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Abstract

In this masters thesis, we will present the analysis of the solution to the Einstein

field equation, known as electrovac universe. In this model, an electric charge is

located somewhere in an empty universe. An important result from this scenario, is

that there is a functional relation between the electrostatic potential and the metric

components, asumming a comformastat metric. On the other hand, the Einstein’s

equations implies that the metric function satisfy the Laplace equation. We extended

this model considering the Einstein’s equation with cosmological constant, which

increased the complexity of the equations. The metric function satisfies now a non-

linear second-order, partial differential equation. We offered solutions to this equation

in 1 and 2 dimensions.
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Introduction

In 1916 Albert Einstein published a paper, titled “The foundation of the General

Theory of Relativity”[1], which summarizes his investigations of a new theory of

gravitation. This magnificent achievement, inspired by the idea of reconciliate his

Special Theory of Relativity with the gravitational effects, was developed between

1912 to 1916, and it was surrounded by a dramatic time for Einstein, when he had

to learn new techniques and push the physics ideas beyond anyone else’s at that

time. After almost 100 years of the birth of general relativity, it’s still considered

the Einstein’s “magnum opus”. Einstein’s theory has produced a dramatic paradigm

shift in our view of the universe, which is still far from being completely understood.

In contrast to the other natural forces found in nature, as the electromagnetic,

weak and strong, in general relativity’s heart lies the simple idea of considering gravity

as the curvature of spacetime. The newtonian picture of a gravitational force given

by F = GmM
r2 e(r), is now replaced by a geometric effect of the spacetime fabric,

determined by the energy-momentum content. About this idea, J. Wheeler wrote:

“space acts on matter, telling it how to move. In turn, matter reacts back on space,

tellling it how to curve”[2]. Inspired by this idea, Einstein proposed a new set of field

equations, in analogy to the classical Poisson’s equation ∇2φ = 4πGρ, to determine

the field given the sources. The Einstein’s equation in its final form reads:

Rµν −
1
2 (R− 2Λ) gµν = 8πG

c4 Tµν

The left side of this equation, describes the geometry of the spacetime which is ‘en-

coded’ in the metric tensor gµν . The right side of the equation involves the energy-
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momentum tensor Tµν which describes the content of matter and momentum. The

Einstein equation represents in a beautiful way the relationship between gravitational

field (geometry) and matter; it’s in the same spirit as the Maxwell equations which

portray electric and magnetic fields, in terms of charge densities and currents.

A few months after GR was published, K. Schwarzschild found a solution to the

Einstein equation, which describes the gravitational field in the neighborhood of a

spherical mass. In 1918, G. Nordström, and H. Reissner (independently) found a

class of exact solutions to the Einstein equation for the gravitational field of a spher-

ical charged mass. Other important solutions to Einstein’s equation are: the Kerr

metric which describes the gravitational field of a rotating mass, and the Friedmann-

Lemaitre-Robertson-Walker metric which portrays an homogeneous and isotropic uni-

verse. One interesting class of solutions are known as Statical Universes or comfor-

mastat metric[6]. I will devote the first part of Chapter 4 to discuss this type of

solution. One can study the most general case of a comformastat metric, considering

a charged mass distribution, which Synge called electrovac universes[6, 7, 8, 9]. We

will see that in this model, the potential satisfies the Laplace equation. I will show the

extension of these results considering the cosmological constant. We will find that

the complexity increases formidably, and the new equation for the potential turns

out to be a non-homogeneous differential equation. I offer some solutions to this new

equation.[10]

The general overview of this masters thesis is as follows: In Chapter 1, I will sum-

marize conceptually and historically the most important aspects of general relativity.

In Chapters 2 and 3, I will introduce the mathematical machinery and its applica-

tion to the Einstein’s theory. In the last Chapter, I will introduce the formalism of

the comformastat metric and the electrovac universes. Finally, the extension of this

model considering the Λ term will be discussed.
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Chapter 1

A very brief history of gravity

One day in the year 1666 Newton had gone to the country,

and seeing the fall of an apple, as his niece told me, let himself

be led into a deep meditation on the cause which thus

draws every object along a line whose extension would pass

almost through the center of the Earth

Voltaire (1738)

The major conceptual and historical aspects of the gravitational theory are intro-

duced. The idea that gravity is just the curvature of the spacetime fabric is disc-

cussed. Some major equations are briefly discussed, but the technical discussion will

be given in Chapters 2 and 3 where the formalism is introduced.

1.1 The marriage between inertia and gravitation

In 1687 Isaac Newton published his Mathematical Principles of Natural Philosophy

(See Fig. 1.1), which can be considered as the most important and influential work in

the history of Physics. In this masterpiece, Newton established the laws of motion for

physical bodies. At the end of the Principia, Newton described gravity as a force that

acts on rocks, the sun and planets, in the following way: “according to the quantity

of solid matter which they contain and propagates on all sides to immense distances,

decreasing always as the inverse square distances”[11]. In mathematical terms, the

Newton’s gravitational theory can be written as
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F = GmM

r2 e(r) (1.1)

where r is the separation distance between the masses, and G = 6.67×10−11m3/kgs2.

As far as is known, most of the physical phenomena, can be represented in terms of

the 4 fundamental forces: strong and weak nuclear interactions, electromagnetic and

gravitational. Of these forces, the gravitational is the weakest (The ratio Gm2/e2

between gravitational and electric forces for two electrons is around 10−40). Despite

the fact of being the weakest, gravity shapes the large scale structure of the universe

as we see it today. The nuclear forces are of short range (∼ 10−13cm), and although

electromagnetism is a long range interaction (mathematically it has the same form

as equation (1.1)), the balance between repulsive and attractive electrical forces is

predominant in celestial bodies[12]. The last sentence, is just a manner to say that

celestial bodies like planets, stars, etc., are neutral electrically.

Figure 1.1 Sir Isaac Newton’s own first copy of his Principia. Photograph: Andrew
Dunn (2004)

One peculiar characteristic of the gravitational force (1.1) is its appearance as

always being attractive (This is in contrast with the electric force, which can be

repulsive or attractive). According to Newton’s second law, this force will produce

an acceleration given by
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F = ma (1.2)

where m is associated with the inertial mass of the body. Instead of working in

terms of forces, we can express the gravity Newton’s law in terms of the gravitational

potential φ, following the Poisson’s equation

∇2φ = 4πGρ (1.3)

where ρ is the mass density distribution. Despite the fact that it was Newton who

gave the final form to the gravitational theory, it was Galileo Galilei who previously

realized that bodies of different mass in “free fall”, take the same time to cover the

same distance given the same initial conditions. About this Galileo wrote[2]:

The variation of speed in air between balls of gold, lead, copper, porphyry,

and other heavy materials is so slight that in a fall of 100 cubits[about

46 meters] a ball of gold would surely not outstrip one of copper by as

much as four fingers. Having observed this, I came to the conclusion that

in a medium totally void of resistance all bodies would fall with the same

speed”

However, we can ask ourselves: Is the inertial mass entering in the second New-

ton’s law, the same as the gravitational mass that appears in the gravitational law?.

Newton thought that these masses were not likely the same. If we write the gravita-

tional law as

Fg = mg (1.4)

where g is the gravitational field that depends on the position and the mass of the

particle. Comparing (1.4) with (1.2) we have
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a =
(
mg

mi

)
g (1.5)

which states that the acceleration at some point, will be different depending of the

ratio (mg/mi). Newton developed several experiments with pendulums of the same

length but different materials, but he did not find any significant difference in their

periods[11]. It wasn’t until 1889, that a more authoritative experimental test, pro-

posed and successfully performed by Eötvös, removed any shadow of doubt about

the equivalence between inertial and gravitational mass. In the following lines, the

general ideas of the experiment will be discussed.1.

In his experiment, Eötvös placed two masses A and B, hanging of a very thin wire

at the center of a 40cm bar (See Fig. 1.2). In the equilibrium, the system satisfies

lA(mgAg −miAg
′
z) = lB(mgBg −miBg

′
z) (1.6)

Figure 1.2 Schematic view of the Eötvös experiment[11]

where g is the local gravitational acceleration. The lab is a rotating frame (it’s ro-

tating with the Earth), therefore we will have a centripetal acceleration, where g′z

1I am following the very neat explanation given by Weinberg[11]
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corresponds to its vertical component. Clearly, in the north hemisphere, the cen-

tripetal acceleration will have an appreciable horizontal component, denoted by g′s.

