
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

8-9-2014

Ghosts of the Horseshoe: A Mobilization of a Critical Interactive Ghosts of the Horseshoe: A Mobilization of a Critical Interactive

Richard Lee Walker
University of South Carolina - Aiken

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Walker, R. L.(2014). Ghosts of the Horseshoe: A Mobilization of a Critical Interactive. (Doctoral
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/2897

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F2897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2897?utm_source=scholarcommons.sc.edu%2Fetd%2F2897&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Ghosts of the Horseshoe:
A Mobilization of a Critical Interactive

by

Richard Lee Walker

Bachelor of Science
University of South Carolina Aiken 2007

Master of Science
Medical College of Georgia 2009

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2014

Accepted by:

Duncan A. Buell, Co-Major Professor

Heidi Rae Cooley, Co-Major Professor

Marco G. Valtorta, Committee Member

Jenay Beer, Committee Member

Laura Kissel, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies

c© Copyright by Richard Lee Walker, 2014
All Rights Reserved.

ii

Dedication

I dedicate this work to my wife Shuiqing Qiu, my family and the family dogs

Wiley, Lucy, Honey and Xiao Hei. I also thank everyone who made this project

possible, including Dr. Heidi Rae Cooley and Dr. Duncan Buell.

Thanks for all the Fish.

iii

Acknowledgments

I first thank my advisors Dr. Duncan Buell and Dr. Heidi Rae Cooley for helping

guide this project to its completion. Without their help, it would not have become

as succesful.

I also to thank my committee, Dr. Jenay Beer, Laura Kissel and Dr. Marco

Valtorta. I appriciate all their help and patience with me as I worked to complete

the dissertation.

I would also like thank my colleagues Jeremy Greenberger, John Hodgson, Jess Tomp-

kins, J. J. Shepherd, and Renaldo Doe who have helped with conceiving ideas and as

individuals I could talk to when defining Ghosts of the Horseshoe.

I also thank the graduate students who built the “Slavery at South Carolina

College” website. Without them, there would have been no project. I give thanks to

the design teams that helped build the application during the Fall of 2012 and the

Spring of 2014.

I also thank my dog. Who eats all my money and is great for relieving stress.

Finally, I thank my parents, my family and my wife.

iv

Abstract

Critical Interactives (CIs) are designed to harness the voluntary, reality-bending ex-

citement of discovery as afforded by play, but to do so in the context of rules that

mobilize procedural rhetoric to instantiate critical awareness. Critical interactives

are not just about improving lives through code or education; rather, they establish

a methodology for generating more aesthetic and reflective interactive experiences.

To grasp more fully the logic underpinning CIs, we need to understand the powerful

nature of interactivity and outline how such interactivity involves a notion of ethics,

i.e., a way of living, in and through media practice.

Ghosts of the Horseshoe is a critical interactive, in this case a mobile interactive

application for iPad, that presents the largely unknown role of South Carolina College,

the predecessor of the University of South Carolina, in slavery during the years prior

to the Civil War. The USC Horseshoe was built by enslaved persons, and the bricks of

the Wall and buildings made by enslaved persons, and yet this history is for the most

part not known by the USC community and not acknowledged by the institution.

We discuss the role of critical interactives as instruments of procedural rhetoric—

software artifacts that interact with their participants to carry a message, in this case

a message about a sensitive topic in the history of the institution. Ghosts as a CI uses

ludic methods as a rhetorical technique. We place CIs, and Ghosts in particular, in

the general context of games, computer video games, and serious games, commenting

on the use of ludic methods in presenting topics like slavery about which one cannot

legitimately produce a “game”. We discuss further the iterative development and

testing process that produced the final version that is available today.

v

Table of Contents
Dedication . iii

Acknowledgments . iv

Abstract . v

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Introduction . 1

1.2 Play and Games . 1

1.3 Games and Video Games . 8

1.4 Serious Games . 14

1.5 Critical Interactives . 19

1.6 A Foreshadowing of Things to Come 21

Chapter 2 Digital Humanities and the Work of Framing Content 22

2.1 Framing of Past Mediums - Text . 23

2.2 Framing of Past Mediums - Images, Still and Moving 24

2.3 Framing of Past Mediums - Artificial Intelligence 27

2.4 Framing of Past Mediums - Video Games 29

2.5 Framing of Past Mediums - Procedural Rhetoric 30

vi

2.6 Framing of Critical Interactives . 33

2.7 Projects Similar to Critical Interactives 35

2.8 The Historic Horseshoe of the University of South Carolina 39

2.9 The Evolution of Ghosts of the Horseshoe 40

2.10 Conclusion . 45

Chapter 3 Human Computer Interaction (HCI) 46

3.1 Usability and Design . 48

3.2 Effectiveness of Design . 49

3.3 User Testing / Developer Testing . 50

3.4 Critical Interactives and Empathic Awareness 51

Chapter 4 Computer Technologies 53

4.1 The Building Blocks of Mobile Technologies 54

4.2 Networking, Database Design and Security 56

4.3 Experience = Data Plus Code Plus Users 57

Chapter 5 Ghosts of the Horseshoe iOS Application 62

5.1 The Application Flow . 64

5.2 Objective-C Classes . 66

5.3 Ghosts of the Horseshoe Class Structure 70

5.4 Ghosts of the Horseshoe Data Structure 75

5.5 Ghosts of the Horseshoe Data Types 80

Chapter 6 Usability Assessments 82

vii

Chapter 7 Discussion . 87

7.1 Conclusions on Digital Humanities 87

7.2 Conclusions on Human Computer Interactions 90

7.3 Conclusions on Computer Technologies 92

7.4 Conclusions on the Mobilization of a CI 94

7.5 Future Work . 95

7.6 Conclusions . 97

Bibliography . 98

viii

List of Figures

Figure 1.1 The Spectrum of Games . 20

Figure 1.2 Genres of Games . 20

Figure 5.1 Stacks of Views . 66

Figure 5.2 Views and Subviews . 68

Figure 5.3 Flow Chart of the Application 75

Figure 5.4 Content Relations . 79

Figure 5.5 Content Field Screen Location 81

ix

Chapter 1

Introduction

1.1 Introduction

Critical Interactives (CIs) are designed to harness the voluntary, reality-bending ex-

citement of discovery as afforded by play, but to do so in the context of rules that

mobilize procedural rhetoric to instantiate critical awareness. Critical interactives

are not just about improving lives through code or education; rather, they establish

a methodology for generating more aesthetic and reflective interactive experiences.

To grasp more fully the logic underpinning CIs, we need to understand the powerful

nature of interactivity and outline how such interactivity involves a notion of ethics,

i.e., a way of living, in and through media practice.

1.2 Play and Games

At the most basic level, the CI requires that we contend with the notion of play.

Leyden J. Huizinga [Huizinga 1971] defines play in his work Homo Ludens as an

activity with no clear material or profitable gain, meaning that no real world materials

like money, land, or toys are “won” by participating in the experience. He also

describes play as existing within its own set of boundaries (i.e., the time and location

that define the activity of a play session). There is also a fixed set of rules that govern

the play session, with the sole purpose of weighting the play session by determining

degree of fairness and balance (e.g., handicap). Although in most sessions of play

some sense of a “set of rules” is established before the session begins, rules are not

1

required to be in place at the beginning. Huizinga argues that play helps promote

the development of productive social interactions and is designed to help individuals

envelop themselves in a special and secret place that allows them to establish their

difference from the common world by disguise or other means. He notes that those

in play are able to learn social norms by pretending to be different from whom they

really are. Huizinga further defines play as an act performed by the living with no

exact correlation to species per se. In other words, it serves a more vital function

than simply providing for the basic needs of any particular kind of being. Rather,

the work of play is more socio-cultural (broadly construed) than biologically-specific.

One just has to watch animals at play to recognize a kinship between, for example,

a dog chewing a stuffed plush armadillo or an elephant playing in a waterfall, and

the play of children. As Huizinga underscores, play is not species specific [Huizinga

1971].

However, as Roger Caillois [Caillois 1961] asserts, Huizinga’s definition of play

is frequently too vague. Caillois explains that while play is voluntary, distinct from

ordinary life, and riddled with rules to maintain the enjoyment of the act, there is

more to it. Caillois qualifies play. He outlines a specific taxonomy of attributes that

characterize play: play is free, separate, uncertain, unproductive, governed by rules,

and make-believe. That play is free refers to the fact that it “is not obligatory” and

“would at once lose its attractive and joyous quality as diversion” [Caillois 1961, p.

9] were it to be so. Play is about being free to play as one wishes—or as one is

drawn to—without having to put emphasis on arbitrary conditions that restrict it.

If it is not attractive or joyous, interesting or engaging, a person will become bored

and specifically avoid that type of play. One cannot force a person to play against

his free will and get the same level of commitment as a person who freely engages in

some exercise of play. Like Huizinga, Caillois contends that play is separate from the

outside world and requires a special spatial and temporal delimitation. Those in play

2

construct their own space in which to play, whether preconceived or in medias res;

and in some instances, players set some form of arbitrary time constraints. Often,

outside stimuli conclude the play session. For example, the toy being played with is

destroyed beyond use or a parent forces a child to stop and do his homework. But

sometimes the activity simply reaches an ending, such as when the light outside fades

to night or the other party in play decides to go home for dinner. In addition to

being free and separate spatially and temporally, play is malleable, insofar as most

rules are considerably flexible and subject to evolution. The rules of play change and

flow based on the whim of the participants and according to the process of play itself.

Any object might very well become incorporated into an act of play with a set of

rules attached (e.g., a game based on not touching peppers on a tree). The outcome

of play is unknown, as is the amount of time spent in play. So, too, is the location, be

it in someone’s backyard, the middle of the street, or even in line at a local market.

Play is also arguably unproductive. By “unproductive” Caillois means that there

is no clear, pre-established goal of creating goods, wealth, or new elements of any kind

beyond the scope of the play-time and play-space. However, we must also acknowledge

that play is hardly unproductive, especially to the extent that it provides a context

for learning. Animals commonly use play as a means of acquiring new skills. Cats

pounce on smaller animals; dogs bury stuffed armadillos in the garden; and humans

interact with each other. An individual always steps away from a play session a

different person from when he first entered into play; meaning that while play is

unproductive in a fiscal (or capitalistic) sense, it still produces meaningful and/or

beneficial outcomes. While the rules may be unspecified at the beginning of play,

all forms of play are governed by some set of rules, for example, establishing some

form of conditions of play that keep players safe while playing or setting limits to

what is considered a success within the context of play. In other words, rules always

arise during play, but they also morph and their terms shift. If a child is playing on

3

his own and decides that the best form of play is getting dizzy, he has established a

rule. The rule would be to spin as much as possible until he topples to the ground.

If someone joins the child, then the rules would have changed. The session would

establish a competition at this point: who can spin the longest. Establishing a set of

rules helps define the play session for all those engaged.

Finally, play is inherently—and by extension, necessarily—make-believe. All pre-

ceding characteristics of play converge in a make-believe reality. The realm of make-

believe fosters the conditions whereby the individual can experiment safely and “play”

without the pressures of the real world pushing back. The make-believe of play af-

fords conditions for experimentation; it allows for an individual to become something

they are not for an instant or go to places that are far out of their normal reach. A

person has to get lost in play for it truly to be “play”, and that always takes some

form of make-believe [Caillois 1961]. This is ever present when one watches a group of

children play “the ground is lava” or when an adult role-plays in a game of Dungeons

and Dragons.

Given that the definition of play established by Caillois is similar to the concept

most commonly associated with games broadly construed, one has to wonder what,

in turn, is a game. According to Katie Salen and Eric Zimmerman, a game is a

defined system with any number of players, artificial boundaries that maintain the

specified playspace, conflict to keep players interested, rules to define the system, and

some quantifiable outcome (i.e., a “win” state of some sort). One might find this

definition very similar to Caillois’ definition of play. The system is a functionally

related group of elements that provide a structure for the game. It contains an

organized set of interrelated ideas and principles, objects defined according to the

established playspace, and a hierarchy of how people are to act and react with/in the

system. A game also contains players, specifically the individuals who interact with

the system and participate in the experience of play. The game has to be artificial,

4

setting up a boundary between the real world and the playspace so as to establish an

environment suitable for the game to take place. Games also are rife with conflict,

power struggles of some sort or other—be it to get the players to compete with one-

another or work together against a common enemy. The rules of a game commonly

work in tandem with the system to provide structure to facilitate play. Finally,

games have a quantifiable outcome, a set goal that needs to be completed and that

subsequently concludes the game [Salen and Zimmerman 2004].

Given how the expanded definition of play provided by Caillois shares many sim-

ilarities with the definition of a game provided by Salen and Zimmerman, one might

assume that play is synonymous with game. While a game might appropriately

describe play (because many think of play in such a way), “play” and “game” are

not inherently analogous. Play is determined by all six criteria defined by Caillois,

but only when one is playing. Play itself is abstract and encompasses a large range

of activities: ranging from free form experiences, such as people watching or doing

somersaults; to ludus, which is structured by rules, like tag; to paidia, which is un-

structured and spontaneous, as in the case of a sandbox [Caillois 1961]. When one

participates in the act of playing, the possibility of options compress, that is, become

more limited, as the parameters of play are established. Brown and Vaughan identify

seven types or modes of play: Attunement, Body, Objective, Social, Imaginative,

Narrative and Transformative. Attunement is about establishing connections, such

as a baby getting used to his new family. Body is about an individual discovering

how his body works and functions, such as twisting one’s arm enough to see how

far he can reach. Object is about playing with toys. Social play is about building

connections with others; anyone trying to make new friends will engage in some form

of social play. The last three—Imaginative, Narrative and Transformative—are very

similar to make-believe as Caillois posits it: pure fantasy, storytelling to help build

language skills, and being integrative, or pretending to be something one is not. If

5

one engages in any of these types of play, he is not necessarily in a game. By contrast,

anyone participating in a game is definitely engaging in play [Brown and Vaughan

2010]. Those that are engaging in play are considered to be playful, but this does not

mean that play and being playful are the same.

Play is a category or activity in which an individual invests time and effort.

Play describes the space of activity. Play defines the tone and location, the type of

situation in which one will be engaged, and the type of activity that the play session

will feature. Being playful or “playing” is specifically individual, that is, someone

performs the act of playing. Being playful is about the person actually engaging in

play. Moreover, it refers to the quality or nature of that engagement. It is about the

person going into the play session and getting lost, i.e., immersed, in the activity.

In light of these distinctions, we can say that play is an environmental context into

which a person enters, whereas being playful describes those participating in the play

session. When one is being playful, one invokes the concept of play and adds rules

and systems to make the time more entertaining. By gamifying play, one is limiting

all possible play potentialities in order to contain, or define, the conditions of play

according to certain rules.

Many individuals harness the energies of play to complete tasks, even if they are

not playfully engaged in the activity. This is commonly done when one makes a

“game” out of a particular situation, similar to how an office worker creates a game

to motivate the completion of an obligatory task or how graduate student teaching

assistants turn grading papers into a competition. Games come into effect to facilitate

and nurture play, but again, games and play are not the same thing. While people

do say they are “making a game out of it”, this expression is not asserting that all

forms of games elicit playfulness. Rather, the idiom suggests that someone has taken

an act he was performing and applied a set of rules to it in order to turn it into a

game-like structure. Such structures, ones that invite play or play-like behaviors, are

6

stimulating, and because they are, they keep us participating.

Salen and Zimmerman postulate that game and play are different entities, even

as they share the same plane of existence. They argue that play is a subset of games,

at the same time that games are a subset of play. They contend that because not

all forms of play are games, games can be only a subset of play. At the same time,

they explain that because games contain rules, indicative of culture (and its forms of

play), play is a subset of games. This bi-directional definition is odd given that many

different facets of life also contain rules and play (culturally specific, in both cases),

but would not be considered “games” in the traditional sense. An example is filing

taxes. There are some who could take the terrible task and turn it into a “game”. The

rules would be to finish the paperwork as quickly as possible, the play would be to get

the task done as interestingly as possible, and the cultural context is what dictates the

fact that the individual had to do taxes in the first place. Even then, filing one’s taxes

is not a game. Given this, one could argue for a Venn diagram structure wherein play

and game overlap heavily, but not completely. Similar to the notion of P 6=?NP 1,

it is never clear whether or not the one (play) and the other (game) are truly fully

equivalent [Salen and Zimmerman 2004]. Given this distinction between play and

game, one can examine the foundation of what constitutes a critical interactive. One

engages in play voluntarily mostly for enjoyment; but at times, one would engage in

play to learn something new about his environment. Games are centered in a cultural

context, wherein play transpires according to rules that create a space conducive of

facilitating further play. A CI, however, does not strive to be a traditional game

that facilitates play for enjoyment. Rather, a CI endeavors to facilitate play-like

1P 6=?NP is one of the major unsolved computer science problems. It asks whether every prob-
lem whose solution can be verified in polynomial time can also be solved in polynomial time. Certain
algorithms, such as the Traveling Salesman Problem (i.e., a salesman is planning on traveling to all
Augustas, as seen in Nixons film, and needs a route to allow him to visit all locations without dou-
bling back and in the fastest time possible) takes non-polynomial time (i.e., nnumber_of_augustas−1
time to solve the problem).

7

engagement for learning. Learning, here, is not explicitly quantifiable, even though

it may be observable. This is because the rules that define interaction invite one to

consider a social, political, and/or cultural context anew.

The Ghosts of the Horseshoe CI embodies this condition. It is designed to intro-

duce participants to complex historical content that draws attention to the politics

of race at South Carolina College. Its established rules facilitate exploration of (i.e.,

critical play with) textual, audio, and visual materials in the context of the historic

Horseshoe. In doing so, Ghosts attempts to promote in its participants a more nu-

anced cultural understanding of USC’s historic Horseshoe. The rules come from the

gamic nature of the experience and the modes in which content is loaded. Increased

cultural awareness is derived from the rich history present on the Horseshoe. To be

sure, Ghosts of the Horseshoe is not a traditional game, but it bears a relation to

games and video games.

1.3 Games and Video Games

Caillois commonly uses “play” and “game” synonymously. Given this, when he is

describing the complexity of play by referring to games, he is for the most part

describing the different types of games that exist. Aside from ludus, which is rule-

governed, or paidia, which is unstructured and spontaneous, Caillois specifies four

sub-categories: agon, alea, mimicry, and ilinx. Salen and Zimmerman refer to these

categories as “ludic activities”, which form a special subset of games. Agon games are

“competitive, that is to say, like a combat in which equality of chances is artificially

created in order that the adversaries should confront each other under ideal condi-

tions, susceptible of giving precise and incontestable value to the winner’s triumph”.

In contrast to agon, alea is a ludic activity “based on a decision independent of the

player, an outcome over which he has no control, and in which winning is the result of

fate rather than triumphing over an adversary”. Mimicry involves an individual who

8

“forgets, disguises, or temporarily sheds his personality in order to feign another”. An

individual who is playing in this fashion pretends to be someone or something they

are not to build an illusion for engaging in play. The final type of ludic activity, ilinx,

is based on the notion of shock. This type of ludic activity primarily focuses on the

“pursuit of vertigo” and involves “an attempt to momentarily destroy the stability of

perception and inflict a kind of voluptuous panic upon an otherwise ludic mind”.

Games incorporate at least one of Caillois’ four types of ludic activity. A board

game such as MonopolyTM, for example, combines agon and alea. Players participate

in agon when buying up property, selling land, trading properties with other players,

and determining the best course of action for bankrupting their opponents. Monopoly

takes capitalistic strategy and skill to crush the other players. Alea determines how

players traverse the board. The throw of the dice decides how the playing piece

advances and, therefore, what property a player can buy and whether the player

suffers a monetary fine or goes to jail (without collecting two hundred dollars).

When a game such as MonopolyTMis reworked in digital form, one has a video

game. A video game uses a digital system to create an environment conducive to

play. It commonly uses electronic media to create “a mental contest, played with a

computer according to certain rules for amusement, recreation, or winning a stake”

[Zyda 2005]. The rules of play for video games differ, however, from those of other

games, especially those of board games. Video games use the electronic media to

create the rules of play and provide the system governing play. The rules of board

games are used to limit the play space and determine what are and are not valid

actions. In MonopolyTM, for example, the game exists in the real world and the rules

of play limit what is a valid move for each players turn. The nature of video games

is different—in a video game the rules (expand the play space) because they define

what the computer will permit as game play.

