discontinued, but has data dating back to 1984, for 

which some periods have been calibrated and provide discharge values for flows below 

moderate stages of flow.  Figure A.2 shows the streamflow gages along the RBC and the rain 

gage located on the USC campus.  

Objectives 

 

 This study will have three primary objectives which will be discussed in detail in Chapter 

2: 

1. Spatial analysis to evaluate feasibility of LID in various sub-watersheds  

2. Evaluate hydrologic rainfall response by constructing model storm hydrographs 

within the RBW. 

3. Construct a water budget analysis to determine LID treatment estimates and its 

effect on reducing peak discharge
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Chapter 2 – Methods 

 

 This chapter presents the methodologies used to achieve each of the three thesis 

objectives.  Additional methods and details on some of the methods are presented in 

subsequent chapters in the context in which they were used.   

Objective 1 – Spatial Analysis to Evaluate Feasibility of LID in Various 

Subwatersheds 

 

To meet objective one, existing maps were collected and updated as needed, and new 

spatial analyses were employed to generate a series of thematic maps and spatial data to 

characterize the subwatersheds.  Existing data that were incorporated into the spatial dataset 

include storm sewer maps constructed by the City of Columbia, SSURGO digital soil data, zoning 

maps, impervious surfaces, and a property owner parcel map.   Details on these geospatial 

methods are described in Chapter 3.   

Revising Existing Spatial Data 

Revised data layers included, remapping basin, sub-basin, and gage-basin divides based 

on new LiDAR data and manual interpretations of topography using the contour crenulation 

method on contours with a two-foot interval derived from the new LiDAR data. Several maps 

from Richland County and the City of Columbia were merged, since RBW overlaps both 

governing entities.  Zoning data were collected from the City of Columbia and Richland County 

GIS departments and merged into four general zoning classes: low-density residential, medium 
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and high-density residential, commercial, and industrial. In addition, Wooten’s (2008) land-

use/land-cover (LU/LC) maps, including impervious surface, zoning, and parcel maps, were 

updated in two ways.  First, based on the new basin and sub-basin drainage divides, Wooten’s 

data were clipped where it overlapped the new watershed divide boundaries and new 2014 

data were generated for impervious surfaces and zoning where the new divides extend beyond 

the old boundaries.  Second, Wooten’s impervious surface maps were updated using his 

methods with 2014 imagery as explained in Chapter 3.  Very few losses of buildings were 

identified from 2007 to 2014 by these methods, but many new structures were noted by 

remapping.   

New Thematic Maps and Cistern Analysis 

New thematic maps were developed based on these maps such as: new basin, sub-

basin, and gage basin drainage divides, hydrologic soil groups, impervious area property 

ownership, effective impervious area, and a cistern analysis.  The new maps of the RBW help 

indicate where potential LID projects could be located in order to effectively detain stormwater 

runoff.   

A cistern analysis was completed by calculating building rainwater runoff to determine 

total runoff for a single rain event.  Once total runoff was determined, standard cistern and rain 

barrel sizes were assumed to fit various building gutter systems in order to capture 100% of the 

rainfall runoff.  A map of the various sizes and number of cisterns per building illustrates the 

numbers of cisterns each building would require to compensate for the surface runoff 

generated by the roof.  For instance, many of the residential buildings only require 100 gallon 

rain barrels; whereas larger university buildings require multiple larger cisterns to completely 

capture runoff from a 1-inch rain event.   
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Objective 2 – Hydrologic Analysis: Evaluating Rainfall-Runoff Response with 

Model Storm Hydrographs 

 

 This section briefly reviews hydrologic data available in the RBW include rainfall and 

discharge data that were collected at several gaging stations through time.  This is followed by 

the methods used to compute stormflow volumes, peak discharges, and stormwater arrival 

times.  For the purpose of building model hydrographs, stormwater volumes and peak 

discharges were computed.  The runoff volumes and peak discharge data, along with the timing 

of hydrograph arrivals, constrain the shape and size of model hydrographs.   

 Synthetic storm hydrographs were created for specific rainfall events in order to assess 

the effectiveness of potential for LID to mitigate storm runoff in the At Pickens and Near Gervais 

sub-basins of RBW.  Rainfall data are described first.  The model hydrographs were generated by 

(1) computing storm runoff volumes by the SCS curve number method, (2) calculating flood 

peaks by the rational and two regional methods, and (3) constraining stormwater arrival times 

with computations of lag-to-peak and lag-to-centroid. Both CNs and rational coefficients were 

computed using spatially weighted values for the sub-watersheds based on a GIS analysis of 

land-use data.  The model hydrographs were compared with USGS discharge hydrograph data 

collected at the At Pickens Street gage and USGS stage hydrograph data collected at the Gervais 

Street streamflow gages. 

Hydrologic Data 

 

Rainfall Data 

Daily precipitation data have been collected at the USC weather station since 1943 and 

five-minute data were collected occasionally during 2013.  In addition, uncalibrated rainfall data 

at a variety of time intervals have been collected since October 2012 from the top of the 
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Richland County parking structure near Hampton and Harden Streets, which is located very near 

the Gervais Street streamflow gage (Ken Aucoin, written communication).  A summary of 

presently available rain data is given in Table 2.1.  The county data were used to evalutate the 

timing of storm-flow arrivals at the Gervais Street gage, although the 15-minute interval 

streamflow data limits the constraints on timing for this small basin. 

Precipitation intensities evaluated for simulations were derived from rainfall depths and 

durations on an intensity-duration-frequency chart developed by NOAA (2013).  Rainfall 

recurrence intervals ranging from one to 50 years for durations ranging from 5 minutes to 2 

days were computed by NOAA based on a regional analysis of precipitation data collected at 

several rain gages across South Carolina (Table 2.2).  The analysis of rainfall values in this study 

assume that total rainfall from a given event occurs completely within the duration listed, so a 

one-inch 30-minute rainfall is assumed to have produced an intensity of one inch per hour.  A 

rain gage is located off of South Bull Street, behind Bates House dormitory, that records five 

minute punch interval rainfall, but the data are only archived for 48-hour time periods.  The USC 

rainfall data were collected periodically and used to constrain lag-to-peak discharge times at the 

At Pickens Street gage for developing model storm hydrographs.   

    Table 2.1. Available RBW Rainfall Data Summary 

 

USC Precipitation Data 
Richland County Precipitation 

Data 

Daily 

Data 
5-min Data 

1-min to 15-min Data 

inches inches inches 

1943-

2004 
2/7/2013 to 2/8/2013 

10/15/2012 to present 

  
7/27/2013 to 

7/31/2013   

  8/6/2013   

  9/23/2013   
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9/25/2013 to 

9/27/2013   

 

Table 2.2. Precipitation Frequency Estimates (inches) (Source: NOAA 2013) 

 

Duration 1-yr 2-yr 5-yr 10-yr 25-yr 50-yr 

5-min 0.45 0.522 0.597 0.67 0.751 0.818 

10-min 0.719 0.835 0.957 1.07 1.2 1.3 

15-min 0.899 1.05 1.21 1.35 1.52 1.65 

30-min 1.23 1.45 1.72 1.96 2.25 2.48 

60-min 1.54 1.82 2.2 2.56 2.99 3.37 

2-hr 1.76 2.1 2.56 3 3.57 4.06 

3-hr 1.86 2.21 2.71 3.2 3.85 4.43 

6-hr 2.2 2.62 3.22 3.8 4.58 5.29 

12-hr 2.57 3.07 3.78 4.49 5.45 6.33 

24-hr 3 3.6 4.5 5.26 6.38 7.33 

2-day 3.52 4.23 5.25 6.1 7.33 8.36 

 

Discharge Data 

Storm hydrographs were constructed for a variety of rainfall events at the Gervais Street 

and At Pickens Street streamflow gages using available observed discharge data at those sites.  

Streamflow data are currently limited for the basin.  Four USGS streamflow gage sites are 

located on the RBC; however, none are fully calibrated (Table 2.3).  Three streamflow gages 

have been operating since October 2007 providing flow-stage data that can be used to 

characterize the timing of stormwater delivery and the frequency of overbank flows.  A fourth 

gage at Pickens Street has been discontinued, but has data dating back to 1984, for which some 

periods have been calibrated and provide discharge values for flows below moderate stages of 

flow (Table 2.4).  The Civil and Environmental Engineering Department of the University of South 

Carolina has provided discharge data for a single storm event measured by the U.S. Geological 

Survey at the 02169505 gage (at Pickens Street), which can be used to accurately estimate all 
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discharges below 5.2 feet (Fadi Shatnawi, written communication).  A series of computations 

were conducted to interpret and constrain discharges associated with the flow-stage data at the 

Gervais and At-Pickens gage sites.  Channel cross sections were topographically surveyed with a 

rod, level, and tape at both gage sites to determine when flows top stream bank and terrace 

surfaces.  In addition, the cross sections identify the stages at which backwater and ponding 

occurs due to bridges.     

   Table 2.3. Available Continuous Stage Data for Rocky Branch Creek (Source: USGS) 

 

  15-min Continuous Stage Drainage Area 

USGS Gage Gage # Start End km
2
 

Gervais 21695045 10/24/2007 present 0.303 

Above Pickens 21695048 10/1/2007 present 5.454 

At Pickens 2169505 10/1/2011 1/29/2012 5.569 

Whaley 2169506 10/1/2007 present 6.690 

 

             Table 2.4. At-Pickens Gage (Source: USGS) 

 

Daily Max, Min, 

Mean 

Stage-Q 

measurements 

Stage-Q Storm 

Hydrographs 

Period of Record Period of Record Period of Record 

8/14/1984 to 

12/5/1990 

1984 to 1988; 

2001 to present; 

both periods 

calibrated 

2/7/2013 to 

2/8/2013 

5/13/2011 to 

1/17/2012   

 

For the Gervais Street gage (21695045), which has only flow stage data, model storm 

hydrographs were simulated for floods of various return periods based on estimates of peak 

discharge, lag-to-centroid, and total runoff.  The size of storm hydrographs is governed by peak 

discharge and the volume of storm runoff, whereas the shape of hydrographs is governed by the 

arrival times.   
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Runoff Volumes computed by the Curve Number Method Adjusted for 

Impervious Areas 

 

Stormwater runoff volumes were computed using the standard SCS curve number (CN) 

method (NRCS 2010; Bedient and Huber 1988).    

Runoff volumes were calculated using the following equation (Putnam 1972; Bedient 

and Huber 1988): 

                                                             � = ����.�� !

��"�.#�                                                       Equation 2.1 

where R is accumulated direct runoff in inches, P is the accumulated rainfall in inches, and S is 

the potential maximum soil retention in inches, which is a function of the SCS curve number:  

                                                                        
$���
%&' ( 10                                                             Equation 2.2 

where CN is the SCS curve number.  The factors multiplied with S (0.2 and 0.8) are initial 

abstractions from interception, infiltration, and surface storage prior to runoff.  Runoff volumes 

are computed by multiplying runoff depths by drainage area. 

Curve numbers are conventionally determined, in part, by the use of hydrologic soil 

groups (HSGs).  In urban areas, however, HSGs may not be known or may be inaccurate for 

computing runoff.  For example, much of RBW is mapped on NRCS soil maps as “Urban Land”, 

which does not have an associated HSG.  Much of the remaining area of the catchment is 

mapped as a soil series variant with ‘urban’ used as a modifier; e.g., Vaucluse-Urban and 

Orangeburg-Urban.  Although the HSG of Vaucluse and Orangeburg are known, these large 

areas of these surfaces are covered by impervious materials so infiltration is greatly impaired 

and hydrologic behavior is not accurately indicated by use of the HSG alone.  To improve the 
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accuracy of hydrologic response in the RBW, the impervious surface map was utilized in the 

spatial weighting of curve numbers. 

The runoff curve number (CN) method was developed by the USDA Natural Resources 

Conservation Service (NRCS), formerly known as the Soil Conversation Service (SCS), and is used 

to determine infiltration rates (Zhan and Huang 2004) and runoff volumes (Mishra et al. 2006, 

Patil et al. 2008, Soulis et al. 2009) for a single rainfall event.  CNs can be assigned for urban and 

rural drainage areas and to various types of land-cover.  The HSG, vegetation cover (Wanielista 

and Yousef 1993), type of land-use, and percent impervious cover are used to determine the CN 

(Figure 1.5).   

Two types of impervious cover are often described; i.e., total impervious area (TIA) and 

effective impervious area (EIA) (Schueler and Holland 1994).  Impervious surfaces were 

determined by updating a map of total impervious area (TIA) for buildings, sidewalks, and 

parking lots produced by Wooten (2008). Impervious surfaces were initially given a CN value of 

90.  Streets were given a CN of 98 based on Figure 1.7 and their high connectivity.  These 

impervious CNs were adjusted to compensate for local runoff storage and connectivity, and 

represent an approximation of the effective impervious area (EIA).  The EIA CN adjustments 

were split into three categories: hydrologic soil groups, zoning type, and 10-meter street and 

urban storm sewer system (USSS) buffer. 

The hydrologic soil groups raised and lowered the impervious CNs.  For all impervious 

surfaces within the A hydrologic soil group (well drained soils), EIA CN values were lowered to 

85; for B soils there was no change; and for D soils (poorly drained soils) EIA CN values were 

increased to 95.  If the centroid of the impervious surface was located within 10 meters of a 

street or urban storm sewer system (USSS) the EIA CN values were set to 95.  Lastly, the EIA CN 
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values were adjusted for the four general zoning classes.  If the impervious surface centroid was 

located within commercial zoning the EIA CN values were set to 95; Industrial EIA CN values had 

no change; and Residential 1 and Residential 2 EIA CN values were set to 85.  Impervious area 

centroids were used in order to give each polygon one specific value, and not counting some 

impervious polygons multiple times.  

Overall, EIA CN changes for three categories of impervious surface (buildings, sidewalks, 

and parking lots) were determined by adding the three EIA CN adjustments and then subtracting 

270 (three times the initial 90 value) produced EIA CN changes varying from a decrease of 5 to 

an increase of 15.  The EIA CN values for impervious polygons vary from 85 to 98.  Areas with an 

increase of 10 and 15 CN were set to a CN of 98 (Table 2.5).  Data from Ahiablame (2012) 

indicate that CNs can be reduced after LID applications are installed, but that analysis was not 

used in this thesis.   