The total torque around the thin wire (vertical axis) is

τy = lAmiAg
′
s − lBmiBg

′
s (1.7)

Using the equilibrium condition (1.6) in (1.7) we have

τy = lAmiAg
′
s

[
1−

(
mgA

miA

g − g′z
)(

mBg

miB

g − g′z
)−1

]
(1.8)

expanding the second term in the bracket, under the condition g′z << g we have

(
mBg

miB

g − g′z
)−1
≈ miB

mgB

(
1
g

+ g′z
g2
miB

mgB

)

using the last result in (1.8), and simplifying we have

τ = lAmiAg
′
s

[
miA

mgA

− miB

mgB

]
(1.9)

Any difference in the ratiomi/mg should produce a torque and therefore a twisting

in the wire. Eötvös found no twist, and his results showed that the difference for

mi/mg for wood and platinum was less than 10−9.

More recent experiments, based on Eötvös idea2, aimed to put stringent limits to

the average quantity

η ≡

(
mgA
miA
− mgB

miB

)
1
2

(
mgA
miA

+ mgB
miB

) (1.10)

The more stringent limits were published by Su et.al.[13]. In their experiment,

using masses of Beryllium and Copper, they bounded η in the value

η = (−0.2± 2.8)× 10−12

2Such experiments are called Eötvös experiments
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This authoritative result, stands the equality of gravitational and inertial mass,

as one of the fundamental principles of Physics. Taking as his flag the very accurate

results by Eötvös about the equality of inertial and gravitational mass, Einstein

realized a deep connection between inertia and gravitation. About this he wrote[18]:

The assumption of the complete physical equivalence of the systems of co-

ordinates, K (inertial system) and K ′ (uniformly accelerated respect to

K), we call the “principle of equivalence”; this principle is evidently in-

timately connected with the theorem of the equality between the inert and

the gravitational mass, and signifies an extension of the principle of rel-

ativity to co-ordinate systems which are in non-uniform motion relatively

to each other. In fact, through this conception we arrive at the unity of

the nature of inertia and gravitation

With these ideas in mind, Einstein was ready to jump formally into the Equiva-

lence principle and the beginning of a new theory of gravitation. Before embedding

us in that discussion, let us make a brief review of the principle of relativity and the

Mach’s ideas about space, which influenced (partially) the Einstein’s theory.

1.2 Newton vs Mach, and a rotating bucket

In Newtonian mechanics we study the motion of particles defining inertial reference

frames, which can be defined as: reference systems where F = dp
dt

is valid. The

relations between inertial reference frames is determined by the Galileo Group

x′ = Rx + vt+ d

t′ = t+ τ (1.11)

This is a group of 10 parameters: 3 Euler angles, 3 components for v, 3 components

for d, and the time t. The invariance of the laws of motion under transformation of
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the Galileo group, is called the Principle of Galilean Relativity. For example, the

Newton’s gravitational law (1.1) is invariant under these transformations.

Let us analyze the following situation: an observer on the Earth’s surface, might

say that she is at rest. She makes experiments and finds that Newton’s laws are

satisfied. She finds that the Sun, the moon and the stars are moving relative to

her. She is the center of the universe!. However, an observer standing on the Sun

(if something like that was possible), will notice that us, the rest of the planets, and

the distant starts are moving relative to her. She says: I am the one who is at rest.

Now we put a third observer in the center of the galaxy (assuming that she has not

crossed the event horizon of the central black hole), and she will notice that all the

stars, planets and components of the galaxy are going around her. She is convinced

that she is the only one at rest. But it comes out that our galaxy is also moving

around the great attractor in the galaxy cluster, and everything is going farther away

because the universe is expanding.

We rise the question: Can we find an absolute reference frame, which allows us to

define other inertial frames?. The first one in giving an answer to this question was

Newton, who said that there is an absolute space, and respect to this, all reference

frames can be determined. In his own words[14]:

Absolute space, in its own nature and with regard to anything external,

always remain similar and unmovable. Relative space is some movable

dimension or measure of absolute space, which our senses determine by its

position with respect to other bodies, and is commonly taken for absolute

space.

In order to prove his concept, Newton analyzed the following experiment. Let

us have a bucket hanging by a long rope. We start twisting the bucket until the

rope is strongly twisted. Now, we fill the bucket with water. We release the bucket

9



and the rope starts to unwrap producing a rotation. There are 3 main stages of this

experiment (See Fig. 1.2):

Figure 1.3 Newton’s bucket experiment[15]

1. Initially, the bucket is rotating but the level of the water keeps its original level.

2. Gradually the bucket transmits its motion to the water, which starts to lift up

by the walls of the bucket.

3. The water increases its rotation, receding from the axis and forming a concave

shape.

How can this experiment show the existence of an absolute space?. About this

Newton wrote[14]:

At first, when the relative motion of the water in the vessel was greatest,

that motion produced no tendency whatever of recession from the axis, the

water made no endeavor to move upwards towards the circumference by

rising at the sides of the vessel, but remained level, and for that reason its

true circular motion had not yet begun. But afterwards, when the relative

motion of the water had decreased, the rising of the water at the sides of

10



the vessel indicated an endeavor to recede from the axis; and this endeavor

reveals the real circular motion of the water, continually increasing till it

had reached its greatest point, when relatively the water was at rest in the

vessel...

This idea of absolute space, was strongly rejected by G. Leibniz, who argued that

the idea of space only makes sense in terms of relative motion between bodies. This

problem created a debate between the finest thinkers of the time, like Euler, Kant

and Berkeley. However, it was until 1880 when E. Mach gave a serious critic of the

Newton’s space conception. In his book Die Mechanik in ihrer Entwicklung[16] Mach

wrote:

Newton’s experiment with the rotating vessel of water simply informs us,

that the relative rotation of the water with respect to the sides of the vessel

produces no noticeable centrifugal forces, but that such forces are produced

by its relative motion with respect to the mass of the Earth and the other

celestial bodies. No one is competent to say how the experiment would

turn out if the sides of the vessel increased in thickness and mass until

they were several leagues thick.

The postulate that the inertial properties of a body are determined by the mass

distribution in the universe, is called the Mach’s Principle. Einstein was very im-

pressed with Mach’s ideas, and he tried to incorporate them in his theory of grav-

itation. However, it turned out to be, that Mach’s principle did not get a full rep-

resentation in the general theory of relativity. Although the spacetime geometry is

affected by the mass content, there are no boundary conditions well established which

would allow to introduce the Mach’s ideas. Let us suppose we have an experimenter

in a small lab, and we have removed all matter from the universe. The lab is small,

such that we can neglect its effect on the spacetime, therefore we can approximate the

11



situation as a Lorentzian reference frame. Whatever experiment she does, the physics

laws will have the special relativity form. Now, she open the window and stars firing

a bazooka tangentially. According to general relativity, a gyroscope inside the lab

would be pointing relatively fixed towards the receding bullet. It seems to be that

the “small” distant bullet affects more importantly the dynamics of the gyroscope,

than the walls and mass of the lab and the experimenter. This conception looks more

like an absolute space in the Newton spirit, than a relative space a la Mach.

Another limitation of the general relativity incorporating the Mach’s principle is

related to the motion of a particle in a spherically symmetric gravitational field. As

will be discussed in Chapter 3, this field is described by the Schwarzschild metric.

However, the dynamics of a test particle moving under this field, is only determined by

the mass that is producing the field, but the effect of the rest of masses in the universe

is not considered. In 1961, Brans and Dicke[17] formulated a theory of gravitation that

incorporated the Mach’s principle (partially). Despite the fact that their theory was

conceptually more consistent with Mach’s ideas, it did not get support of experimental

results.

1.3 Equivalence Principle & the Einstein’s “glücklichste Gedanke”

In Section 1.1 we discussed the intimate relation between inertia and gravitation, as

a consequence of the equality between gravitational and inertial mass:

mi = mg

The transition to establish the equivalence principle was immediately realized by

Einstein, who wrote[19]:

There then occurred to me the ‘glückischte Gedanke meines Lebens’, the

happiest thought of my life, in the following form. The gravitational field

12



has only a relative existence.... Because for an observer falling freely from

the roof of a house there exists-at least in his immediate surroundings-no

gravitational field. Indeed, if the observer drops some bodies then these

remain relative to him in a state of rest or uniform motion, independent

of their particular chemical or physical nature (in this consideration air

resistance is, of course, ignored). The observer has the right to interpret

his state as ‘at rest’.

This means that we can “turn off” the gravitational effects locally, using a suitable

accelerated frame of reference. Let us discuss a “gerdanke” experiment in the way as

Einstein taught us. Suppose there is an astronaut (let’s call her Alice) inside a space

ship in orbit around the earth. Alice is “weightless”. Tools, cups, books, remain at

rest or moving in uniform motion with respect to them and the walls of the ship3.