Here, it is worth noting that there are two tiers of rules at work: 1) the rules that

9

determine play; and 2) the rules—code—that produce the software environment. A

person plays by interacting with the system, either playing within the constructed

rules to enjoy whatever the designer was intending or by trying to break the rules

to discover the boundaries of the system. The first set of rules strictly relate to

objectives and concepts the designer chose to limit the play space. If the designer

decided that players were to take turns, as in Super Mario Bros., then the rules are

used to limit the play space.

Video games often attempt to place players in situations that are representative

of the real world, and thus the designers create rules to represent that world. Board

games tend to be more abstract and use rules to delineate the game’s “magic circle”

from the “real world” that we live in. With video games, the world the player occupies

in the play space is the “real world” for that player and the rules help create what is

possible. The rules that govern the world allow for all possible actions, giving video

games a more free form nature.

The rules of play that govern the play session to create the experience and the rules

in place to govern the environment and world are seperate, but in communication.

Video games commonly use multiple ludic activities to develop the entire complex

system of rules. These rules can be very simple, from the Flappy Bird mechanic of

pressing the screen to more complex transactions such as those seen in The Elder

Scrolls: Skyrim whose many mechanics create an elaborate playspace.

In the world of video games, gameplay mechanics (rules of play) determine the type

or “genre”. Unlike movies or text, for which plot structure, character, and “framing”

serve to define type (i.e., a suspense film, a noir film, a documentary, a religious

text, non-fiction, etc.), video games are categorized by the gameplay mechanics (i.e.,

first-person, platformer, puzzler, action-adventure, etc.). These mechanics not only

establish the play space, but also determine the messages the game conveys and how.

Typical video games—those adhering to game industry standards—do not usually

10

intend to impart messages explicitly. Rather, they aim to provide entertainment;

after all entertainment ensures profit. For example, we might think of two high

yielding games, such as Super Mario Bros. or Grand Theft Auto 3. These games do

not attempt to be more than just “fun”. But even though their primary goal is fun,

each game achieves this in entirely different ways.

Super Mario Bros. is a classic video game from the 1980s and was one of the

most popular video games released on the Nintendo Entertainment System. It is a

one player game (although two players can alternate) and pits the player against the

environment. The game asks players to dodge, jump, and avoid obstacles to reach

an end goal which then allows the player to proceed to the next stage or level. The

rules of play established by the video game are very simple: run right, jump to avoid

obstacles, jump over enemies, acquire extra lives and power-ups to help complete the

level, and capture the flag or an axe at the end of the stage in order to advance to

the next stage. All these rules are established and create the unique play space (see

the discussion of Caillois in “Play and Games”).

Grand Theft Auto 3 creates an equally valid, yet entirely different, play space and

experience. Released in 2001 for Sony’s Playstation 2 gaming device, Grand Theft

Auto 3 changed the way video games were made. Grand Theft Auto 3 introduced the

notion of “sandbox” games, games whose systems permit more open worlds that offer

a richer set of play possibilities. Sandbox games emphasize interacting with the rules

that create the play space more than reaching an arbitrary end goal. A player can

create his own tasks and objectives. The player may choose to do nothing but drive

in circles all day, or he might follow proper track law within the game world; he might

run over people with his car; or he might opt to play the game for its story. This is

because the software allows for a variety of possible play transactions—a player can

steal cars, drive the cars in any direction he wishes, drive boats, fly planes, shoot at

cops, race other drivers, collect hidden packages, etc. The play space is limited only

11

by the software program and the imagination of the player. The experience created

by Grand Theft Auto 3 is very different from Super Mario Bros., but both invite play

by creating a space for the player to have fun. In Super Mario Bros., world building

rules were limited to creating the linear experience and the goal of saving the princess

was the focus. In Grand Theft Auto 3, the rules that create the play space are many

and varied, allowing for any possible action. Even though both games, Super Mario

Bros. and Grand Theft Auto 3, have world building rules, this does not mean Super

Mario Bros. is a sandbox game. The rules created for Super Mario Bros. only exist

to push the main objective of the game while rules in Grand Theft Auto 3 exist to

expand possible actions and outcomes.

A pure sandbox video game, one with no win state and which only has rules that

govern the world and the possible actions in which a player can make is Minecraft.

Minecraft has no objective, no rules designed to push the player to an end result. The

game only has rules designed to govern the world and rules that establish what the

player can and cannot achieve. The main rules involve hitting environment blocks

with ones fists or items to produce a resource. Many gathered resources can then be

combined into a new object that can then be used to further dig up newer materials.

The rules of the system allow the player to dig up rocks, sand, and emeralds and

then build items such as axes, shovels, and pick-axes to then dig up more materials

to then build more items. Minecraft best shows how rules are applied to a system

and how rules can establish an open world environment to let the players just have

fun.

While many video games emphasize fun or focus on just the play experience,

others attempt to be more than just “fun”. A game Ico provides a good example. A

player is tasked to protect a non-player character (NPC) from harm. Its game play is

designed to invite a player to empathize with the NPC. The rules in place make the

hero weak. It is very different from Super Mario Bros., where the player is powerful.

12

The character is very slow in running, cannot defeat all the enemies that appear, and

can only guide the NPC’s movements; the player character cannot give commands or

bark orders. Ico generates a play space shrouded in anticipation and suspense that is

derived from fun. All the rules created are designed specifically to create a challenge

and to be fun. If the game was not fun, the games overarching themes and message

would never be heard. Video games like Silent Hill 2 and Papers, Please are meant to

be more engaging than fun, but the sense of fun is still ever present in the design, feel

and goal of the project. Silent Hill 2 uses very rough controls and a thick atmosphere

to create a sense of tension. This directly taps into the ilinx concept of games. The

idea is to be scary and unnerving and thus to create an engaging experience. Papers,

Please does something similar with the use of “moral choice” systems that require

the player to make uncomfortable decisions. The player in Papers, Please assumes

the role of a security guard at the border of a country and determines who gains

entry and who does not. His choices affect the lives of the people he encounters;

each decision has potentially devastating consequences. Both experiences use play

rules to create unique experiences that are more engaging than fun. These games

differ starkly from Super Mario Bros. and Grand Theft Auto 3. These three games

take their subject matter more seriously, assigning rules to actions to emphasize more

than just being powerful and free. The rules are used to restrict the player, to get

them to feel something more than just fun. Super Mario Bros. and Grand Theft

Auto 3 create a power-like fantasy while the other games focus more on narrative

and generating a unique experience. These types of games tend to focus more on

engagement over just “fun”. By making something to be engaging, more meaningful

experiences can be constructed without having to make sure the rules are “fun”. It

is difficult to make a game about sending a person to their death at a security gate

“fun” given that the action itself is not fun and the impact it has on the game world.

This is more engaging, giving the player something to experience and think about.

13

This is important: engagement is more important than just “fun” because this is one

of the major concepts behind creating meaningful experiences and for constructing

serious games.

1.4 Serious Games

Studies have shown that video games can improve an individual’s performance in exe-

cuting complicated tasks such as surgery [Rosser et al. 2007]. Such games are usually

referred to as “serious games”. They work from the assumption that an individual’s

experiences with an interactive medium can directly affect his life. Common video

games such as Grand Theft Auto 3 and Super Mario Bros. have no such goal.

Clark Abt coined the term “serious games” in his book Serious Games [Abt 2002],

in which he outlines what he considers to be a serious game. Abt asserts that serious

games require “an explicit and carefully thought-out educational purpose and are

not intended to be played primarily for amusement”. While his book discusses non-

digital media, many of his core concepts can still be applied to the video/electronic

context [Abt 2002]. In 2005, Mike Zyda offered a revised definition for serious games:

“a mental contest, played with a computer in accordance with specific rules that

uses entertainment to further government or corporate training, education, health,

public policy, and strategic communication objectives”. Zyda’s definition focuses on

training and/or instruction [Zyda 2005]. Currently, serious games use ludic methods

to enforce a political, social, marketing, economic, environmental or humanitarian

objective [Arvers 2009].

The field of serious games can be divided into several loose categories. The most

relevant for a comparison with critical interactions are advergames, edutainment,

newsgames, simulations and art games. Common examples of such serious games

include:

• Sneak King (http://en.wikipedia.org/wiki/Sneak_King)

14

• Food Force (no longer avaliable)

• Darfur is Dying (http://www.darfurisdying.com)

• McDonald’s the Video Game (http://www.mcvideogame.com)

• JFK Reloaded (http://en.wikipedia.org/wiki/JFK:_Reloaded)

• Loneliness

(http://www.necessarygames.com/my-games/loneliness/flash)

• Freedom Bridge

(http://www.necessarygames.com/my-games/freedom-bridge/flash)

Advergames are probably the loosest branch of serious games. Advergames rule sets

emphasize fun as do regular video games. But because the overall message of the

advergame experience is merchandising, such games are considered serious games. An

advergame’s only goal is to market products and entice people to purchase a product.

Frequently, advergames feature in-game advertising, where real world advertisements

appear during the video game experience.2 The purpose, of course, is to seed in

the player a desire for and subsequent purchase of the advertised commodity. An

example of such a serious game is Sneak King, created by Blitz Games in 2006 for the

Xbox and Xbox 360 gaming system. Sneak King promotes hamburger consumption.

It uses gamic actions such as stealth (sneaking around the stage unnoticed) and

platforming (jumping from location to location) to have the player character give

hamburgers to non-playable characters (NPCs). Success involves sneaking up on an

NPC undetected and giving him a hamburger. Failure is getting caught in the act.

2While advergames may include in-game advertisements, in-game advertising is a separate prac-
tice. Advergames are explicitly marketing tools, they have no function outside mobilizing fun to sell
a product. In contrast, in-game advertising is simply the practice of placing ads in a video game.
Mario Kart 8, for example, allows a player to select a Mercedes Benz as a kart. But the fact that a
Mercedes is a kart option does not make Mario Kart 8 an advergame because the point of the game
as a whole is not the sale of a car. Of course, this is not suggest to that Mercedes might not benefit
from this visibility.

15

While receiving poor reviews from critics, the game’s entire goal was advertising

hamburgers through fun.3 Edutainment games are games whose main purpose is to

educate. Of course, many games might educate people through tangential learning.

One might very well learn about the Greek gods by playing God of War, even though

the game is not necessarily intended for such purpose. In other words, not all games

that teach are considered edutainment (educational) games. Educational games are

designed specifically to provide some form of educational value. They are designed

primarily to teach, commonly sacrificing rules of play to get the educational message

across. An example of an educational game is Food Force [United Nations World Food

Programme 2005]. Created by the United Nations World Food Programme in 2005,

the game attempts to educate players about famines and the processes required to

help stabilize famine stricken countries. The player is tasked with entering a fictional

country to help feed citizens, balancing diets for everyone to be healthy, locating food

to send to the country, and developing the means for stabilizing the country. The

mechanics, subject matter, and experience are focused more on educating the player

and less on fun. This proves problematic at times. After all, if fun is secondary

to instructional value, players might simply perform requisite actions in order to

complete the game. In this context, play becomes pro forma and learning may or

may not be accomplished.

Games with a journalistic intent are considered newsgames. Newsgames can be

used to educate, similar to edutainment games, and can be used to push political

or social opinion or perform in other journalistic ways. Ian Bogost offers a basic

definition of newsgames: “a broad body of work produced at the intersection of video

games and journalism”. The generality of this definition makes it a very inclusive

category, allowing for very different games, such as Food Force and JFK Reloaded, to

3And the strategy proved successful. 3.2 million games were sold, which resulted in 80% brand
recall that translated into a 40% increase in sales for Burger King.

16

be considered newsgames. One of the better examples that fits the category is Darfur

is Dying [Rulz 2006]. Darfur is Dying is a browser based Flash game depicting the

impact war has on displaced families. The game tasks the player with searching for

water while avoiding local militias and using the water resources to keep their small

village alive for seven days. The mechanics and narrative of the experience are based

on real world events, with everything in the game designed to help establish the

game’s political position.

Unlike the previous types of serious games, simulation games fall into a gray area,

occupying a place between video games (see “Games and Video Games”) and serious

games. Games like SimCity boast rules that model real world systems, specifically

that of running a city. While SimCity mimics various city management operations,

it is not a “serious simulation game”. Flight Simulator, on the other hand, does

simulate very closely the real-world procedures of flying an actual aircraft. Still

other simulation “games” are nothing more than pure simulations and use very few

gamic methods. For example, a “player” might be able to adjust a limited number

of parameters: a simulation of a comet striking a planet might allow one to tweak

the size of a comet and its velocity, thereby affecting trajectory and, likely, degree of

impact.

Other simulations work to emphasize political positions or challenge widely held

assumptions. McDonald’s the Video Game [Molleindustria 2006] and JFK Reloaded

are two examples. McDonald’s the Video Game was created specifically to show cor-

ruption within the fast food industry. The player is tasked with running McDonald’s

and must do anything within his power to keep the enterprise operating. To “win”

the game requires breaking laws, destroying historical locations, massacring cows,

using unhealthy chemicals, and bribing politicians. The game’s simulation hyper-

bolizes tactics that corporations are often accused of deploying to make its point.

JFK Reloaded attempts to simulate the assassination of President Kennedy to raise

17

questions about the position that Lee Harvey Oswald was a lone gunman. It places

the player in the position of Oswald, tasks him with mimicking the assassination, and

then rates how closely the player’s shot matches the deadly shot. In both of these

instances, simulation opens onto a site of contestation where fun is relative. This

does not mean that “being fun” and being a “serious game” are mutually exclusive;

it simply demonstrates how play might serve other purposes.

The last category in the serious games taxonomy is that of “art games”. Art

games, as defined by Scott Steinberg, are games “designed to emphasize art or whose

structure is intended to produce some kind of reaction in its audience” [Steinberg

2010]. The art game category is expansive. Art games range from games that focus on

style (i.e. Grim Fandango or Okami), to ones that privilege narrative (i.e. BioShock

or Portal), to those that feature gameplay (i.e. Braid or Flower) or a message (i.e.

Loneliness or Freedom Bridge). Oftentimes, this category is used to describe examples

of games that a community considers exemplary of the serious games medium. This

definition is too broad and inclusive, since it even allows for categorizing a game such

as a Super Mario Bros. as an art game.4 Perhaps a more precise definition of an art

game might be: a game that focuses on its artistic intent and message more than on

fun. It is a game that foregrounds artistic style and gamemaker expression; the game

itself is a piece of art rather than the rules that govern the play space.

Art games as seen through the lens of serious games offer an experience far different

from that of “normal” games. Two good examples include Magnuson’s Loneliness and

Freedom Bridge. Loneliness is a simple game in which the player navigates a single

block, moving it up, down, left and right towards groups of other blocks. As the

player block moves towards these groups, the other blocks disperse and fade away.

The game never asks any questions about what to do and never prompts the player

4In this context, Super Mario Bros. illustrates how artistic trends have evolved. Worth noting,
as well, is the fact that in recent years art games have begun adopting a retro pixel art style with
simplistic graphics to match the graphical style and power of early video games.

18

with the current task; it just asks to be played. Loneliness is about the loneliness

faced by Korean children; it aims to engage the player with these feelings and to

create the sense of the children’s loneliness and isolation [Magnuson 2011b]. Freedom

Bridge’s game mechanic resembles that of Loneliness, only that a player is limited

to moving left and right. The player moves his cube through three sets of barbed

wire before finding a bridge. Each set of wire slows the player character down a

bit and adds a trail of red. At the bridge, the player cube is shot and explodes

from the screen. Play, here, evokes the experience of North Koreans attempting to

escape to South Korea [Magnuson 2011a]. Again, no context is given until after the

experience. Neither of these games can aptly be considered “fun”, but the underlying

mechanic in each case functions to open onto experiences that might elicit empathy.

Mechanics are metaphorical in both instances, serving to emphasize the starkness of

each reality. The minimal artistic style encourages the player to consider more fully

the thematic—of loneliness and futility, respectively.

This taxonomy and the previous discussion regarding genres demonstrate the

messiness of categorization. Not many games can be definitively assigned to a type

or genre, even as this is common practice in the game industry. Figure 1.4 presents

the games discussed above, arranging them on a continuum: from most gamic—or

fun—to most serious. In so doing, it calls into question the divide between serious

games and video games. There is a division that can be made, but it is not very

clear. The next figure, Figure 1.4, shows how the classification of the electronic game

can be broken down. This diagram uses examples seen earlier to show the relative

categories that exist.

1.5 Critical Interactives

Games, as typically understood, establish a set of rules that govern play. When these

rules are applied to the electronic medium and a system is set in place to create a

19

Figure 1.1 The Spectrum of Games

Figure 1.2 Genres of Games

digital game space, then one has a video game. Games like Grand Theft Auto and

Shadow of the Colossus use this framework to entertain and give the player something

fun to do. In the case of serious games, the game-space design pursues some other

goal: sell products, create simulations, or educate individuals. Here, the notion of

persuasive games, a sub-category of serious games, offers a useful, because narrower,

perspective of what a game might accomplish. As Bogost explains in Persuasive

Games: The Expressive Power of Videogames [Bogost 2007], the mechanics of a

game can be designed to make arguments; they can function persuasively. That is,

software has rhetorical potential. Critical interactives mobilize this potential to elicit

empathic awareness, i.e., an intellectual sensitivity.

Heidi Rae Cooley and Duncan Buell coined the term “critical interactive” in 2011

in an article titled “Critical Interactives: Improving Public Understanding of Insti-

tutional Policy” [Buell and Cooley 2012]. Mary Flanagan’s notion of “critical play”

[Flanagan 2009] and Bogost’s “procedural rhetoric” [Bogost 2007] inform their con-

20

ceptualization of CIs. As Cooley and Buell explain, CIs are interactive systems that

use ludic methods to engage individuals, impart knowledge, build awareness, ques-

tion past observations, and challenge preconceived notions. Those who interact with

a CI are invited to become active participants in an ongoing conversation about

the particular subject matter and content presented through the interactive. Us-

ing the medium’s strengths—computer software and code—mobile devices such as

phones and tablets (although computers might also serve as CI interfaces), one might

present socially, politically, and/or philosophically charged ideas and elicit questions

in a ludic fashion through interactivity [Buell and Cooley 2012].

1.6 A Foreshadowing of Things to Come

The critical interactive brings together three fields of thinking: digital humanities, hu-

man computer interaction, and computing. The next chapter, Chapter Two, will focus

heavily on the methodologies behind digital humanities and how it applies to critical

interactives. Other examples from the digital humanities will also be discussed to help

further define CIs. Chapter Three will be dedicated to human computer interaction

and its methodologies. It will go into studies showing how the way an application is

built can greatly affect its persuasiveness. The fourth chapter will discuss how the

computer factors into a CI. The computer, and more specifically programming, will

be addressed. The fifth chapter will take up Ghosts of the Horseshoe as an example

of a CI. It will focus on the code. The last chapters will discuss how usability and

effectiveness of the Ghosts application were assessed, present final conclusions, and

offer suggestions for further development of Ghosts of the Horseshoe and the design

of critical interactives more generally.

21

Chapter 2

Digital Humanities and the Work of Framing

Content

At the time of this writing, the digital humanities (DH) are a new and expansive field

that continues to evolve. Others have defined DH to be “The scholarly study and use

of computers and computer culture to illuminate the human record” [Priego 2012],

“a critical investigation and practice of humanities research in the digital medium”

[Flanders 2012], and “the use of digital tools and methods in humanities study and

dissemination” [Rockwell 2012]. UCLA offers a more robust definition: “Digital Hu-

manities interprets the cultural and social impact of new media and information

technologies—the fundamental components of the new information age—as well as

creates and applies these technologies to answer cultural, social, historical, and philo-

logical questions, both those traditionally conceived and those only enabled by new

technologies” [UCLA Center for Digital Humanities 2014]. The term is “an umbrella

term that covers a wide variety of digital work in the humanities: development of

multimedia pedagogies and scholarship, designing and building tools, human com-

puter interaction, designing and building archives and so on”. [Gossett 2012]. DH

is interdisciplinary; its tenets shape what critical interactives are and how they are

designed. When one examines the methodologies behind a CI with a DH focus,

one better understands one of the major goals of a CI: to frame and present well-

researched content in a way that can facilitate critical thinking—through interaction

with a rules-based system—about a subject of concern, such as how racial politics

22

give shape to an historical site.

2.1 Framing of Past Mediums - Text

While not the first form of communication, text is one of the most basic. In writing,

signs and symbols convey language. Not all forms of writing are the same; most

western cultures base their signs and symbols on ancient Greek; others use images

or ideographs for language representation. The way text frames its content is unique

because the reader has to fill in most of the gaps. When a picture is described in text,

most of the details are simplified or exaggerated to get the reader to comprehend the

image.