  Table 2.5. EIA Curve Number Adjustments 

 

TIA CN EIA CN Adjustments  EIA CN  

90 -5 85 

90 0 90 

90 +5 95 

90 +10 98 

90 +15 98 

 

Flood Peak Discharge Computations 

Flood peaks were estimated by three different methods:  the rational method (CIA or CfCIA), the 

Putnam (1972) method, and the Bohman (1992) method. 
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Flood Peaks Computed by the Rational Method 

As a first approximation, peak discharges were computed using the rational equation 

(Wanielista and Yousef 1993) 

   Qpk = CIA                                                            Equation 2.3 

where Qpk is peak discharge in cfs, C is the rational method runoff coefficient, I is the rainfall 

intensity in inches per hour, and A is the drainage area in acres.  Rainfall intensities were derived 

from the IDF chart and the Rational Coefficient values were derived from spatially weighted 

values generated using GIS mapping.  Maps of impervious surfaces in 2007 (Wooten 2008) 

including buildings, parking lots, roads, and sidewalks provided C runoff coefficients for the 

impermeable surfaces.  Rational runoff coefficients were assigned to mapped surfaces according 

to standard rational coefficient tables (Table 2.6).  Standard runoff coefficients are reported first 

in the table to provide the coefficient ranges.  The roofs, business areas, residential areas, 

asphalt streets, and concrete streets were used to determine the RBW runoff coefficients.  Use 

of higher coefficients is often recommended for urban watersheds with poor infiltration, such as 

RBW.   Rational runoff coefficients for a given land-use/land-cover type are often given as a wide 

range (standard runoff coefficients in Table 2.6), with the understanding that hydrologic 

judgment is to be used.  In this case, high runoff coefficients were chosen based on the RBW 

land-use/land-cover discussed in Chapter 3.  The Gervais gage-basin, At Pickens gage-basin, and 

total RBW runoff coefficients were weighted by computing the proportion of areas of each of 

four LU/LC types: Buildings, parking lots/sidewalks, averaging each weighted impervious area 

type (Table 2.6).  The weighted runoff coefficients were all above 0.8 indicating poor infiltration 

with high amounts of Hortonian overland flow.   
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   Table 2.6. RBW Rational Coefficient Analysis 

Ground Cover 

Standard 

Runoff 

Coefficients 

RBW 

Ground 

Cover 

RBW 

Runoff 

Coefficients 

Gervais 

area 

At 

Pickens 

area 

RBW 

Area 

  c   c km
2
 km

2
 km

2
 

Lawns 0.05 - 0.35 Buildings 0.95 0.05 1.02 1.66 

Meadow 0.1 - 0.5 
Parking Lots 

& Sidewalks 
0.95 0.13 1.23 2.16 

Unimproved 

areas 
0.1 - 0.3 Streets 0.95 0.04 0.92 1.46 

Residential 

areas 
0.3 - 0.75 

Pervious 

Area 
0.7 0.08 2.64 5.41 

Business areas 0.5 - 0.95   

Industrial areas 0.5 - 0.9 Weighted Gervais Runoff 

Coefficient: 
0.88 

Asphalt streets 0.7 - 0.95 

Concrete 

streets 
0.7 - 0.95 Weighted At Pickens Runoff 

Coefficient: 
0.82 

Roofs 0.75 - 0.95 

  Weighted Total RBW Runoff 

Coefficient: 
0.84 

Source: Pilgrim and Cordery 1993  

 

Peak discharges derived from the rational equation are often adjusted upwards for 

extreme floods to compensate for basin saturation through the use of a saturation factor: 

                                                             Qpk = CfCIA                                                        Equation 2.4 

where Cf is a saturation factor varying from 1.1 to 1.25 for rare floods (VDOT 2002).  The Cf 

saturation factor is best used for larger rain events in order to better account for antecedent 

moisture.  For both gage sub-basins 1.175 was used as the saturation factor.   

Flood peaks computed by the Putnam 1972 method. 

 Putnam 1972 presented a set of peak discharge equations for urbanized watersheds in 

the southeastern USA derived from a statistical regression analysis using drainage area and lag 

time.  His peak discharge functions are given in Table 2.7, where Qn is the peak discharge for the 
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flood having the reoccurrence interval indicated by the subscript in cfs, A is the drainage area in 

square miles, and T is the lag-time in hours.   

      Table 2.7. Calculating Peak Discharge 

  (Source: Putnam 1972) 

 

Q2 = 221*A
0.87 * T-0.60 

Q5 = 405*A
0.80 * T-0.52 

Q10 = 560*A
0.76 * T-0.48 

Q25 = 790*A
0.71 * T-0.42 

  

 

Flood peaks computed by the Bohman (1992) Method. 

Another method for computing peak discharges in urbanized watersheds of the 

Southeastern USA was presented by Bohman (1992).  These equations for estimating peak 

discharge in urban streams are based on drainage area TIA (Table 2.8), where urbanized 

discharge (UQ) is the peak discharge in cfs, A is the drainage area in square miles, TIA is total 

impervious area in percent of total drainage area RQN is the peak discharge in cfs for an 

equivalent rural drainage basin in the same hydrologic area as the urban basin, and subscripts 

(N) are the recurrence of interval of floods in years.   

Table 2.8. Estimating Peak Discharge for Rural (RQN) and Urban (UQN) Streams 

(Source: Bohman 1992) 

 

RQN Piedmont Rural Flood 

Frequency Equation 

  

UQN Estimating Equation 

RQ2 127(A)0.66 UQ2 1.36(A)0.554(TIA)1.241(RQ2)
0.323 

RQ5 211(A)0.64 UQ5 2.58(A)0.544(TIA)1.170(RQ5)
0.299 
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RQ10 267(A)0.64 UQ10 3.77(A)0.536(TIA)1.115(RQ10)
0.291 

RQ25 347(A)0.63 UQ25 5.84(A)0.524(TIA)1.041(RQ25)
0.284 

RQ50 410(A)0.63 UQ50 7.76(A)0.514(TIA)0.987(RQ50)
0.283 

RQ100 474(A)0.63 UQ100 10.4(A)0.506(TIA)0.932(RQ100)
0.280 

RQ500 615(A)0.63 UQ500 18.8(A)0.484(TIA)0.8(RQ500)
0.281 

 

Stormwater Arrival Times 

The shape of model hydrographs is largely determined by the arrival times of 

stormwater, which may be expressed by the time-to-peak-discharge or time-to-centroid of 

discharge (also known as basin-lag).  Most available streamflow observations were obtained at 

15-minute intervals so event timing cannot be precisely determined directly.  A few storm 

events have been observed at both streamflow gages that include rainfall measurements at five-

minute intervals.  Stormwater arrival times for storm hydrographs at the Gervais Street and At 

Pickens streamflow gages were determined by three empirical equations and compared with 

the observations of storm-flow events.  The first method, which has been used by several 

municipalities for urban watersheds (Putnam 1972) to directly compute the lag time from the 

center of mass of the rainfall excess (centroid) to the center of mass of the resultant storm 

runoff is: 

                                                                         ) = 0.49 + ,
-../0

�.1
2 3

$��4
��.15

                                         

Equation 2.5 

where T is lag time in hours, L is length of main watercourse in miles, s is stream bed slope 

(ft/mi), and I is the percentage of impervious cover.  Length of the main watercourse is defined 

as the maximum water travel distance which is the length from the outlet to the furthest 

watershed boundary along the flow path.  Length was determined using GIS spatial analysis.  
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Stream bed slope was determined from the difference in elevation (ft) between an elevation 

point 10% from the outlet and 15% from the divide at the top of the maximum water travel path 

(Putnam 1972).  Lastly, the percentage of the revised impervious cover was used to calculate 

lag-to-centroid (Putnam 1972).   

Another commonly used method for calculating lag-to-centroid is based on a regional 

analysis of urban watersheds in the southeastern USA that employed statistical regression 

analysis dimensionless unit hydrographs (Bohman 1992): 

                                             6) = 20.2 8 �6/:�.1 �.;�<�)=> ��.?$?��=2 $.$�?                                 

Equation 2.6 

where LT is the average basin lag time (lag-to-centroid) in hours, L is the main channel length in 

miles, S is the main channel slope in feet per mile, TIA is the total impervious area in percent, 

and RI2 is the 2-year 30-minute rainfall amount.  Bohman 1992 RI2 was originally calculated for 

a 2-year 2-hour rainfall but were adjusted for a 30-minute amount to accurately calculate the 

RBW.   

Lag-to-peak times were computed using the NRCS 2010 equation which was based on 

data from 24 watersheds with the majority being less than 8 km2 (2,000 acres): 

                                                       6 = @,A..BC��"$ ..D

$?��8�E../                                                     Equation 2.7 

where L is the lag time from the rainfall centroid to peak discharge in hours, Ld is flow distance 

in feet, Y is the average watershed land slope percentage, and S is the maximum potential 

retention (Equation 2.2).  The maximum potential retention uses a factor similar to the SCS CN 

(cn’), therefore, adjusted EIA CNs were used in calculations.  Equation 2.7 was derived using 
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similar sized watersheds as RBW, but can be applied to both urban and forested areas.  Flow 

distance (Ld) is defined as the longest path along which water flows from the watershed divide 

to the outlet (NRCS 2010), and was measured using GIS spatial analysis.  The average watershed 

land slope percentage was calculated in two ways using GIS spatial analysis tools:  

1. By drawing four lines on a topographic map perpendicular to the contour lines 

and determining the average weighted slope of the these lines.  Lines were 

selected perpendicular to the LiDAR 2-ft contours within ArcMap to determine a 

weighted land slope in both the Gervais and At-Pickens basins. 

2. By using Chow 1964 equation:  

                                                                          F = $���G3 
H                                                         Equation 2.8 

where: Y is the average land slope percentage, C is the summation of the length 

of the contour lines that pass through the watershed drainage area on the quad 

sheet or GIS, I is the contour interval, and A is the drainage area in square feet.   

LiDAR-derived 0.6-m (2-ft) contour lines were clipped to each gage-basin, summed, multiplied 

by two for the contour interval, and divided by the drainage area.    

Alternatively, lag to peak discharge can be calculated as a function of concentration TC.  

An equation for estimating basin lag-time is derived by NRCS 2010:  

                                                       )I = @J..BC��"$ ..D

$$K�8�E../                                                Equation 2.9 

where time of concentration Tc is the time required for runoff to travel from the hydraulically 

most distant point in the watershed to the outlet in hours, l is flow length in feet, Y is the 

average watershed land slope percentage, and S is the maximum potential retention derived 
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from the SCS CN value (same function as Equation 2.7).  Time of concentration is used in 

Chapter 4 to provide an estimate of lag-to-peak discharge.   

Lag times computed by each of these approaches were compared with the time to peak 

of floods recorded by flow data at the two gages to check for consistency.  Unfortunately, most 

of the streamflow data were measured at 15-minute intervals which is too coarse of a time 

interval to fully constrain lag times. Nevertheless, a few select storm events provide unequivocal 

evidence that flood arrival times are relatively short in these basins.  Comparisons indicated that 

the standard NRCS method (Equation 2.7) produced lag times that are unrealistically long for the 

highly urbanized RBW and its gage-basins.  As will be further shown in Chapter 4; however, the 

Putnam method (Equation 2.5) and the Bohman method (Equation 2.6) (both intended for 

smaller urbanized areas and based on data from southeastern U.S. watersheds similar to RBW) 

provided characterizations of rapid stormflow response in conformance with the observed 

hydrographs.  Therefore, Equations 2.5 and 2.6 were compared in further analysis for the 

development of model hydrographs, but the NRCS method was abandoned.  After storm 

volumes, peak discharges, and lag-times were calculated, values were compared between the 

various methods and evaluated based on simple triangular hydrographs.   

Stormflow Hydrograph Analysis 

 

An exploratory model hydrograph analysis was conducted for data at the Gervais Street 

and At Pickens gages, because streamflow data are incomplete.  The Gervais Street stage 

observations have not been calibrated for flow magnitudes, and the At-Pickens data are 

calibrated only for small in-channel flow events.  Storm hydrographs measured at the At-Pickens 

gage in the late 1980s (Logan et al. 1985) were used to develop a model hydrograph for larger 

events.   
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Relating Observed Flow Stages to Discharge by Slope-Area Method 

For the purpose of constraining discharges at the two gage sites, the slope-area method; 

i.e., Manning Equation was used to approximate flow magnitudes: 

                                                                    L = M> = 2$.K?
& 4 >�

!
N√:                                                  

Equation 2.10 

 where V is flow velocity, A is channel cross-section area, n is roughness, R is hydraulic radius, 

and S is energy slope.  Manning’s roughness coefficients for minor stream channels were initially 

calculated using Arcement and Schneider 1989: 

                                                 n = (nb + n1 + n2 + n3 + n4)*m                                    Equation 2.11 

where nb is a base value of n for the flood plain’s natural bare soil surface, n1 is a correction 

factor for the effect of surface irregularities on the flood plain, n2 is a value of variations in shape 

and size of the flood-plain cross section (assumed to equal 0.0), n3 is a value for obstructions on 

the flood plain, n4 is a value for vegetation, and m is a correction factor for sinuosity of the flood 

plain.  Values of n (Table 2.9) were expected to vary within and between the two gage site cross 

sections.  Values of n were adjusted as needed within a reasonable range to obtain flows 

corresponding with the observed flow stages as described in Chapter 4.   

Table 2.9. Manning’s Roughness Coefficients for Stream Channels (Source: Chow 1959,      

Arcement and Schneider 1989) 

 

  Minimum Normal Maximum 

Streams on a Plain n 

Clean, straight, full stage, no rifts or deep pools 0.025 0.03 0.033 

Clean, winding, some pools & shoals 0.033 0.04 0.045 

Same as above, but some weeds and stones 0.035 0.045 0.05 

Sluggish reaches, weedy, deep pools 0.05 0.07 0.08 
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Very weedy reaches, deep pools, or 

floodways with heavy stand of timber and 

underbrush 

0.075 0.1 0.15 

Lined or Constructed Channels   

Concrete bottom with dry rubble or riprap  0.02 0.03 0.035 

Gravel bottom with dry rubble or riprap 0.023 0.033 0.036 

Channel Conditions   

The space between obstructions is small enough 

to cause the effects of several obstructions to be 

additive 

0.02 - 0.03 

The space between obstructions is small enough 

to cause turbulence across most of the cross 

section. 

0.04 - 0.05 

 

Channel cross-sections were field surveyed at the Gervais and At Pickens gage sites to 

allow determination of A and R for a given flow stage.  No water-surface slopes have been 

measured for a suitable flood event, so S was approximated based on channel-bed gradients 

measured during the field survey at the Gervais site and measured from a combination of field 

survey data and ESRI (2014) imagery measurements at the At-Pickens site.  Cross sections 

relative elevations were tied to staff gage elevations to allow determination of when flows 

struck the bottom of bridges or topped stream bank and terrace surfaces.  The staff gage at 

Gervais is tied to a footbridge and the staff gage At Pickens is about three meters upstream of 

the Pickens Street Bridge.  The cross-sections were analyzed using Cross Section Analyzer, a 

computer spreadsheet program by the NRCS.  Based on the cross section survey this program 

generates a table of hydraulic variables, such as top width, cross-section area, and hydraulic 

radius (R), for a range of flow stages.  It also allows the user to specify Manning roughness (n) 

values and slope of the energy grade line to estimate flow velocities and discharges at various 

flow stages using Equation 2.11.  Stage and discharge values from the Cross Section Analyzer 
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output were compared with observed flow stages from the gage and with the cross sections 

plots to evaluate the peak discharge values predicted by the three methods described above.   

Model Storm Hydrograph Analysis 

Using values of peak discharge, lag-to-centroid, and total storm runoff volume, a simple 

triangular hydrograph was constructed for a two-year rainfall event with a rainfall duration of 30 

minutes.  A typical storm hydrograph is asymmetrically skewed right with a faster rising limb 

(Figure 2.1).  A dimensionless hydrograph can be constructed in order to compare different sized 

storm events at a given gage site.  The Soil Conservation Service dimensionless unit hydrograph 

is the most well-known in use (NOAA 2014).  This analysis computed triangular hydrographs 

using lag-times from the time of center of excess rainfall to the time of center of runoff (TC) and 

from the time from the beginning of excess rainfall to peak discharge (TW) (Figure 2.1).  The 

Putnam 1972 and Bohman 1992 methods use TC to determine lag-times whereas the NRCS 2010 

uses TW.   