In principle, Alice can’t say if she is falling freely in a uniform gravitational field,

or whether she is at rest in a local region far from any gravitational field. In this

situation, Alice has locally “removed” the gravitational field (See Fig. 1.4).

But the equality of inertial and gravitational mass, provides more consequences.

Suppose we bring back Alice (and her ship) to Earth. We ask her to develop some

experiments to measure the local gravitational field g. Alice finds that if she drops

a book and a cup, they will fall to the floor of the ship with the same acceleration g.

Now, let’s return Alice to her initial orbit position. Let’s suppose now that we stick

a hook in the top of the ship. Then we come in a bigger ship with a rope which we

hang to the hook and we start to accelerate upwards at acceleration g. Now we ask

Alice to develop the same experiments again, and she finds that the book and the

cup fall towards the ship floor with the same acceleration g.

With this “thought experiment” in our mind, we can express theWeak Equivalence

Principle (WEP) in the following form: The motion of freely-falling particles are

3I ignore the air resistance as Einstein did
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Figure 1.4 Crew inside the Zero G plane. The plane is descending to 450 low noise,
providing the “no gravity” environment for a short time (around 15 seconds). Following
Einstein’s idea, they have removed the gravitational field locally. They stay at rest
relative to each other and the walls of the plane. Photograph: Joe McNally

the same in a gravitational field and a uniformly accelerated frame, in local regions

of spacetime[5]. By local regions we mean, regions which are small enough such

that deviations in the uniformity of the gravitational field can’t be detected. In our

experiment, if we set a very large ship and we let it fall freely, Alice will find that the

gravitational field varies depending on the position, and bodies will follow the line

connecting their positions to the center of the Earth, which in different positions will

be different.

But not everything in the universe is gravity4. What happens to the Electromag-

netism laws, the hydrodynamic equations, the nuclear interactions and the rest of

the laws of physics near to a gravitational field?. Well, the answer is given by the

Einstein’s Equivalence Principle (EEP): In any and every local Lorentz frame, any-

where and anytime in the universe, all the (nongravitational) laws of Physics must

take on their familiar special relativistic forms.[2] In other words, there is no way to

4Einstein and Rosen[20] proposed the idea of expressing an atomistic and electromagnetic theory
of matter, using only the spacetime geometry determined by gµν and the electromagnetic potential
φ. These ideas led to the concept Einstein-Rosen bridge. Despite the great interest that this model
awakes, I leave it out of my discussion.
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make a distinction between a Lorentz local frame in some infinitesimal region, from

a different Lorentz local frame in any other region of spacetime. This is the strongest

form of the Einstein’s equivalence principle, and over it, rests the foundations of the

general relativity.

The power of the EEP allows us to generalize any equation valid in a Lorentz

flat spacetime, to a curved spacetime just by the rule: comma (partial derivative,

flat spacetime gradient) goes to semi-colon (covariant derivative, curved spacetime

gradient)[2]. For example, a particle moving in absence of external forces will move,

according to the inertia principle, uniformly in a straight line5. Einstein realized that

the simplest extension of the equation of motion for the general relativity spacetime,

is the geodesic equation. In Einstein’s words[18]:

The natural, that is, the simplest, generalization of the straight line which

is plausible in the system of concepts of Riemann’s general theory of in-

variants is that of the straightest, or geodetic, line.

Following the EEP, the motion of a particle is governed by the equation

d2xµ
ds2 + Γµαβ

dxα
ds

dxβ
ds

= 0 (1.12)

where Γµαβ is called the Christoffel symbol which depends of first-order derivatives of

the components of the metric tensor gµν . If Γµαβ = 0 (a metric tensor constant for

example), (1.12) reduces to the Newtonian equation of motion

d2xµ
ds2 = 0 (1.13)

Note in this example the beautiful connection provided by the EEP through the

rule “comma goes to semi-colon”. To go from (1.13) (flat spacetime) to (1.12) (curved

5In the Lorentzian spacetime of special relativity, it means an euclidean straight line.
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spacetime) we just exchange the standard derivative by the covariant derivative,

which involves the Γµαβ. That’s why (1.12) has the form that it has.

There is a distinction between gravitational and non-gravitational effects. The

EEP excludes the gravitational interaction, therefore we can go just one-step further,

and establish the Strong Equivalence Principle to include gravitational and any other

interaction. The EEP implies that gravity can’t be “screened” globally, it will be

always there. Is worth to emphasize here that the “weightless” condition, or “remove”

gravity, is valid only in a local Lorentz frame. However, there is no a universal frame

that can “remove” the Earth’s gravitational field, everywhere and everytime. This is

what makes the gravitational interaction so special. In electromagnetism for instance

we can screen the electromagnetic fields (we can use a Faraday cage for example),

and the nuclear forces are only of short range (we don’t feel them, but we are still

made of atoms).

The implications of this are astonishing. Thinking about acceleration due to

gravity is non-sense in the context of general relativity. It makes more sense to think

that a “freely falling” particle is unaccelerated. For instance, Alice sitting on a chair

over the top of the Empire State building, is more “accelerated” than Bob who decided

to jump from the top in “free fall”. The Einstein’s genius moment (not the only one

of course) was to embrace this idea and realize that gravitation can’t be described as

a force in the newtonian sense, but just in terms of the spacetime geometry.

1.4 From Newton’s apple to Einstein’s curved spacetime

The set of equations (1.12) represents the marriage between inertia and gravitation.

Despite the fact that each member separately can’t be considered as a tensor quan-

tity, the whole expression transforms as a tensor. Establishing the analogy with the

Newtonian picture, the first term can be associated to the inertia and the second one

can be associated to gravitation[18].
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The next step in his road towards a formal theory of gravitation, Einstein at-

tempted to find the set of equations that govern the gravitational interaction. He

was inspired by the Newtonian gravity in terms of the Poisson’s equation

∇2φ = 4πGρ (1.14)

where ρ is the matter density. The left side of (1.14) gives information about the

gravitational field, the right side describes the mass distribution. This equation ex-

presses the idea that the matter density ρ produces the gravitational field. In order

to generalize this relation in his new theory of gravitation, Einstein wrote[18]:

We must next attempt to find the laws of the gravitational field. For

this purpose, Poisson’s equation ∆φ = 4πkρ of the Newtonian theory

must serve as a model. This equation has its foundation in the idea that

gravitational field arises from the density ρ of ponderable matter. It must

also be so in the general theory of relativity.

In his quest, Einstein realized that he needed tensor equations, such that the co-

variance principle was satisfied. As will be discussed in Chapter 3, the generalization

of the mass density ρ is the energy-momentum tensor Tµν of second rank, which will

be known provisionally. In special relativity, this tensor must satisfy the divergence-

less condition ∂µTµν = 0. In general relativity the co-variance of the equation must

be accepted. If we denote by τµν the mixed tensor density, our generalization takes

the form[18]

0 = ∂τασ
∂xα
− Γασβτβα (1.15)

In general relativity it is not correct to discuss energy-momentum conservation

for matter only. There is also an energy density for the gravitational field, which is

expressed in the second term of (1.15). In Einstein’s words: “the gravitational field
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transfers energy and momentum to the matter, in that it exerts forces upon it and

gives it energy.[18]

So we have the analogue to the right side of the Poisson’s equation, but what

about the left side?. Einstein realized that this must be a tensor equation for the

metric tensor gµν , which describes the geometry of the spacetime. Einstein imposed

3 conditions that this tensor must satisfy[18]:

1. It should not involve second order coefficients of the gµν .

2. It must be linear and homogeneous in the second derivatives of the gµν .

3. Its covariant derivative must vanish identically.

Note that the first two conditions are just a consequence of the analogy with Pois-

son’s equation (1.14). Following these requirements, Einstein proposed the following

equation for the gravitational field:

Rµν −
1
2Rgµν = −kTµν (1.16)

where Rµν is the Ricci tensor, R is the Ricci scalar (or curvature scalar), gµν is the

metric tensor, Tµν is the energy-momentum tensor and k = 8πG
c4 . Equation (1.16) is

called the Einstein equation, and it can be considered as the most beautiful equation

in Physics6. In the Einstein equation are condensed the revolutionary ideas of space-

time of general relativity, which according to P.A.M. Dirac can be considered as ‘the

greatest scientific discovery that ever was made’.[21]

Note that this equation is a postulate based on physics arguments and the cor-

respondence with the Newtonian mechanics. This is the trend of thought in physics

as I see it. The physicists propose some fundamental equation to describe some phe-

nomena; then the validity of the theory will be determined by the concordance with

6This is my personal point of view.
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experimental results. Again, it should be said that the Einstein equation is a pos-

tulate, as it is the Schrödinger equation and Dirac equation. This equation is not

expected to be “derived” from some first principles as was suggested and elaborated

by D. Hilbert. There is a controversy related to some historical issue, about who was

the first in writing the field equations. Before discussing that historical problem, let

us discuss another more immediate one.