Text is both personal and impersonal for a reader. On the one hand, the reader

has a stronger connection to the events about which he is reading. He has to imag-

ine everything in his mind; this allows him to fill in the blanks. A person has to

reference the object in his own way, relate it to something that is similar and then

represent it as his own image [Peirce 1991]. This makes the final construction more

personal. The impersonal aspect comes from the fact that text abstracts. This is

because text has to offer a representation that many readers can access. So while

an individual has constructed his own representation of the content, he does so from

a position detached from the actuality of the situation. Take for example the Abu

Ghraib scandal. In reading the story about the hooded man standing on the box

with his hands outstretched in the form of a cross, a different image is created in each

individual’s mind. While there will be consistency in the basic details (e.g., hood,

arms outstretched), how these details take shape mentally for person will differ. Any-

one reading about the hooded man would not directly be connected with him in that

situation, although they might very well feel a connection to the story. Word choice is

also important to consider. An article about the Abu Ghraib scandal can be written

in a multiple ways, each account giving an accurate representation of the events that

23

transpired, but ultimately with a different affect on people’s opinions of the event.

Language is important; word choice is even more so. Words connotative of urgency

or threat might evoke panic or rage. A more moderate use of language might frame

the situation more casually. In other words, one could go away from an account with

the impression that the United States military were unjustified in their approach to

interrogation or that they used necessary techniques.

Textual accounts are biased, even those that intend to be neutral. But they can

also misrepresent or diminish the gravity of a situation. Text about an uncomfortable

subject can easily dismiss what it describes. While CIs involve their participants in

an interaction with digital systems, the content they present includes text. It is

important to make sure text is appropriate and accurate. Special care in word choice

is likewise important so as to represent the content faithfully. Word choice is made

even more important by the small number of words permitted (35 to 50 words) in a

public history setting.

Many of the weaknesses of text can be mitigated by the use of images—especially

photographic images. While text can misrepresent the reality it depicts, such mis-

representation is much harder to achieve with images (assuming, of course, that the

images themselves are faithful and accurate). Presenting an image itself provides

more information in a smaller space, and in the case of photography, an indexical

representation of an event. While images seem to offer a more reliable depiction of

information, there is still the matter of how they frame that information.

2.2 Framing of Past Mediums - Images, Still and Moving

In the context of photographic representation, framing has three functions: it selects

and puts into view the content that is featured in the image; it serves as a bound-

ary for that selection; and it excludes the context that exists beyond that boundary

(e.g., the outside world). Because of this, as Judith Butler argues, images have the

24

potential to normalize how people think about things [Butler 2009]. Through the

lens of the Abu Ghraib1 scandal1, it is possible to see how images can be manip-

ulated to shape an understanding of the “war on terror”. During the George W.

Bush presidency (2001-2009), when Abu Ghraib occurred, the Bush administration

worked diligently to keep “unpleasant” images of the wars in Afghanistan and Iraq

from the public eye. (Of course, governments have always attempted to regulate the

circulation of images.) This included removing images from print that were deemed

damaging to the cause, controlling what images could be taken, and the “frame” in

which the photos were shot. This allowed the government to control what the public

consumed. The controlling of images “suggests that the frame can conduct certain

kinds of interpretations” [Butler 2009]. By controlling the images and the framing of

images, the Bush administration could control its identity and prevent the terrorists

from defining us as monsters. Like Butler, Richard Grusin discusses how manage-

ment of images impacts the management of populations [Grusin 2010]. Standard

media practices allowed for creating a fog about the war. All images were framed,

produced, faked or forged. This control of the visual evidence allowed the media to

sway public opinion. If the government wanted to strike terrorists with drones, then

the media could frame a drone strike as necessary to complete an objective. This

power influenced the morality of those participating in the media. The Abu Ghraib

photos were different because they were unfiltered, unprocessed images that showed

people the “truth” about parts of the war. It produced shock at the level of affect

in those who saw them. This unfiltered shock, which for Grusin is not conscious in

nature, was difficult for the administration to control and ended up revealing the

biopolitics of the situation surrounding the war. It illuminated the darker sides of

1 The frame of the Abu Ghraib was from the perspective of the soldiers in the prison. Using
personal cameras, they took photos of the Iraqi prisoners in many uncomfortable and uncompro-
mising positions. These photos were not from the carefully constructed government framing [Butler
2009].

25

habits many people share (i.e., taking photos first—automatically; reflecting upon

the situation after).

Butler and Grusin are useful for thinking about how CIs frame their information.

For example, Ghosts of the Horseshoe works with the history of the University of

South Carolina’s historic Horseshoe. This landscape—the Horseshoe—was built by

enslaved labor. The framing of all the images present in Ghosts can be used to call

into question not only the history of the present, but also how the history has been

presented in the past. Commonly, controversial information is archived and a more

pristine, because sanitized, image is offered for public consumption. Butler would

argue that this framing defaces the overall history, and that only by revealing the

frame for what it is can one bring new insight. Grusin would urge us to understand

that our own everyday practices with technologies can participate in the same framing

that Butler contends should be revealed. Both argue for careful consideration about

how information is represented and how content is framed.2

Ghosts of the Horseshoe attempts to present the information about the slavery

at the South Carolina College differently. When approaching a sensitive subject, it

is important to consider other media produced on the subject and how that media

frames its content so as to communicate a message. It is easy to replicate other

work. But Ghosts strives to use its images to raise awareness. One example of giving

awareness through images is the fingerprint image used as buttons throughout the

experience. Slaves built the structures that populate the Horseshoe campus, main-

tained the grounds, and worked for faculty, but no artifacts of theirs remain. The

built structures remain, but those who built them are gone. All has disappeared ex-

cept for fingerprints found in the bricks molded by the hands of the enslaved persons.

Because these impressions are the only (to our knowledge) indexical traces of that

2While this discussion only addresses still images, a similar argument can be applied to moving
images, for example, film, video, and animation. In this case, one would have to consider how editing
the way the narrative moves through time shapes meaning.

26

labor, the fingerprint was used to promote awareness and get participants thinking

about their relationship to a history of slavery specific to the physical grounds of the

Horseshoe.

2.3 Framing of Past Mediums - Artificial Intelligence

Critical interactives are the result of interdisciplinary collaboration across the hu-

manities and computer science. Because of this, it is useful to take another look at

framing. Derrida, Grusin, and Butler [Butler 2009; Derrida 1987; Grusin 2010] un-

derstand framing from the humanities perspective and their conceptualization differs

from that presented by Minsky and by Levesque [Minsky 1974; Levesque 2012] who

approach the concept from the perspective of computer science. Even so, Minsky’s

version of framing can be used to formalize various Derridean framing constructs.

Derrida’s frame at its most basic alludes to the frame placed around a painting.

A metaphor, it refers to the fact that when one looks at a framed image, the contents

of the image are not the only things the frame draws attention to. The frame also

will draw attention to itself as well as separate the painting from the outside world.

This “frame” draws attention to all parts of the image, the content, the frame itself

and the outside world. While the divide being discussed is in terms of a painting,

this happens with all forms of media; the way in which the content is presented will

frame the content and how it is divided from the world. But sometimes it is difficult

to differentiate between where the frame starts and ends.

Framing as discussed by Minsky concerns the knowledge known about a system.

Minsky describes a frame as “a data-structure for representing a stereotyped situa-

tion, like being in a certain kind of living room, or going to a child’s birthday party”

[Minsky 1974]. He further explains that a frame is “a network of nodes and relations”

and argues that “different frames of a system describe the scene from different view-

points, and the transformations between one frame and another represent the effects

27

of moving from place to place” [Minsky 1974]. To Minsky, a frame is the information

of a given state that is used to represent a given situation presented in the system.

This construction of a frame is more algorithmic in nature and is useful for developing

explanations of or structures for solving a problem. Different frames in the system

are not mutually exclusive; they share terminal information that can “correspond to

the same physical features as seen in different views” [Minsky 1974]. A frame can

be used to describe a room from different angles and perspectives, to describe the

different stages of a plot from different points of view, or to decompose a sentence

into key parts. Frame-like structures can be used to separate sentences into key parts

and to parse the meanings of the sentence.

Minsky’s version of framing is different from Derrida’s, but there is overlap. Min-

sky’s is a logic-based system that is used to decompose scenes and scenarios into

small parts for logic-based reasoning. This framework can be used to outline and

model some of Derrida’s ideas. Derrida’s concept of framing is concerned with how

an object (broadly construed) is separated from other objects and how this separation

draws attention to the objects inside the frame, the frame itself and objects outside

the frame. A Derridean frame can be used to explain how a certain media object

expresses ideas and conveys meaning. The parts of the frame call attention to more

than just the content. This is in some regards similar to Minsky’s definition of a

frame, in which a scene can be decomposed into smaller parts for logical reasoning.

Given the different interpretations of framing, for example framing a photograph,

Derridean framing would look at the way photo was taken, the content inside the

photo, the means by which it was taken, the world outside that resulted in the image

being created and the impact that comes from the image that is produced. Mitsky

would decompose all this information into a frame for modeling, taking the frame, the

producer, the angle, the information appearing inside, and creating a dataset. A good

example of the two types of frames appears in Errol Morris’s documentary Standard

28

Operating Procedure [Morris 2008], which investigats the events that culminated in

the Abu Ghraib political debacle. In one scene, a forensic media expert describes

aligning photographs taken with three different cameras. The way in which all the

photos from the source camera were lined up can be mapped to the way Minsky

derives a frame. US military officials found three photos that depicted the same

event (the stacking of prisoners into a pyramid) and broke down the internal details

to construct a timeline of the events. Those three photos would be separate Minsky

frames. The overall impact of the photos and how they reflected on the army, the war

in Afghanistan and Iraq, the way the public received and processed the information,

and the way it “cloned terror” are all framing information similar to what is discussed

by Derrida.

2.4 Framing of Past Mediums - Video Games

The first video game on record was a missile simulator called Cathode Ray Tube

Amusement Device [Cathode-Ray Tube Amusement Device - The First Electronic

Game]. This game used analog circuitry to control CRT lights to position a dot

on the screen to attack screen overlay targets. When one applies the DH notion of

framing to the video game experience, visual recognizers and rules of the system both

have to be examined. Similar to text, images and film, what is seen inside the game

is important. The computer screen frames what is viewed in a manner similar to film,

given that a video game experience involves motion. Moreover, the frame is entirely

dependent on the technology that makes possible the game’s creation and the amount

of resources at the creator’s disposal. If a video game has a large budget and a large

staff of programmers, the game can produce a more intrinsic, less explicit, frame.

Given the technology of the time, Cathode Ray Tube Amusement Device used dots to

simulate missiles and overlays of any image chosen to be a target. The visual framing

is military and required the player to imagine that the dotted lines were the missiles

29

in “action”. More examples of framing can be seen in games like Missile Command

and Call of Duty: Modern Warfare.

As the technology improved, so did the ability to improve visual framing. Moving

from CRT dots to digital pixels on a television screen allowed for more detailed visual

cues. InMissile Command, the player controls three mounds each of which bears little

line pixels as cannons. Beneath the mounds stand six cities, divided and surrounded

by hills. The player sees a pixelated landscape against a black background. Missiles

fly into view from the top of the screen towards one of the six cities. The framing of

the game is simple, but the visuals show a small set of cities, maybe a small state,

that is being bombarded by missiles.

In a more modern example, Call of Duty: Modern Warfare, high polygon models

and effects are used to put the player in the middle of a Middle East war zone. The

player sees lush environments, desert storms, realistic terrorists, and semi-believable

weaponry. For the graphical power at the time, the framing of the experience was as

real as possible to make the player believe he was in a real war zone. Instead of the flat

third person perspective seen in Missile Command, Call of Duty: Modern Warfare

uses a first person view. This view makes all the framing appear more personal, as if

everything being seen is controlled by or directed at the player himself. Many different

video games can provide different framings of content similar to text, images and film,

but video games also have an extra framing device that needs to be recognized. While

content provides a specific frame of reference, the rules of play created by the system

provide a different kind of framing only capable with an interactive system.

2.5 Framing of Past Mediums - Procedural Rhetoric

While most video games in the standard market focus on generating “fun” experi-

ences, there are some that demand more from their audience. Games like Silent Hill

2 or Papers, Please are about engaging the player in an experience that goes beyond

30

just something fun to do. As mentioned above, a serious game or a persuasive game

is a mental contest, played with a computer in accordance with specific rules that

uses entertainment to further government or corporate training, education, health,

public policy, and strategic communication objectives [Zyda 2005]. “Serious game” is

currently an overall moniker of the “serious” movement, while “persuasive game” is

used more for interactive experiences that persuade, that is, influence behavior. Ex-

amining serious games, one sees the strength of an interactive experience. Interaction

with the rules and systems remove the seeming passivity found with text, images and

video and require the participant to have a physically active role with the material.

This interaction can shape how an individual perceives the content presented in ways

that other forms of media can not. Game design that uses procedural rhetoric mobi-

lizes the very rules of interaction to persuade a participant to make a change in his

worldview.

Procedural rhetoric is one of the defining features of a CI. It stems from the concept

of a procedure, i.e., the notion of performing a routine. We emphasize, in speaking

of a procedure, the process being used, regardless of the task. A procedure could be

as simple as a recipe for cooking, as brutal as the standard operating procedure for

brutalizing the Iraqi prisoners at Abu Ghraib in 2004, or more computational like

a computer algorithm to count the votes for the next major election. Procedural

rhetoric is the application to rhetoric of procedure, which is a form of persuasion.

Rhetoric is the practice of using arguments and ideas to persuade an individual to

adopt a specific point of view. This can be done through prose, through pictures, and

through motion pictures. When the two concepts of procedure and rhetoric combine,

the notion of procedural rhetoric arises: persuasion by means of procedure. Video

games, serious games, and importantly, CIs all employ a version of procedural rhetoric

[Bogost 2007].

Even though some may disagree, many video games emphasize a point of view

31

through play and the procedures throughout the game, even if unintentionally. If you

look at games such as Call of Duty or Candy Crush Saga, the procedures in place can

express the notion that “violence solves all your problems” or “throwing money at a

problem will help you solve it”. Even if the rhetoric is never noticed, it still resides in

the mechanical choices made possible by the game’s code. An example of a serious

game that uses procedural rhetoric is the McDonald’s game [Molleindustria 2006]„

which uses its gameplay mechanics to push its environmental agenda.

The framing effect is present in interactive experiences in many facets of design.

Similar to text, a problem’s contextualization can affect the participant’s perception.

The way in which a question is framed has an effect on the perspectives and per-

ceptions [Tversky and Kahneman 1981]. Framing not only affects the way in which

text is presented, given that the phrasing of an idea can affect how a person interacts

with the content, but also with the decisions that are presented to the individuals,

the outcomes and choices provided by the interactive experience. A good example is

from the video game series Mass Effect. The Mass Effect series uses a moral choice

system to allow a player to select paragon (good) or renegade (bad). The framing

of many of the moral quandaries is intended to get players thinking about decisions

such as whether to reprogram or to exterminate the Geth. The way the decision is

framed puts the player in control of the fate of the Geth, but the way it is coded

destroys the carefully framed event. The coding of the event is purely based on the

moral choice dichotomy; this event suggests that committing global brainwashing is

acceptable while committing genocide is terrible. Neither action in this decision can

be considered humane, but the code treats one choice as pure and correct while the

other as terrible and wrong.

Ghosts of the Horseshoe uses procedural rhetoric to establish the interactive ex-

perience. GPS was used to evoke spatial awareness in the participant in order to

emphasize the particularity of the site. When a participant encounters a content

32

point location, he is prompted to engage with content associated with a specific

building. The content includes pictures, text, and sound, which sometimes appear as

Augmented Reality (AR) overlays. The GPS and the content encourage participants

to think location and history together. The site-specific content loads immediately

when the participant arrives at a location. The point is to “shock” or surprise partic-

ipants into awareness. Augmented reality, the use of the real time camera view with

information and/or graphical overlays, and the ability to translate documents give

more visibility to the past for items that no longer exist, items that have changed

over the years and for documents written in a different era.

2.6 Framing of Critical Interactives

Given the goal of previous sections, it is clear that the presentation of knowledge

has as much impact on the content (produced by research, etc.) as does the content

itself. The way in which any form of content is presented affects the reception of

the final message. Given that a CI is an interactive medium, it is important to

examine how previous media frame3 content before finally examining how a CI might

do so differently and to what effect. As described before, the concept of CIs is

“Informed by Mary Flanagan’s scholarship on ‘critical play’ and Ian Bogost’s work on

‘procedural rhetoric’ ”. CIs strive “to impart knowledge, build awareness, and provoke

thinking and raise questions”. While serious games appear to have some overlap

with CI, a CI frames its content differently. Here it is important to understand that

terminology is central to framing what a CI is. A CI is not a “game”. The term “game”

tends to suggest fun. In this light, even “serious games” proves troubling. “Critical

3 By “frame”, we are commonly referring to the frame placed around a painting. It is in reference
to the notion that when one looks at a framed image, the contents of the image are not the only
things the frame draws attention to. The frame also draws attention to itself as well as separates
the painting from the outside world. This “frame” draws attention to all parts of the image, the
content, the frame itself, and the outside world. While the divide being discussed is in terms of a
painting, this happens with all forms of media; the way in which the media is presented will frame
the content and how it is divided from the world [Derrida 1987].

33

interactives”, as a term, intends to underscore a different kind of engagement. It

means engaging participants in ludic interaction with socially and politically sensitive,

indeed controversial, subject matter. Some topics are difficult to discuss, such as

slavery and creating a “game” based on real world enslaved people is not acceptable.

This however does not mean that gamic methods, including procedural rhetoric,

cannot be used; it just means that it is important not to create a “game”.

Attention to language also applies to labeling those who interact with a CI. When

one describes an individual as a “user” of a product, the item in question has no

further value than being a tool. Users are people who “use” the product; nothing

more than functionality is expected. When someone participates with an applica-

tion, one expects that person to gain more from the experience. They are not just

“using” the application like a tool or a product, they are participating in some form

of ritual and will hopefully gain more from the experience. Participating requires

both the “user” and the application to work systematically to generate a meaningful

experience. The term “participant” suggests active engagement.4 The framing of a

CI is similar to that of serious games. The notion of creating a meaningful product

to be interacted with is the same, but CI differs when it comes to acknowledgement

that not all experiences are “games” and that using such a nomenclature does not

work with certain subject matter. CI is not a replacement of serious games nor is it a

subcategory. It is a methodology for framing content in order to impart knowledge,

build awareness, provoke thinking, and raise questions using gamic methods while

respecting the material and not “making a game out of it”.

4 While “participant” offers a reasonable counter to “user”, we still find the term limiting.
Critical interactives, as we think about them, address their audience as “interactants”. If a person
is an interactant, he works with the application. This distinction is significant, even if seemingly
small. That said, throughout this dissertation, “participant” is used because it is a more recognized
term.

34

2.7 Projects Similar to Critical Interactives

The notion of a CI is a relatively new idea, and there are no projects other than

Ghosts of the Horseshoe that capture the distinctive nature of a CI. Even with this

in mind, there are four projects worth mentioning that come relatively close and

embody some of the concepts and ideas of a CI. These projects include Augusta App,

Desperate Fishwives, the Resurrection Man prototype, and [Threshold].

Augusta App is a mobile application for iPhone. It was coded by Jeremy Green-

berger as a digital supplement to Dr. Heidi Rae Cooley’s book Finding Augusta:

Habits of Mobility and Governance in the Digital Era [Cooley 2014]. The app fea-

tures QR codes that are embedded throughout the text. Scanning the QR codes

delivers additional content to the touchscreen, including information regarding oth-

ers who have also joined the Augusta App community. Scanning also allows the

application to track how far a person has read. The interface features an old magni-

fying loupe that uses a rotary wheel to allow selection of menu items. A person can

take and upload photos, see photos taken by others, read content not available in the

book proper, and provide feedback to help improve the application. While at first

one might think Augusta App is simply a gimmicky tool for the book, it was designed

with the CI philosophy in mind. Augusta App in combination with Finding Augusta

raise the questions, What is Augusta? and Where might one find Augusta? More

theoretically, it asks its participants to recognize that “forms of media [can] alter in-

dividuals’ experience[s] of their bodies and shape the social collective, problematizing

the most salient fact of contemporary mobile media technologies, namely, that they

have become, like highways and plumbing, an infrastructure that regulates habit”

[Cooley 2014, back cover]. The app’s gamic qualities, which include basic world map

exploration, notification function, and a Twitter-like feed, keep participants aware of

their relation to Augustas of all sorts. Augusta App is a more practical application

than the others that will be discussed, but could be considered a CI none the less.