 

       Figure 2.1. A typical triangular hydrograph 

Objective 3 – Water Budgeting to Determine LID Treatment Estimates 

The various scenarios of red

analysis applied to the model triangular hydrographs as a first approximation.  Storage volumes 

were subtracted from model storm hydrographs 

water budget to illustrate the effects of detention.  The volumetric analysis was

varying amounts of rainfall, LID detention, and percent area treated with LID

were assumed uniform with respect to 
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1. A typical triangular hydrograph  

 

Water Budgeting to Determine LID Treatment Estimates 

The various scenarios of reduced LID storage volumes were evaluated by a volumetric 

alysis applied to the model triangular hydrographs as a first approximation.  Storage volumes 

storm hydrographs at one-minute time steps using a spreadsheet 

rate the effects of detention.  The volumetric analysis was conducted with 

amounts of rainfall, LID detention, and percent area treated with LID.  Rainfall inputs 

assumed uniform with respect to space and time for the various precipitation recurrence 

 

Water Budgeting to Determine LID Treatment Estimates  

evaluated by a volumetric 

alysis applied to the model triangular hydrographs as a first approximation.  Storage volumes 

minute time steps using a spreadsheet 

conducted with 

Rainfall inputs 

various precipitation recurrence 
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intervals.  The triangular hydrographs provide continuous discharge data, so one-minute 

streamflow input data were generated as linear functions of time for the rising and falling limbs 

of the hydrographs.  The simulations allowed comparisons of the effectiveness of various LID 

treatments in different sub-basins and testing of the three primary objectives of the study.  

The water budget was used to estimate the capacity LID detention/retention storage 

needed to effectively reduce stormwater peak discharges.  Areas within the RBW where LID will 

be most effective were examined by comparing the relative effectiveness across varying land-

use/land-covers and soil types.  
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Chapter 3 - Objective 1 

 

Revision of RBW maps: 

The map of sub-basin divides used in this research is based on revision of a set of maps 

of watershed channels and drainage divides that was developed by Dr. Allan James between 

2012 and 2013.  Those maps were based on manual interpretations of topographic contours 

with a two-foot interval derived from recent LiDAR data.  Channels were mapped using the 

contour crenulation method.  As urban storm sewer system (USSS) maps of the basin began to 

become available from the City of Columbia in mid-2013, a new set of drainage divides was 

manually mapped in consultation with Dr. James in November, 2013 to account for extra-basin 

transfers where storm sewers cross topographic divides.  As part of the re-interpretation of 

divides a flow direction grid model was derived from a LiDAR DEM using ArcGIS Hydrology tools.  

The revised RBW outer boundary and sub-basins were derived using the resulting flow direction 

grid, USSS, LiDAR shaded relief, and crenulations in the LiDAR 2-foot contours.  The flow 

direction grid and channels from LiDAR contour crenulations received lower priority than the 

USSS for delineating the basin boundaries due to the USSS often flowing across low sub-basin 

drainage divides.   Although further additions to the storm sewer maps may call for future 

adjustments to the mapped divides, this watershed boundary map is based on the best available 

topographic and storm sewer maps at the time and is considered to be the best sub-basin map 

of RBW available at the time of writing. 
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A detailed study of the RBW in 2007 included drainage divides and spatial analysis of 

land-use and impervious surfaces (Wooten 2008).  There are substantial differences between 

Wooten’s RBW outer and sub-basin boundaries and the boundaries revised in November, 2013; 

however, the total area remained similar increasing slightly from 10.33 km2 in 2007 to 10.69 km2 

in 2013.  The larger adjustments to the RBW outer boundary from Wooten’s 2007 outer 

boundary were in the Rosewood and Fairgrounds sub-divides in the southeastern region of the 

RBW where the topography is relatively flat (Figure 3.1).  In addition, the RBW outer divide was 

revised to follow the USSS in the northern headwater tributaries within the Gregg Street and 

MLK sub-basins, and the Olympia Village development was excluded from the RBW along the 

southwestern boundary.   

The 2007 TIA was map was revised using a combination of ESRI and i-cubed 1-meter or 

better 2014 color imagery with help from the Digital Ortho Quarter Quad (DOQQ) imagery (ESRI, 

2014).  Different imagery and enhanced versions of DOQQs were combined into ArcMap10.2 for 

the world imagery base map, which is used for the TIA mapping.   

Wooten’s TIA data were compared with the 2013 TIA using the same 2007 boundary.  

Unfortunately, Wooten’s TIA data could not be used for areas of the 2013 revised outer 

boundary.  The comparisons of TIA included buildings, parking lots, sidewalks, and streets within 

Wooten’s 2007 RBW boundary.  The 2013 TIA was merged with Wooten’s 2007 TIA and clipped 

to Wooten’s 2007 RBW outer boundary.  Figure A.3 indicates 2013 TIA additions to Wooten’s 

2007 TIA.  The 2013 TIA additions totaling 145,845 m2 were added to Wooten’s 2007 TIA 

bringing the 2007 RBW boundary from 49.1% impervious in 2007 to 50.53% in 2013.  

Furthermore, if the RBW boundary remained the same since 2007 the impervious area would 

have increased 1.43% in roughly six years. 
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      Figure 3.1. Rocky Branch Watershed Outer Boundary Revision 

Because the revised 2013 RBW outer boundary was 3.37% larger and a majorly different 

shape than the 2007 outer boundary during TIA comparisons, the 2013 TIA should be treated 
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independently from Wooten’s 2007 TIA in this analysis.  In 2007 there were 5,447 building 

footprints covering an area of 1,591,307 m2 (1.60 km2).  In 2013 there were 5,690 buildings 

taking up a building surface area of 1,662,190 m2 (1.66 km2).  The sidewalks and parking lot data 

were grouped together and in 2007 had a total area of 2.05 km2.  In 2013 the sidewalks and 

parking lots had a total area of 2.16 km2.  The total area of impervious cover by streets in 2007 

and in 2013 was essentially the same at 1.43 km2 for the RBW.   

RBW total impervious area in 2014 was 49.49% (Table 3.1) which is 0.39% higher than 

Wooten’s 2007, but should be compared independently.   715 new buildings and 322 new 

parking lots/sidewalks were mapped using the DOQQ imagery for the 2013 TIA.  In addition, 

streets were either extended or clipped to the 2013 RBW outer boundary.   

    Table 3.1. RBW Sub-divide TIA Percentages 

RBW Sub-divide 

Total 

Area 

(km
2
) 

TIA 

Area 

(km
2
) 

Percent 

Impervious 

5 Points Junction 0.04 0.03 73.0 

Devine Blossom 0.67 0.38 56.6 

Fairgrounds 0.71 0.37 52.6 

Gregg Street 1.61 1.14 70.9 

Hollywood-Rose Hill 0.79 0.32 40.2 

Mill Villages 0.12 0.02 20.5 

Mill Villages North 0.91 0.45 49.5 

MLK 2.05 0.97 47.2 

North Outlet 0.17 0.01 6.0 

Quarry Rim 0.07 0.01 14.9 

Rosewood 2.09 0.87 41.8 

South Campus 0.34 0.19 56.4 

South Outlet 0.05 0.01 17.0 

University Hill 0.39 0.22 57.1 

USC Campus NW 0.50 0.30 59.6 

Wales Garden 0.14 0.06 46.7 

Wheeler Hill 0.22 0.09 39.6 

TOTAL:  10.69 5.29 49.49 
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Zoning 

 

A 2007 zoning data shapefile for the City of Columbia was provided by the City of 

Columbia GIS Department (Lynn Shirley, written communication).  Zoning data for the Richland 

County portion of the RBW were re-classified to be consistent with the City of Columbia’s zoning 

types and descriptions and to allow merging of the two datasets.  A map of the Richland County 

zoning data was obtained from the Richland County GIS Department (RC GEO 2014) and a 

digitized Richland County zoning layer was created in ArcMap from the online maps and 

combined with the City of Columbia zoning GIS data.  The re-classification was done by 

combining classes with parallel descriptions similar to the methodology of (Wooten 2008).  The 

re-classified zoning districts of Richland County were merged with the City of Columbia zones 

into four classes: single-family and two-family residential (Residential – 1), high density 

residential (Residential – 2), industrial and general commercial.  The four general zoning classes 

were grouped by similarities in size and land use from the zoning descriptions. Table 3.2 shows 

the City of Columbia and Richland County equivalents, zoning codes, descriptions, and the four 

general groups (Figure A.4).   

 Table 3.2.  City of Columbia and Richland County Zoning Classes 

 

Zoning 

Code 

Zoning 

General 

Class 

Zoning 

Classification 
Description 

Richland 

County 

Equivalent 

RS-1 
Residential 

1 

Single-Family 

Residential 

Minimum lot area 15,000 sq. ft.; 

minimum lot width 90 ft. 
RS-E; RS-LD 

RS-2 
Residential 

1 

Single-Family 

Residential 

Minimum lot area 8,500 sq. ft.; 

minimum lot width 60 ft. 
RS-MD 

RS-3 
Residential 

1 

Single-Family 

Residential 

Minimum lot area 5,000 sq. ft.; 

minimum lot width 50 ft. 
RS-HD 

RD 
Residential 

1 

Two-Family 

Residential 

Minimum lot area of 5,000 sq. ft. 

for the first dwelling unit and 

2,500 sq. ft. for the second, 

attached dwelling unit. 

- 



45 

 

RG-1 
Residential 

2 

General 

Residential 

Medium and high density 

residential areas permitting 

progressively higher population 

densities 

RM-MD 

RG-2 
Residential 

2 

General 

Residential 

Medium and high density 

residential areas permitting 

progressively higher population 

densities 

RM-HD 

RG-3 
Residential 

2 

General 

Residential 

high density residential area 

characterized by townhouses and 

high-rise structures 

- 

C-1 Commercial 

Office & 

Institutional 

District 

Office, institutional, and certain 

types of residential uses 
OI 

C-2 Commercial 

Neighborhood 

Commercial 

District 

Commercial and service uses 

oriented primarily to serving the 

needs of persons who lives or 

work  

in nearby areas. 

NC 

C-3 Commercial 

General 

Commercial 

District 

Retail, office, and service 

establishments oriented primarily 

to major traffic arteries of  

predominantly commercial usage. 

GC 

M-1 Industrial 
Light 

Industrial 

Wholesaling, distribution, storage, 

processing, and light 

manufacturing 

M-1 

M-2 Industrial 
Heavy 

Industrial 

Manufacturing and industrial 

processes intended for 

distribution, storage, and 

processing 

HI 

PUD-R 
Residential 

1 

Planned 

Urban 

Development 

- Residential 

A unified development of large 

sites that allows creative site plan 

design 

PDD 

PUD-C Commercial 

Planned 

Urban 

Development 

- Commercial 

A unified development of large 

sites that allows creative site plan 

design 

PDD 

 

LU/LC analysis: 

 

 The 2013 updated TIA from Wooten’s 2008 impervious analysis were overlaid and 

clipped over the generalized zoning boundaries to show impervious percentages for each 
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general zoning district.  Table 3.3 shows the zoning general classes total area, impervious 

surface area within each general zoning class, and the impervious percentage for each general 

zoning class.  The industrial zone has a relatively low impervious percentage area due to the 

large area of railroad property in the Rosewood sub-basin and along the northwest boundary of 

the Vulcan quarry in the North and South Outlet sub-basins.  Figure 3.2 shows the impervious 

areas overlaid on top of the generalized zoning boundaries.   

       Table 3.3. Impervious Percentage by Zoning  

       General Class 

 

Zoning 

General 

Class 

Zoning 

Area 

Total 

Impervious 

Area 

Impervious 

Percentage 

  km2 km2   

Residential 1 2.21 0.92 41.63 

Residential 2 3.07 1.22 39.74 

Commercial 3.99 2.6 65.16 

Industrial 1.64 0.67 40.85 

 

Both of the large industrial zoning areas located in the Fairgounds and Olympia Mills 

sub-basins contain the Norfolk Southern Railway, formally known as the Southern Railway in the 

Columbia area, and CSX Railroad, formally known as the Newberry and Laurens Railroad and the 

Seaboard System Railroad.  Both the Norfolk Southern Railway and CSX Railroad have a variant 

right-of-way ranging from a few feet to a few miles.  CSX stated their right-of-way rule of thumb 

is typically 50 feet, but can still vary in all areas.  Acknowledging an approximation for a right-of-

way distance a 50 foot buffer was placed around the railroad lines within the RBW and clipped 

out of the industrial zone in order to see if changes occur in impervious cover percentage 

without railroad properties included.  The differences were near zero and the results were 

therefore left out of this discussion.  All in all, exempting a 50 foot right-of-way for railroad 
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properties within the industrial zones has very little affect to impervious cover and the results in 

Table 3.2 should be used for further analysis.   

 

      Figure 3.2. Rocky Branch Watershed Impervious Area & Zoning 
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Cistern Analysis  

 

 Cistern requirements for capturing the rainfall runoff from a 1-inch rain event are 

calculated using the runoff volume formula: 

                                                                   Volume = A*Rft*0.9*7.5                                       Equation 3.1 

where volume is given in gallons, A is building surface area in square feet, Rft is the rainfall depth 

in feet, 0.90 is a compensation factor allowing for evaporation, and 7.5 converts cubic feet to 

gallons (Donaldson 2009).   

Various cistern sizes can be used to collect the rainfall; however, for buildings larger 

than 9,000 ft2 6ft x 12ft (5,076 gallon) cisterns were chosen.  All buildings within RBW greater 

than 9,000 ft2 are shown in Figure A.5 along with the number of 6ft x 12ft cisterns each building 

would require to fully capture rainfall runoff from a 1-inch uniform rainfall event.  For buildings 

smaller than 9,000 ft2 but larger than 1,000 ft2 6ft x 6ft (1,269 gallons) were chosen.  Figure A.5 

indicates the majority of the larger buildings are located close to the RBC.  For the remaining 

buildings smaller than 1,000 (Figure A.6) ft2 cylindrical 100 gallon rain barrels were selected.  

Table 3.4 lists the largest buildings within RBW and their cistern requirements to capture 100% 

of a 1-inch uniform rainfall event.  For example, the Olympia Mills Apartments building 

generates 65,086 gallons of runoff from a 1-inch uniform rainfall event calculated from Equation 

3-1 and requires 13 6ft x 12ft cisterns to capture all of the runoff.   