After writing the gravitational equations in vacuum: Rµν = 0, Einstein realized

that this equation is not the more general that satisfies the 3 requirements discussed

above. About this Einstein wrote[3]:

Properly speaking, this (divergenceless condition) can be affirmed only of

the tensor : Gµν + λgµνg
αβGαβ where λ is a constant. If, however, we set

this tensor = 0, we come back again to the equation Gµν = 0”

Figure 1.5 A. Einstein writing the field equation for vacuum[24]

where Gµν ≡ Rµν − 1
2Rgµν is the Einstein tensor. Clearly the addition of this con-

stant λ preserves the requirements of the theory. In fact, written in this way the
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equation represents the most general set of equations for the gravitational field. Is

quite interesting to note that Einstein mentioned this constant λ, before discussing

any idea about cosmology. However, later on, Einstein introduced this constant again

in order to keep a static universe as was “suggested” by the still primitive observa-

tions in that time which were in contradiction with his equations which predicted

an expanding universe. Sadly the λ-term7 has suffered an unfair discrimination by

the relativistic community, as a consequence of the unfortunate quote by Einstein as

his “greatest blunder”. However, clearly the term is a natural addition to the most

general field equation. A fascinating discussion of this historical problem, can be

found in reference[4]. More recently, after the discovery of the accelerated expansion

of the universe[22], Λ resurrected[23] as the term associated to the mysterious “dark

energy”, which is driving this accelerated expansion. However, the nature of Λ is still

a mystery.

As I mentioned before, there was a controversy about who was the first in writing

the field equation. The notable German mathematician D. Hilbert, during the first

World War was completely absorbed in the physics problems of the time[21]. By

1914, Hilbert was fascinated by the ideas of Einstein and G. Mie (Mie was working in

a theory of gravitation and electromagnetism). Hilbert invited Einstein to Göttingen

to present his ideas about the theory of relativity. In a letter to A. Sommerfeld, dated

15 July 1915, Einstein wrote[21]:

I had the great joy of seeing in Göttingen that everything (about the the-

ory of relativity) is understood to the last detail. With Hilbert I am just

enraptured. An important man!

On 4, 11, 18 and 25 November 1915, Einstein presented a series of communications

on general relativity to the Prussian Academy. By the same time, on 20 November

7In more recent literature, the capital letter Λ is used
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1915, Hilbert presented a derivation of Einstein equation to the Royal Academy of

Sciences in Göttingen. Hilbert’s communications appeared on the third issue of the

Proceedings of the Göttingen Academy for 1915, and in his publication he referred

to all communications of November 1915 by Einstein. The Hilbert’s approach was

based on variational principles, starting from the action:

SH =
∫ √

g(R + L)d4x (1.17)

where R = gµνRµν and L is a function of the metric tensor gµν and the generalized

coordinates qs, qsk[25]. From his communication of November 20, there is not a shadow

of doubt that Hilbert found the same equation independently. In fact, only until

November 25, Einstein gave the final form of the gravitational equation. In that

sense, Hilbert was ahead of Einstein by 5 days!. About this Hilbert wrote[21]:

It seems to me that the differential equations of gravitation so realized

(by me) are in agreement with the beautiful theory of general relativity

proposed by Einstein in his later (25 November 1915) memoir.

Hilbert’s approach was more a formal derivation, in contrast with Einstein’s who

wrote the field equation as a postulate inspired in the equivalence principle, the covari-

ance of the theory and the analogy with the Newtonian mechanics. Despite the fact

that Hilbert’s approach could be considered more “elegant” from the mathematical

point of view, were the Einstein’s ideas about spacetime, and his insight, which gave

the physics and philosophical foundation to the theory. Far away from the “contro-

versy” (see reference[25] for example), the Einstein’s name is the one associated with

the general theory of relativity.

The consequences of general relativity have been astonishing: black holes, grav-

itational waves, gravitational Doppler redshift, neutron stars, among others. One
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example is the prediction of the bending of light due to the presence of a mass (See

Fig. 1.6).

Figure 1.6 A schematic diagram of the bending of light. The spacetime in the vicinity
of the sun is curved, causing the light to bend. This bending produces an apparent
position of the star, different to the actual one.[27]

The key idea in general relativity is that mass curves spacetime. So we can imagine

that a ray of light emitted from a distant star, when passing near the neighborhood

of a mass like our sun, it will find a curved spacetime (the bigger the mass, the bigger

the curvature) and it will follow the geodesic line in that region, which in this case

deviates of an Euclidean straight line. In fact, before the full theory was completed,

Einstein derived this result and found a formula to calculate this deviation, using

only the equivalence principle. However, his prediction was off by (1/2). With the

field equation in its final form, the calculation was corrected.

In 1919 the British astronomer sir A. Eddington, lead an expedition to observe a

solar eclipse in Africa to corroborate the general relativity prediction which was 1.75′′

for the sun[26]. When Eddington confirmed the prediction of the theory, Einstein

became instantly in a celebrity, with the media showing news about the new theory

of gravitation and the Einstein’s genius. Since then, Einstein became not only an

icon, but also the most important scientist of XX century.
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Figure 1.7 Time magazine cover. December 31, 1999. Cover Credit: Philippe Halsman
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Chapter 2

The math machinery: tensor analysis in flat

spacetime

Therefore I chance to think that all Nature and the

graceful sky are symbolized in the art of geometry.... Now as

God the maker play’d He taught the game to Nature whom

He created in His image; taught her the self-same game

which He played to her.

Johannes Kepler, Tertius Interveniens.

The math of relativity are presented. The concepts of vectors, one-forms and

metric tensor are discussed. The operational machinery involving these objects are

introduced. In our approach we focus more on the geometrical nature of tensors,

instead of their transformation properties. The concepts here introduced, will be

applied in the context of general relativity in Chapter 3.

Notation: We will follow the notation by MTW[2] and Schutz[28], where Greek

index run from {0, .., 3} and Latin index (space index) run from {1, ., 3}. We also

use geometrized units with c = 1. Bold letters indicate vectors and basis vectors as

usual. We use a metric with signature {−1, 1, 1, 1}.
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2.1 Vectors and Tetrads

We can borrow most of the tools used in Special Relativity, concerning to 4-vectors

and its transformations rules. As we know, the Lorentz transformation of a 4-vector

A→ (A0, A1, A2, A3) = {Aα} is given by

Aα
′ = Λα′

βA
β (2.1)

where I am using the Einstein summation convention. In my procedures, I shall try

to emphasize the geometrical character of a vector, which exists independent of the

coordinates system. This will be highly important when we generalize this methods

to tensors and finally its application to general relativity.

We can introduce a set of basis vectors denoted by eµ1, such that the vector A

can be written as

A = Aαeα (2.2)

where the basis vector written in components takes the form

e0 → (1, 0, 0, 0)

e1 → (0, 1, 0, 0)

e2 → (0, 0, 1, 0) (2.3)

e3 → (0, 0, 0, 1)

This basis satisfies the relation (eα)β = δβα. These transformation rules applies

also to any other frame, it means

A = Aα
′eα′ (2.2)

1Also known as tetrad
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Note that in general, these “primed” components and basis, are not the same as

the ones in (2.2). They are two different frames. However, after the sum is done, the

total vector will be the same

Aαeα = Aα
′eα′ (2.3)

This relation is important, because from here we can find the transformation rules

for the basis vectors. Using (2.1) for Aα′ and replacing in (2.3) we have

Λα′

βA
βeα′ = Aαeα

AβΛα′

βeα′ = Aαeα

Note that α and β are dummy index, so we can exchange them

Aα
(
Λβ′

αeβ′ − eα
)

= 0

which reduces to

eα = Λβ′

αeβ′ (2.4)

More than a components transformation, (2.4) gives the linear transformation

between frames O and O′. Note that this is different of (2.1). An important example

in physics is the 4-momentum vector which is defined as P = mU, which has the

components; P→ (E, p1, p2, p3). In analogy with the interval in Minkowski geometry

∆s2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

we define the magnitude of a vector like

A2 = −(A0)2 + (A1)2 + (A2)2 + (A3)2 (2.5)
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The magnitude is obviously a scalar (frame independent quantity), therefore it’s a

Lorentz invariant. The minus sign is not just a signal of the difference with the

euclidean geometry (Newtonian mechanics), but also, it informs that the magnitude

is not only defined positive. In particular, we have three different cases

A2



< 0, Timelike

> 0, Spacelike

= 0, Null

Care must be taken about the Null condition. It does not mean that all compo-

nents are zero, it means that the sum (2.5) is zero. The scalar product between two

vectors is determined by

A ·B = −A0B0 + A1B1 + A2B2 + A3B3 (2.6)

If the dot product vanishes A ·B = 0, it means the vectors are orthogonal. Note

that the minus sign (again) indicates that A and B does not form right angles in a

spacetime diagram. What?, yes, they are orthogonal in the Minkowski spacetime!.