35

Desperate Fishwives, another project managed by Drs. Cooley and Buell, was

one of the precursors to the notion of a CI. The concept of Desperate Fishwives

came to fruition at the Humanities Gaming Institute hosted at the University of

South Carolina during the summer of 2010. The project was proposed by Dr. Ruth

McClelland-Nugent of Augusta State University, with the purpose of mobilizing pro-

cedural rhetoric to help students learn about social interactions of a 17th-century

village in Britain. Using sprite-based avatars and a 3D environment constructed to

imitate 17th-century artistic stylings, the project attempted to immerse the partic-

ipants in the 17th-century world. Play revolved around talking with other players’

avatars as well as non-playable characters (NPCs) to gather resources. “Discussions”

or social rituals were represented by minigames. There are several play styles; one

might play as Cuthbert Blacksmith, Margery Midwife, Andrew Apprentice, etc. Each

style has an initial set of statistics that determine social interactions. Participants,

as a collective, are expected to accomplish four social rituals before the end of a time-

limited play session. If they fail, a final mini-game is played to determine a lesser win

state.5

The Resurrection Man prototype, developed by Jess Tompkins, is an historio-

graphic game.6 She contends that games based on history can be used to develop

alternate histories and that gameplay is also a mechanism for creating a historio-

graphic record. As hypothesized by Tompkins on the subject of docugames, that the

“documentary” label should “not be readily applied to video games because it is an

insufficient one”, and “[i]nteractivity affords more opportunity than documenting or

preserving; it invites new perspectives on and interpretations of history”. Tompkins

5 While the game’s developer John Hodgson categorizes Desperate Fishwives (DF) as a serious
game, it does boast characteristics that make it possible to be understood as a critical interactive.
In particular, DF uses top-down minigame-based gameplay to simulate the complexities of social
encounters in order to invite student-players to consider 17th-century social norms and build their
understanding of societal structures and systems [Hodgson 2012].

6 As in the case of Desperate Fishwives, Resurrection Man readily meets the requirements of a
critical interactive.

36

argues further that “[h]istoriographic game design acknowledges the multiplicities of

history and embraces multiple interpretations based on player-based decisions and

outcomes”. She maintains that games do not merely transcribe a single history, but

provide the possibility of producing many simultaneous (valid and invalid) histories.

Moreover, she defines historiographic games to be “a critical mode of interaction that

draws attention to certain behaviors or actions specific to the historic moment to

encourage player awareness”.

Resurrection Man puts a participant in the shoes of the 19th-century grave robber

and enslaved person Grandison Harris. It tasks the participant-as-Harris with stealing

dead bodies from the cemetery to provide cadavers for dissection to the Medical

College of Georgia. The participant takes control of Harris and leads him through

the game’s environment in an effort to locate, excavate, and steal bodies. All the

while, he must avoid being caught by watchmen and dogs that guard the cemetery.

There is also an “integrity” meter, which functions as a pseudo health/insanity meter.

This tells the participants that Harris is stressed, about to be caught, or generally

losing health (e.g., exhaustion). Currently, there are two versions of the prototype.

The original version used a “third-person perspective” to follow around the playable

character. This framing allowed the participant to see Harris and notice any changes

in his health, walk, or mood. The newer version of the prototype uses a “first-person

perspective”, where the participant “is” Grandison Harris.7 In both cases, gameplay

produces an historical account of the 19th-century practice of cadaver acquisition by

means of grave robbing [Tompkins 2014].

[Threshold] is an experimental video game created by Cecil Decker. It asks its

participant to examine what “noise” is, in both the audio and visual senses of the

term. Typically, noise is considered a disruption. A blip on a music track, a scratch

7 While “more personal”, this perspective runs the risk of allowing the player to forget the
matter of enslaved labor, which is fundamental to its goal. Tompkins will have to address this as
she continues to develop the project.

37

on a record, a dead pixel on a computer screen, video buffering, or lag in a video

game are all commonly associated with “noise”. Many of these instances hinder the

task, and commonly breaks the moment. Decker questions if noise is much more than

that. He asks whether or not noise might be more than just a disruption; he posits

that it might also be a creative or generative tool.

[Threshold] has very simple rules: point-and-click. A participant is first presented

with the title screen of the experience. Then, the title slowly becomes pixelated.

Each pixel shows a small part of a larger film. If the participant clicks on a pixel, the

video changes to another. Given there are no set goals set for with the participant,

the only course of action is to click and unify the disjointed image. As the image is

unified, random pixels will change to another film, thus making it incredibly difficult

to unify the frame. If a pixel is pressed too many times, it “breaks” and can no longer

be changed. While this is happening, experimental audio tracks play based on the

current dominant video. It is usually cluttered and sounds like noise.

Everything in this experience emphasizes the concept of noise. The visuals make

the entire experience disjointed, the experience of which is exacerbated by the fact

that the audio does not have melody or use rhythm. Making sense of either audio

or visual is usurped by the randomness of the system [Decker 2010]. Because of the

unique play style and lack of overall goal, [Threshold] does not fit into the defined

video game category. Insofar as it plays with a person’s perception of what is noise

and tries to challenge what people call noise, it can be argued that it is an artistic

game from the serious games grouping, but a more valid category would be CI.

As three of the five examples discussed here suggest, CIs prove very useful for

addressing historical themes. But in the broader context, CIs aim to build awareness

about a topic. In this regard, a CI can be something created for a practical purpose

(Augusta App), something that is more gamic in nature (Desperate Fishwives and the

Resurrection Man Prototype), or be purely experimental ([Threshold]). Ghosts of the

38

Horseshoe attempts to occupy a middle ground, being practical for use by anyone on

the historic Horseshoe, gamic with GPS and display of information and experimental

with the way content is provided and viewed.

2.8 The Historic Horseshoe of the University of South Carolina

The University of South Carolina in Columbia is home to the historic Horseshoe,

arguably one of the most intact “landscapes of slavery” in the nation. Slaves built

the bricks used to build the South Carolina campus, now known as the Horseshoe,

and the wall surrounding the grounds. Slaves also provided labor to perform daily

tasks around the College (i.e., cooking, cleaning, chopping wood). While the College

did not own many slaves, it participated in a “hiring out” system, where slaves could

be temporarily leased to the College to perform daily tasks. Much of this history

has been overlooked, in part because of the fact that what remains in the archives

was produced by those who benefited from enslaved labor—that is, the faculty. But

a ripe history lurks on site, in the material remains of the structures. As a CI,

Ghosts of the Horseshoe attempts to impart knowledge, build awareness, and question

past observations [Buell and Cooley 2012]. It does so by means of careful framing

of historical information. In this case, it is not only interested in how its system

works to facilitate engagement, but also in the rich history that defines how all that

information might be most effectively presented.

Ghosts of the Horseshoe derives its content from the rich history that is the Horse-

shoe. The relevant history of the Horseshoe for Ghosts spans the years 1801 to 1880,

from the founding of the predecessor South Carolina College through the years of

the Civil War and Reconstruction. Of the 14 buildings built during the antebellum

period, only 11 still stand.8 And all but one of the “lesser” outbuildings—structures

8 The eleven buildings that still remain on the Horseshoe at the University of South Carolina
in Columbia are Rutledge College (1805), DeSaussure College (1809), First Professors House, now
the President’s residence (1810), Second Professors House, now McCutcheon House (1813), Third

39

that functioned as kitchens and slave quarters—have been demolished. The buildings

of the Horseshoe were built mostly by hired-out slaves. Enslaved persons molded the

bricks for the buildings, erected the buildings, and maintained the premises. All this

labor is essentially unremarked today given how history was recorded in the past.

An example is the surrounding wall that encloses the Horseshoe. The wall was built

by enslaved persons, with each brick being hand molded, carried to location, and

assembled into the wall. Yet today, the historic structure is little more than a canvas

for posting banners for the sport or other collegiate event of the day. Much of what is

documented of the enslaved persons stems from receipts. The College participated in

the hiring-out system, which was common in urban slave environments. This allowed

for some form of recordkeeping, but also it allowed the institution to cover up its past

dealings with slave ownership [Weyeneth et al. 2011]. Ghosts of the Horseshoe pulls

from this history to bring a voice to this absent history and provide an avenue for

future conversations about slavery at the University of South Carolina.

2.9 The Evolution of Ghosts of the Horseshoe

The Ghosts of the Horseshoe application has been in development for roughly three

years as of this writing. The initial inception of the project was during the Fall

2011 “Gaming the Humanities” course. Dr. Robert Weyeneth proposed that the

class create some form of digital artifact to mobilize the history of the Horseshoe.

A previous course led by Weyeneth gathered many historic documents about the

Horseshoe and the slaves that built and maintained the campus [Weyeneth et al.

2011]. Two projects were proposed during the Fall 2011 course based on theWeyeneth,

et. al., website. One was an interactive fiction, the other an iPhone application.

Professors House, now Lieber College (1837), Elliott College (1837), Pinckney College (1837), the
South Caroliniana Library (1840), Harper College (1848), Legare College (1848), and the Fourth
Professors House, now Flinn Hall (1860). The buildings that do not remain are First Stewards Hall
(1806), First Presidents House (1807), and all but one of the slave quarters. Many other utility out
buildings also do not remain [Weyeneth et al. 2011].

40

The interactive fiction was built by colleagues Renaldo J. Doe and John Hodgson.

They used UnityTMto build a digital Horseshoe for an interactant to explore. As the

participant explores the Horseshoe, he can click on objects to get pieces of history

and dialogue. For example, a hammer tells the story of a builder who created the

wall, while a protest sign divulges the history of student revolts at the campus. The

second project, and the one that grew into the current application, was an iPhone

application. This version of the application was spearheaded by Grace Hagood. The

initial concept was to allow an interactant to walk the Horseshoe. As he explored the

Horseshoe, GPS would trigger augmented reality with video or still image overlays

of slaves or students to present some form of content. The content ranged from

historical dramatizations to poems and short stories about the slaves at the historic

campus. It was planned for the iPhone because many of those working on the project

had mobile devices and insisted on it being portable. This version of the application

used history as a springboard but did not do more with the source material. While

the application did receive some praise for novelty, the lack of historical accuracy and

the liberties with such sensitive source material did not give the application academic

credibility. The original versions proposed were more gamic and were designed around

the concept of digital fiction.

The idea of such a mobile application was well received. The original idea was

expanded to be an iPad application in the “Critical Interactives” class offered by

Cooley and Buell in the fall of 2012. More historical content was added to the

application and a stronger emphasis on historical accuracy enforced. Once the concept

was more fully fleshed out, it became apparent that fabricating content to produce

a fiction was not going to be productive to the message being told. In conjunction

with historians, artists, and videographers, the a second version of the application

was developed. This version of the application was very menu driven and structured

content differently from the current Ghosts version 2.0. This second version of the

41

application relied on a spinning wheel to “dial” in a specified time period. Once the

time period was selected, the participant was allowed to view the map screen which

had a background map that accurately represented the Horseshoe and content that

was related to the given time period. This iteration relied heavily on built-in menu-

driven systems, with many required button presses to access content. A participant

had to get through the main menu screen, the content time period selection screen,

and the GPS activated content point to access one piece of interactive content. These

types of content consisted of Augmented Reality (AR) images, a picture, loading a

camera overlay and a list of text based content points. The types of content were more

important than the content and a minor update to that version had multiple versions

of these types of content at each content point (albeit by adding another menu). The

data structure underlying the application was also very complicated, with much of

the data buried deep in tree structures (site location - type of content - time period -

location of subcontent - subcontent information). The menu system was also buried

in the participant icon button, which also returned the participant to the time period

selection screen. At this menu, the participant could change the time period and

return to the map, see everywhere he had traversed, submit feedback, change options

and view a tutorial. Overall, this version was very clunky and inefficient.

Over the following year between the”Critical Interactives” course in the fall of

2012 and the second “Critical Interactives” course held in the spring of 2014, the

second version of the application was streamlined. The menu-driven nature of the

application was removed, with more focus on the content being presented in the

application. The time period wheel was removed, all forms of content were given

the same priority, the introduction screen removed a screen press, and the options

menu was relegated to the participant icon and only accessible from there. It was

decided that all content should be available all the time, thus removing the need for

a time wheel. A participant would be able to walk to a GPS site and see all content

42

without having to exit the viewed content to find a menu, change the time period

and then re-walk the path to re-trigger the site location. All content was given the

same form of treatment and the original major categories (AR point, pan point, etc.)

were pushed into content points (thus reversing the methodology of how the content

was represented). Instead of treating AR or panoramic views as more important

than text and images, AR and panoramic views were converted into assets with the

same content status point of access as text and images. The introduction screen was

also revamped to show the name of the project and quickly transition to the map

to allow participants to engage with content faster. Finally, the options menu was

relegated to the participant icon and was only accessible by pressing that icon. This

contained all older versions of the options menu, but the review screen of where the

participants had walked was given precedence over changing options or submitting

feedback. Much of the menu systems were removed to make the content more of

the focus and many features that were deemed necessary at first were scrapped due

to their being distracting (such as the ability to select a time period at any time

to restrict content). This revision was the alpha build for the final application that

has now been constructed. This version of the application was tested on multiple

occasions, and it was found to be very difficult to use. There were too many button

types, and it was not easy to enter the options menu. While the final version of

the application has been built with the previous builds in mind, it has also included

additional types of content, connectivity to a server for new content to be added

easily, and has fixed many of the design problems of the previous versions. Full detail

of the final version of the application can be found in later chapters.

Given much of the discussion of framing, it is important to understand the theory

behind each part of Ghosts of the Horseshoe. When it comes to content, there are

segments of text for participants to read, images for participants to manipulate (e.g.,

historic photographs that fade in and out according to “pinch” or “pull”, zoom-in on

43

to analyze details, and 19th-century script translation for old documents, eventual

video and the interactive component). The text provides information gathered from

the Weyeneth, et al., website [Weyeneth et al. 2011]. All information was historically

verified through historical documents. Some content was rendered by an interpreter

and cited properly to help those using the application understand which is interpreted

and which wis genuine. When it came to images, only historical images were chosen

and only images that had more historically relevant information were desired. One of

the major themes of the CI is that there is an absence of evidence about the events

that transpired and persons who lived and worked on the historic Horseshoe. The

theme of absence was to provide more concrete evidence to those interacting and give

a more tangible idea of specific historical proof. Recipes and hand written records

are used to show what little information still we have about enslaved persons.

When it comes to the interactive experience, the idea was to set the rules to allow

exploration and discovery. The thumb print icons fade in and out based on proximity

to content points: nearing a content point results in an increasingly opaque icon, while

moving away results in greater transparency. This means that the further you are from

a specific set of content, the more invisible it becomes. Once content is triggered at a

site location, the application loads up all content related to the location and presents

it in a fact-sheet-like fashion. Given the public history slant, this allows for more

control over the information being presented and the small snippets of information

allowed for participants to not get overwhelmed. GPS is used to track the location

of the participant to make traversing the historic horseshoe easier. The thumb print

is representative of the content at each site. Given that no images of slaves from the

South Carolina College exist, the one artifact that the slaves left behind was used as

the content location identifier.

44

2.10 Conclusion

The digital humanities play a key role in constructing the background of a CI. No-

tions of awareness and framing as well as use of language are all derived from DH

thought and help build the concept of a CI. Given that Ghosts of the Horseshoe is a

collaborative project that used not only computing and human computer interaction

to build the project, but also the philosophy of DH, this project is truly multidisci-

plinary. It is possible to argue that there are three components required to create

a CI: the procedural rhetoric, the usability, and substance. DH helps provide the

substance, the framing of the substance, and the context of the substance.

45

Chapter 3

Human Computer Interaction (HCI)

As technology advances, so does the need to understand it. Computers were originally

large and bulky; but they became smaller over time because of advances in technol-

ogy. From giant mainframe machines used for mathematical calculations to personal

computers on everyone’s desk to pocket computers that cannot be differentiated from

rocks or clothes, computers are getting smaller and ever more present in daily life,

and people are less aware of their presence. The third wave of computing, ubiquitous

computing, is a generation of computers that have shrunk to be so small that they can

be and are incorporated everywhere [Dourish and Bell 2011]–clothing, objects, mate-

rial landscapes. Because computers are getting smaller and more discrete, thus more

ubiquitous, understanding and learning how humans interact with them is becoming

more important. On mainframe machines and early personal computers, the target

audience was commonly more tech-savvy individuals who were comfortable entering

text commands to get the machines to perform tasks. As PC’s became more global

and everyone began owning one, how information was presented and how individuals

were able to interact with the computer became more important. The study of how

humans interact with computers and methods designed to help measure and improve

usability is known as Human Computer Interaction (HCI).

HCI commonly focuses on the “design, evaluation, and implementation of interface

computing systems for human use and the study of major phenomena surrounding

them” [Association for Computing Machinery 1992]. This focus strictly looks at

computer systems and how one-or-more humans interact with one-or-more machines.

46

While many consider the “GUI” system and its ease of use to be the specific goal of

HCI, the fact that humans, machines and interaction are vaguely defined concepts

expands the notion of HCI to more than just interface systems. As defined by ACM,

HCI is “concerned with the joint performance of tasks by humans and machines; the

structure of communication between humans and machines; human capabilities to

use machines (including the learnability of interfaces); algorithms and programming

of the interface; engineering concerns that arise in designing and building interfaces;

the process of specification, design, and implementation of interfaces; and design

trade-offs” [Association for Computing Machinery 1992].

The discipline of HCI emerged in the context of a set of technological and industry

developments: emerging computer graphics technologies, advancements in operating

systems, the need for non-technical workers to use computers, and the introduction

of cognitive psychology for the purpose of more user-friendly design. Because HCI’s

roots span so many fields, the discipline has a complex history and varied sites of

examination. As computer graphics improved from dots and lights on early machines

to the advanced LED screens with high definition images, how humans interact with

the display has changed. Operating systems have improved with time, going from

wires to text based systems like windows DOS, to point-and-click GUI systems found

on most modern PC’s to mobile phone button presses. Each new update to an OS

brings new features and functionality, which can improve a person’s computer expe-

rience. With attention to advancements in computing and the lessons learned from

previous product failings, HCI shapes how technology design might better address

how non-experts and people who have no previous experience with a product interact

with that product. The more people who can use a product, the more successful that

product becomes. Cognitive psychology, which studies human information process-

ing and performance, adds to HCI by focusing on how humans relate to and interact

with computers. Ultimately, the work of HCI aims to build better, that is, more

47

user-friendly machines.

While HCI is an expansive discipline, it is but a small part of Interaction Design

(ID). ID not only looks at the design and evaluation of a human interaction, but

also examines the wider theory, research, and practice of designing user experiences

with technology. Not only does ID cover issues similar to HCI, such as designing

a user experience and testing the experience to see if it is effective, but also more

general theoretical concepts. It also examines what constitutes an interaction and

what social interactions are, as well as ways to gather and analyze data based on how

people interact.

3.1 Usability and Design

It is important in the modern era for computer applications to be user-friendly. This

means that an application must be intuitive and consistent. An application is intuitive

if a participant can pick it up and use it without needing too many prompts or cues.

If a person can complete tasks quickly with the application (i.e., efficiency), without

having to spend too much time familiarizing himself with it (i.e., learnability), and

is able to repeat said tasks without having to reread a tutorial (i.e., memorability),

then the application can be considered intuitive. One common way to make sure an

application is easy to learn and use is consistency. Consistency of buttons, layout,

and other design features can help prevent confusion and can help users remember

how to use an application.