 Table 3.4. RBW Buildings and Cistern Requirements from a 1-inch rainfall event 

 

Building 

Size 

Building 

Size 
Building Name 

Runoff 

from 1-in 

rain event 

Cistern 

requirements 

from 1-in rain 

event 

m2 ft2   gallons 
6ft x 12ft (5,076 

gallons) 
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16,341 175,887 Aspire Apt Complex 98,937 19.5 

12,150 130,786 
CofC Board of School 

Commission 
73,567 14.5 

11,408 122,790 S.C. Baptist Hospital 69,069 13.6 

10,835 116,624 Olympia Mills Apts 65,601 12.9 

10,585 113,930 USC Business Office 64,086 12.6 

9,503 102,287 USC Treasurers Office 57,536 11.3 

9,402 101,198 USC Legal Dept 56,924 11.2 

8,617 92,756 USC Petigru Building 52,175 10.3 

8,191 88,163 
State Agriculture & 

Mechanical Society of S.C. 
49,592 9.8 

7,482 80,535 USC Business Office 45,301 8.9 

7,299 78,566 Colonial Warehouse LLC 44,193 8.7 

6,922 74,508 USC Russell House 41,911 8.3 

6,804 73,236 
Marketplace-Columbia 

LLC 
41,195 8.1 

6,719 72,325 USC Treasurers Office 40,683 8.0 

6,536 70,348 Granby Mills Apts 39,571 7.8 

6,422 69,123 
Olympia High & Grammar 

School 
38,881 7.7 

6,361 68,468 
USC Thomas Cooper 

Library 
38,513 7.6 

 

Hydrologic Soil Groups  

 

The NRCS SSURGO database for Richland County was used to map the Richland County 

soil series for the RBW.  Seven different soil series are mapped in the RBW: Dothan-Urban, 

Fuquay-Urban, Lakeland-Urban, Orangeburg-Urban, Toccoa, Urban Land, and Vaucluse (Figure 

A.7).  The hydrologic soil groups (HSGs) for un-urbanized soils area recorded on the map and 

used to compute curve numbers.  The RBW soil data were obtained by the City of Columbia and 

the HSGs were classified using (Lawrence 1978) and other soil county books.  55% of the soils in 

the RBW are classified as D soils, 30% are B soils and 15% are A soils.  49.4% of the HSGs are 

categorized as urban land and accounts for 91% of the D soils within the RBW.   
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Parcel ownership 

 

Parcel size and ownership data were provided by the City of Columbia GIS Department 

(Lynn Shirley, personal communication) and spatially overlaid on the TIA buildings and parking 

lot data layers in order to link them with ownership.  Ownership was separated into four main 

categories (Figure 3.3 and Table 3.5) including private, commercial, University of South Carolina, 

and the City of Columbia.  The streets and easement sidewalks are not shown in Figure 3.3 in 

order to better visualize the other land uses, but sidewalks areas are included in the ownership 

statistics shown in Table 3.5.  Table 3.5 shows the percent of impervious ownership within the 

RBW.   

Table 3.5. Percent of RBW Impervious Areas 

 

Ownership Buildings 
Parking Lots & 

Sidewalks 
Streets 

City of Columbia 4.4 26.9 100.0 

Commercial 26.3 36.2 0.0 

Private  57.5 23.4 0.0 

University of South 

Carolina 11.8 13.5 0.0 

Total 100.0 100.0 100.0 

 

Parcel size, street width, and other factors have been used to approximate percent 

impervious area (Stone, 2004).  Percent impervious area has also been shown to be positively 

related to the density of single-family homes (Stone, 2004).  Similar relationships may exist for 

commercial and industrial land uses.  These relationships may suggest planning measures to 

mediate the density of development and hydrologic impacts.  For this study, TIA is known so 
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relationships between parcel size and TIA can be measured; however were not computed for 

this thesis.   

 
      Figure 3.3. Rocky Branch Watershed Parcel Ownership 
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Chapter 4 – Hydrological Calculations 

 

This chapter examines hydrologic responses in the watershed at gauge sites near 

Gervais Street and At Pickens Street.  The goal of this analysis was to constrain estimates of the 

magnitude and frequency of small to moderate floods that occur every few years, and to 

estimate flood peak discharges, timing, and storm volumes of known recurrence intervals. These 

parameters are used in the evaluation of LID effectiveness in Chapter 5.  Given the limited 

streamflow data and the limited scope of the study, which does not include rainfall-runoff 

simulation modeling, the development of simple synthetic model hydrographs as a first-order 

approximation of flood responses at two gage-sites was the goal of this analysis.  In particular, 

triangular hydrographs are constructed based on estimates of total volume of storm runoff, 

peak discharge, and the timing of stormwater arrival.  Runoff volumes are presented in the first 

section of this chapter.  Presentation of the peak discharge and timing of hydrographs is split 

between the two gage sites.  As described in Chapter 2, determining peak discharge and 

stormwater arrival times (Equations 2.3, 2.4, 2.5, 2.6, 2.7, and 2.9) is necessary to construct 

model storm hydrographs for specific storm events.  Before runoff was calculated CNs were 

adjusted for the total RBW, Gervais gage sub-basin, and At Pickens gage sub-basin.   

Adjusting Curve Number for Impervious Surface Connectivity 

 

Total storm runoff volumes were computed for two sites (Gervais and At Pickens) using 

the SCS CN method based on spatially weighted curve numbers (Equations 2.1 and 2.2).  Curve 
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numbers in the two sub-basins of RBW were adjusted for impervious surface connectivity and 

are referred to as EIA CNs by methods described in Chapter 2 (Table 4.1).   

It has long been understood by hydrologists that the connectivity of impervious surfaces 

to culverts and channels is an important factor in urban storm hydrology because it drives the 

timing of runoff response (Martens, 1968; Putnam, 1972; Schueler 1987; Walsh et al., 2012).  

With spatial mapping and analysis of impervious surface and urban storm sewer systems 

described in Chapter 3, it is possible to map the approximate degree of connectivity of 

impervious surfaces in RBW using distances of the surfaces to roads and storm sewers as 

explained in the methods section.  As explained in Chapter 2, impervious surfaces were initially 

assigned CNs of 90, but the CNs of well-connected impervious surfaces were increased to as 

much as 98.  As a result of mapping, EIA CN values of 98 account for over 40 percent of the total 

RBW TIA above the Congaree River confluence (Table 4.1).  These high CNs were assigned to all 

streets and to impervious polygons located in poorly drained soils, commercial zoning districts, 

or with centroids within 10 meters of the USSS.  The EIA CNs adjusted to 95 cover an additional 

37.1 percent of the total watershed.  The polygons with CNs of 90 and 85, which are not well 

connected to roads or the USSS account for only 21 percent of the RBW TIA.  This indicates that 

most of the runoff generated on impervious surfaces in the watershed is quickly delivered to the 

stream system by Hortonian overland flow and channelization.   

The Gervais gage sub-basin is very densely covered with impervious surfaces with a TIA 

of 75.2% and these impervious surfaces were very well connected to the channel system.  

Gervais sub-basin EIA CN values of 98 account for over 79 percent of the TIA in the sub-basin.  

The EIA CNs adjusted to 95 cover an additional 19.6 percent of the sub-basin.  Only 

approximately 1.0 percent of the TIA in the Gervais gage sub-basin is poorly connected to roads 



54 

 

and the USSS.  Therefore, about 99 percent of the runoff from impervious areas within the 

Gervais gage sub-basin is quickly delivered to the stream system by sheet flow.   

Impervious surface curve numbers were also adjusted for connectivity (EIA CNs) for the 

At Pickens gage (Table 4.1).  The adjustments were similar to those of the total RBW above the 

Congaree River confluence.  The EIA CNs that were adjusted to 98 covered 41.2% of the At 

Pickens gage sub-basin TIA and the EIA CNs that were adjusted to 95 covered an additional 

37.4% of the sub-basin TIA.  Almost 80% of the runoff generated from impervious areas within 

the At Pickens gage sub-basin, therefore, is well connected to the USSS or streets.   

  Table 4.1. EIA Analysis 

 

  
Total RBW 

TIA = 49.5% of RBW 
Gervais Gage Sub-basin 

TIA = 75.2% of sub-basin 
At Pickens Gage Sub- basin 

TIA = 44.4% of sub-basin 

EIA 

CN 

TIA 

(km
2
) 

Percent of 

TIA 

TIA 

(km
2
) 

Percent of 

TIA 

TIA 

(km
2
) 

Percent of TIA 

98 2.21 41.8 0.17 79.3 1.30 41.2 

95 1.96 37.1 0.04 19.6 1.18 37.4 

90 0.67 12.7 0.002 1.0 0.40 12.7 

85 0.45 8.5 0.00 0.0 0.28 8.8 

Total 

TIA: 
5.29 100 0.22 100.0 3.17 100.0 

 

Gervais Storm Runoff Volumes 

 

Total storm runoff volume was computed for the Gervais gage sub-basin using the 2-

year 30-minute rainfall of 1.45 inches (23mm) (Table 2.2).  The storm runoff volume for the 

Gervais gage sub-basin was determined using a drainage area of 75.05 acres (30.37 ha) and a 

weighted CN of 94.  The resulting volume for the 2-year 30-minute rainfall event for the Gervais 

gage sub-basin is 242,969 ft3 (6,880 m3).   
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 As will be shown with the development of triangular hydrographs at the end of this 

chapter, the initial estimate of total storm runoff volume for the Gervais sub-basin is small 

relative to the peak discharge that is computed.  To test sensitivity of the CN method to urban 

effects, the standard initial abstraction rate was adjusted for a second computation.  Recent 

research indicates that the 20% initial abstraction assumed by the standard CN computational 

approach (0.2 in Equation 2.1) is too high for urban areas ad underestimates the volume of 

runoff produced (Ponce and Hawkins, 1996).  An analysis of rainfall events in 134 experimental 

watersheds indicated that the initial abstraction ratio (Ia/S) varies between storms and between 

watersheds and is usually less than 0.2 (Hawkins et al. 2002).  A comparison of measured rainfall 

and gauged runoff with runoff calculated with initial abstraction ratios of 20, 10, and 5% in ten 

large watersheds throughout Texas found that 10% abstraction provided the best results (Jacobs 

and Srinivasan, 2005); however, Lim et al. (2006) suggests an abstraction value of 5% for urban 

watersheds.  The value of S (Equation 2.2) should also be adjusted when altering the initial 

abstraction (Hawkins et al. 2002): 

                                                                     S0.05 = 1.33S0.20
1.15

                                                   Equation 4.1 

Substituting 0.05 for Ia/S and using S0.05 in the CN equation with all the other parameters 

unchanged, results in an increase (9.7%) in runoff at Gervais from 242,966 ft3 (6,880 m3) to 

266,415 ft3 (7,544 m3).  Although this a substantial increase in runoff, runoff volumes used for 

subsequent calculations are based on the conventional method using the original 20% 

abstraction value from Equation 2.2 and not the adjusted abstraction from Equation 4.1.  As a 

sensitivity test to indicate the maximum possible storm runoff volume for the two-year 30-

minute rainfall event, CNs were temporarily set to a maximum of 99 and the resulting maximum 

possible runoff volume was 363,819 ft3, which is a 50% increase in storm runoff. 



56 

 

At-Pickens Storm Runoff Volumes 

 

Rainfall volumes and weighted CNs were computed for each sub-basin above the At-

Pickens gage (Figure A.1).  USC Campus Northwest and Wheeler Hill were clipped inside of the 

At-Pickens gage in order to only calculate the areas within the At-Pickens gage-basin.  Runoff 

volumes with a 20% abstraction were computed using Equation 2.1 to get a runoff percentage 

for each sub-basin and total runoff.  The storm rainfall depth chosen for the runoff calculations 

were from the 2-year 30-minute event (Table 2.2).   

The adjusted EIA CNs (Table 4.1) were clipped to each sub-divide and spatially weighted 

by dividing polygon areas by the total area of each sub-basin.  The hydrologic soil groups (HSGs) 

determined the CN (Figure 1.7) for the pervious areas. For example, the Hollywood-Rose Hill 

sub-basin is the third largest RBW sub-basin above the At-Pickens gage but generates 4.69% of 

the total At-Pickens runoff volume.  This is because it is almost completely within the B 

hydrologic soil group and only 31% impervious, lowering the connectivity and EIA CNs.  Table 4.2 

lists the sub-divides above the At-Pickens gage site, rainfall volumes assuming a uniform 30-

minute 2-year event, and the resulting total storm runoff volume determined by the CN method 

(Equation 2.1).  The Gervais gage sub-basin is also listed in Table 4.2 but is computed 

independently from the other sub-divides since it lies within the Gregg Street sub-basin.  Rainfall 

volumes were computed by multiplying drainage area and storm rainfall, and using an 

abstraction of 20%.  The storm runoff volume for the At-Pickens gage sub-basin was determined 

by the sum of the nine sub-basins within At-Pickens computed runoff values determined by each 

sub-basin’s weighted CN.  The resulting runoff volume for the 2-year 30-minute rainfall event for 

the At-Pickens gage sub-basin is 2.83 million ft3 (263,262 m3).   
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Table 4.2. RBW Sub-divides Storm Rainfall Runoff Percentages 

Sub-divide Area 
Weighted 

CN 

Storm 

Rainfall 

Rainfall 

Volume 

Runoff 

Volume 

Total 

Runoff as 

Percentage 

of Rainfall 

Percentage 

of Total 

At-Pickens 

Runoff 

  ft
2
   in ft

3
 ft

3
     

Gervais  3,269,210 94 1.45 395,030 242,969 61.5  NA 

Gregg 

Street 
17,234,200 93.4 1.45 2,082,466 1,220,478 58.6 43.1 

MLK 21,957,290 86.6 1.45 2,653,173 882,964 33.3 31.2 

Devine-

Blossom 
7,125,370 82.6 1.45 860,982 200,414 23.3 7.07 

Five Points 361,671 93.6 1.45 43,702 26,072 59.7 0.92 

University 

Hill 
4,057,500 90.5 1.45 490,281 227,073 46.3 8.01 

Wales 

Garden 
1,382,375 88.4 1.45 167,037 65,126 39.0 2.30 

Hollywood-

Rose Hill 
8,419,770 77.0 1.45 1,017,389 132,837 13.1 4.69 

USC 

Northwest 
1,795,476 86.4 1.45 216,953 71,009 32.7 2.51 

Wheeler 

Hill 
223,193 84.9 1.45 26,969 7,758 28.8 0.27 

Totals: 62,556,845  -  - 7,558,952 2,833,731  - 100.0 

 

Gervais Gage Sub- basin Hydrologic Analysis 

 Estimates of peak discharge for the Gervais gage sub-basin are made by the rational 

method and evaluated by an estimate a high-stage discharge using the slope-area method.  This, 

in turn, is followed by the analysis of stormwater timing in order to constrain hydrograph shapes 

and finally by development of a triangular hydrograph and dimensionless hydrograph at the 

Gervais gage site.   
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Gervais Peak Discharges by Rational Method 

The rational method was used initially to calculate peak discharges based on Equations 

2-3 and 2-4.  The spatially weighted Gervais rational coefficient was calculated at 0.88 using 

values as described in Chapter 2 (Table 2.6). Peak discharges were calculated with and without a 

saturation factor to account for antecedent moisture conditions that most likely occur in large 

rain events.  The saturation factor (Equation 2.4) was set to 1.175 taking the middle of the 

suggested range from (VDOT 2002).  The rainfall intensities used from Table 2.2 were selected 

for rainfall durations that are equivalent to the time of concentration (Edwards 2014) of the 

drainage area.  For the Gervais and At Pickens sub-basins the time of concentration is fairly long, 

which will be discussed later.  Rainfall intensities with durations greater than one hour were not 

calculated.  The Gervais sub-basin peak discharges computed by either form of the rational 

method (Tables 4.3 and 4.4, respectively) have low values even when increased by 17.5% using 

the saturation coefficient. 