For example, the basis vectors eµ form an orthogonal vector basis (or orthonormal

tetrad), which satisfies

e0 · e0 = −1,

e1 · e1 = e2 · e2 = e3 · e3 = +1

eα · eβ = 0, α 6= β

We can summarize the results above as

eα · eβ = ηαβ (2.7)

where ηαβ is the metric tensor, which in matrix form can be written as
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Figure 2.1 Basis vectors O′ are not ‘perpendicular’ in the euclidean way, when they are
drawn in the frame O. They are orthogonal in the Minkowski spacetime. (Figure adapted
of [28])

ηαβ =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.8)

This particular form of metric tensor is valid only for the Minkowski spacetime

(special relativity). We will see that in general relativity, the spacetime is curved,

and the complexity of the metric tensor will increase. This looks a little bit “naive”

definition of a metric tensor, a more rigorous definition will be discussed in the fol-

lowing.

2.2 Introducing tensors: vectors and one-forms

Let’s consider two vectors in the representation of some basis eµ in some frame O
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A = Aαeα ; B = Bβeβ (2.9)

Taking the dot product of (2.9)

A ·B = (Aαeα) · (Bβeβ) = AαBβ(eα · eβ)

using (2.7) we have

A ·B = AαBβηαβ (2.10)

where ηαβ corresponds to the components of the metric tensor. So, what is a tensor?.

We follow this definition[28]

A tensor of type
(

0
N

)
is a function of N vectors into the real numbers,

which is linear in each of its arguments.

The symbol
(

0
N

)
is not indicating the binomial coefficient, it is related to the

number of vectors and one-forms that the tensor composes. I will discuss more about

that later. For the moment, let’s analyze that definition for the case we discussed in

(2.10). The rule says, a tensor
(

0
2

)
is a function that takes two vectors, and it gives a

real number. Comparing this analysis with (2.10) we see that the relation is satisfied.

On the other hand, linearity condition means

(αA) ·B = α(A ·B)

(A + B) ·C = A ·B + B ·C

In more concrete terms, we define the metric tensor g as

g(A,B) ≡ A ·B (2.11)
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Note that this definition of tensor is independent of the coordinates, we did not

mention components here. The power of the tensor concept, is that it must give the

same real number (scalar), in any reference frame. Here we can start to visualize the

relation with the equivalence principle in general relativity, but let’s stop there, we

need to do more math before going there.

In some ‘oldies’ texts, the metric tensor is defined in terms of components, as an

object that transforms according to the rule (see for instance [6, 11, 29])

g′µν = ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

Although this definition is operationally correct, it does not allow us to have a wider

view of a tensor as a geometric object independent of the coordinates2. Of course,

when we need to solve particular problems (finding exact solutions to Einstein equa-

tion for instance) we need to choose some coordinate system and a reference frame,

and then do the calculations with components. Again, this is more an ‘operational’

definition of a tensor.

The components of a tensor corresponds to the values that the function takes when

its arguments are the basis vectors. Let’s recall that the arguments of the metric tensor

are the vectors themselves, not the components. In terms of components, the metric

tensor can be written as

g(eα, eβ) = eα · eβ = ηαβ (2.12)

which corresponds to the metric tensor of special relativity, or Lorentz metric. A

tensor of type
(

0
1

)
is called a covariant vector (covector), or in modern terminology:

one-form. In our notation, we will use a tilde p̃ to denote one-forms. Given an

2This method of working with tensors in components, was the one that used Einstein in his
original papers[3]. However, the tools of the modern differential geometry were not completely
developed by that time.
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arbitrary one-form p̃, when a vector is given to it as an argument, we obtain a scalar:

p̃(A) = k, where k is a real number. Aditionally, the one-forms satisfies the same

properties as a space vector

• s̃ = p̃+ q̃

• r̃ = αp̃

• s̃(A) = p̃(A) + q̃(A)

• r̃(A) = αp̃(A)

The one-forms space is called the dual space vector. In terms of components, a

one-form is written as

pα ≡ p̃(eα) (2.13)

When components are denoted with single lower index, by convention, these cor-

responds to one-forms. Upper index corresponds to vectors. This difference in the

index notation is important because it determines the rules of one-forms acting on

vectors, as follows

p̃(A) = p̃(Aαeα) = Aαp̃(eα)

p̃(A) = Aαpα (2.14)

which gives a real number. In principle, this is a more fundamental operation than

the dot product between vectors, because (2.14) does not require another tensor to

operate.3 In analogy as we proceed with vectors, we can find the transformation rules

3Let’s remember that in the case of dot product we need a metric tensor.
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of one-forms in the basis of tetrads eβ

pβ′ ≡ p̃(eβ′) = p̃(Λα
β′eα)

= Λα
β′ p̃(eα) = Λα

β′pα

eβ′ = Λα
β′eα (2.15)

comparing to (2.4) we see that components of one-forms transforms in opposite (I

mean with the inverse transformation) way, compared to how vectors components

transforms. In analogy as we did for vectors, we can define a ‘one-forms’ basis,

considering that one-forms satisfies the properties of vector space. In my notation

convention, I will use {ω̃α} where α = 0, .., 3. In this basis, a one-form reads as

p̃ = pαω̃
α (2.16)

Let us act p̃ on a vector A. From (2.16) we have then

p̃(A) = pαω̃
α(A) (2.17)

substituting (2.9) in (2.17) we have

p̃(A) = pαω̃
α(Aβeβ)

= pαA
βω̃α(eβ)

the last line can be only the invariant pαAβ if

ω̃α(eβ) = δαβ (2.18)

which defines the one-forms basis in terms of the vector basis. In components, (2.18)

is given by
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ω̃0 → (1, 0, 0, 0),

ω̃1 → (0, 1, 0, 0),

ω̃2 → (0, 0, 1, 0), (2.19)

ω̃3 → (0, 0, 0, 1).

Although we can describe vector and one-forms basis in terms of 4 numbers, their

geometrical significance is different. We are familiar with the representation of vectors

as arrows, but what about one-forms?. Warning: a one-form is not an arrow. From

(2.14) we found that a one-form acts on a vector to produce a real number4. And

also, we discussed that this action does not need an additional tensor to operate,

in contrast with the dot product which needs a metric tensor to operate. A visual

representation used in mathematics to describe one-forms, consists of a set of surfaces

where the spacing between them, determines the magnitude of the one-form: “larger

the space, smaller the magnitude” (see Fig. 2.2).[28]

Figure 2.2 Visual representations of a vector and a one-form. The vector corresponds to
the ‘standard’ arrow. The one-form can be seen as a set of surfaces, where the spacing
determines its magnitude. A one-form ‘acting’ on a vector, gives a scalar which
corresponds to the number of surfaces that the arrow ‘crosses’. In this case ω̃(V) = 2.5.
(Figure adapted of [28])

4In more technical terms, it maps a vector into a real number.
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Note that in analogy to vectors, which are represented by ‘straight’ arrows, one-

forms corresponds to surfaces straight and parallel. It is possible, because we are

working with one-forms at a point (‘tangent’ one-forms as tangent vector).

Comment on notation for derivatives: I will use the following notation to

indicate partial derivative

φ,x ≡
∂φ

∂x
; φ,α ≡

∂φ

∂xα
; xα,β = δαβ (2.20)

In Chapter 3 we will introduce the covariant derivative which we will denote as semi-

colon Tµν;ν , bet let us discuss that later.