One of the major goals of Ghosts of the Horseshoe is to design an experience that

uses ludic methods and interactivity to encourage participants to engage critically

with the material presented. Engagement can be measured by observing attention,

pace, and flow. Measuring attention and pace can help to determine level or degree

of engagement. Play, interactivity, and style of narrative also play some part in a

participant’s engagement. Flow, first introduced by Csikszentmihalyi, refers to the

48

intense emotional involvement that participants feel when they are fully immersed

in an activity. The more immersed an individual is, the more likely he will respond

to and/or retain the experience [Csikszentmihalyi 2008]. Immersion is difficult to

gauge. Consider, for example, video game controls. As video games evolved, the

controls became more streamlined. When the Nintendo Wii released motion con-

trols, some games got harder to play because the controls did not adhere to standard

control methods. What could have been a design flaw ended up being accepted by

players, however, because the new experience proved more engaging than previous

control schemes. Since engagement and flow are important for the development of

an application, so is examining the target demographic. While one would like to

design an application that targets every possible person, it is not reasonable or fea-

sible. Personal differences among people, as well as differences among social groups

can vary enough to make a unifying experience difficult to achieve. Aside from the

target demographic, the larger group of stakeholders also plays a role in determining

usability and design. A stakeholder is a group of “people or organizations who will

be affected by the system and who have a direct or indirect influence on the system

requirements” [Kotonya and Sommerville 1998]. The stakeholders include developers,

managers, direct users, as well as those who can potentially lose work because of the

application, etc. [Kotonya and Sommerville 1998].

3.2 Effectiveness of Design

Once an application is built, it is important to determine if the combination of de-

sign elements results in a good or productive experience. If all parts do not work

collectively, then the experience can become disjointed. For example, the Nintendo

video game Dr. Jekyll and Mr. Hyde asks players to control Dr. Jekyll as he walks

through a level. As the player walks, some enemies hurt Dr. Jekyll while others do

not. Attacking does little to no damage to any enemy even though it is clear that

49

enemies need to be attacked. When the player dies, he turns into Mr. Hyde and

the video game plays a constant moving segment where the player shoots projectiles

towards enemies. The goal is to defeat foes before the player character arrives at

the location of Dr. Jekyll’s death (i.e., in the preceding level). The system’s rules

make no sense and the overall experience is disjointed. Distinguishing friendly NPCs

from enemies is impossible and the win condition is never explained to the player.

While some experiences attempt to have the player engage and learn about the sys-

tem as part of the engagement, Dr. Jekyll and Mr. Hyde gives to much contradictory

information to make discovery of the system possible. When designing an iOS appli-

cation, similar issues need to be considered to prevent it from being confusing. Too

many button choices, hiding buttons in the background, placing relevant information

on scroll views and then not telling people that the information exists, moving the

location of menu items on each screen can all create an awful, or at least frustrating,

experience.

Design Assessment takes each component of the overall design and examines if

each part is performing its task functionally and is user friendly. If a user at any

time gets lost, frustrated or confused, then the product has poor design. Keeping the

application consistent, such as mirroring common design tropes from other applica-

tions, using one style of button, keeping the layout similar at all times, helps users

navigate the application.

3.3 User Testing / Developer Testing

It is important to begin evaluating and testing a product as early as possible, since

discovering design issues in the middle or at the end of the development cycle can

prove damaging. Of course, one can ignore design flaws. More frequently, developers

attempt to fix flaws. In some instances, derivative flaws persist resulting in a dys-

functional product going to market. And sometimes, fixing a flaw means a delayed

50

release. The further in development a project is when a design flaw is discovered, the

more time and money it takes to fix. While it is important to evaluate at the begin-

ning of the design and development processes, performing formative evaluations and

summative evaluations throughout improve test design effectiveness. Formative eval-

uations are performed during the design and implementation of the product. These

include prototyping and tweaking the design based on feedback. Summative evalua-

tions are performed on the finished product in order to determine the possibility of

future editions [Kotonya and Sommerville 1998].

There are three types of testing that can be performed to determine if a product

pleases stakeholders. These three types can be seperated into two major categories,

being User Testing and Developer Testing. The three types of evaluations are Con-

trolled Settings, Natural Settings, and Developer Accounts. Controlled Settings eval-

uations involve users commonly performing activities in a controlled environment to

target a specific hypothesis and measure individual components. Controlled settings

tests are great for targeting a specific piece of the product, but can, at times, require

large sample sizes. Natural Settings tests evaluate the product in a natural setting

and attempt to determine the product’s usability in the real world. This is commonly

done through field studies. While the last two types of evaluations focus on users,

the last evaluation test primarily focuses on developers. Developer testing consists of

developers, consultants and researchers critiquing, predicting, and modeling aspects

of the product to improve usability. The goal is to determine obvious usability prob-

lems through inspections, heuristics, walkthroughs, models, and analytics [Kotonya

and Sommerville 1998].

3.4 Critical Interactives and Empathic Awareness

Interaction and how a participant reacts to a design logic are very important to HCI.

Commonly what is asked when designing, building, and assessing an application is

51

“What will be successful?” In which case, a developer must have a sense of what con-

stitutes success. For a CI such as Ghosts, success is measured by increase in empathic

awareness. Ghosts does not ask participants to sympathize with enslaved labor; it

asks its interactants to express a greater sensibility for the fact of enslaved labor.

Sympathy emerges from direct experience; empathy is about a shared understanding,

one that is based, not on direct experience, but an imagined relation. Ghosts uses

simulation to inspire in its participants a sense of the history of enslaved labor. The

goal is to make them empathize with the history through experiencing a concrete,

tangible–quite literally by means of the touchscreen interface–relation to the past.

It is not politic to simulate slave life on the Horseshoe. But inviting participants to

imagine how the Horseshoe came to be and under what conditions–and to question

what has changed or remained consistent–is possible. Ghosts attempts to bring to

visibility a history that many would like to forget. It uses rules to invite an empathic

understanding of past transgressions.

52

Chapter 4

Computer Technologies

“In our view, computing is fundamentally a modeling activity. Any mod-

eler must establish a correspondence between one domain and another.

For the computational modeler, one domain is typically a phenomenon

in the world or in our imagination while the other is typically a com-

puting machine, whether abstract or physical. The computing machine

or artifact is typically manipulated through some language that provides

a combination of symbolic representation of features, objects, and states

of interest as well as a visualization of transformations and interactions

that can be directly compared and aligned with those in the world. The

centrality of the machine makes computing models inherently executable

or automatically manipulable and, in part, distinguishes computing from

mathematics. Therefore, the computational lists acts as an intermediary

between models, machines, and languages and prescribes objects, states,

and processes.” [Isbell, Charles, et al. 2009]

The capability of computer technology has developed exponentially since the early

days of room size vacuum tube heat boxes. As technology advanced, computers

became more efficient and streamlined, moving from large rooms to desktops and

eventually to mobile devices in the hands of individuals. With this technological

shrinkage, other tangential components of computing also changed. Not only did the

ability to interact with the computer (i.e., the input mechanisms of the computer),

the cooperative components (i.e., networking, printing, etc.), and the way a computer

53

is “coded” change as technology advanced, but so did the purpose of computers. The

mobilization of CI with Ghosts of the Horseshoe is informed by this rich history of

computing to help build a meaningful mobilization. It is worthwhile to review the

history of people’s interactions with computers in the run-up to the mobile boom in

order to understand design decisions for mobile devices, to examine how advancements

in networking and coding help shape content, and to recognize that “coding” has

become more than just rules and data.

4.1 The Building Blocks of Mobile Technologies

As mentioned before, computers have gone through three waves of development.

The first wave of computers used vacuum tubes and magnetic drums to process and

save data. As technology improved, vacuum tubes were replaced with circuit boards

holding transistors, and then integrated circuits. The first wave also introduced the

keyboard, mouse, and computer monitor. This wave of technology introduced many

common design choices seen in later generation devices, such as mouse hover-over and

keyboard shortcuts. With the invention of the microprocessor, computers became

more affordable, and the second wave of computing, the personal computer, soon

followed.

The second wave of computers saw the advent of many different devices, including

video game consoles and personal computers. These were small, but not usually

handheld, computers that used inputs similar to those of the first wave. Personal

computers were built with the “everyman” in mind. In other words, PCs (back in

the day when “PC” meant “personal computer” and could even include a machine

bought from Apple) had to be simple enough for everyone to use. As technology

improved, the computers became smaller. This led to the third wave of computing,

ubiquitous computing.

The third wave has introduced many complications that did not confront the two

54

previous waves of technology. A principal difficulty involves user-device interaction.

Computers are now small enough to fit in cell phones (or be cell phones), car tires,

nano-robots and/or medical devices (e.g., pacemakers). The traditional method of

using a keyboard and mouse has changed. A smart phone, such as the iPhone, does

not come with an external keyboard or mouse. Instead, the screen of the device is

used for input. While there is a digital keyboard on the device, its function and use

are more cumbersome given the small size. Absent the tactile feeling of the keys (even

if the audio keystroke cues can be turned “on”), the interaction with the iPhone ends

up being very different from the interaction with what is now referred to as a desktop

computer.

Another example of this shift can be seen in software and coding. Ada Lovelace,

creating programs for Charles Babbage’s Difference Engine, is usually credited as

being the first programmer. While she used mechanical means to produce code, the

ideas she created continue today. Eventually programming would transpire via punch-

cards, circuit boards, and paper tape. Decks of cards would be fed into a machine that

read in and executed the program. As technology moved digital, so did the coding.

The von Neumann architecture, in which code and data reside together in the same

memory, has become the norm, and this major decision has led to many programming

paradigms today. From binary, to assembly, to higher level languages like C++ and

Objective-C, the idea of communicating with the computer has remained the same

[Dale and Lewis 2011]. Most modern applications are built with high-level languages.

This allows for easier creation and maintenance because the program is written in

plain text and not in binary.

Even the execution of programs has evolved with technology. For PCs an appli-

cation required to be downloaded and a prompt menu would appear to help calibrate

settings and install the program. This could be as simple as a couple of button clicks

or as complex as building the backend of the software. As technology grew more

55

ubiquitous, program installation became simpler. For smartphone devices and tablet

computers, all that is required is a single press download and the operating system

handles everything else. This is good because it is easy to use, but it also limits

functionality. A person is not allowed to adjust settings, speed, or other application

variables as was possible with personal computers. Greater constraints result in a

trade-off that has to be considered while building a mobile application.

4.2 Networking, Database Design and Security

Computers have advanced to the point where connecting physical wires to create net-

works has been replaced with WiFi, Bluetooth, etc., signals, and thus new definitions

of a “connected” system have arisen. The ability to connect any device to a network,

no matter where the device is located, has revolutionized the physical placement of

“computers”. Apple iBeacons, for example, can be buried in the ground and yet still

connect with other devices. With the unlimited locations where one can now find

computers, it is important to think about what constitutes establishing a network,

designing data structures and storing data for use, and implementing the security

governing the storage and use of the data.

Networking describes how multiple computers interconnect. A standard network

usually consists of a few machines, but given the advent of smart phones, networks

have grown expansive. The Internet connects many different devices together on a

global scale. Any device around the world can download an application, say Ghosts,

and experience its content. Given this, special considerations, such as what to do

when individuals are not on the Horseshoe, need to be considered. Given that there

is connectivity within Ghosts, it is important to understand how Ghosts connects

to the Python-based server. The network and bandwidth available have to be con-

sidered when passing data. If the network transfers data slowly, this can affect the

application. Ghosts connects to a Python-based server to pull content information.

56

This allows the application to change and update content without having to change

or update the application itself. This relies on solid database design and security

to help ensure the integrity of the experience. Database design consists of taking

a known set of data and breaking it down into tables to help prevent duplications.

This improves the internal validity of the data and provides consistency among data

variables. When the data is passed over the network, it needs to be secure. Since

transferring information over a network consists of breaking the file into packets and

transferring said packets, it is possible for these packets to get intercepted. If a hacker

intercepts the packets, it is possible to steal information or change what is present.

This is not a major concern given the scope of this application, but it is important

to consider proper security when dealing with networking. Since WiFi is wireless, it

is important to understand how vulnerable data can be. A hacker can simply walk

by a phone, and with the correct code, read data through the signal. If the device is

transmitting, security can be compromised and data can be stolen. It was important

that Ghosts was written with consideration for the network, for database design, and

for security.

4.3 Experience = Data Plus Code Plus Users

We suggest by the title of this section that data, code, and users together work to

create a meaningful interactive experience. When the title of this section is broken

down into each of its component parts, each part provides a unique facet which

reflects the main chapters presented in this dissertation. “data” embodies the digital

humanities and “user” mirrors human computer interactions. In this chapter we will

discuss “code”.

The word “data” means different things in different fields of study, but it is com-

monly associated with some set of facts associated with a given topic. In computer

science, “data” usually references raw facts, facts that have not yet been processed,

57

that exist in a pure state, and that can appear to mean absolutely nothing. This

can be seen in small data, such as simple grocery lists, to big data, like Facebook

profiles and posts. Raw data makes no real sense until it is processed into “informa-

tion”. Individuals take raw data and apply analytical and statistical tests to discover

important “meta” facts about the data. Processing a simple list of groceries could

tell us more about the person who purchased the items, or give clues regarding the

buyer’s shopping habits. By processing Facebook profiles and posts, one could create

a model to predict common things that people say or how often a specific idea is

referenced, or to parse out hidden underlying messages buried in the Facebook posts.

How this information is used is “knowledge”. This might include using the processed

data to influence the buying habits of shoppers. By looking at a simple grocery re-

ceipt and processing items purchased, one could create a system to push the shopper

into making more purchases of a particular sort. If a shopper is seen to buy a six

pack of beer on a Tuesday, an offer of a discount the following Monday might spur

more sales.

Knowledge allows powerful entities to “mine” out special target groups that may

be hostile, determine the most discussed topics, and find a way either to repeat such

events or even to disrupt political movements by defining the movement’s values and

goals and undermining them in some fashion. The use of knowledge can help disrupt,

dismiss, or sell, but it can also educate, illuminate and teach. As discussed before,

how a CI is framed given a digital humanities lens helps to promote ways of thinking

and understanding. The process of looking at the human condition, examining the

parts to generate concepts and ideas, and then using digital technology to express

these ideas is very similar to the data/information/knowledge model. It can be argued

that for Ghosts of the Horseshoe the framing and the historical content is the data

of the application.

In Algorithms + Data Structures = Programs, Niklaus Wirth [Wirth 1976] explains

58

that “code” is traditionally thought to be datasets together with algorithms defined

to work on the datasets. This is commonly seen in software packages designed purely

for computational processes. An individual uses Microsoft Word, a basic accounting

package, or a statistical software package like SAS to input some data, process the

data, and output results. While the data and the computation of the data changes

for each individual and for each use, the overall experience remains the same. The

notion of programs being just code and data is contested by two differing arguments,

one by copyright and one by digital cultural artifacts.

With a traditional software artifact, like an accounting package, the software can

largely be described as code acting on data. When one is designing a digital cultural

artifact, however, such as a video game or a critical interactive, there is more to the

software experience than just the code and data. The software package requires some

form of input, — from another computer or from a user. A user of a program normally

is just that, a user. The person uses the package as a tool and treats the package

as an asset for completing a job. The application could produce a more meaningful

experience, with a person being invited to engage. If the experience requires more,

but does not ask much out of the user, then the user is a participant. The individual

is asked by the set of rules to partake in an interaction that is more than just routine,

but the application is the primary controller of the experience. If the rules established

require more than just input and the application requires that the interaction with the

system is directed by the participant, then the participant becomes an interactant.

While at first glance, the three terms may seem synonymous, all terms describe very

different experiences. A user just uses an application, while a participant is lead, and

an interactant shares in the process of production.

Does the type of interaction have any legal bearing on the software (i.e. does

the program provide something more than just being code)? As described by Calvin

Mooers the meer act of “running a program is an infringement of copyright” [Mooers

59

1975]. This is based on the argument that executing the code on a machine is always

different, similar to how a play is performed on a stage. As in a play, the actors will

stand in different places, with different postures, and will recite their lines slightly

differently with every iteration. The lighting will change given the equipment and

time of day, and even the audience will be different with each rendition. Software

shares similar traits, with data being loaded in different registers, the data being

processed being different, and the operator changing. Mooers’ paper paves the way

for licensing methodologies and subscriptions because it argues that there is more

to programs than just data and code. The act of executing the software and the

variables that accompany it are also considered.

While the argument of copyright is correct in discussing the variations in a com-

puter system when executing a program, there is a more human aspect to software

use that contends with Wirth’s traditional view of programs. An example of software

being more than just code comes from interactive video games. The definition of a

game as stated by Salen and Zimmerman is “A system in which players engage in an

artificial conflict defined by rules that results in a quantifiable outcome”. In a digital

medium, these rules are created and enforced using computer programs, or code and

data. The software creates a “magic circle”, which is “the space in within which a

game takes place”, and sets the game’s rules to create “a special set of meanings

for players of a game” [Salen and Zimmerman 2004]. Players are then allowed to

explore the magic circle, with the point of the code and data being to establish this

system of play instead of to produce a specific output. The purpose of the program

is to establish the system of rules for players to experience, not just the set of rules

to complete a task. This allows for the same software to create very different and

personal experiences for different players.

We use as an example the game Loneliness [Magnuson 2011b]. This game is

about a single pixel character who is tasked with walking upwards. As the player

60

walks, he will encounter many other pixels, some standing, some moving in circles,

some following other pixels, and others pursuing (or proceeding according to) random

paths. As the player approaches these entities, the pixels disperse and run away. This

simple mechanic can create a variety of emotions in the player and invoke a multitude

of play styles. Should one continuously try to meet the groups of pixels? Should one

just give up and continue the quest upward? Or should one change his strategy

(perhaps by running faster towards groups or by inching closer bit by bit) to see if

there is any form of acceptance? All these different play styles are supported by the

same set of code and data. Each person that interacts with the game will play it

differently and take something different away from the experience.

Another example is cited by Anne Balsamo in Designing Culture [Balsamo 2011].

She discusses different types of interactive experiences, such as the Reading Wall, a

giant wall comprised of three separate sixteen-foot long walls, each standing ten feet

high. These screens display ever changing texts from a multitude of languages. This

platform allows for different unique experiences for many. Each person experiences

the interactive differently, given the text that is being display and the emotional

investment of the viewers. From this we can observe that there is more to a program

than just code and data.

Loneliness and the Reading Wall are both examples of programs doing more than

just processing data. They show the human component that exists when a individual

interacts with computer software. Given this, Wirth’s notion of programs being code

plus data needs revision to include along with the code and data, the human interac-

tion. In the following chapter, the code of Ghosts is examined to help emphasize and

discuss many of the points raised in this chapter.

61

Chapter 5

Ghosts of the Horseshoe iOS Application

Ghosts of the Horseshoe is built for the Apple iPad device. An Apple family device

was chosen due to Apple’s standardization, including that of screen sizes. Both the

iPad and the iPhone have two established sizes: (1) the original iPad (9.5 by 7.31

by .37 inches) and the generation 1 iPhone and subsequent models 3 and 4 (4.5 by

2.31 by .37 inches); (2) the iPad mini (7.87 inches by 5.3 by .29 inches) and the

iPhone 5 series (4.87 by 2.31 by .3 inches)1. This allows for simplifying application

frame sizes, unlike Android devices which vary in size according to company. Another

reason for choosing an Apple family device was the portability and adaptability of

the code for the device families. A project created with one device in mind can be

easily ported to another. The iPad was specifically chosen because of screen real

estate as compared to the iPhone device and because iPads were readily available for

testing. While this decision allows for larger screen real estate, it does limit possible

dependable functionality. For example, we do not have solid GPS tracking due to

the fact that our test iPads have no network carrier and, therefore, must rely on a

third-party device–the Garmin GPS peripheral–as well as a reliable WiFi signal for

internet connectivity.

Unlike development for an Android platform, apps for Apple devices must be

developed on Apple computers, using Xcode, the Apple-supported development envi-

ronment that allows one to write code that can be tested using the built-in simulator.

1 It is anticipated that Apple will be releasing the iPhone 6 in fall 2014 and that it will be
available in two sizes–a 4.7 inch version followed by a 5.5 inch version. (“iPhone 6.” Mac Rumors.
2000-2014. Accessed 22 May 2014: http://www.macrumors.com/roundup/iphone-6/)

62

We have tried to stay up to date with the most recent version of Xcode. At the

time of this writing, Xcode version 5.0.0 was used on a Mac OS X 10.8.4 system.

Applications that run as native programs for iPads must be written in Objective C,

as compared to applications being coded in Java for Android devices. Objective-C is

a superset (or descendant) of the C programming language, similar to C++ or C#.

As a superset of C, Objective-C inherits much of the primitive types, simple syntax,

and control flow structures that originated with C. C does not have many modern

programming paradigms, so object oriented methodologies, language-level support

for graphics management, the ability to define class structures, and dynamic typing

have been added to make Objective-C more dynamic and object oriented.