Table 4.3. Gervais Sub-basin Peak Discharges; (based on CIA with rainfall intensities  

from Table 2.2) 

 

 

Duration 

Recurrence 

Interval 

 (1-yr) 

Recurrence 

Interval 

 (2-yr) 

Recurrence 

Interval 

 (5-yr) 

Recurrence 

Interval  

(10-yr) 

Recurrence 

Interval 

(25-yr) 

Recurrence 

Interval 

 (50-yr) 

  Peak Discharges (cfs) 

5-min 2.5 2.9 3.3 3.7 4.1 4.5 

10-min 7.9 9.2 10.5 11.8 13.2 14.3 

15-min 14.8 17.3 20.0 22.3 25.1 27.2 

30-min 40.6 47.9 56.8 64.7 74.3 81.8 

60-min 102 120 145 169 197 222 
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Table 4.4. Gervais Sub-basin Peak Discharges with a Saturation Factor; (based on CfCIA with 

Cf = 1.17 and rainfall intensities from Table 2.2) 

 

Duration 

Recurrence 

Interval  

(1-yr) 

Recurrence 

Interval 

 (2-yr) 

Recurrence 

Interval  

(5-yr) 

Recurrence 

Interval 

 (10-yr) 

Recurrence 

Interval  

(25-yr) 

Recurrence 

Interval  

(50-yr) 

Peak Discharges (cfs) 

5-min 2.9 3.4 3.9 4.3 4.9 5.3 

10-min 9.3 10.8 12.4 13.8 15.5 16.8 

15-min 17.4 20.4 23.5 26.2 29.5 32.0 

30-min 47.7 56.2 66.7 76.0 87.2 96.2 

60-min 119 141 171 199 232 261 

 

 Peak discharges were also estimated as a function of drainage area and lag time 

(Putnam, 1972) (cf. Table 2.7), and as a function of drainage area and TIA (Bohman, 1992) (cf. 

Table 2.8).  The peak discharge estimates from these two methods were substantially greater 

than those from the CIA methods (Table 4.5 and Figure 4.1).  Although the rational method is 

commonly used for small urban watersheds, it is not specifically calibrated for heavily urbanized 

environments such as the RBW.  The Putnam and Bohman methods were employed, therefore, 

as alternatives that are based on Southeastern regional peak-flow studies of urbanized 

watersheds.   

Table 4.5. Gervais Peak Discharge (cfs) 

 

QN Putnam Bohman CfCIA 
Manning Q 

(cfs) 

      

10-

min 

15-

min 

30-

min 

60-

min 

at 2-m stage 

= 220 cfs 

Q1  -   - 9.3 17.4 47.7 119  - 

Q2 111 255 10.8 20.4 56.2 141  - 

Q5 202 395 12.4 23.5 66.7 171  - 

Q10 281 482 13.8 26.2 76 199  - 

Q25 392 587 15.5 29.5 87.2 232  - 

Q50 485 660 16.8 32 96.2 261  - 

Q100 593 730  -  -  -    - 

Q500  - 850  -  -  -    - 
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  Figure 4.1. Gervais Gage Cross-Section looking downstream 

 

Gervais Slope-Area Discharge Computations 

The peak discharge estimates were compared with discharge estimates derived from 

the slope-area method (Manning Equation; Equation 2.10) for near bank-full flows that have 

been observed six times during the seven-year continuous stage record of the Gervais gage.  The 

slope-area flow estimates are approximate but provide realistic constraints on discharges 

associated with observed stages at the Gervais gage.  These constraints are used to assess the 

peak discharge estimates provided by the three peak discharge methods in Table 4.5.  The 2-

meter stage was chosen for the Manning discharge because higher stages strike the bottom of 

the bridge and go over bank.   

A channel cross section was surveyed a few meters below the footbridge at the Gervais 

gage site on November 15, 2013 at 13:30 EST with a rod, level, and tape (Figure 4.1).  The stage 

sensor for the gage is located immediately below the footbridge.   Relative cross-section heights 

measured in the field were correlated to the USGS staff gage in order to compare stage data.  

The stage reading at that time was 1.35 feet (41.2 cm) and the depth was approximately 10 cm 
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at the time of the survey.  USGS stage readings can be related to the cross section (Figure 4.1) by 

converting them to meters and subtracting 0.10 meters.  This allows stage-gage records to be 

related to cross-section vertical coordinates and to determine when and how often flows have 

hit the bottom of the bridge rail or top the stream bank during the period of record.  The lowest 

horizontal line below the one-meter relative elevation on Figure 4.1 indicates the low-flow 

water surface at the time of the survey, and the two broad horizontal lines between 2 and 3 

meters elevation indicate the top and bottom of the footbridge rail.  The footbridge has support 

cross beams (Figure A.8) underneath the bottom rail reaching almost to the streambed that 

generate substantial flow roughness as explained later.  Furthermore, a stage height at the 

footbridge of 2.11 meters (6.92 feet) corresponds to the stage above which backwater from the 

bridge rail occurs.  Between 2.23 and 2.6 meters (7.32 feet and 8.53 feet) flows go over the right 

bank.  Six events since October 2007 have reached stages as high as 2.1 meter or greater hitting 

the base of the footbridge and one event has clearly gone over the right bank.  Given the 

relative frequency of flows up to 2.1 meters and the inability to use the slope-area method for 

flows above that stage, flows were computed for stages up to 2 meters to constrain peak 

discharge for model hydrographs.   

The slope of the energy grade line for the channel at the Gervais gage was estimated 

from a longitudinal profile of the bed that was measured by a rod-and-level survey (Figure A.9).  

If all 28 survey points of the longitudinal survey are included, extending from 22 m above to 42 

m below the bridge, the best-fit line defines a slope of 0.87%.  High anomalies in the bed, 

however, result in perturbations in the slope beyond 10 m above the bridge (5 points) and 

beyond 18 m below the bridge (10 points), so this slope was not used.  Use of a 0.87% slope in 

slope-area computations resulted in unrealistically high discharge values of 303 cfs (8.58 cms at 

a 2-m flow stage) well in excess of the largest flows indicated by the two-year peak discharge 
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analyses presented in Tables 4.3 to 4.5.  The slope through the shorter 28-m reach at the gage 

site, based on 13 survey points ranging from 10 m above and 18 m below the footbridge, defines 

a best-fit line with a gentler slope of 0.46%.  The slope of the shorter reach (0.46%) was used, 

therefore, to compute flows with stages up to 2 meters.   

Cross Section Analyzer (CSA) software (NRCS ND) was used to process the cross-section 

elevation data and compute cross-section parameters across a range of flow stages.  CSA 

computes cross-section area, wetted perimeter, and hydraulic radius for a given stage based on 

the cross-section topography (Table 4.6).  These parameters are independent of roughness and 

slope.  CSA also computes mean cross-section flow velocity and discharge based on specified 

values of roughness and slope.  The Manning roughness coefficient (n) initially calculated for the 

Gervais gage site, using values from Table 2.9 and Equation 2.11, was 0.06.  This roughness was 

applied uniformly across the channel cross-section using 0.46% for slope.  Based on a roughness 

of 0.06 and slope of 0.46% CSA computed discharge to be 10.4 cms (367 cfs), which is 

substantially greater than any of the peak flow calculations made by the empirical equations 

(Table 4.5). 

Given that flows with a 2-m flow stage have occurred several times over the past seven 

years, these events are presumably smaller than a 2-year flow.  This suggests that either all of 

the empirical estimates of peak discharge are too low or else the Manning estimate is too high.  

If the Manning estimate is too high either the slope in this reach is less steep or roughness is 

greater than the initial values.  Further decreasing the slope in this location does not seem 

justified (Figure A.9), but increasing the Manning n coefficient to 1.0 for all water surface 

elevations may be realistic given the steel bridge reinforcement crossbeams that extend down 

into the flow (Figure A.8).  In addition, the channel sides are secured with coarse rip-rap that 
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imposes a fair degree of skin friction.  Using the CSA program with a roughness coefficient of 1.0 

and a 0.46% slope yielded a discharge of 220 cfs (6.24 cms) and a mean flow velocity of 2 ft/s 

(0.63 m/s) for the 2.0 m stage flow.  This discharge is much higher than all of the two-year peak 

discharge estimates except the Bohman estimate (Figure 4.2).  It is compatible with the Bohman 

two-year peak discharge estimate but approximately double the estimate yielded by the Putnam 

method and many times greater than all of the rational equation estimates (Tables 4.5 and 4.6 

and Figure 4.2).  Correspondence between the slope-area discharge and Bohman peak discharge 

suggests that Bohman peak flow estimates are the most accurate of the three methods for the 

highly urbanized Gervais gage sub-basin.  In short, if flows at this site are interpreted as having 

relatively low gradients and high roughness, then the slope-area calculations are in conformance 

with the highest of the peak discharge estimates (Bohman, 1992).  If higher gradients or lower 

roughness are utilized, however, none of the estimates of peak two-year discharges are 

compatible with the slope-area calculations at this cross section.  If the foot bridge is causing a 

high degree of roughness and lowering flow gradients, this could represent non-uniform flow 

through the reach and reduce the accuracy of the Manning estimates.  In any case, high-stage 

field streamflow measurements are needed to calibrate the gage so that more accurate flow 

determinations can be made from the several years of stage data that have been collected.   

   Table 4.6. Gervais Gage-basin Cross-Section Analysis at 0.46% slope 

 

Water 

Surface 

Elevation 

Water 

Surface 

Elevation 

Flow 

area 

Wetted 

Perimeter 

Hydraulic 

Radius 
n Discharge Discharge Velocity 

M ft m
2
 m m   cms cfs m/s 

0.18 0.59 0.00 0.00 0.00 0.10 0.00 0.00 0.00 

0.25 0.82 0.04 0.76 0.05 0.10 0.00 0.13 0.09 

0.50 1.64 0.45 2.32 0.19 0.10 0.10 3.62 0.23 

0.75 2.46 1.21 4.35 0.28 0.10 0.35 12.39 0.29 

1.00 3.28 2.47 6.30 0.39 0.10 0.90 31.76 0.36 

1.25 4.10 4.00 7.48 0.54 0.10 1.79 63.20 0.45 

1.50 4.92 5.75 8.37 0.69 0.10 3.03 107.08 0.53 



 

1.75 5.74 7.72 

2.00 6.56 9.83 

Figure 4.2. Gervais Peak Discharges estimated by rational, Putnam (1972), and Bohman 

(1992) methods.  Dashed line is discharge at a 2

(Manning) method. 

 

Gervais Lag-times & Time of Concentration

The shape of storm hydrographs is

discharge.  Lag-to-centroid times were compute

1992 (Equation 2.6), and NRCS 2010 (Equation 2.

The Gervais sub-basin is 75 acres (30.4 ha), has a main watercourse length of 0.69 miles 

(1.11 km), a channel slope of 14

percent.  The variables used in Equation 2.

with an additional 2-year 30-minute rainfall intens

values result in a lag time from the centroid of rainfall to the center of runoff mass ranging f

6.1 to 8.5 minutes (Table 4.7).  
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9.49 0.81 0.10 4.56 161.00 

10.86 0.90 0.10 6.24 220.21 

 

2. Gervais Peak Discharges estimated by rational, Putnam (1972), and Bohman 

(1992) methods.  Dashed line is discharge at a 2-meter stage estimated by the slope

times & Time of Concentration 

The shape of storm hydrographs is largely determined by the timing of the arrival of 

ntroid times were computed using Putnam 1972 (Equation 2.5), Bohman 

2.6), and NRCS 2010 (Equation 2.7 for lag-to-peak). 

basin is 75 acres (30.4 ha), has a main watercourse length of 0.69 miles 

km), a channel slope of 144 feet per mile (2.72%), and an impervious surface area of 72.3 

he variables used in Equation 2.6 are similar to those in Equation 2.5 (Putnam 1972) 

minute rainfall intensity variable taken from Table 2.4.  These 

ues result in a lag time from the centroid of rainfall to the center of runoff mass ranging f

7).   

 0.59 

 0.63 

 

2. Gervais Peak Discharges estimated by rational, Putnam (1972), and Bohman   

meter stage estimated by the slope-area 

the timing of the arrival of 

5), Bohman 

basin is 75 acres (30.4 ha), has a main watercourse length of 0.69 miles 

4 feet per mile (2.72%), and an impervious surface area of 72.3 

5 (Putnam 1972) 

4.  These 

ues result in a lag time from the centroid of rainfall to the center of runoff mass ranging from 
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 The last equation used to calculate lag time was the NRCS method (Equation 2.7).  For 

the Gervais sub-basin the flow distance to the most distant divide was 3,645 feet (1,110 meters) 

and the weighted CN value was 94.  The average land slope using the four drawn lines 

perpendicular to the contours for a weighted slope was 6.75% and 8% using the Chow method 

(1964), which gave lag times of 12 and 11 minutes, respectively.  Thus, lag times from Equation 

2.7 (NRCS 2010) were longer than the calculated lag times computed by the Putnam (1972) and 

Bohman (1992) methods (Table 4.7).   Alternatively, lag to peak discharge can be calculated as a 

function of time of concentration TC.  Time of concentration may be considered equivalent to 

the time to the inflection point on the receding limb of the hydrograph (NRCS 2010).  Time of 

concentration (Equation 2.9; NRCS, 2010) was calculated using the same variables as the NRCS 

(2010) lag-time computations.  Using the weighted slope method, time of concentration for the 

Gervais gage sub-basin was 20.2 minutes and 18.6 minutes using the Chow (1964) method.  

Table 4.7 lists the lag-times and time of concentration for the Gervais gage sub-basin.   

Table 4.7. Calculated Lag-Times and Time of Concentration for the Gervais Gage-basin  

 

   Lag-to-

centroid 

Lag-to-

centroid 

   Lag-to-

peak 

Time of 

concentration 

  
  Putnam 

method 

Bohman 

method 

NRCS 

method 
NRCS method 

T T LT LT L L Tc Tc 

(hr) (min) (hrs) (min) (hrs) (min) (hrs) (min) 

0.141 8.48 0.07 6.10 0.202 12.14 0.337 20.23 
Weighted slope 

method 

        0.186 11.15 0.310 18.58 Chow method 

 

The lag-to-peak arrivals from the three methods were compared with hydrographs and 

rainfall data observed at the Gervais gage site.  Although most of the Gervais Street flow data 

were collected at 15-minute time intervals, a few storm events provide evidence of a rapid 
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response to flooding in this sub-basin (Figure 4.3).  The July 2013 (Figure 4.3) rain event 

indicates a lag-to-peak of less than 15 minutes for a rainfall event of 63 mm (2.5 inches) in the 

Gervais Street sub-basin.  USGS stage data is collected in Eastern Standard Time (EST) and were 

adjusted to Eastern Daylight Time (EDT) for this comparison.  The rain data used in Figure 4.3 

was provided by Richland County (Ken Aucoin, written communication) and was collected in 15-

minute time steps during the event.  Lag times were measured from seven storm events within 

the Gervais gage sub-basin and all responded similarly to Figure 4.3.  Lag-times calculated using 

Putnam 1972 and Bohman 1992 are from the centroid of rainfall to the centroid of runoff mass.  