2.3 More tensors:
(

0
2

)
tensors and the metric tensor

Basically
(

0
2

)
type tensors corresponds to tensors that have two arguments. An exam-

ple of this, is the metric tensor which was discussed in the previous section. We said

that the dot product between two vectors, demands a metric tensor to produce a real

number. Another important example of tensors
(

0
2

)
corresponds to the product of two

one-forms. The rule is as follows: given two one-forms p̃ and q̃, then p̃⊗ q̃ is the tensor(
0
2

)
which when acts on vectors A and B gives the number p̃(A) · q̃(B). Is worth to

mention that the ‘outer product’ ⊗ is not commutative, so p̃ ⊗ q̃ = p̃(A) · q̃(B) but

q̃ ⊗ p̃ = q̃(A) · p̃(B). In general we can write a
(

0
2

)
tensor in a basis eµ as

fαβ = f(eα, eβ) (2.21)

Acting on the vectors A and B, we can write (2.21) in components

f(A,B) = f(Aαeα, Bβeβ) = AαBβf(eα, eβ)

therefore:
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f(A,B) = AαBβfαβ (2.22)

where in the last line we used (2.21). Note that (2.22) is written in terms of vectors,

and for instance, its basis. However, we can also find a basis ω̃αβ for tensors
(

0
2

)
, in

analogy to (2.16). What we are looking for, is something like

f = fαβω̃
αβ (2.23)

in that case, using (2.21) we demand

fµν = f(eµ, eν) = fαβω̃
αβ(eµ, eν)

we demand that

ω̃αβ(eµ, eν) = δαµδ
β
ν (2.23)

but from (2.18) we know that δαµ corresponds to the value of ω̃α acting on eµ, so this

implies

ω̃αβ = ω̃α ⊗ ω̃β

and we conclude that

f = fαβ
(
ω̃α ⊗ ω̃β

)
(2.24)

The ordering of the arguments of
(

0
2

)
tensors is an important characteristic which

will have relevant consequences when we introduce the physical ideas in Chapter 3.

We can consider symmetric tensors which satisfy

f(A,B) = f(B,A) (2.25)

which implies
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fαβ = fβα (2.26)

An example of this is the metric tensor gµν , which is the fingerprint of Riemannian

geometries5. As before, we can introduce the symmetrization

h(s)αβ ≡ h(αβ) = 1
2(hαβ + hβα) (2.27)

On the other hand, a tensor is called antisymmetric if it satisfies

f(A,B) = −f(B,A) (2.28)

which implies

fαβ = −fβα (2.29)

Similarly, we can construct an antisymmetric tensor by

h(A)αβ ≡ h[αβ] = 1
2(hαβ − hβα) (2.30)

The important characteristic of symmetrization and antisymmetrization, is that we

can write any
(

0
2

)
tensor in terms of its symmetric and skew-symmetric parts like this

hαβ = 1
2(hαβ + hβα) + 1

2(hαβ − hβα) = h(αβ) + h[αβ] (2.31)

With these tools in our hands, we can introduce more formally the metric tensor,

which will be of great importance in general relativity. The basic role of the metric

tensor, is to act as a mapping between vectors and one-forms to produce a real

number. We define that ‘acting’ as

5There are alternative models where a skew-symmetric tensor is considered, which are called
non-symmetric gravitational theories. See for instance[30].
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Ṽ (A) ≡ g(V,A) = V ·A (2.32)

This is an important idea to poitn out. The metric tensor acts as a machine,

where once we supply with a vector and a one-forms, it gives a real number. Note

that the idea of metric is implicitly given when we operate a dot product. Let us take

a look now to Ṽ in components

Vα ≡ Ṽ (eα) = V · eα = eα ·V

= eα · (V βeβ)

= (eα · eβ)V β

finally

Vα = ηαβV
β (2.33)

Note that equation (2.33) shows the idea discussed above: the metric tensor acts as

a mapping between vectors (in this case V β) and one-forms (Vα). Clearly the index

position is important in this formalism. In operational terms, the metric tensor can

be understood as the “machine” that allows us to raise and low indexes. We can go

backwards, and find the components of the one-form given the vector. Considering

that ηαβ is non-singular we have

V α = ηαβVβ (2.34)

We conclude that the mapping produced by the metric tensor g is one-to-one and

invertible. For instance, the flat spacetime of special relativity is determined by the

Lorentz metric which takes the form (2.8)
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ηαβ =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


When we introduce the ideas of general relativity in this context, we will see that

the content of mass and momentum disturbs the spacetime producing curvature,

which makes the metric more complicated.

The application of this formalism of tensor algebra, vectors and one-forms, is

not only limited to the Einstein’s relativity. In quantum mechanics, using the Dirac

formalism we learned that the state of a system is represented by a ‘ket’ |ψ〉. Then,

the Hilbert space is introduced where we can define all these vectors (kets) and the

operations between them. The Hilbert space is a space vector. Similarly, we define

the dual to a ket, or ‘bra’ 〈φ|, where it’s defined in a dual vector space. Analogously

to the behavior of vectors and one-forms, when we ‘act’ a bra on a ket, or in better

terms we construct a ‘braket’, we obtain the number 〈φ |ψ〉.

So far, we have found differences between vectors and one-forms. However, when

we calculate magnitudes both of them gives the same result

p2 = p̃2 = ηαβp
αpβ (2.35)

using (2.34) we have

p̃2 = ηαβ(ηαµpµ)(ηβνpν)

the sum over β drops, which implies

ηαβη
βν = δνα (2.36)

then we have finally
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p̃2 = ηαµpµpα (2.37)

In geometric terms (I mean visual terms, all we have done is geometry!) we consider

a normal vector to a surface, if its associated one-form is a normal one-form. It is the

general case of the well known euclidean space, where a normal vector is defined as the

vector orthogonal to the space of tangent vectors. The powerful characteristic of our

tensor formalism, is that we now recognize the ‘normal’ as a one-form independent

of the coordinates, therefore we don’t need to specify a metric.

2.4 A little more of tensors:
(
M
N

)
tensors and differentiation

We have defined vectors and one-forms and tensors type
(

0
2

)
. As a particular case of

this last one, we introduced the metric tensor. My next step is to generalize these

concepts a little further.[28]

A
(
M
0

)
tensor is a linear function of M one-forms into the real numbers.

In analogy to the case of
(

2
0

)
tensors, the components of a tensor

(
M
0

)
corresponds

to the basis one-forms ω̃α. Finally, the most general definition that we will discuss is

a
(
M
N

)
tensor

A
(
M
N

)
tensor is a linear function of M one-forms and N vectors, into the

real numbers.

In components, a
(
M
N

)
tensor is characterized by M superscripts and N subscripts.

For example, doing a boost to another inertial reference frame we have

Rα′

β′ = R(ω̃α′
, eβ′)

= R(Λα′

µω̃
µ; Λν

β′ ẽν)
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therefore

Rα′

β′ = Λα′

µΛν
β′Rµ

ν (2.38)

In the ‘old fashion’ notation, a
(
M
N

)
tensor has M contravariant components and

N covariant components. For example, let’s suppose Tαµγ corresponds to the compo-

nents of a tensor
(

2
1

)
. We can construct a

(
1
2

)
tensor by

Tαβγ = ηβµT
αµ
γ (2.39)

note that the metric tensor acts as the ‘machine’ to raise and low indexes. On the

other hand, a different tensor
(

1
2

)
can be formed by

T β
α γ = ηαµT

µβ
γ (2.40)

in summary, these operations are called lowering and raising. Another important

property of the metric tensor is

ηα β ≡ ηαµηµβ = δαβ (2.41)

we can conclude that ηαβ corresponds to the components of the tensor
(

2
0

)
which is

‘mapped’ of the tensor
(

0
2

)
.

As the last stage in our description of the tensor algebra, we will introduce the

differentiation of tensors. In general, when we take derivatives of a tensor it will

produce a tensor of higher rank. For example, a scalar function f is considered a
(

0
0

)
tensor. Its gradient ∇f is a one-form, or tensor

(
0
1

)
. Let’s suppose we have a

(
1
1

)
tensor whose components are

T = Tαβω̃
β ⊗ eα (2.42)
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Now, let’s suppose we move along a line parametrized with the parameter τ , the

proper time. Considering that vector basis remains constant in flat spacetime we

have

dT
dτ

=
(
dTαβ
dτ

)
ω̃β ⊗ eα (2.43)

where dTαβ
dτ

= Tαβ,γU
γ is a

(
1
1

)
tensor. In general, for any vector U we have

dT
dτ

=
(
Tαβ,γω̃

β ⊗ eα
)
Uγ (2.44)

from (2.44) we can define the gradient of T

∇T ≡ Tαβ,γω̃
β ⊗ ω̃γ ⊗ eα (2.45)

Is worth to remark that this definition was possible just because the basis vectors

remains constant in the flat spacetime of special relativity. In the next chapter,

we will see that we must modify this definition, once we put all this mathematical

’machinery’ to the service of the principles of the general theory of relativity.
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Chapter 3

General Relativity in a Nutshell

Einstein’s theory of gravitation was inspired by

and based on the “principle of equivalence”, which

states that when gravity is present, as when it is absent,

free particles move along extremal (geodesic) lines of spacetime-

spacetime now being curved, not flat.