While the base language of Objective-C is complete, much of its power comes from

supplemental libraries and Application Program Interfaces (APIs). APIs are used to

add new functionality to a programming language while affording selective choice

of functionality. A common API, the inherited base class NSObject, is a standard

library that was introduced to Objective-C with the software API OpenStep. This

library, known as NEXTSTEP, was released by Apple in September 18, 1989 and

allowed for more advanced Graphical User Interface (GUI) systems. Other known

APIs provide ready access to display, color, touch sensing, Augmented Reality, Voice

Recognition (e.g., Siri), etc. While providing for new functionality, APIs tend to force

an application to fit into an overall set structure [Singh 2003].

There are many different software libraries/packages that are provided by Apple,

with many more being added with each update to standard template libraries. There

are also user/professionally distributed libraries, often supplied on GitHub (an online

repository for code sharing), which provide further functionality options. The ability

to add just controls of augmented reality without adding in unneeded functionality of

photo image processing helps with keeping overall code structures simple and efficient.

Apple supports many common functionalities, such as the ability to play audio and

63

video, and to modify images. These are done with common libraries that are used

so often that Apple has pre-built them into Objective-C’s standard libraries. Other

not so common functions usually have a respective library created and supported

by a third party. In the case of Ghosts of the Horseshoe, Qualcomm’s VuforiaTMwas

included to allow for augmented reality support, AFNetworking was added to simplify

connections with the backend server, and Cocos3D was added to allow for 3D model

viewing. These different libraries are being used because Apple does not currently

support them; and although Apple continues to develop and add new libraries to the

Apple suite that comes with updates of Xcode, the company has yet—that is, as of

Xcode version 5.0.0—to include libraries that provide the kind of functionality that

Ghosts requires.

Extra libraries for an Xcode project have to be connected using Xcode’s project

settings tab. All imported libraries, the type of device being used, a connection to

any “Storyboard”, the app delegate, and many other project settings are present in

this section. Given that 3D party libraries are not built in, linker references must

be established so the project has direct access to the libraries; otherwise the project

cannot find the referenced libraries. When everything is connected, all major libraries

must be included in the prefix.h, so the entire project has access. The prefix.h

file is a global header file that the iOS application uses to make sure all classes inherit

specific libraries and APIs.

5.1 The Application Flow

A newly-created “single view” app in Xcode is provided with an “app delegate” class

and a “view controller”. The displays on the screen that a user sees, referred to as

“views”, are controlled by the view controller, with a background “navigation con-

troller” containing the many view controllers. The navigation controller is a standard

class for the display of multiple views and performs this task by implementing a stack

64

of views. When the app begins execution, control is transferred from the “main” to

the app delegate, which acts as the central hub. The app delegate sits at the top

of the application and functions as a kind of puppeteer. The app delegate controls

many of the interactions with the device’s operating system (OS). If the application

is sent to the background on the device, brought back into the foreground, or even

terminated, the app delegate has to negotiate with the OS. The app delegate tells

when one puppeteer is required to exit the stage and when the next one is allowed

to put on a show. Within the app delegate the initial action is to push a “root view”

(e.g., a splash screen) to the navigation stack. Once this base is established, it is

possible to push and pop different views on and off the stack. When a new view is

required, it is pushed onto the stack, keeping the entire previous view intact but in a

paused state. When a view has finished its usefulness, it is removed (see Figure 5.1).

One peculiar property of the navigation stack is its ability to break stack rules. Com-

monly, only pushing and popping are allowed when interacting with a stack structure,

but in Objective-C it is possible to treat the navigation stack as a linear array and

to remove a view from the middle (e.g., steps 6 and 7 in Figure 5.1). This is helpful

for modifying control flow of the application, because there are instances in which a

pure stack can be cumbersome.

In Xcode, there are two methodologies for both (1) creating and maintaining

the elements displayed on the screen and (2) the flow of the screen display in the

navigation stack: using the Storyboard or doing it programmatically. The Storyboard

method appears to be Apple’s preferred method. The Storyboard is a drag-and-drop

interface that simulates an iOS screen and the flow of an application. It looks like a

state diagram with each view appearing with arrows representing segues to subsequent

views. The interface calls variables by means of arrows and the setting of properties

by selecting options from a menu (e.g., setting font sizes, font colors, background

colors, etc.). While it can look very sleek and clean, using the Storyboard method

65

Figure 5.1 Stacks of Views

separates UI elements from their instantiation. To edit the properties of an object

(e.g., size, font style, color), a programmer has to look in both the Storyboard editor

to change the properties and within the code to change the functionality. We found

it overly complicated that things are hidden in the background and that we must

use Apple’s requisite commands to connect simple elements to code fragments. We

prefer to implement both screen display of elements and flow of control by using the

Objective-C program language directly. We create all objects in code and manage

the navigation stack manually. While this is initially more difficult to set up and

maintain, we find it easier overall because all related code is in the same location.

5.2 Objective-C Classes

We have made use of only a small subset of the many classes made available in Xcode,

Objective-C, and the iOS libraries. Ghosts of the Horseshoe makes extensive use of

66

UIViewcontroller, UIView, UIButton, UIScrollView, and UIGestureRecognizer.

In conjunction with the navigation controller, a UIViewcontroller helps to control

the flow of the application. It is an intermediary between one or more application

views whose function it is to interpret user interactions with a view’s content features

and to request actions from the operating system so the device knows what actions

to perform. The UIView is where all visible elements of the application are presented,

including images, buttons, text fields, etc. A UIView can also be trained to recognize

gestures and relay them to the view controller for action. The UIViewcontroller and

UIView are part of a Model-View-Controller design pattern that specifically separates

user interface (UI) display and background control to simplify coding.

Similar to the app delegate’s control of the schedule for the puppeteers and

the navigation stack’s control of the foreground, the UIViewController and the

UIView control the setting of the engagement. The navigation stack sets the loca-

tion, but it does not set neither the style of the stage nor the background props.

UIViewControllers and UIViews both inherit from the NSResponder NSObject in

the UIKit framework, but both have different functions. UIViewControllers are

built for navigation and have many functions designed for interacting with the stack.

UIViews are built for drawing to the screen and commonly have functions designed

for modifying the visual display of the view. Only UIViewControllers can interact

with the navigation stack. This means that neither buttons nor gesture recognizers

created in a UIView can directly transition to a new view; such transitions must be

done by invoking a delegate or passing through the Notification Center. The assets in

the UIView are implemented in the UIViewcontroller. The UIView assets are free-

standing and can be transferred from one view to another, but a UIView cannot be

displayed to a screen without a view controller. Conversely, the UIViewController is

not as flexible in its display capability as a UIView. While a UIViewController has

a primitive UIView present within it, creating an independent UIView object helps

67

Figure 5.2 Views and Subviews

to modularize large parts of code and simplifies structure overall. Each UIView can

contain a single idea and loads all related displayable content. Stacking each UIView

layer on top of each other allows for a multi-part dynamic display that separates

all complicated parts into modules but creates the illusion of single image. A good

example of this dynamic in Ghosts is the participant icon trail that is drawn onto the

map in real time. The map and participant icon are all stored in separate UIViews

that are connected to the UIViewController. The trail that follows the participant

icon around the map can only be done in the UIView with the drawrec method. (See

Figure 5.2.)

Other class objects such as UIButton, UIScrollView and UILabel add special

functionalities common to interactive applications. UIButton is derived from the

base class UIControl, which is used to convey user intent to an application. While

UIControl cannot be used directly, its subclasses are used by many objects to es-

tablish a common behavioral structure. UIButton allows for “button” events, such

68

as pressing inside or outside a button, holding one’s finger on a button, etc. Ghosts

uses buttons for loading content, switching to and returning from views, and for di-

recting the application to play video and audio assets. UIScrollView is a special

view with a built-in gesture recognizer that implements scrolling. Gesture proper-

ties like multi-touch swiping, tapping, pinching, rotating, multi-finger actions, etc.,

are implemented in iOS applications using the UIGestureRecognizer. Unlike the

UIbutton or UIScrollView, which are both implemented with a visual cue on the

screen, the UIGestureRecognizer’s presence is invisible. The UIGestureRecognizer

records and waits for actions. We have used both buttons and gesture recognizers in

Ghosts; they provide transitions of content views and cause actions via the navigation

controller.

Within Class objects, there are two types of functions: “class functions” and

“instance functions”. Class functions are usually signified by a “+” in Xcode and are

global functions of a class that can be called at any time. Instance functions, signified

with a “-” in Xcode, can only be accessed by creating an instance of the class and

calling the function from the object. This is important because class functions can

be called globally without having to create an object, while the instance functions

are perfect for maintaining specific individual objects. One issue that we have had

to consider while coding Ghosts is that class functions and instance functions cannot

mix (e.g., a class function cannot call an instance function and vice versa).

All constructed classes have an associated header file (filename.h) and an associ-

ated implementation file (filename.m). The header file contains forward declarations

of all methods that need to be accessed by other class objects and defined properties of

the class. All required imports for the class are also contained in the header file. The

implementation file contains an interface similar to what is seen in the header file, but

only contains global variables. The implementation section in the implementation file

contains any synthesized variables at the top, followed by the standard initialization

69

functions, defined initialization functions, and functions used to maintain the class.

5.3 Ghosts of the Horseshoe Class Structure

The flow of Ghosts can be broken down into several major parts: Global Control

classes, Main View Controller classes, Content View Controller classes, general util-

ities, licensed libraries, and the Content Management classes. Licensed libraries in-

clude AFNetworking, Qualcomm’s VuforiaTMAR, and Cocos3D. The Global Control

classes contain the classes GlobalState and NoteLogger. GlobalState contains all

the variables and functions required by the entire application. These variables and

functions include the size of the device screen, the size of the font used throughout

the application, the color and style of the font used in buttons and labels, important

images that are used repeatedly, and the calculations that determine the location of

the Horseshoe.

NoteLogger records every action that is performed within the application. All

other classes and objects pass information to the logger to be recorded in a time-

line. This timeline registers how long a participant stays on a specific screen, which

buttons are pressed, how long the participant spends reading content, and where the

participant has walked on the Horseshoe. In other words, the NoteLogger performs

as a scribe, recording everything that transpires during an event. Once a partici-

pant has finished interacting with the application, NoteLogger saves the record of

the experience as a file that uploads from the device to the server at the next WiFi

connection.

Other important classes include the main view controllers and the content view

controller classes. These view controllers and the navigation controller (the “Nav-

Controller”) control the flow of the application. S01_SplashViewController and

the UIview S01_SplashScreen control the application’s splash screen.

S01_SplashViewController loads the introductory video and then presents the par-

70

ticipant with a fingerprint. Upon pressing the fingerprint button, the splash screen

is pushed to the NavController and implements a transition from the splash screen

to the main map screen.

The next view consists of S02_MapViewController and S02_1_MapScreenView.

S02_MapViewController is the main hub of the application. This class contains

functions that record a participant’s GPS location, activate the options menu system,

and make possible the transitions to different views. This view uses CoreLocation

to record the device’s GPS location, which stores in a separate array. This loca-

tion is then passed to the S02_1_MapScreenView, which subsequently repositions the

participant icon as well as redraws the trail that follows the participant around the

Horseshoe. This class also constructs the options menu found on the left side of

the screen. It creates the UIViews that load the options selection menus and uses

notification centers to pass changes to associated subviews. The menu controls font

size of all text presented in the content loader, the color of the trail that follows the

participant, the kind of map (original Sanborn map, a screenshot of the Google view,

or some alpha-channel constructed variation of the two) displayed, whether or not the

paths and legend are displayed on screen, the ability to load the camera for taking

pictures, and the ability to email comments and suggestions to the development staff

regarding future development of the application. If pictures are taken, the applica-

tion will send the participant to a review screen that will allow him to add text to

the image and submit it to a database for review by the application administrators.

These screens are part of a separate viewcontroller, but do nothing more than allow

for the addition and passing of text to the server.

The final major part of this class is the navigation stack controls. Given that some

content points require transitioning to a new screen, there is a notification center in

place to catch the command to transition and do so accordingly. S02_1_MapScreenView

contains the content location icons, the map displayed on the device, and the trail

71

that follows the participant as he traverses the Horseshoe. These are placed inside a

UIView class because of special functions that only exist inside UIView. The Drawrec

function that handles the participant’s walking trail is drawn and maintained in-

side the UIView. This function only exists as part of the UIView class. The other

prominent component belonging to this class is the fingerprint icon buttons. The

class loads up two subviews that contain both black and white fingerprints, as well

as all associated buttons. The different subviews of buttons exist because of the

different colors present on the Sanborn and Google maps. All fingerprint buttons

are attached to a delegate method that examines if the scrollview parent object in

S02_MapViewController is zoomed in or zoomed out. If the scrollview is zoomed,

the delegate method resizes the buttons to keep them the same size at all zoom levels.

The notification center inside this class listens to the options menu contents, changing

the color of the participant’s content trail and switching between the black and white

fingerprints when a participant toggles from one map view to a different map view.

The next view controllers all have the same basic functionality, but are de-

signed with different displays in mind. CV_ARViewController loads up Qualcomm’s

VuforiaTMAR package and instantiates “EagleView” to help the iOS camera recog-

nize QR codes and load associated content. In some instances, images that the AR

loads are pressable. If a pressable image loaded by the AR is pressed, the partici-

pant is presented with content. For example, CV_PanoramicViewController uses a

scrollview to place a large image on the background. This image cannot be zoomed

in any way but can be panned by swiping left and right. There are also content

points that are present on the screen that have the same function as the sites on

the map. CV_PictureViewController also uses a scrollview, but the main func-

tion is to allow the participant to see details present in the image by being able to

“expand” (zoom in) and “pinch” (zoom out). Each picture loaded can be zoomed

two times its screen size. Some images, such as receipts, display nineteenth-century

72

handwritten script that many twenty-first century readers find illegible. To address

this obstacle, the scrollview loads invisible buttons; that is, button objects, whose

presence is not defined by visual cues, are placed on top of each word. When pressed,

any associated text appears as reader-friendly typeface. CV_VideoViewController

loads up any video content. It instantiates an MPMoviePlayerController to play

the video (as well as animation) and the standard back button to return to the pre-

vious screen. Finally, CV_3DModelViewController loads Cocos3D to display any 3D

models incorporated into the application.

While there are various types of content, the main content class referenced by

most view controllers is the ContentScreenViewLoad class. This class is called by

any site button to search the associated data structure and pull all related content.

This uses the site unique ID and the time period to pull all views. The background

of the screen is darkened and all content associated with the specific site and time

period is presented in a UIScrollView. If there are multiple time periods, associated

buttons (up and down arrows) are added to the screen to indicate that one can change

the time periods. This class is a subclass of UIView and uses the alpha channel to

place this object on top of everything else inside the view which instantiated the

object. All content that is shown inside this class is called from the data structures

assemble and port class ContentStarter.

Three third-party libraries were included in the application to afford additional

functionality that is not supported by base Apple libraries. AFNetworking was in-

cluded to simplify and streamline pulling data from the server. It works by creating

a get request from the URL of the location where the data is stored. The URL is

provided by the server and is known by the application in advance. The application

then waits for a response from the server. Either the data is returned to the appli-

cation to be parsed into the data structure or the application receives an error. An

error means no data is accessible. Factors underpinning an error instance include,

73

for example, loss of connection, absence of data on the other end, wrong port access,

etc.. The data that is returned from a successful query is bundled in JSON. The

application takes the JSON file, decodes it into a NSMutableDictionary and is used

to populate the main data structure tables. These tables are then stored as a plist

on the device. The backend server that passes the JSON objects is coded in Python,

and has its own built-in JSON modules for compressing and sending data over the

internet when requested.

Qualcomm’s VuforiaTMAPI was also included to enable QR code functionality. At

the time of development, reading QR codes was still difficult. Many different software

packages exist to read QR codes, but few allow for the creation of codes from real

world objects. Qualcomm’s VuforiaTMallows the iOS device to recognize real world

landmarks as QR codes and subsequently load content. While it is impressive to

use any object as a QR code, it does have drawbacks. The uniqueness of the QR

reference image, as well as factors of sunlight, weather, and shading, affect how the

camera reads the QR object. If the reference image used for the QR code does not

have distinguishing features, the software cannot recognize the real world object.

Likewise, because we are checking against an image database, an image taken in

perfect conditions (optimal sunlight, cloudless sky, absence of shadows, etc.) is only

viable if the conditions are recreated at the time of participant interaction. For

example, a perfect image serving as a reference for a QR code will not be recognized

by the device on a rainy day because what the camera “sees” will not compute as

matching the landmark object.

The last third party API used was Cocos’s 3D. This is a 3D model-loading software

built for Objective-C. This software allows a participant to manipulate any 3D model

loaded to the view. An object can be rotated around an axis so that different angles

can be explored. There is also the ability to zoom in on details.

Because many objects, such as audio buttons and instances of particular UILabels,

74

Figure 5.3 Flow Chart of the Application

are commonly reused throughout Ghosts, special general utility objects were created.

These objects include GHButton, GHTextView and GHLabel. GHButton, GHTextView

and GHLabel are all expansions of UIButton, UITextView and UILabel, respectively.

These utility objects determine instantiating specific properties (font sizes, font style,

color, etc.) and whether or not an audio element accompanies the pressing of a

button. This makes the objects inside the rest of the code simpler and allows for easy

modification of all similar objects. An example of program flow using the defined

classes discussed can be seen in 5.3.

5.4 Ghosts of the Horseshoe Data Structure

In addition to class structuring, it is important to understand the data structures in

place for holding the content presented in the application. The device’s main data

75

structure mimics that on the calliope server, which hosts seven data tables, each of

which contains separate data objects. T03_Sites controls all site content. A site

is a location on the screen that has associated “content point” information. Each

site contains a unique ID, a title, x- and y-coordinates, a site-SubSite ID, latitude

and longitude GPS points, and a data table ID. The unique ID identifies specific

data objects inside the data structure that belong to a specified site.2 The siteID

is used across related tables (e.g., T04_ContentPoints and T01_SiteDetails) for

querying content that is relevant to any one site. The associated title (or name) is

for people editing the database or debugging the data structures. It is easier for a

data manager to debug and test a data structure’s validity by reading an English

word instead of trying to remember an arbitrarily assigned number. Each site has

a pair of associated x- and y- coordinates that is tied to the size of the map image.

The x- and y- coordinates are associated with GPS coordinates for all map-related

sites and are user selected for all other views. The siteSubsiteID separates map

points from other view controller content points. For example, pressing a thumbprint

on the map invokes the same function as pressing the sound button on the Gressette

Room panoramic image. If the site is a subsite, then a related dataID field is used

to determine which view controller and transition background this site appears on.

T01_SiteDetails contains all related information needed to display a content

point at a specific site. Because not every site has secondary or tertiary backgrounds

or audio, the T01_SiteDetails table is checked when a site is loaded to the screen. If

there are any special backgrounds, or audio or video elements required for display, that

is, aside from the content itself, they are stored inside this table. This data structure

2It is important to note that any data object may be called more than once. This allows for a
one-to-many relationship inside the database (i.e. one site can have multiple content points). Given
that there are many pieces of information associated with one site, this not only has to be mimicked
inside the data structure (with the use of one-to-many relationships), but also in code (with for-loops
to iterate through the many items and dictionary structures holding many items for a specific key).
All code was written with the one-to-many concept, making the code more generic and adaptable.

76

has a unique ID called SiteDetailsID and a site reference ID called SiteID. SiteID

is the same as the unique ID in the T03_Sites table. Other fields managed through

SiteID are SiteDetailsPicture, SiteDetailsPictureType, SiteDetailsAudio,

SiteDetialsAudioType, SiteDetailsVideo, and SiteDetailsVideoType. These

six fields contain picture, audio, video, and the associated file type extensions (e.g.,

.png, .mp3, .mov, etc.).

The next table in the hierarchy is T04_ContentPoints. This table connects

the sites (e.g. each individual location) with groups of content to be displayed.

ContentPointID is the unique ID for the table. ContentPointTitle is the title for

each content point and it appears at the top of each content point page. This title

does not have to be unique for each piece of content: only the ContentPointID must

be unique. Since the application covers many different time periods,

ContentPointYearID is used to determine which content point loads according to

year range (i.e., 1801-1820, 1821-1840, 1841-1860, 1861-1880). It is an ID because

there is a separate table that contains the naming of time periods. The final cell in

T04_ContentPoints is the SiteID field, which connects back to the T03_Sites table,

linking content points to specific sites. Given this structure, there is a many-to-one

relationship with many content points being attached to one site.