Therefore, lag times for the Gervais gage-basin are best estimated to be less than 15 minutes.  

Although 20 minutes may be an appropriate time of concentration for relatively common 

storms; e.g., the mean annual flood, the observed stage hydrograph and rainfall for the large 

well-defined July 21, 2013 storm with 63 mm (2.5 in) of rainfall indicates longer times of 

concentration for larger events.  Based on the inflection point on the hydrograph, the time of 

concentration for the July 21, 2013 storm was more than an hour.  Based on this analysis and 

the fact that the NRCS 2010 method is not intended solely for urban watersheds, further 

hydrograph analyses were based on lag times computed using the Putnam method (Equation 

2.5) and Bohman 1992 method (Equation 2.6).   
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  Figure 4.3. Lag-to-Peak for Gervais Gage-basin (Adjusted to EDT) 

 

At Pickens Gage Sub-basin Hydrologic Analysis 

Estimates of peak discharge are computed for the At-Pickens gage sub-basin, followed 

by an analysis of discharge using the slope-area method in an attempt to evaluate historic peak 

stages observed at the gage.  This, in turn, is followed by the analysis of stormwater timing in 

order to constrain hydrograph shapes and to develop triangular hydrograph and dimensionless 

hydrograph. 

At Pickens Peak Discharges 

Peak discharges for the At Pickens gage sub-basin were estimated by the rational, 

Putnam, and Bohman methods.  Peak discharges were calculated using spatially weighted 

rational coefficients with rainfall intensities up to the 60-minute 50-year storm (Tables 4.8 and 

4.9).  The saturation factor from Equation 2.4 increased all discharges by 17.5%.  Studies at the 

site that measured discharge (Logan et al. 1985; Fadi Shatnawi, written communication) 

observed discharges as high as 1100 cfs (Figure A.11; Logan et al. 1985) and 1300 cfs by the 
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USGS (Figure A.12).  These storm flows fall within the range of discharges computed by the 

rational method for 30-minute rainfalls with recurrence intervals greater than 2-years, or for 

inter-annual 60-minute rainfalls (recurrence intervals <1).   

The calibration of stage-discharge relationships at the gage appear to be accurate for 

discharges below 350 cfs (Figure A.10; Fadi Shatnawi, written communication).  However, due to 

backwater effects at the bridge flow stages, which are common in the historic record, cannot be 

converted to discharges (Tim Lanier, personal communication).   

Table 4.8. At-Pickens Sub-basin Peak Discharges; (based on CIA with rainfall intensities from 

Table 2.2) 

 

Duration 

Recurrence 

Interval 

 (1-yr) 

Recurrence 

Interval 

 (2-yr) 

Recurrence 

Interval 

 (5-yr) 

Recurrence 

Interval  

(10-yr) 

Recurrence 

Interval 

 (25-yr) 

Recurrence 

Interval  

(50-yr) 

  Peak Discharges (cfs) 

5-min 45.2 52.5 60.0 67.3 75.5 82.2 

10-min 145 168 192 215 241 261 

15-min 271 317 365 407 458 498 

30-min 742 875 1,037 1,182 1,357 1,496 

60-min 1,858 2,195 2,654 3,088 3,607 4,065 

 

Table 4.9. At-Pickens Sub-basin Peak Discharges with a Saturation Factor; (based on CfCIA with 

Cf = 1.17 and rainfall intensities from Table 2.2) 

 

Duration 

Recurrence 

Interval 

 (1-yr) 

Recurrence 

Interval 

 (2-yr) 

Recurrence 

Interval 

 (5-yr) 

Recurrence 

Interval  

(10-yr) 

Recurrence 

Interval  

(25-yr) 

Recurrence 

Interval 

 (50-yr) 

  Peak Discharges (cfs) 

5-min 53.1 61.7 70.5 79.1 88.7 96.6 

10-min 170 197 226 253 283 307 

15-min 319 372 429 478 539 585 

30-min 872 1,028 1,219 1,389 1,594 1,757 

60-min 2,183 2,580 3,118 3,628 4,238 4,776 
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At-Pickens Slope-Area Discharge Computations 

A channel cross-section topographic survey with a rod, level, and tape at the At Pickens 

gage site was tied approximately to the staff gage reading at the time of the survey (November 

19, 2013 at 14:00 EST) to allow determination of when flows hit the top of the culvert beneath 

the Pickens Street bridge (top horizontal line on Figure 4.4), or top stream bank and terrace 

surfaces.  The survey relative heights were related to the USGS staff gage by subtracting 0.82 

meters from the corresponding USGS stage reading at the time of the survey.  The Pickens 

Street Bridge has two concrete structural support walls forming three 2.2 x 2.2-meter box 

culverts where backwater occurs during flow stages above 5.2 feet (1.6 meters). An additional 

14 inches (0.36 meters) is also subtracted due to a cement lip along the bottom of the culverts 

causing ponding, zero discharge, and acting as the control for the reach during low-flow 

conditions.  The slope-area method was used with cross-section analyzer (CSA) software (NRCS 

ND) in an attempt to constrain discharge, hydraulic radius, and mean flow velocity for various 

flow stages.  The CSA computation produced cross-section parameters shown in Table 4.10 for 

stages up to 11 feet (3.35 meters) near the bank tops.   The bold line break above 5 feet 

indicates uncalibrated data and when compared to Figure A.14 the CSA overestimates discharge 

at higher stages and underestimates discharge at lower stages.  Further analyses for the At-

Pickens gage site using CSA should consider adjusting Manning roughness for the low and high 

stages.   



 

         Figure 4.4. At-Pickens Gage Cross

         High horizontal line is height of three 2.2

         Lower horizontal line is water surface at time of survey.

   Table 4.10. At-Pickens Gage-basin Cross Section Analysis. Slope = 0.001 and n = 0.03

Water 

Surface 

Elevation 

Water 

Surface 

Elevation 

Flow 

area

ft m m
2

11.00 3.35 277.6

10.50 3.20 258.0

10.00 3.05 239.0

9.50 2.90 220.4

9.00 2.74 202.4

8.50 2.59 184.7

8.00 2.44 167.5

7.50 2.29 150.8

7.00 2.13 134.7

6.50 1.98 119.0

6.00 1.83 103.8

5.50 1.68 89.1

      
5.00 1.52 75.1

4.50 1.37 61.7

4.00 1.22 48.9

3.50 1.07 36.6

3.00 0.91 24.7

2.50 0.76 13.6
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Pickens Gage Cross-Section looking downstream (west).  

High horizontal line is height of three 2.2 x 2.2-meter box culverts.   

Lower horizontal line is water surface at time of survey. 

basin Cross Section Analysis. Slope = 0.001 and n = 0.03

 

Flow 

area 

Wetted 

Perimeter 

Hydraulic 

Radius 
Discharge Discharge

2
 m m cfs cms 

277.6 47.1 5.89 1419 40 

258.0 45.6 5.66 1283 36 

239.0 44.2 5.41 1154 33 

220.4 42.8 5.16 1031 29 

202.4 41.4 4.89 912.8 25.8 

184.7 40.1 4.61 801.3 22.7 

167.5 38.7 4.33 697.1 19.7 

150.8 37.2 4.05 600.5 17.0 

134.7 35.8 3.77 510.7 14.5 

119.0 34.5 3.45 425.7 12.1 

103.8 32.9 3.16 349.6 9.9 

89.1 31.3 2.85 280.6 7.9 

         
75.1 29.6 2.54 219.1 6.2 

61.7 28.0 2.20 163.6 4.6 

48.9 26.6 1.84 115.1 3.3 

36.6 25.2 1.45 73.4 2.1 

24.7 23.8 1.04 39.6 1.1 

13.6 20.2 0.67 16.4 0.5 

 

basin Cross Section Analysis. Slope = 0.001 and n = 0.03 

Discharge Velocity 

m/s 

5.11 

4.97 

4.83 

4.67 

4.51 

4.34 

4.16 

3.98 

3.79 

3.58 

3.37 

3.15 

  
2.92 

2.65 

2.35 

2.01 

1.60 

1.20 
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2.00 0.61 5.04 12.7 0.40 4.27 0.12 0.85 

1.50 0.46 0.98 4.96 0.20 0.52 0.01 0.53 

1.09 0.33 0.0 0.0 0.00 0.00 0.00 0.00 

 

 Slope-area discharge computations required estimations of roughness and slope.  The 

Manning roughness coefficient (n) was set to 0.03 using methods described in Chapter 2.  The At 

Pickens cross-section has coarse rip-rap, and dense vegetation along the channel walls (Figure 

A.13).  The 0.1% slope used for the At-Pickens slope-area computation was determined using 

GIS spatial analysis.  A digital elevation model (DEM) derived from 2-ft LiDAR was overlaid on top 

of the orthographic imagery (ESRI, 2014).  Eleven elevations were selected from the DEM at sites 

along the streambed starting 200 meters upstream from the At-Pickens gage.  The elevation at 

the gage was not used due to the cement lip discussed earlier.  Discharges above a stage of 5.2 

feet (1.6 meters) are affected by backwater at the bridge and should not be estimated by the 

Manning equation, which assumes uniform flow. 

 Observed stage-discharge data collected by the USGS between August, 2011 and 

January, 2013 (obtained from Fadi Shatnawi, written communication) were used to calibrate 

flows below 5.2 feet (1.6 meters).  A second-order polynomial calibration was empirically 

derived for use as a stage-discharge rating curve: 

                                                  Qcfs = 31.7 Stft
2
 - 128.1 Stft + 117                             (Equation 4.2) 

                                                  Qcms = 9.66 Stm
2
 – 11.9 Stm+ 3.3                              (Equation 4.3) 

Comparing this calibration with the Manning estimates indicates that the Manning method 

over-predicted discharges at low stages and under-predicted discharges at high stages (Figure 

.14).  Given that the Manning method should not be used for stages greater than 1.6 meters due 

to backwater effects, and that the empirical rating is superior below 1.6 meter stages, the 
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empirical calibration was used and the Manning computations were not used.  Neither method 

should be extrapolated above 1.6 meter stages, so attempts were abandoned to develop a 

rating curve for interpreting high flows.  Fortunately, a new gage has been established upstream 

that is providing additional flow data. These data could be used to reconstruct historical flows 

from the existing continuous stage data at the At-Pickens gage. 

 Peak discharge estimates at various recurrence intervals for the At-Pickens gage sub-

basin were calcuated using Putnam (1972), Bohman (1992), and the rational method (Table 

4.11).  An evaluation of flow stages on the mean annual maximum flood series (AMFS) collected 

at the gage from 1985 to 2003 indicates that flows below 5.2 feet (1.6 meters) are frequently 

occurring events.  Only two years of the twenty years or record has an annual maximum flow 

stage below 5.2 feet (1.6 meters).  Comparisons of the peak discharge flows predicted by the 

various empirical equations with the AMFS at the gage are hampered by uncertainties 

associated with the uncalibrated discharge values given in the AMFS.  Assuming the AMFS 

discharge values are accurate, the mean annual flood for the period was 982 cfs (23.7 cms).  

Flows were greater than or equal to 608 cfs in every year of the 17-year discharge record (Figure 

A.12).  Furthermore, the three years with missing flow values were large flood years with very 

high peak stages and discharges that were clearly greater than average.  This indicates that 

discharges of 371 cfs (10.5 cms) that reach the top of the culvert occur in most years.  This 

frequency supported by two-year flow frequency magnitudes estimated by the Putnam and 

Bohman peak discharge estimates and by the rational method for rainfalls more than 15 

minutes in duration (Table 4.11).  Unfortunately, the discharge values in the AMFS or the stage-

discharge relationship for high flow stages need to be confirmed before further evaluations can 

be made of the magnitude-frequency of peak discharges at this site.   
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          Table 4.11. At-Pickens Peak Discharge (cfs) 

 

QN Putnam Bohman CfCIA 
Manning Q 

(cfs) 

  
    10-min 15-min 30-min 60-min 

at 5.2-ft stage 

= 228 cfs 

Q1  -   - 170 319 872 2,183  - 

Q2 506 478 197 372 1,028 2,580  - 

Q5 861 696 226 429 1,219 3,118  - 

Q10 1,144 835 253 478 1,389 3,628  - 

Q25 1,530 996 283 539 1,594 4,238  - 

Q50 1,837 1,117 307 585 1,757 4,776  - 

Q100 2,138 1,230  -  -  -    - 

Q500  -  1,434  -  -  -    - 

 

At Pickens Lag-times & Time of Concentration 

The timing of stormwater arrival was estimated by several methods and the results 

were compared with observations from storm hydrographs measured at the At-Pickens gage in 

the 1980s.  The At-Pickens gage sub-basin is 1,436 acres, has a main watercourse length of 2.58 

miles, a channel slope of 61 feet per mile, and a total impervious surface area of 54.5 percent.  

Based on these factors, the lag time to centroid (TC) calculated by the Putnam (1972) method is 

0.81 hours (48 minutes).  The timing of storm hydrograph flow data collected in the 1980s 

(Logan et al. 1985) was analyzed by Sanjeev Joshi (written communication) by measuring the 

time differential between the centroid of rainfall and peak discharge.  Although lag-to-peak is 

shorter than lag-to-centroid, the much shorter lag-to-peak times of the observed storm 

hydrographs suggest that the Putnam lag time is unrealistically long regardless of the magnitude 

of the event (Figure A.11).   
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The calculated TC for the At-Pickens gage sub-basin using the Bohman (1992) method 

was 0.27 hours (16.3 minutes), which was a third of the time of Putnam (1972).  The variables 

used in Equation 2.6 (Bohman method) were similar to the variables in Equation 2.5 (Putnam 

method) with an additional 30-minute rainfall intensity variable as explained in Chapter 2.  The 

Bohman TC is similar to the observed lag times to peak (Sanjeev Joshi, written communication) 

for moderate magnitude flows.  Plotting lag-to-peak against discharge (Figure A.11) suggests lag-

times at this site increase with discharge at a rate of approximately 1.4 minutes per hundred cfs.  

Similar effects of lag times increasing with scale have been noted elsewhere (see Figures 10.35 

& 10.36 of Dunne and Leopold, 1978).  While more data are needed to test and refine this 

relationship, the increase in lag-time with discharge is realistic and is one reason why 

dimensionless hydrographs are often used to compare hydrographs between storms of different 

magnitudes.   

The NRCS method (Equation 2.7) was also used to calculate lag-to-peak time for the At 

Pickens sub-basin.  The At-Pickens sub-basin has a 44.3 minute lag time according to the Chow 

1964 method and a 61 minute lag time according to the weighted slope method.   

Time of concentration (TC) (Equation 2.9; NRCS 2010) for the At Pickens gage-basin using 

the weighted slope method was 1.69 hours (101 minutes) and 1.23 hours (73 minutes) using 

Chow 1964.  Similar to the lag times calculated for At Pickens, the times of concentration 

calculated for At Pickens by the NRCS method are unrealistically long.  Table 4.12 shows the 

calculated lag times and time of concentration.  It is commonly assumed for unurbanized 

watersheds with uniform rainfall that lag-to-peak time is approximately 0.6 times the time of 

concentration.  Thus, the lags-to-peak corresponding to the calculated 101 and 73 minute times 

of concentration would be approximately 61 and 44 minutes, which is essentially identical to the 
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lag-to-peak values estimated directly by the NRCS method.  Both of the lag-to-peak times for At-

Pickens computed by either method are much longer than the observed storm-flows at the site.  