Ya. B. Zel’dovich (1971)

The formalism of tensors, which was reviewed in Chapter 2, is now applied to

the general theory of relativity. The idea that gravitation is just a manifestation of

the curvature of the spacetime, is introduced. The concept of manifold is discussed.

The Riemann, Ricci and energy-momentum tensors are introduced. The Einstein

equation is written and the idea that matter determines geometry is presented. Some

solutions to Einstein equation are discussed (but not derived), which will be cited in

Chapter 4.

3.1 What is a manifold?

To go further in our description of the geometry of the spacetime, we would like to

introduce a sort of mathematical structure, which looks locally flat (special relativity

spacetime) but its curvature grows in complexity once we cover extended regions.

The mathematical object that embraces these ideas, is a manifold. The notion of

manifold corresponds to a space which locally looks like Rn (Euclidean)[5]. When
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we say “looks like” it does not mean the metric is the same. What it means, is that

functions and coordinates work in a similar fashion.

An important feature of a manifold, is that it can be parametrized, where the

number of parameters corresponds to the dimension of the manifold. Is not hard to see

that these parameters corresponds to the coordinates of the manifold. For example,

in special relativity we deal with a manifold of dimension 4, which corresponds to

the three spatial coordinates xi and the time coordinate x0. Newtonian physics for

instance, works in a manifold of dimension 3, considering that time is not a coordinate.

The definition of manifold given above might look a little “vague”. We can give a

more rigorous definition, following[5]: a C∞ n-dimensional manifold (or n-manifold)

is simply a set M provided with a maximal atlas, which contains every possible com-

patible chart. An atlas must be understood as an indexed collection of charts which

satisfies:

• The union of Uα is equal to M, it means, that the charts covers all the manifold

M .

• The charts must be “sewn” smoothly together. If two charts overlap, Uα∩Uβ 6=

0, then the map (φα ◦ φ−1
β ) take points in φβ(Uα ∩ Uβ) ⊂ Rn onto an open set

φα(Uα ∩ Uβ) ∩ Rn, and all these maps must be C∞ where they are defined.

where we understand a chart or coordinate system as a subset U ⊂ M , along with a

one-to-one map φ : U → Rn. In Fig. 3.1 is shown the idea of overlapped charts.

Note that we have not introduced the metric in our development. Sometimes we

don’t need to introduce the idea of metric into the manifold, it must be understood

as a geometrical object independent of the coordinates. However, in general relativity

the metric is indispensable, because it carries the information about the clocks rates

and distances between points, just like the Lorentz metric does for special relativity.
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Figure 3.1 Overlapping coordinate charts. (Figure adapted of [5])

One important example is a Riemannian manifold, which corresponds to a C∞

manifold which has been provided with a tensor
(

0
2

)
g field1. We will see that once

we provide the manifold with a metric tensor, it will define completely the geometry

of the spacetime. We will discuss some important metrics in general relativity later.

Before going there, we need to understand how we are going to take derivatives of

vectors in curves manifolds, which will take us to the notion of covariant derivative

and geodesic equation.

3.2 Curvature: covariant derivative, parallel transport and geodesics

In flat space geometry, the derivative of a vector field corresponds to the difference

between vectors at two different points (in the limit when the separation between

vectors goes to zero). However, when we extend our study to curved spaces, the

notion of vectors in two near points must be analyzed carefully. In principle, we

should expect some “correction” in the partial derivative term, due to the fact that

1More formally, a Riemannian manifold is characterized by the condition g(V,V) > 0 for all
V 6= 0. From our discussion in Chapter 2, we found that for the Lorentz metric, g(V,V) can be
positive, negative or null. The Lorentz metric is called pseudo-Riemannian. That will be also the
case in general relativity.
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the basis vectors are changing in this curved space. The concept of Riemannian

manifold is of great help in this matter, because as we discussed in the previous

section, locally this manifold looks like Rn, so it’s expected that locally the derivative

reduces to the standard partial derivative.

In general, the covariant derivative of a vector V ν is given by the partial derivative

∂µ plus some correction which is related to the change in the vector basis

V ν
;µ = V ν

,µ + ΓναµV α (3.1)

where we use the semi-colon to denote the covariant derivative, and the comma to

denote the partial derivative V,µ = ∂V
∂xµ

. The “gamma” terms Γναµ are called the

connection coefficients or Christoffel symbols and are given by

Γαµν = 1
2g

αβ(gβµ,ν + gβν,µ − gµν,β) (3.2)

Note that in a local inertial frame, we recover the flat spacetime of SR. In that case

V ν
;µ = V ν

,µ at some point P in that frame. Equation (3.1) is valid for any tensor,

including the metric

gαβ;γ = gαβ,γ = 0 at P (3.3)

Note that equation (3.3) is a tensor equation, therefore it is valid in any basis. This

is an important result in general relativity, which we can summarize like this: the

covariant derivative of the metric tensor is zero in any basis. It’s worth to mention

that the Christoffel symbols are not tensors. That’s not a problem, because what we

want is that the whole expression (3.1) transforms as a tensor, which it does2. We

have told that Γαµν = 0 in any local inertial frame. However, this is not going to

be true in general, because the Γ’s involves partial derivatives of the metric tensor.

2To see a proof of this result see[31].
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Although we can find local inertial frames where the connection coefficients vanish, is

not possible to find a global basis where this holds true. In flat spacetime for instance,

Γαµν = 0 everywhere.

Let’s summarize some formulas for covariant derivatives of one-forms and
(

2
0

)
tensors

ων;µ = ων,µ − Γανµωα

Tαβ;γ = Tαβ,γ + ΓαµγT µβ + ΓβµγTαµ (3.4)

We are in position now to apply the previous concepts to the notion of parallel

transport. Let us define a vector field V at every point along a curve, which is

parametrized by λ (See Fig. 3.2). If the vectors V at infinitesimally neighbor points

of the curve, are parallel to each other, we say that V has been parallel-transported

along the curve.

Figure 3.2 Parallel transport of V along U. (Figure adapted of [28])

Let U = dx
dλ

be a tangent vector to the curve. We know that the main charac-

teristic of a manifold, is that it looks locally like Rn. Therefore, in a locally inertial

coordinates system at point P , the components of V must be constant along the

curve at P :

dV α

dλ
= 0 at P (3.5)

we can write (3.5) as
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dV α

dλ
= dV α

dxβ
dxβ

dλ
= UβV α

,β = UβV α
;β = 0 (3.6)

at point P . Note that the last equality in (3.6) is because the Christoffel symbols

vanishes at P (locally flat). The last term involves a covariant derivative, and this is

a tensor. Therefore this expression holds in any basis, so we have a general definition

of parallel transport of a vector V along U:

UβV α
;β = 0⇒ d

dλ
V = ∇UV = 0 (3.7)

where the notation ∇UV → {V α
β,γU

γ}. How can we relate this to geodesics?. Well,

we know from Euclidean geometry, that two parallel lines will keep being parallel, no

matter how far we extend them. More precisely, the tangent to the curve at some

point, is parallel to the tangent at a previous neighbor point. In terms of our definition

(3.7), a straight line in Euclidean space, is the only one that parallel-transports its

own tangent vector. This is not the case on a curved surface, like a sphere for example.

On a sphere the space is curved and a vector initially pointing along the equator, it

will be pointing towards the south hemisphere after being parallel transported until

its initial position (See Fig. 3.3).

Figure 3.3 Parallel transport along a spherical triangle. (Figure adapted of [28])

On curved spaces, we find that the analogue to an ‘Euclidean straight line’, is a

geodesic
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∇UU = 0 (3.8)

which in components can be written as

UβUα
;β = UβUα

,β + ΓαµβUµUβ = 0

letting λ be the parameter of the curve, we have: Uα = dxα

dλ
and Uβ ∂

∂xβ
= d

dλ
.

Therefore we have

Uβ d

dxβ

(
dxα

dλ

)
+ Γαµβ

dxµ

dλ

dxβ

dλ
= 0

which gives

d2xα

dλ2 + Γαµβ
dxµ

dλ

dxβ

dλ
= 0 (3.9)

This is the geodesic equation, which determines the equations of motion of material

particles under the action only of inertia and gravitation[18]. For Euclidean space, we

know that the Γ connections vanishes, so (3.9) reduces to d2xα

dλ2 = 0 which corresponds

to a straight line.

3.3 More tensors: Riemann and Einstein

With the notion of parallel-transport discussed in the previous section, we are now

in position to build more formally the idea of curvature of a manifold. Following

a conceptual reasoning, we should expect that the curvature will depend on the

covariant derivative of a vector and the affine connections. It turns out to be that

curvature is quantified by the Riemann tensor, which is derived of the connection.