Content points contain all presentable information. Because one content point

may have many different pieces of content (i.e. text, images, etc.), a separate table was

created for gathering all Ghosts information. Aside from the unique identifier DataID,

there is also the connector field ContentPointID. Other fields control the type and

placement of each piece of content. xCoord and yCoord control the placement of the

piece of content, while the dimensions of the content view are controlled by the width

and height fields. The final three fields control the type of content. DataTypeID

determines if the type of content at the specified location is a video, image, text, or

a screen transition. DataInfo and DataInfoFileType are used to store the content.

77

DataInfo privileges text over other file types. DataInfoFileType is only referenced

when DataTypeID indicates that the DataInfo is not text, but rather another file

type with an associated extension (e.g., .png, .mov, .mp3).

All remaining tables are associated with the DataID table. These tables expand

on the data objects present in content points by expanding functionality. These extra

tables exist mainly because not all data objects need the extra fields. T02_Source

deals with sources for each piece of data; T06_PictureTransistionDetails deals

with translations of documents; and T05_DataTransitionDetails deals with screen

transition data points. The fields in T02_Source consist of the associated unique

ID (SourceID), the data link (DataID), and associated fields that identify the perti-

nent source. The source fields include the SourceTitle, SourceWeb, SourceAuthor,

SourceYear, SourcePublisher, SourcePlace, SourcePages, and SourceOther.

T05_DataTransitionDetails contains the same fields as the T01_SiteDetails

table except for the SiteID is replaced with the DataID. This table assists with screen

transitions; but it does not provide information for the content loader. When a piece

of content is supposed to transition to a new screen, such as loading a photo or video,

this table contains the associated backdrop. For example, loading the Gressette Room

requires the background image of the Gressette Room panorama (which a participant

can swipe to pan right and left across the image). The T05_DataTranisitionDetails

table holds that information.

The T06_PictureTransitionDetails table is the last table. Some images are

digital scans of old documents like receipts, letters, ledgers, and disciplinary records.

All these documents are handwritten and the script can be difficult to read. When a

participant transitions to an image that has handwritten text, this table is queried,

and if there are words to be translated, they are placed on the screen as pressable

buttons. This table consists of a unique word ID, PTDID, and the associated DataID.

Because these buttons are word element-specific, they also have x- and y-coordinates,

78

Figure 5.4 Content Relations

as well as information regarding the button’s dimensions. The final field displayed is

the word itself “translated” into legible typeface. The relationships for all the tables

and how they interact are shown in Figure 5.4.

The class that connects all the data tables is the ContentStarter class.

ContentStarter controls the network connections and pings the server if content

is available and/or needs to be downloaded. It handles the JSON input from the

server and parses all data points into the respective tables. If there is no data,

ContentStarter polls the web server, downloads data, and then stores it on the

device. If there is content on the device, ContentStarter loads that after check-

ing if it’s up-to-date. It contains all data structures, commonly as a collection of

NSMutableDictionary objects, and also handles any requests for data. ContentStarter

controls all data requests. If a screen requires content, ContentStarter will search

the requested data table, and if it exists, construct an array of views. This array of

views is then passed back to the caller. The content starter takes a site location ID

and searches the associated content points (T03_ContentPoints) for all relevant data

79

elements. It then takes the new array of content points and finds all associated data

objects (T07_Data). ContentStarter then builds an array of views, with each view

being a separate content point with each data object placed on the view. This array

is then passed back to the caller. No view controllers have direct access to stored

content.

5.5 Ghosts of the Horseshoe Data Types

Content comes in different formats. For Ghosts, content includes text, still images,

moving images, and 3D models. Text can be modified according font size, color

and type. All of these properties are stored in application (in app). The font used

for all titles is Apple Chancery while the general font throughout the application is

Georgia. Images come in different file types. In app, PNG is commonly used due to

the inclusion of an alpha channel, and is preferred over JPG for this reason. (JPG

is used, but sparingly.) The alpha channel allows for transparency in an image and

the ability to overlap many different components of a complex image. The ability to

separate parts of an image into separate “layers” mimics what is happening inside

Ghosts with the many different views. It makes modifying images easier. For video,

MP4 is mainly used given its ubiquity and portability. While other video file types

exist, MP4 is the most popular due to its compression algorithm. Music is stored as

an MP3 for similar reason as video is stored as MP4. It is one of the most popular

file types and is widely supported. All content and its differing formats are stored in

two locations. Currently all images, videos, and audio are stored in app due to the

large file sizes. All text related content is stored on the server. Eventually, all data

will be stored server side and passed into the application.

80

Figure 5.5 Content Field Screen Location

81

Chapter 6

Usability Assessments

To analyze Ghosts of the Horseshoe and determine if it meets the goals of a CI,

concerns specific to digital humanities, human computer interaction (HCI), and com-

puting must be addressed. The application must provide adequate framing for content

to meet the DH requirement. The application must meet certain design components

discussed in Chapter 3 to show it meets usability requirements. Finally, the appli-

cation must be coded properly using techniques to help establish rules that illude to

both the framing and heuristics.

For Ghosts of the Horseshoe to provide adequate framing for the content, the way

in which all text, audio, video, and gamic rules must help establish the historic Horse-

shoe narrative. There is little recorded history that survives to this day about the

slaves that built and worked on the University of South Carolina campus. Receipts,

discipline records, and notes are all the textual information that remains. There are

no images or videos of the slaves. It is important that Ghosts frames this apparent

lack of knowledge while also expressing what knowledge we do know.

For Ghosts of the Horseshoe to meet the HCI requirement, it must pass the five

specific heuristics discussed in Chapter 3. Ghosts will operationalize the concepts of

“usability” and “effectiveness” by following suggestions proposed by Hornbaek [Horn-

baek 2006]. Usability is defined as the “[e]xtent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency, and satisfac-

tion” while the concept of effectiveness is defined as “[a]ccuracy and completeness

with which users achieve specified goals” [Hornbaek 2006]. To conclude that software

82

is usable, it has to meet its intended goal in a manner that shows it was effective in

performing the task it was created for, that it is efficient in how it completes the task

and that users are satisfied enough with the software package to consider continu-

ing to use it. The most important measure of usability to consider is effectiveness,

because efficiency can be studied by analyzing the algorithms, and because an exit

questionnaire can be used to determine satisfaction [Hornbaek 2006].

Of the different methodologies to measure effectiveness, we will be using binary

task completion and recall. Measuring binary task completion is done by recording

the percentage of tasks that users successfully complete. With the Ghosts application,

the use of the interface and features without any guidance from an external aid or

guide was analyzed. Tasks one would consider would include (but not be limited to):

navigating to the menu, returning to the map screen from the menu, finding content

on the horseshoe, scrolling the screen to new content points, figuring out how to scale

images, discovering AR and other sub screen features, getting AR to read the QR

codes, navigating back to the content screen, and returning back to the map. If a

participant can perform these tasks without aid, we would score a positive mark. If

the participant fails to perform tasks during the duration of the test or requires help,

we would score a negative mark. If more than 95the binary task completion portion

of the study.

Use of recall would also be important given that participants are required to

repeat tasks. If a participant loads content, realizes how to scroll, but then forgets

how to scroll the next time around, we would conclude that the application needs to

be changed. Bayles measured the recall abilities of users who viewed banner ads in a

2002 study [Bayles 2002]. Individuals were tasked with differentiating between banner

ads and distracter ads and recalling webpage layouts given the ads. For Ghosts, using

a questionnaire that targets certain aspects of the application, such as asking how easy

it was to navigate or how often did they get confused on their current position in the

83

application can help determine if individuals remembered how to use the features and

is valuable in determining the applications effectiveness. This method was chosen due

to time constraints. Given how hard it is to assess questionnaires, a more quantitative

assessment of recall would have been to give participants the task several weeks later

and assess their recall performance or to ask them to view a screenshot of the CI and

ask them to recall what each button does.

Another measurement to test effectiveness is the time needed to learn and com-

plete tasks. Participants who use the application will have all their information

recorded, from every content point read, every step taken and every button pressed.

The time between tasks can be used to assess how fast individuals are picking up the

layout, the position of information, and the interface choices.

Usability and effectiveness will be measured using binary task completion, recall,

and quality of outcome. Once the application meets defined standards, which will be

chosen based on future literature review, the application will be deemed usable and

effective. If the design choices fail to meet the standards described, modifications to

the program will be performed to improve each measurement.

Another measure that can be tested has to do with improvement in design. Ghosts

was built with the final user in mind. All design choices were based on improving

the experience and presenting the information in the simplest possible manner. This

included several design assessments from fellow colleagues over the course of devel-

opment. The look and feel of the application and the way the application flowed

were examined by fellow developers and in consultation with Dr. Jenay Beer. Semi-

structured usability assessment were administered throughout the application devel-

opment cycle. Approximately N=25 participated in the usability assessments during

each of the three major application presemtations. On smaller usibility tests, usu-

ally with smaller classes or family demonstartions, approximately N = 5 participated

in each demonstation. The participants were recruited from /em Ghosts demon-

84

startions at the end of Gaming the Humanities, Critical Interactives, and Critical

Interactives: The Wall. University 101 courses, MART 701 students and family also

participated in usibility testing. The methods used to evaluate the Ghosts of the

Horseshoe include questionnaires, user tests, and heuristic evaluations. Question-

naires were administered after each demonstration via Survey Monkey. Example

questions include <list>. User tests were observational by nature. Participants were

asked to use the CI in a group setting, and developers observed their interactions.

Observational metrics included recall and ease of use. Finally, heuristic evaluations

were used at all stages of the design process. The application was given to developers

at the beginning of each course, being Critical Interactives and Critical Interactives:

The Wall, and their usibility results were used to determine critical flaws in design

to be fixed as the semester progressed. The observational results would then be the

foundation to improving the design for the next prototype. When participants were

able to navigate the CI without getting confused, we concluded that we had a good

design for the CI. Of the design elements examined, it was the menu based system

that best allowed participants to adjust settings in the application, the way the ma-

terial was represented and the accessibility of content and if participants were able to

read the content easily under differing weather conditions. The usability data was not

collected in a controlled setting, and thus not formally statistically analyzed. Instead

a rapid prototyping approach was used were usability data was quickly assessed by

the developer team and immediately incorporated into the prototype design in an

iterative fashion.

For Ghosts of the Horseshoe to be computationally successful, all code sould be

as computationally efficient as possible, easy to modify and read, and sould follow

common object-oriented programming (OOP) paradigms. Code is considered effi-

cient if the algorithm used does not break on execution, handles special cases that

could potentially break the application logic, and executes in a reasonable amount

85

of time (i.e., cycles through data as quickly as possible). If the code is documented

correctly: a good choice of function and variable names, and accurate data types for

variables, then Ghosts will be easy to read and modify. When it comes to OOP, each

constructed class should include the following: proper measures for hiding data from

other classes, correct getters and setters for all variables that each class requires,

and proper inheritance (i.e., each class inherits what it needs and nothing extra).

Other considerations relate to connectivity with outside systems. Bandwidth and

memory constraints for a mobile device while communicating with the backend data

server were also considered. If Ghosts is able to pull content from a server without

experiencing issues, then pulling the content was considered a success.

86

Chapter 7

Discussion

7.1 Conclusions on Digital Humanities

Ghosts of the Horseshoe frames its content not only using the framing constructs of

text, image and film, but also with its code and the system the code creates. As

discussed in the proceeding chapters, programs are more than just code plus data

[Balsamo 2011]. When an individual interacts with a program such as Ghosts, there

is more to the experience than just the end product produced by the code. Ghosts of

the Horseshoe frames content with the code by the choices made and the algorithms

that are used. Algorithms are used to produce the images, load content, track the

participants’ location on a map and record their progress through the application.

The speed of which these are performed, the amount of space in which the algorithms

store information and the options available are all framing devices to be considered

with the code. The aspect ratio of the images, the size of the text to be read, the

quality of the film, and the layout created by the code can affect an individual’s

interpretation of the information being presented. By framing an image small, with

large text, emphasis on the text would be more relevant. By making it difficult to

find and watch film placed within the code, there will be a diminished impact to

any content within that film and any framing of that film. The framing by the code

not only affects what can be seen, but what cannot. The coding process requires

many decisions to produce a functional program; these decisions will emphasize more

important features and regulate minor features and thus could cause greater emphasis

87

on certain framing devices and, in the extreme, refute others entirely. If chosen,

certain types of content can be ignored entirely by just not coding in the ability to

use such content. Because of this, much care was taken when developing Ghosts of

the Horseshoe to make sure the framing of the content is faithful to the history and

that the content can be expressed in a fashion that produces the desired message.

Even the design of the data structures has an effect on how content is framed

and experienced. During one of the early builds of Ghosts of the Horseshoe, data

was stored in a hierarchical design. This meant that only certain pieces of content

could be accessed through a specific portal. This allowed for easy retrieving of data,

but it was a very rigid structure that only allowed a specific type of interaction with

content. When the design specifications changed to a more data centric model, having

nested data clashed with the new methodologies in play. Ghosts of the Horseshoe now

frames its content by means of multiple tables. Content is loaded from the server into

one of eight NSMutableDictionary structures. These dictionaries contain the tables

pulled from the server with keys being associated with other reference tables. The site

dictionary uses the SiteID as well as the ContentPoint table. This is done so data

retrieval is fast. The goal of content points is to coalesce data information and be

accessed from specific sites, making it intuitive to use SiteID as the key of the content

point table. The same logic applies for the data table and the contentPointID. The

NSDictionary structures provide the basis for how the content is displayed. The

data table contains placement x- and y- values for each piece of content. This gives

the content administrator the ability to create any look and feel for the content.

Ghosts of the Horseshoe is about the history of the historic Horseshoe at the

University of South Carolina in Columbia, primarily the history of slavery and of the

enslaved persons that built the Horseshoe. But this is not the only history being

presented to a participant. The development process of an application also produces

a history about the design choices being made, the design decisions lost, the way in

88

which content and its storage changes and the way in which the application develops

into a finished product. This history, in essence the rough drafts of code and the

application, is often overlooked because many do not consider the amount of work

and the number of iterations required to produce a solid application. Features that get

implemented in an early version, for example the ability to select different time periods

before interacting with the map, get removed in later versions due to complications in

framing the content’s message. Similarly, features get emphasized more or even added

in later versions, such as the ability to translate text of old documents, to improve

the quality of the application. All this affects the final framing of the application and

the balance between what is most important and what is possible.

The design choices for Ghosts attempted to emphasize the lack of knowledge

about the enslaved persons who built the Horseshoe. This is present in not only

the content itself, but also in its framing. The fingerprint has been chosen as the

button icon because it is one of the few remaining physical artifacts of the enslaved

persons that is not a receipt or discipline record. The Sanborn map has been chosen

because it is most likely the best map of the antebellum campus and buildings. The

parchment used as the background for content points has been chosen to suggest the

historical nature of the material. The compass rose icon to represent the participant

has been chosen because it is a standard image found on maps and it thus seemed an

appropriate icon for a participant engaged in an exploration of the Horseshoe.

Content is presented as text, images, moving images, animations, 3D models,

and audio. In some instances, these contents overlay the real tiem view on screen

(augmented reality). Each has its strengths and weaknesses. Text is used to express

many concepts and to get the participant to think about the Horseshoe. Images have

the power of immediacy and were used when available. These include display receipts,

portraits, photographs of old structures, and other documents. These media artifacts

help show some surviving documents of the enslaved persons who built and worked on

89

the historic campus. Moving images have even greater power and are used to convey

abstract concepts, such as how the wall was built or the time it took to complete a

given task. AR and pannable images allow for more interaction with content, going

further in depth about a specific location. AR and the 3D model viewers allow for

viewing 3D models of bricks and buildings in the context of the present day site.

Finally, audio was used to build atmosphere and give impact to events. Audio clips

included environmental sounds, decisions made from the debate society and slave

interpretations. All design decisions were made to frame the content in a way to

create a compelling experience for a participant.

7.2 Conclusions on Human Computer Interactions

The target demographic for the Ghosts of the Horseshoe Critical Iteractive (CI) is

University 101 (UNIV101) students and the rest of the university community, visitors

to the campus (especially prospective students and their familes), and historians in-

terested in the Horseshoe. With this in mind, presenting content was at the forefront

of development. How the content looked, how it was presented, and how it was navi-

gated was examined. In the first version of Ghosts, content was presented separately

on individual screens, and a participant had to delve deep into a menu-driven system

to reach content. This prototype was built for the iPhone. When it was tested by

the developers, it was decided that the screen real estate was too small for the goal

of the application.

The next iteration of the application used the larger screen of the iPad and became

more menu-driven. The developers decided that the ability to select the different

types of content was important. Given the change and growth of the Horseshoe over

time, content was broken into 20 year intervals. This version also treated major

content concepts such as augmented reality as the focal point. User testing of this

version found the menu systems simple to use, but the content difficult to get to.

90

After another test with participants, it was decided that the content was too difficult

to find; traversing up and down a hierarchy of screens to see new content was too

cumbersome.

The third iteration focused on fixing content presentation, with content being

brought to the forefront. The menu system was relegated to the participant icon and

the content was given precedence, with AR and others sharing the same scope as

text or small images. In user testing, this version performed well, with participants

being able to navigate to all types of content with ease. Participants were also able to

change time periods without difficulty. What was learned from this testing phase was

that while content was present, it was difficult to tell if there was more content present

at a site. Some site locations had time periods with one piece of content, while others

had multiple pieces of content. Participants commonly failed to recognize that there

was more content. Another design flaw discovered early in user testing was the menu

screen. Participants would press the screen, intentionally or by accident, and usually

end up at the menu screen. They would then become confused as to why content

failed to load and why the participant icon stopped moving. Given that this would

usually be the first time they entered the screen, many did not know how to navigate

back to the map. Once they figured out the menu system, some were able to navigate

to the options screen and back to the map, but this was seen as an inconvenience.

The final developers’ test took much of what was learned from the user tests and

implemented fixes. The fact that “fingerprints” were buttons confused many partic-

ipants. To address this, a participant was presented with a fingerprint immediately

after the splash screen, which upon pressing, tranisitions to the map screen. This

worked to teach a participant that fingerprints are buttons. Once the participant

enters the map screen, he usually tries pressing the fingerprint button again. This

does not work given that site content is GPS specific and requires the participant

to be within a distance to expereince the content. If the participant gets close to a

91

fingerprint on the map, then content appears. The participant also has the option

to press the fignerprint button that he is standing near to load content. The menu

inside the particiapnt compass rose icon was removed, making the participant icon

function only as a GPS locator. The menu has been streamlined and placed on the

left-hand side of the map screen. It contains option pop-ups that offers participants

the opportunity to change aspects of their interaction. A participant can change the

color of his trail or increase the text size to make content easier to read. Participants

had difficulty reading the map in previous versions; they constantly turned the iPad

around in an attempt to get their bearings. A Google map, legend, and the paths on

the Horseshoe were added as toggles to allow a participant to adjust the map to their

specifications. This made it easier for a participant to discover his location and fur-

ther explore the Horseshoe. Within content site locations, content points were placed

closer together. This made it easier to determine if there was additional content to

experience. Icons for switching the time period and closing buttons were made larger

and more noticeable so a participant could navigate without difficulty. From obser-

vations of user test groups, all changes helped improve participant response time. All

these changes appeared to improve usability.

7.3 Conclusions on Computer Technologies

Ghosts was created with advanced computer technologies in mind, and all algorithms

were carefully considered so as to improve speed. There was extensive use of the

NSMutableDictionary data structure to achieve constant time look-up. Originally,

content was stored in two arrays, one based on site locations (GPS coordinates) and

the other based on content panels. This structure allowed content to be accessed

anywhere within the program with a simple table lookup function but took O(n)

time to find content. In the first data structure used, content was hierarchical. That

meant that to get to content, one had to go through three layers of nested meta-data

92

(location, time period and panel number), ending with more than O(n) time if a

piece of content needed to be searched. This did not allow for complicated viewing of

data, such as showing related topics on a building from multiple time periods. Other

considerations for speed were to store all changeable settings as constants inside

a GlobalState file. This allowed for constant lookup and changing of application

settings, but makes most of the important variables global and exposed.

The framing of the content as it is shown to the participant is another stage of

framing. The participant is greeted with a splash screen followed by a fingerprint

icon. Following the fingerprint is a map. The participant is tasked with walking the

Horseshoe from site to site to trigger content with which he might interact. Content

is site specific, meaning that an individual is not overwhelmed with all content at

once. Content pages are also designed to express as much information as possible on

the screen. All content images have a feature which allows a participant to press said

image and tranisition to a new screen so it is possible to view special types of content

or zoomed in images. Each screen transition is handled programmatically and uses

the notification center to determine when a transition needs to occur. This is not the

best way to do it, but given that all content comes from a content class, it was one

of the only ways to perform the task. Apple has special listeners called “delegates”.