This may be because the NRCS method is applicable to a broad set of watersheds (NRCS 2010) 

including heavily forested areas, and may not be sensitive to heavily urbanized impervious 

areas.   

In summary, based on comparisons with observed hydrographs, the lag-to-centroid 

results produced by the Putnam (1972) and Bohman (1992) methods were more realistic than 

the NRCS (2010) method.   

Table 4.12. Calculated Lag-Times and Time of Concentration for the At-Pickens Gage-   

basin 

 

   Lag-to-

centroid 

Lag-to-

centroid 

   Lag-to-

peak 

Time of 

concentration 

  
  Putnam 

method 

Bohman 

method 

NRCS 

method 
NRCS method 

T T LT LT L L Tc Tc 

(hr) (min) (hrs) (min) (hrs) (min) (hrs) (min) 

0.812 48.74 0.27 16.30 1.016 60.99 1.694 101.64 
Weighted slope 

method 

        0.738 44.30 1.231 73.84 Chow method 

 

Model Storm Hydrograph Analysis 

Triangular hydrographs for the 2-year, 30-minute rainfall were created for moderate 

floods at the Gervais gage sub-basin based on the peak discharge, lag-times, and total runoff 

volumes calculated earlier.  The storm-flow duration of the hydrographs were computed by 

dividing total storm runoff volume by peak discharge.  The model hydrograph is shown in Figure 

4.5 and based on the Bohman (1992) method for computing peak flow and lag-time.  The high 

peak discharge (255 cfs) is supported by the slope-area computations of frequently occurring 

flow stages.   
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This hydrograph indicates a rapid receding limb that defines a negatively skewed 

hydrograph.  Negatively skewed hydrographs area not conventional, but have been noted in the 

literature.  A negatively skewed hydrograph may result from an unrealistically low calculated 

runoff volume, or too long of a lag-to-peak.  Even if total storm runoff is increased to the 

maximum possible runoff using an unrealistically high basin-wide CN of 99, the triangular 

hydrograph based on empirically derived lag time and peak discharge is negatively skewed.  A 

watershed composed of mostly impervious areas with a high Hortonian overland flow can 

generate a slightly negatively-skewed hydrograph response (Sellinger 1996).  Negative skewness 

can also result from the watershed shape.  Fan-shaped watersheds pointed towards the outlet 

can generate negatively skewed hydrographs (Subramanya , 2013) because stormwater travel 

times are longer in the tributaries furthest from the outlet.  Watershed shape does not appear 

to be the cause of negative hydrography skewness in this case.  Nonetheless, all three computed 

lag-times (Equations 2.5, 2.6, and 2.7) support the negatively skewed hydrograph.  The lag time 

used in Figure 4.5 was the shortest time computed from empirical equations and was 

geometrically determined using the lag-to-centroid computed by the Bohman (1992) method 

and converting lag-to-centroid to lag-to-peak by solving for similar right triangles, which gave a 

lag-to-peak of 10 minutes.  A shorter lag-to-peak time is difficult to justify for the 30-minute 

rainfall and would indicate peak discharge occurring before uniform rainfall had ceased.  There 

are reasons to suspect, however, that the CN method underestimated the total storm runoff 

volume.  As described early in this chapter, adjusting runoff for a smaller initial abstraction 

increased runoff by 9.7% but had little effect on the shape of the hydrograph.  The volumetric 

analysis for water budgeting in the Gervais basin described in Chapter 5 used a synthetic 

hydrograph based on the runoff volumes computed using 20% abstractions and a weighted 

curve number of 94.   
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          Figure 4.5. Gervais Model Hydrograph 

 

Dimensionless hydrographs are constructed to compare different size storm events by 

dividing time over time-to-peak along the x-axis and dividing discharge over peak discharge 

along the y-axis.  Figure 4.6 indicates a dimensionless hydrograph for a 2-year 30-minute rainfall 

event at the Gervais gage site.    

 

Figure 4.6. Gervais gage site dimensionless unit hydrograph for a 2-year 30-minute rainfall 

event 
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Summary Discussion 

Total storm runoff was computed for several sub-basins using the weighted curve-

number method and with curve numbers adjusted for impervious surface connectivity.  The 

Gervais sub-basin is highly urbanized with a TIA that covers 75.2% of the basin surface.  

Approximately 98.6% of the impervious surface area in the basin is well connected to storm 

sewers or channels and were assigned CNs from 95 to 98.  This resulted in a relatively high total 

runoff volume of 242,969 ft3 (6,880 m3) for the 2-year, 30-minute rainfall event from the Gervais 

gage sub-basin.  This amounts to an average runoff depth of 0.89 inches (23 mm) for the 1.45 

inch (37 mm) rainfall event; or a runoff index (runoff/rainfall) of 62%.   The larger At-Pickens sub 

basin is less densely urbanized than the basin with a TIA of 44.4%.  Some 78.6% of the TIA in the 

At-Pickens basin is well connected to storm sewers and channels and was assigned CNs from 95 

to 98 resulting in a total runoff volume for the 2-year, 30-minute rainfall event of 2,833,731 ft3 

(80,304 m3).  Runoff averages a depth of 0.544 inches (14 mm) across the At-Pickens sub basin.  

This gives a runoff index of 37%, which is substantially less than the Gervais sub basin, reflecting 

the smaller TIA and less-dense urbanization of the residential neighborhoods that comprise 

many of the sub basins above the At-Pickens site. 

 Discharges at the Gervais cross-section can be constrained somewhat with available 

data, although streamflow measurements are needed to calibrate the gage.  Slope-area 

(Manning) discharge computations, using a relatively low gradient and high roughness, indicate 

that discharge at a stage of 2 meters is in conformance with the two-year peak flood estimate 

computed by the Bohman (1992) method.  Estimates of peak discharge derived from the other 

empirical methods were too low to be matched by slope-area methods at frequently occurring 

flow stages.  By all indications, the two-year hydrograph at the Gervais gage site are negatively 
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skewed.  While gage-calibration is needed to confirm this relationship, rainfall-runoff models 

should seriously consider the potential for this non-conventional hydrograph shape. 

 Moderate magnitude discharges at the At-Pickens gage below 1.7 m stages can be 

modeled with the slope-area method.  Roughness would need to be adjusted to refine the 

modeled values presented here.  Instead, the calibration developed from stage-discharge data 

collected in 2011 to 2013 was used for moderate flows.  No means of calibrating flows above a 

stage of 1.7 m has been devised.  Several storm hydrographs observed in the early 1980s 

provide an empirical means of interpreting storm hydrographs.
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Chapter 5 – Water Budgeting to Determine LID Treatment Estimates 

 LID runoff abstraction in the RBW can potentially lower peak discharge, increase lag-

times, and minimize total runoff volumes in the watershed.  A sensitivity analysis was conducted 

by computing a water budget using the Gervais triangular hydrograph.  Runoff volumes were 

subtracted from the hydrograph as LID abstraction was implemented.  

Water Budgeting 

The Gervais gage sub-basin triangular hydrograph generated for a 2-year, 30-minute 

rainfall provided continuous discharge data that was used for a water-budget analysis.  As 

described in Chapter 4, the hydrograph was computed using the SCS curve number method and 

Bohman (1992) lag-to-centroid (Figure 4.5).  It has a peak discharge of 255 cfs (7.2 cms) and a 

total storm runoff volume of 242,901 ft3 (6,833 m3).  One-minute streamflow input data were 

generated as linear functions of time for the rising and falling limb of the hydrograph.   

Various scenarios of total LID volume were simulated and the LID-storage volume was 

subtracted from volumes of the hydrograph input as long as storage remained available 

assuming no losses from LID-storage. 

To allow for manipulations of the spatial area of the basin that was subjected to LID 

treatment, total runoff volume was reduced to various percentages of treated area.  The 

percent basin area treated determines how much of the total runoff can effectively be reduced.  

If only 10% of the sub-basin is treated with LID assuming a uniform spatial distribution of 
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rainfall, the runoff at the outlet can only be minimized by 10% regardless of the amount of LID 

implemented.  In that case, LID storage is slower to fill because only 10% of the runoff goes into 

storage.  On the other hand, the influence of storage on total runoff at the outlet is reduced and 

may have little influence on peak discharge.  Altering the percentage of the basin treated 

accounts for situations where certain parts of the basin contribute runoff to the outlet that is 

not affected by LID; that is, runoff from the untreated areas is not reduced.  Untreated areas 

may represent an entire tributary or the lower floodplains of main channels where LID is not 

usually effectively implemented.  With spatially uniform rainfall the sensitivity of total outflow 

from the basin to LID treatment will be proportional to the area that is treated.  One way to 

reduce flood peaks in cases with large percentages of untreated runoff would be to implement 

conventional detention or retention structures in the lower basin to store untreated runoff. 

The volumetric water budget is constructed to subtract potential LID storage from the 

inflow runoff volume (adjusted for percent area treated) until storage is filled.  The budget was 

computed in one-minute intervals and LID storage decreased the total runoff volume until the 

potential storage was completely used or the percent runoff treated threshold was met.  A 

matrix was constructed of the budget results for a range of percent basin treated from 10% to 

100% (Table 5.1).  The maximum values of LID storage potential in the second column indicate 

the potential volume that can be abstracted from storm runoff, which is simply the product of 

available potential storage and the percentage treated.  For example, if only 10% of the Gervais 

sub-basin is treated with LID the maximum potential storage that can be used for abstraction 

from the 2-year, 30-minute storm is 24,290 ft2.  This matrix shows that the effectiveness of 

increasing LID storage is limited by the area of the basin that is controlled by mitigation.   
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The volumetric water budget analysis was used to simulate the effects of LID storage on 

peak instantaneous discharge for the two-year, 30-minute storm hydrograph at Gervais.  These 

simulations were conducted on a variety of percentages of the sub-basin treated and the 

maximum effective LID storage volume for that percent (from Table 5.1).  Adjusted peak 

discharges were computed for each volume of effective storage.  Table 5.2 shows the change in 

peak discharge as total available LID storage increases for the Gervais gage sub-basin during a 2-

year 30-minute event.  LID storage used in Table 5.2 indicates the maximum effective storage 

capacity for the given percent areas.   In addition to peak discharges changing, lag-times can 

increase once the runoff volume under the rising limb is abstracted (Figure A.15).   

   Table 5.1. Potential Discharge Reductions from LID Implementation 

   for 2-year, 30-minute storm event 

 

Percent 

Area 

Treated 

LID Storage 

Used 

Original 

Peak 

Discharge 

Adjusted 

Peak 

Discharge 

Change in 

Peak 

Discharge 

Percent 

Reduction in 

Peak Discharge 

  ft3 cfs cfs cfs   

10% 24,290 255 227 28 10.8% 

20% 48,580 255 202 53 21.8% 

30% 72,870 255 177 78 31.7% 

40% 97,160 255 152 103 41.6% 

50% 121,451 255 126 129 50.5% 

60% 145,741 255 101 154 61.4% 

70% 170,031 255 76 179 71.3% 

80% 194,321 255 51 204 80.2% 

90% 218,611 255 25 230 91.1% 

100% 242,901 255 0 255 100% 

 

Under the given assumption that LID storage will be used by the first available runoff, 

this seemingly simple water budget simulation reveals a spatial complexity of the response in 

peak discharge.  This complexity is introduced when only a proportion of the catchment is 

treated.  First, LID storage must be of sufficient storage volume so it will not be filled before the 
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arrival of the peak discharge.  Increasing LID storage volume will prolong the period of runoff 

reductions for a given precipitation intensity and percent area treated.  Thus, increasing LID 

storage will enhance peak discharge reductions up to a point.  Second, the optimal volume of 

LID storage for a given rainfall event depends on the percentage of the catchment being treated.    

Increasing the percent area can increase reductions in peak discharge if there is adequate 

storage because more of the total basin runoff will be treated.  For cases of limited storage, 

however, increasing the area treated by storage directs more runoff to the storage sites during 

the rising limb of hydrographs.  This may result in reducing or eliminating the effect on peak 

discharge.    

In summary, changes in peak discharge differ for each amount of available storage.  If 

the available storage capacity is relatively low it is better to treat a lower percentage of the 

watershed area to prolong the storage process.  The storage process must last as long as the 

time-to-peak in the storm model hydrograph or else the peak discharge is unaffected.  If a 

higher percentage of the watershed is treated with LID, but the amount of potential storage is 

relatively low, the storage capacity fills much faster and could potentially fill up before the time-

to-peak occurs.    

LID Implementation into the RBW 

Spatial analysis of where LID implementation has the highest effectiveness can be 

shown in Table 4.2.  All of the sub-basins above the At-Pickens gage, including the 5-Points, 

Wales Garden, Wheeler Hill, South Campus, Mill-Villages North, and Mill-Villages sub-basins, 

contribute to the RBW flooding.  Table 4.2 indicates that 70% of the runoff above the At-Pickens 

gage occurs within the Gregg Street and MLK sub-basins.  Runoff and volumetric simulations in 

the Gervais sub-basin, a very heavily urbanized area within the Gregg Street sub-basin, serve as 



84 

 

examples of the sensitivity and effectiveness of runoff to LID implementation.  Implementing LID 

into the Gervais gage sub-basin could be highly effective for mitigating flood water generated in 

these sub-basins.  Based on runoff depths, Gregg Street, Five Points, University Hill, Wales 

Garden, and USC Northwest could also be sub-basins where LID would be effective.  The 

Hollywood-Rose Hill sub-basin is large but it generates a relatively low mean depth of runoff, so 

LID is likely to be least effective in reducing flood generation.   

Disconnecting the impervious areas with higher EIA CNs is an effective spatial approach 

to where LID should be implemented.  LID such as bioretention and cisterns can disconnect 

parking lots and buildings from the USSS.  The CN values in the LID implementation analysis are 

treated differently from the adjusted EIA CNs because LID minimizes connectivity.    

Gervais Gage Sub-basin LID Implementation using the Water Budget Analysis 

Runoff volumes from building rooftops within the Gervais gage sub-basin were 

computed using the SCS curve number method (Equation 2.1).  Building footprint areas (shown 

in Figure 5.1) were taken from the revised 2013 TIA data.  The CN values used for the buildings 

were 98 (Figure 1.7).  The rainfall intensity used in the analysis is the 2-year 30-minute rainfall 

event (Table 2.2).  The total runoff volume generated for the 135 buildings within the Gervais 

gage sub-basin for a 2-year 30-minute rainfall event was 63,477 ft3 (1797 m3).    
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         Figure 5.1. Gervais Gage Sub-basin Building Coverage 

 

The water budget analysis was run using the runoff volume generated from the Gervais 

gage sub-basin buildings.  The building runoff is a higher volume runoff per unit area than the 

Gervais gage sub-basin due to different CNs used and should be treated independently from the 

water budget analysis.  However, the Gervais building runoff volume can be used in the water 

budget as a realistic maximum LID abstraction volume.  If 63,477 ft3 of runoff is abstracted using 

LID such as cisterns, rain barrels, rain pillows, and green roofs peak discharge can be lowered.  If 

only 1% of the basin is treated peak discharge will be reduced by 1%.  Table 5.2 shows the 

change in peak discharge as percent area treated increases.  The highest percent change in 
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discharge using the Gervais buildings runoff volume occurs when 30% of the sub-basin is 

treated.  Increasing the percent area treated decreases the change in peak discharge after 30% 

because the storage begins to fill up too quickly, prior to the arrival of peak discharge.   