These allow for two classes to openly discuss information before making a decision

on the correct course of action. Delegates also allow for more specific control over

memory, because a delegate focuses on the information it needs instead of parsing

through all the information available. We used delegates because they function more

efficiently than the notification center and because not all classes with a listener

need to be pinged when the screen has to be transitioned. Space is allocated and

deallocated for each view as needed, with nothing kept in memory unless required.

For network connectivity, Ghosts is using the AFNetworking framework to pull

content and store it on the device. AFHTTP controls all networking protocols, mak-

93

ing it simple to connect, pull information, and store it. All data is stored in plists for

easy access. If a packet of data has already been downloaded, then the application

pulls the content from the device. Any images taken through the citizen archaeology

features will eventaully be passed back to the server. The data transfer only happens

when a WiFi connection is established. Camera images when taken are stored on the

device and sent to the on site server at the first established connection. Feedback

regarding the application and its content is sent through email to the administrator’s

email address.

The CI was created programmatically to make future updates easier to read and

many algorithms were chosen for speed efficiency. Network connectivity was kept to

a minimum given that the application is meant for an iPad device and a network con-

nection cannot be assumed. All code was commented thoroughly with the belief that

others would not only comment and edit the code, but study it in a non-programming

manner.

7.4 Conclusions on the Mobilization of a CI

Ghosts has a complex development history. It began as a small iPhone application

to tell short stories and present poetry about the historic Horseshoe and it grew

to an iPad CI with an emphasis on framing content and using gamic qualities to

illuminate the history. With critical interactives, we seek to use ludic methods to

engage individuals, impart knowledge, build awareness, question past observations,

and challenge preconceived notions. The rules of the system create the space for

exploration. A participant, an interactant, is asked to load the Ghosts application

and then to engage with the content provided.

Ghosts also serves as an example of code as speech. All programs have three

states of existence: as code, as speech, and as executables [Cox and McLean 2013].

In this regard, execution was successful because the project works. As code; Ghosts

94

was written to be self documenting as well as to have comments spread throughout

to help non-programmers read. It resembles a users manuel, complex procedure and

a unique decision making process. As speech; the code is procedural rhetoric that

tells at least some of the story of the Horseshoe. Variables are named specifically to

represent the content and options available. If a participant is standing still on the

Horseshoe, the code is specifically within the S02_Map class and shows the potential

content options available. Displayable content is set to nil, similar to the knowledge

the participant currently knows about the location. The code for the GPS waits for

a signal from the device, but once a specific GPS location is found, content is queried

and the participant is asked to engage with the content. The code expresses this idea

not only in the way it was written and operates, but in the way that extends beyond

the Objective-C compiler1.

7.5 Future Work

This instantiation of Ghosts may be finished, but there is a need to add to and update

the CI. Discovering new ways to add additional content and would provide greater

variety of content information; given that much of the current content ends up as

scrolling text. Adding in more AR content points and even newer types of content

(such as a camera-image fade system to show old vertop present) would help further

expand the CI’s immersive experience. Another addition would be to expand the

physical area dealt with by the app. Ghosts focuses currently only on the Horseshoe,

but the University of South Carolina has a larger history that expands, for example,

into the neighborhoods of what was Ward One. This would require changes and

additions to accommodate newer locations beyond the Horseshoe, but it is something

to consider for future updates. Other technical considerations are to move the images

1 A compiler takes high-level language code, such as Objective-C and turns english nominclature
into code which the computer can read.

95

permanently onto the server and to pass the images to the device with all database

content.

A further issue comes from GPS and AR. We have not found the GPS reliable

under all environmental constraints. The GPS has failed to work on several occa-

sions and on other occasions has repeatedly given inconsistent results. This seems

inherent in the technology, however. Instead of relying on GPS, the use of iBeacons

to transmit a small signal that is listened for by the application would probably help

improve loading content. For AR, the package used in the current version, Qual-

comm’s VuforiaTM, has become outdated. The newer version of VuforiaTMneeds to

be incorporated to help improve functionality. This does not fix issues with reading

QR targets. More images of each target under different weather conditions needs to

be incorporated into the AR database to help recognize said targets.

Other future work includes building out a non-iPad version of the application.

Most of the code written for the iPad version can be tweaked to fit on the iPhone.

Some design elements may need to change given that the iPhone has smaller screen

real estate than the iPad. An Android version would also help expand the target

audience. On an iPhone version is finalized, making a comparable product on Android

would be straight forward.

More tests on usability and effectiveness need to be performed. While preliminary

tests have been performed and many developer tests have been performed over the

four-version, three-year development span, more tests with users and updates based

on user feedback are important. Most design kinks have been worked out, but it may

prove useful to mimick how websites and social media use images, such as clicking

a second time to shrink the image. Finally, adding in more cues to tell participants

how to use some of the lesser known features (such as being able to press AR objects

to load more content) would improve functionality.

96

7.6 Conclusions

Ghosts of the Horseshoe is one of the first attempts to mobilize a critical interactive.

Using the digital humanities as a springboard to frame and present content, human

computer interaction to construct the CI in a way to make it easy to use to help

present content and programming to create the CI, Ghosts of the Horseshoe is truly a

multidisciplinary project. With the three-year development cycle and the many teams

that helped produce this project, it was possible to create the first true version of a CI.

User testing and Developer testing helped improve the entire experience, addressing

many design flaws that persisted through the various versions of the application.

Ghosts ended up being a succesful mobilization of a Critical Interactive.

97

Bibliography

Abt, Clark C. (2002). Serious Games. Lanham, MD: University Press of America.
isbn: 978-0819161482.

Arvers, Isabelle (Nov. 2009). “Serious Games”. In: digitalart1, pp. 24 –25. url: www.
digitalarti.com.

Association for Computing Machinery (1992). ACM SIGCHI Curricula for Human-
Computer Interaction. Baltimore, MD, USA. isbn: 0-89791-474-0.

Balsamo, Anne (2011). Designing Culture. Durham, NC: Duke University Press. isbn:
978-0-8223-4433-9.

Bayles, M. (2002). “Designing Online Banner Advertisements: Should We Animate?”
In: Proceedings, SIGCHI 2002 ACM Conference on Human Factors in Computer
Systems. Association for Computing Machinery. New York: ACM Press, pp. 363
–366.

Bogost, Ian (2007). Procedural Rhetoric. Cambridge, MA: The MIT Press, pp. 1 –64.
isbn: 13:978-0-262-02614-7.

Brown, Stuart and Christopher Vaughan (2010). Play: How it Shapes the Brain,
Opens the Imagination, and Invigorates the Soul. New York: Avery Trade. isbn:
978-1583333785.

Buell, Duncan A. and Heidi Rae Cooley (Dec. 2012). “Critical Interactives: Improving
Public Understanding of Institutional Policy”. In: Bulletin of Science, Technology
and Society 32 (6), pp. 489 –496. url: http://bst.sagepub.com/content/32/
6/489.

Butler, Judith (2009). “Torture and the Ethics of Photography: Thinking with Son-
tag”. In: Frames of War: When is Life Grievable? Brooklyn, NY: Verso, pp. 63
–100.

Caillois, Roger (1961). Man, Play and Games. Translator: Meyer Barash. Chicago,
IL: University of Illinois Press. isbn: 978-0-252-07033-4.

98

Cohen, D.S. Cathode-Ray Tube Amusement Device - The First Electronic Game.
Accessed 05/22/2014. url: http://classicgames.about.com/od/classicvide
ogames101/p/CathodeDevice.htm.

Cooley, Heidi Rae (2014). Finding Augusta: Habits of Mobility and Governance in
the Digital Era. Sudbury, MA: Dartmouth College Press. isbn: 978-1611685220.

Cox, Geoff and Alex McLean (2013). Speaking Code. Cambridge, MA: The MIT Press.

Csikszentmihalyi, Mihaly (July 2008). Flow: The Psychology of Optimal Experience.
New York: Harper Perennial Modern Classics. isbn: 978-0061339202.

Dale, Nell and John Lewis (2011). 4th. Sudbury, MA: Jones and Bartlett Publishers.
isbn: 978-0-7637-7646-6.

Decker, Cecil (2010). [THRESHOLD]: Understanding Noise through Play. MA thesis.
University of South Carolina.

Derrida, Jacques (1987). The Truth in Painting. Translators: Geoff Bennington and
Ian McLeod. Chicago, IL: The University of Chicago Press.

Dourish, Pail and Genevieve Bell (2011). Diving A Digital Future. Cambridge, MA:
The MIT Press. isbn: 978-0-262-01555-4.

Flanagan, Mary (2009). Critical Play: Radical Game Design. Cambridge, MA: The
MIT Press, pp. 1–15.

Flanders, Julia (2012). “Days of DH: Defining the Digital Humanities”. In: Debates
in the Digital Humanities. Ed. by Matthew K. Gold. Minneapolis, MN: University
of Minnesota Press, p. 69.

Gossett, Kathie (2012). “Days of DH: Defining the Digital Humanities”. In: Debates
in the Digital Humanities. Ed. by Matthew K. Gold. Minneapolis, MN: University
of Minnesota Press, p. 67.

Grusin, Richard (2010). “Affect, Mediality, and Abu Ghraib”. In: Premediation: Affect
and Mediality after 9/11. London, UK: Palgrave Macmillan, pp. 62–89.

Hodgson, John (2012). Desperate Fishwives: A Study in Applied Game Design. MS
thesis. University of South Carolina.

Hornbaek, Kasper (2006). “Current Practice in Measuring Usability: Challenges to
Usability Studies and Research”. In: Int. J. Human-Computer Studies 64, pp. 79–
102.

99

Huizinga, Johan (1971). Homo Ludens. Boston: Beacon Press. isbn: 0-8070-4681-7.

Isbell, Charles, et al. (2009). “(Re)Defining computing Curricula by (Re)Defining
Computing”. In: SIGCSE Bulletin 41.4, p. 195.

Kotonya, Gerald and Ian Sommerville (Sept. 1998). Requirements Engineering: Pro-
cesses and Techniques. Hoboken, NJ, USA: Wiley. isbn: 978-0471972082.

Levesque, Hector (2012). Thinking as Computation. Cambridge, MA: MIT Press.
isbn: 978-0-262016995.

Magnuson, Jordan (2011a). Freedom Bridge. url: http://www.necessarygames.co
m/my-games/freedom-bridge.

— (May 2011b). Loneliness. url: http://www.necessarygames.com/my-games/lo
neliness/flash.

Minsky, Marvin (June 1974). “A Framework for Representing Knowledge”. In: MIT
AI Laboratory Memo 306. url: http://web.media.mit.edu/~minsky/papers/
Frames/frames.html.

Molleindustria (2006). McDonald’s the Videogame. Accessed 11/03/2013. url: http:
//www.mcvideogame.com/game-eng.html.

Mooers, Calvin N. (1975). “Computer Software Copyright”. In: ACM Computing
Surveys, pp. 45–72.

Morris, Errol (2008). Standard Operating Procedure (film). Accessed 11/03/2013.
United States.

Peirce, Charles Sanders (1991). Peirce on Signs: Writings on Semiotic by Charles
Sanders Peirce. Chapel Hill, NC: The University of North Carolina Press.

Priego, Ernesto (2012). “Days of DH: Defining the Digital Humanities”. In: Debates
in the Digital Humanities. Ed. by Matthew K. Gold. Minneapolis, MN: University
of Minnesota Press, p. 69.

Rockwell, Geoffrey (2012). “Days of DH: Defining the Digital Humanities”. In: De-
bates in the Digital Humanities. Ed. by Matthew K. Gold. Minneapolis, MN:
University of Minnesota Press, p. 69.

Rosser, J. C. et al. (Feb. 2007). “The Impact of Video Games on Training Surgeons
in the 21st Century”. In: JAMA 142 (2), pp. 181–186.

100

Rulz, Susana (2006). Darfur is Dying. Accessed 11/04/2013. url: http://www.darf
urisdying.com/.

Salen, Katie and Eric Zimmerman (2004). “Unit 4: Culture”. In: Rules of Play: Game
Design Fundamentals. Cambridge, MA: The MIT Press, pp. 502–588. isbn: 13:978-
0-262-24045-1.

Singh, Amit (Dec. 2003). Mac OS X Internals. Accessed 05/12/2014. url: http:
//osxbook.com/book/bonus/ancient/whatismacosx/history.html.

Steinberg, Scott (Aug. 2010). Who says video games aren’t art? Accessed 05/22/2014.
url: http://www.cnn.com/2010/TECH/gaming.gadgets/08/31/video.games.
art.steinberg/.

Tompkins, Jessica E. (2014). Playing at History: Resurrection Man and Historio-
graphic Game Design. MA thesis. University of South Carolina.

Tversky, Amos and Daniel Kahneman (Jan. 1981). “The framing of Decidiond and
the Psychology of Choice”. In: Science 211 (4481), pp. 453–458. url: http://li
nks.jstor.org/sici?sici=0036-8075%2819810130%293%3A211%3A4481%3C45
3%3ATFODAT%3E2.0.CO%3B2-3.

UCLA Center for Digital Humanities (Jan. 2014). What is DH? url: http://www.c
dh.ucla.edu/about/what-is.html.

United Nations World Food Programme (2005). Food Force. No longer available.

Weyeneth, R. et al. (2011). Slavery at South Carolina College, 1801-1865: The Foun-
dations of the University of South Carolina. Accessed 05/22/2014. url: http:
//library.sc.edu/digital/slaveryscc/index.html.

Wirth, Niklaus (1976). Algorithms + Data Structures = Programs. Prentice Hall.

Zyda, Michael (Sept. 2005). “From Visual Simulation to Virtual Reality to Games”.
In: Computer Archive 38 (9), pp. 25–32.

101

Appendix A

List of Major Classes, Functions, and Objects in the Application

S01_SplashViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (void) didReceiveMemoryWarning

- (void) handleFingerButton

- (void) loadButton

- (void) loadingView

- (void) moviePlayBackDidFinish:(NSNotification *)aNotification

- (void) removeBlank

- (void) removeSpinner

- (void) transisitionView

- (void) viewDidLoad

S01_SplashScreen

- (id)initWithFrame:(CGRect)frame

- (void) iPadCode

- (void) iPhoneCode

102

S02_MapViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (void) changeColor:(UIButton *)button

- (void) dealloc

- (void) didReceiveMemoryWarning

- (void) flip:(UISwitch *)switchFlipped

- (void) handleCloseButton:(id)sender

- (void) handleContentButton:(id)sender

- (void) handleExit

- (void) handleReturnButton:(id)sender

- (void) imagePickerController:

(UIImagePickerController*) reader

didFinishPickingMediaWithInfo:

(NSDictionary*) info

- (void) loadContent:(id)item

- (void) LoadGPS

- (void) loadMenuItem:(UIButton *) butt

- (void) loadingView

- (void) locationManager:(CLLocationManager *)manager

didUpdateLocations:(NSArray *)locations

- (void) locationManagerDidPauseLocationUpdates:

(CLLocationManager *)manager

- (void) locationManagerDidResumeLocationUpdates:

(CLLocationManager *)manager

103

S02_MapViewController cont.

- (void) locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

- (void) mailComposeController:

(MFMailComposeViewController*)controller

didFinishWithResult:(MFMailComposeResult)result

error:(NSError*)error

- (void) moveOptions:(id)sender

- (void) notificationCenterLoader

- (void) receiveNotification:(NSNotification *) notification

- (void) removeSpinner

- (void) scrollViewDidEndZooming:(UIScrollView *)scrollView

withView:(UIView *)view

atScale:(float)scale

- (void) scrollViewDidZoom:(UIScrollView *)scrollView

- (void) sliderControl:(UISlider *)slider

- (void) tranCamView

- (void) viewDidLoad

- (UIView *) viewForZoomingInScrollView:

(UIScrollView *)scrollView

S02_1_MapScreenView

- (id) initWithFrame:(CGRect)frame

- (void) alphaValueName:(id)contentName

distanceValue:(float)distance

- (void) dealloc

104

S02_1_MapScreenView cont.

- (void) drawCompass

- (void) drawPoints

- (void) drawRect:(CGRect)rect

- (void) handleCloseButton:(id)sender

- (void) handleContentButton:(id)sender

- (NSArray *) moveParticipantIcon:(CLLocation *)location

- (void) notificationCenterLoad

- (void) receiveNotification:(NSNotification *) notification

- (void) touchesBegan:(NSSet *)touches

withEvent:(UIEvent *)event

- (void) zoomIconChange:(float)newScale

ContentScreenViewLoad

- (id) initWithFrame: (CGRect)frame

- (id) initWithSiteContent: (id)content

- (id) initWithContentPoint:(id)content

forButton:(id)button

- (void) buildView:(NSMutableArray *)contentTemp

- (void) buttons

- (void) handleViewsSwipe

- (void) handleViewsSwipe2

- (void) LoadContent:(id)content

- (void) LoadContentPointContent:(id)content

forButton:(id)button

105

CV_ARViewController

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

fromContent:(NSString *)fromContent

- (void) dealloc

- (void) handleDoubleTap

- (void) notificationCenterLoader

- (void) receiveNotification:(NSNotification *) notification

- (void) returnToPrev

- (void) viewDidLoad

CV_PanoramicViewController

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

fromContent:(NSString *)fromContent

- (void) dealloc

- (void) didReceiveMemoryWarning

- (void) handleExit

- (void) loadContent:(id)item

- (void) notificationCenterLoader

- (void) receiveNotification:(NSNotification *) notification

106

CV_PanoramicViewController Cont.

- (void) returnToPrev

- (void) viewDidLoad

CV_PictureViewController

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (id) initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

imageToLoad:(NSDictionary *) Anote

- (void) didReceiveMemoryWarning

- (void) picLoad

- (void) returnToPrev

- (void) scrollViewDidEndZooming:(UIScrollView *)scrollView

withView:(UIView *)view atScale:(float)scale

- (void) scrollViewDidZoom:(UIScrollView *)scrollView

- (void) viewDidLoad

- (UIView *) viewForZoomingInScrollView:

(UIScrollView *)scrollView

CV_VideoViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

fromContent:(NSString *)fromContent

107

CV_VideoViewController Cont.

- (void)didReceiveMemoryWarning

- (void)returnToPrev

- (void)viewDidLoad

CA_ModifyImage

//Not implemented yet

CV_3DModelViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil

fromContent:(NSString *)fromContent

- (void)didReceiveMemoryWarning

- (void)returnToPrev

- (void)viewDidLoad

CA_ReviewAndSubmit

//Not implemented yet

GHButton

- (id)initWithFrame:(CGRect)frame

- (void) createButton

- (void) PlayClick

GHTextView

- (id)initWithFrame:(CGRect)frame

- (void) createTextField

108

GHLabel

- (id) initWithFrame:(CGRect)frame withText:(NSString *)text

- (void) establish:(NSString *)text

AFNetworking

Read AFNetworking for more information.

Qualcomm’s VuforiaTM

Read Qualcomm’s VuforiaTMfor more information.

Cocos3D

Read Cocos3D for more information.

T01_SiteDetials

- (NSDictionary *) applToDictionary

- (T01_SiteDetails *) init

- (T01_SiteDetails *) init:(NSInteger) which

T02_Sources

- (NSDictionary *) applToDictionary

- (T02_Source *) init

- (T02_Source *) init:(NSInteger) which

T03_Sites

- (NSDictionary *) applToDictionary

- (T03_Sites *) init

- (T03_Sites *) init:(NSInteger) which

T04_ContentPoints

- (NSDictionary *) applToDictionary

- (T04_ContentPoints *) init

- (T04_ContentPoints *) init:(NSInteger) which

109

T05_DataTranisitionDetails

- (NSDictionary *) applToDictionary

- (T05_DataTransitionDetails *) init

- (T05_DataTransitionDetails *) init:(NSInteger) which

T06_PictureTranisitionDetails

- (NSDictionary *) applToDictionary

- (T06_PictureTranslateDetails *) init

- (T06_PictureTranslateDetails *) init:(NSInteger) which

T07_Data

- (NSDictionary *) applToDictionary

- (T07_Data *) init

- (T07_Data *) init:(NSInteger) which

110

	Ghosts of the Horseshoe: A Mobilization of a Critical Interactive
	Recommended Citation

	tmp.1409828811.pdf.mRAj6