Table 5.2. Change in Peak Discharge by Abstracting Runoff Volume from the Gervais Gage    

Sub-basin Buildings 

 

Percent 

Area 

Treated 

LID 

Storage 

Used 

Original 

Peak 

Discharge 

Adjusted 

Peak 

Discharge 

Change in 

Peak 

Discharge 

Percent Change 

in Peak 

Discharge 

  ft3 cfs cfs cfs   

1% 2,429 255 252 3 1% 

5% 12,145 255 242 13 5% 

10% 24,290 255 230 25 10% 

20% 48,580 255 204 51 20% 

30% 63,477 255 179 76 30% 

31% 63,477 255 176 79 31% 

32% 63,477 255 190 65 25% 

33% 63,477 255 197 58 23% 

34% 63,477 255 208 47 18% 

35% 63,477 255 226 29 11% 

36% 63,477 255 226 29 11% 

37% 63,477 255 235 20 8% 

38% 63,477 255 255 0 0% 

 

Runoff volumes generated from parking lots and sidewalks within the Gervais gage sub-

basin were also computed for the 2-year 30-minute rainfall event.   The runoff volumes were 

computed the same as the buildings using 98 for the CNs.  The Gervais gage sub-basin parking 

lots and sidewalks generate 142,679 ft3 (4,040 m3) of total runoff for the 2-year 30-minute 

rainfall event.  One parking lot within the Gervais gage sub-basin owned by the University of 

South Carolina is 159,121 ft2 (48,500 m2) generating 16,322 ft3 (462 m3) of runoff for the 2-year 

30-minute rainfall (Figure 5.2).   
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        Figure 5.2. Gervais Gage Sub-basin Parking Lots and Sidewalks 

 

Disconnecting the runoff generated from the parking lots will have a higher impact than 

sidewalks because sidewalks within the RBW generally have a vegetative buffer from the streets 

and USSS already established.  Implementing buffers between the impervious parking lots and 

USSS using bioretention, rain gardens, and porous pavement can serve as examples of well-

known LID detention designs.   

Implementing LID into the Gervais gage sub-basin is best done using a conglomeration 

of LID designs.  The designs must also disconnect large impervious areas such as buildings and 

parking lots from the streets and USSS.  Targeting the largest buildings (buildings over 5,000 ft2) 
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and parking lots (parking lots over 10,000 ft2) to disconnect impervious surfaces from the USSS 

using LID implementation has the potential to abstract 116,168 ft3 (3,290 m3) from the Gervais 

gage sub-basin during the 2-year 30-minute rainfall event.  There are 29 buildings over 5,000 ft2 

(142 m2) and 27 parking lots over 10,000 ft2 (283 m2) located within the Gervais gage sub-basin.  

A cistern capable of holding runoff generated from a 5,000 ft2 building is 3,800 gallons (14,385 L) 

or a diameter of 18 feet and a height of 6 feet (Krishna et al. 2005).   

Changes to peak discharge within the Gervais gage sub-basin were computed using the 

water budget for the larger buildings and parking lots runoff volume (116,168 ft3 or 3,290 m3).  

The adjusted peak discharge, using a percent area treatment of 50%, after a potential 

abstraction of all of the runoff volume generated from the larger buildings and parking lots was 

reduced to 127 cfs (3.6 cms) or approximately 50% of the original Bohman (1992) peak 

discharge of 255 cfs (7.2 cms).   

 Constructing a detention pond near the outlet could be designed to complement LID by 

capturing some of the peak discharge after LID abstraction.  Total abstraction in the larger 

buildings and parking lots (116,168 ft3 (3,290 m3) has the potential to reduce the peak discharge 

by about 50%.  A detention pond required to capture the rest of the resulting runoff would need 

to be 126,757 ft3, approximately one and a half Olympic-size swimming pools or three acre-feet.  

Figure A.16 shows a three acre-foot detention pond located near the outlet which would need 

to be designed with an inlet to fill only above a given stage.  Otherwise, the pond would fill up 

before the time-to-peak since it captures a large percent area treated.  The hydrograph 

response from only using the detention pond near the outlet is shown in Figure A.17.    

Converting Parking lots to Fallow Land 

Another method for decreasing urban surface runoff is decreasing the amount of 

existing impervious area.  One example is converting parking lots to open grassland.  A simple 
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simulation of such a conversion in the Gervais basin was made by altering curve numbers to 

represent various percentage areas converted from parking lot to fallow land.  The CNs for 

impervious surfaces converted to open grassland were reassigned from 98 to 84 (Figure 1.7).  

This reduction in CNs is modest, since they are all located in a D hydrologic soil group.  Greater 

reductions could be achieved by conversion of parking lots to fallow land over more permeable 

soils.  In spite of the relatively impermeable soils, weighted CNs based on converting highly 

connected impervious parking lots to open grassland are substantially lower in the Gervais gage 

sub-basin (Table 5.3).   Table 5.3 also shows the reductions in total storm runoff volume for the 

2-year 30-minute storm event that would be achieved by converting a percentage of the parking 

lots in the Gervais gage sub-basin to open fallow land.  This analysis suggests that simply 

converting 20% of the area of parking lots to fallow land with grass cover--without any 

investment in LID or detention structures whatsoever—could reduce storm-flow volumes by 

almost 10%.  In some urban basins with abandoned paved areas, such an approach may be a 

viable strategy for reducing flooding at minimal cost. 

       Table 5.3. Total Runoff Response from Converting Parking Lots to  

       Fallow Land in the Gervais Gage Sub-basin 

 

Percent 

Parking Lot 

Converted  

Weighted EIA 

CN 

Total Runoff 

(ft3) 

Percent Change 

in Runoff 

0 94.0 242,969 0 

10 93.4 232,023 4.5 

20 92.8 219,941 9.5 

30 92.1 208,769 14.1 

 

The CNs assigned to the open grassland were 84 (Figure 1.7) since they are located in a D 

hydrologic soil group.  However, the open grassland CN is still substantially lower than the highly 
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connected impervious parking lots in the Gervais gage sub-basin and can minimize total runoff 

volumes.   

Discussion 

 Peak discharges can be lowered by implementing LID and detention ponds over a small 

area of the watershed in order to extend the storage capacities.  Based on the assumptions of 

the volumetric analysis; e.g., all runoff for the treated area will go to available LID storage until 

that storage is filled.  If the potential storage from LID is smaller using a smaller treatment area 

is best to reduce peak discharge (Table 5.2) whereas if more potential storage is available the 

treatment area can effectively be increased.  The water budget analysis determined that peak 

discharges can potentially decrease from LID abstraction with a low percentage treatment area 

as long as storage capacities outlast the time-to-peak.  Treating a high percentage of the 

watershed with a relatively small LID abstraction capacity results in storage capacity being 

rapidly filled and increases the time delay to the start of the hydrograph rising limb (Figure 

A.17), but may not change the peak discharge.  If storage capacity is filled during the rising limb, 

the peak discharge will remain the same.   

 Disconnecting the main sources of stormwater runoff e.g., buildings and parking lots is 

an effective way to decrease peak discharge, increase peak stormwater arrival times, and 

extend the hydrograph.  Peak stormwater arrival times increase (Figure A.15) with continued LID 

storage after the total runoff volume under the rising limb of the hydrograph is abstracted.  In 

addition to increased lag-to-peak time, decreased peak discharge occurs when LID storage is 

sufficient to last through the rising limb.  The Bohman (1992) method (Table 2.8) computed an 

estimated peak discharge of 255 cfs (7.2 cms) for the 2-year 30-minute Gervais gage sub-basin.  
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Implementing LID into the larger buildings and parking lots within the Gervais gage sub-basin 

can decrease the estimated peak discharge of this flood by as much as 50%.   

The use of conventional stormwater detention structures can complement storage by 

LID methods.  Constructing an additional three acre-foot detention structure (Figure A.16) near 

or at the outlet of the sub-basin can capture much of the remaining runoff from untreated areas 

to store total runoff from a 2-year 30-minute rainfall event.  However, the goal is not to 

completely reduce peak discharge, but to demonstrate the capability to reduce it for frequent 

floods; i.e., the 2-year 30-minute rain event.   Some stormwater runoff is necessary in urbanized 

streams for biological and natural functions, including water quality.  
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Chapter 6 – Conclusions 

 

Urban watersheds with high surrounding impervious areas increase hydrograph response 

times, raise peak discharge, and generate larger runoff.  The Rocky Branch Watershed has a 

flashy hydrologic response due to a highly impervious area with urban soils.  Consequently, the 

stream has experienced high flow-stages since 1984 according to the At-Pickens flow-stage gage 

data provided by the USGS.  The RBW is 49.5% impervious and is zoned 65% commercial with 

relatively steep slopes.  Surface flows generated from the impervious area are well connected 

through the urban storm sewer system (USSS) which runs throughout the watershed.   

Spatial analysis of the RBW was conducted to characterize hydrologic and land-use 

variables.  The watershed drainage divides and impervious area data from Wooten (2008) were 

revised before hydrologic analyses could be computed.  Digital maps of soils, zoning, parcel 

ownership, urban storm sewer system (USSS), drainage divides, and impervious surfaces, were 

analysed with a GIS and used to adjust curves numbers and to interpret results of the runoff and 

peak discharge analysis. 

Buildings, parking lots, and sidewalks were given CN values of 90 and adjusted accordingly 

to compensate for local runoff storage and connectivity.  The adjusted CNs (EIA) were adjusted 

for hydrologic soil type, zoning, and a USSS 10-meter buffer around the storm sewer system.  

EIA CNs indicate that only approximately 1% of the total impervious area (TIA) in the Gervais 

gage sub-basin is poorly connected to the USSS and roads.  The larger At-Pickens gage sub-basin 

has approximately 20% of the TIA poorly connected.  
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Discharges were computed at two sites using empirical equations by the Putnam (1972), 

Bohman (1992), slope-area, and rational methods for storms equal to or larger than a 30-minute 

2-year event (Table 2.2).  Rocky Branch Creek at the Gervais gage site is a headwater tributary 

with rip-rapped channel walls and a pedestrian bridge causing high Manning roughness values.  

Discharge and lag-times were then computed in order to construct a model storm hydrograph 

for the Gervais gage sub-basin.  Only the Bohman (1992) method produced a 2-year discharge 

large enough to be compatible with the Manning results, so this was used to estimate a peak 

discharge of 255 cfs (7.2 cms). 

Some studies show that the conventionally assume initial abstraction rate of 20% used by 

the SCS CN method is too big for urbanized areas.  A preliminary computation indicates the 

difference in total stormwater runoff between a 20% and 5% abstraction results in an 

approximately 10% increase in total runoff for the Gervais gage sub-basin.  Calculated lag-to-

centroid response times for the Gervais and At-Pickens gage sub-basins reveal a rapid rising limb 

in the hydrograph.  Triangular model storm hydrographs were generated for the Gervais gage 

sub-basin using calculated peak discharges and total volume runoff from the SCS CN method 

(Equation 2.1) indicating an even faster receding limb, which gives hydrographs a negatively 

skewed shape. 

Flow data for Rocky Branch Creek at the At-Pickens gage include both stage and discharge.  

Attempts to compute large flood discharges were not successful, so discharges could not be 

determined for high flow stages.  Some storm hydrographs for the site are available from the 

published literature and were used to constrain lag-to-peak times, but limited information is 

available for large overbank floods at the site.   Peak discharges above 1100 cfs (31 cms) have 

been observed by the USGS and Logan et al. (1985); however, peak discharge cannot currently 
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be calibrated above a 5.2-ft (1.6 m) stage due to backwater at the Pickens Street Bridge.  A 

stage-discharge rating curve was computed for flows below 5.2-ft stages.  Compared to this 

calibration curve, flow estimates computed by the Cross-Section Analyzer (CSA) software using 

the slope-area method (Manning Equation) over-predicted discharges at low stages and under-

predicted discharges at moderately high stages (Figure A.14).  Lag-to-centroid times computed 

by Putnam (1972) and Bohman (1992) were more realistic than the NRCS (2010) method for the 

At-Pickens gage.   

Low-impact development and detention structures were lumped together in a water budget 

analysis to show potential changes in peak discharge as LID is implemented into the watershed.  

Volumetric reductions depend on the percent area of the watershed treated and the amount of 

abstraction by LID.  The water budget analysis demonstrates that peak discharge can only be 

reduced if abstraction outlasts the time-to-peak.  If the potential available abstraction is 

relatively small it is better to have a low percent area treated to prolong the storage.   
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Appendix A: Additional Spatial and Hydrologic Figures 

 

     Figure A.1. Rocky Branch Watershed Sub-divides
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      Figure A.2. Rocky Branch Watershed Gages                   
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     Figure A.3. RBW Total Impervious Area Differences using the 2007 Outer Boundary 
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     Figure A.4. 2013 Rocky Branch Watershed Zoning 
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     Figure A.5. 6ft x 6ft Cistern Requirements for RBW Buildings  

     Larger than 9,000 sq. ft for a 1-inch uniform rainfall event 
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     Figure A.6. Rain Barrel (100-gal) Requirements for RBW Buildings  

     Smaller than 1,000 sq. ft for a 1-inch uniform rainfall event 
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     Figure A.7. Rocky Branch Watershed Hydrologic Soil Groups 
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                 Figure A.8. Gervais Gage Site Cross-Section;  

              (A) view upstream (B) view downstream 

 

        Figure A.9. Gervais Slope Profile 
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Figure A.10. Predicted Discharge Below 5ft for the At-Pickens Gage Site (Fadi Shatnawi, 

written communication) 

 

 

Figure A.11. At-Pickens Discharge Data (Logan et al. 1985; Sanjeev Joshi, written       

communication) 
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Figure A.12. USGS Annual Peak Discharges for At-Pickens Gage (uncalibrated).   

http://nwis.waterdata.usgs.gov/usa/nwis/peak/?site_no=02169505 
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                             Figure A.13. At

(A) View upstream from Pickens Street Bridge.  

(B) View downstream towards bridge box culverts 

with stilling well of gage on the right bank

       Figure A.14. Stage-discharge calibration curves for At
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. At-Pickens Gage Site Cross Section.  

(A) View upstream from Pickens Street Bridge.   

) View downstream towards bridge box culverts  

with stilling well of gage on the right bank 

discharge calibration curves for At-Pickens gage. 
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             Figure A.15. Gervais hydrograph runoff analysis for the 

             2-year 30-minute rainfall event after 180,000 ft

                Figure A.16. Potential Gervais Detention Pond
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15. Gervais hydrograph runoff analysis for the  

minute rainfall event after 180,000 ft
3
 LID abstraction 

16. Potential Gervais Detention Pond 
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             Figure A.17. Gervais hydrograph runoff analysis for the 2-year 30-minute  

             rainfall event after 126,757 ft
3
 abstraction and 100% watershed area is treated  
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