We are not going to discuss the formal derivation of the Riemann tensor (see [5] for

instance), but we can say that it will come of parallel-transport of a vector. Let’s recall

that when a vector is parallel-transported, it’s transformed. This transformation
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depends on the curvature of the manifold. In mathematical terms, the Riemann

tensor is given by

Rα
βµν ≡ Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓσβµ (3.10)

Some important properties of this tensor are the following

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ (3.11)

Rαβµν +Rανβµ +Rαµνβ = 0 (3.12)

Note the antisymmetry of Rαβµν in the first pair and on the second pair of in-

dexes, and the symmetry on exchange of two pairs. Is worth to recall that these

are tensor equations, therefore they are valid in any basis. An important result that

can be obtained using properties (3.11) and (3.12) in (3.10), is that the number of

independent components of the Riemann tensor are 20, in 4 dimensions3.

A flat manifold corresponds to one where the Riemann tensor vanishes Rαβµν = 0.

We can also obtain this result in a local reference frame. Let’s remember that by

definition, a manifold is a structure that locally looks like Rn, which implies that

Γαβµ,ν = 0, so from (3.2) we have

Γαµν,σ = 1
2g

αβ(gβµ,νσ + gβν,µσ − gµν,βσ) (3.13)

but second derivatives of the metric tensor does not vanish, then we have from (3.10)

Rα
βµν = 1

2g
ασ (gσβ,νµ + gσν,βµ − gβν,σµ − gσβ,µν − gσµ,βν + gβµ,σν)

considering that partial derivatives always commute, we have

3The independent components of the Riemann tensor can be reduced even further imposing
symmetry conditions. An important example is the Schwarzschild solution which is built under
spherical symmetry. We will discuss this later.
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Rα
βµν = 1

2g
ασ (gσν,βµ − gσµ,βν + gβµ,σν − gβν,σµ) (3.14)

finally, we can low the index α using the metric tensor to obtain finally

Rαβµν ≡ gαλR
λ
βµν = 1

2 (gαν,βµ − gσµ,βν + gβµ,σν − gβν,αµ) (3.15)

So, (3.15) corresponds to the Riemann tensor in a locally inertial reference frame.

Let’s differentiate (3.15) with respect to xλ

Rαβµν,λ = 1
2 (gαν,βµλ − gαµ,βνλ + gβµ,ανλ − gβν,αµλ)

from the symmetry condition gαβ = gβα and that partial derivatives commute, we

have

Rαβµν,λ +Rαβλµ,ν +Rαβνλ,µ = 0 (3.16)

but this is a tensorial equation, we can apply the rule “comma goes to semi-colon”

and then write

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0 (3.17)

This is an important result known as the Bianchi identities. In the following we will

explore the consequences of these identities. Before going there, is useful to define

the contracted Riemann tensor or Ricci tensor

Rαβ ≡ Rµ
αµβ = Rβα (3.18)

From the Ricci tensor we can define the Ricci scalar or curvature scalar

R ≡ gαβRαβ = gµνgαβRαµβν (3.19)

Let us contract indexes in the Bianchi identities (3.17)
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gαµ [Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ] = 0 (3.20)

using (3.3) and the fact that

gαµRαβλµ;ν = −gαµRαβµλ;ν = −Rβλ;ν

we have from (3.20)

Rβν;λ −Rβλ;ν +Rµ
βνλ;µ = 0

contracting one more time in β and ν we have

gβν
[
Rβν;λ −Rβλ;ν +Rµ

βνλ;µ

]
= 0

which reduces to

R;λ −Rµ
λ;µ −R

µ
λ;µ = 0

last equation can be written as

(2Rµ
λ − δ

µ
λR);µ = 0 (3.21)

We can define the Einstein symmetric tensor as

Gαβ ≡ Rαβ − 1
2Rg

αβ (3.22)

which from (3.21) satisfies

Gαβ
;β = 0 (3.23)

Conclusion: the Einstein tensor is just a consequence of the Riemann tensor and

the metric tensor, and it’s divergenceless. This result will be highly important for
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the discussion of the next section, where we will write the field equations of general

relativity.

3.4 Gravity is Geometry: the Einstein’s equation

The table is set, and all our tensors ‘army’ has been organized. We are ready now to

embrace the physics ideas that lies in the core of the general relativity. The discussion

will go in two aspects: how the gravitational field determines the inertia of test bodies,

and how the matter determines the gravitational field. As we discussed in Chapter

1, Einstein found inspiration in the Newtonian theory, particularly in the Poisson’s

equation (Eq. 1.3) which relates matter density with gravitational field

∇2φ = 4πGρ

As a first guess, Einstein tried the equation

Rµν = kTµν (3.24)

but this equation shows problems with the energy conservation law Tµν;ν = 0. How-

ever from (3.23) we know the Einstein tensor satisfies the divergenceless condition

Gαβ
;β = 0, which is in concordance with the energy conservation. Therefore, we can

present finally the Einstein’s field equation

Rµν −
1
2Rgµν = 8πGTµν (3.25)

where G is the Newton’s constant of gravitation. Equation (3.25) informs us how the

geometry of the spacetime (left side) will be determined by the content of energy and

momentum (right side). A worth point to remark here, is that any type of energy

that we can write in the energy-momentum tensor will curve the spacetime. For

example, a charged particle will produce an electric field in its neighborhood, which
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will affect the geometry of the spacetime. This scenario, called electrovac universe,

will be discussed in the next chapter.

In summary, Einstein postulated his equation based on the following principles:

• Resemblance with the Poisson’s equation: matter as the source of gravitational

field.

• General covariance principle (no preference for any coordinate system).

• Local conservation of energy-momentum for any gµν .

Einstein’s equation corresponds to a set of second-order differential equations for

the metric gµν . Due to the symmetry in the two-index tensors, it reduces to ten

independent equations. Going further, the Bianchi identities provides 4 constraints

on the Ricci tensor, so at the end we have 6 independent equations in (3.25). The

complexity of Einstein’s equation is formidable, the non-linearity of the theory makes

a very hard task to find exact solutions to the equations. However, few months

after Einstein published his theory, Karl Schwarzschild found a solution to Einstein

equation which describes the external gravitational field due to a spherical mass[5].

In polar coordinates (t, r, θ, φ) the Schwarzschild metric reads

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2) (3.26)

where M is interpreted as the mass of the object producing the gravitational field4.

This is a very important result which allows to study some of the experimental tests in

GR, namely: deflection of light due to a mass and the precession of Mercury perihelia.

Even further, the Schwarzschild metric predicts the existence of ‘black holes’5. Note

4A clear derivation of this metric is found in [5].

5The term ‘black hole’ was introduced by J.A. Wheeler in the 60’s.
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that when r = 2GM (called the Schwarzschild radius and denoted by rs), the radial

component grr metric diverges while the time component gtt vanishes. Once the

geodesic motion in this spacetime is studied, it turns out to be that particles moving

along timelike and null geodesics, cannot scape from the inner region to rs.

The surface r = 2GM , although locally is regular, globally behaves as a ‘non-

return point’. Once a particle (even a photon!) crosses the surface, it can never

scape6. The radius r = 2GM forms what is called an event horizon. Once the matter

crosses the event horizon, it collapses to a singular point in r = 0, called a singularity.

In the 70’s Hawking[12] and Penrose showed some theorems related to the properties

of these singularities in general relativity. A deeper study of singularities and black

holes is beyond the scope of this thesis, but the interested reader should consult the

references[2, 12, 31]7.

3.5 The Einstein equation plus the cosmological constant

After the culmination of the general relativity (Nov. 1915) and the publication of the

Schwarzschild solution; physicists started to apply the Einstein’s equation to describe

the whole universe. Einstein was ‘guided’ (in fact he was misguided as we will see) by

the still ‘primitive’ observations at the time, which indicated that the velocity of the

distant stars is negligible. This observation suggested that the universe was static.

However, in 1922 the Soviet mathematician A. Friedmann found a set of solutions

to Einstein’s equation that describe the dynamics of an expanding universe. In his

model, Friedmann assumed the universe to be isotropic and homogeneous, which can

be described by the following energy-momentum tensor

6Even light will be trapped inside the Schwarzschild radius, so it’s not possible for us to see
inside. That’s why the term ‘black hole’.

7An alternative model to ‘black hole’, which alleviates most of its problems, was proposed by
Mazur and Mottola which is called a gravastar [32]. A detailed discussion of this model is out of the
scope of this thesis.
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Tµν =



ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


(3.27)

When (3.27) is applied to the Einstein’s equation, assuming a Robertson-Walker

metric, one finds the Friedmann equations

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 (3.28)

ä

a
= −4πG

3 (ρ+ 3p) (3.29)

where a(t) = R(t)
R0

is called the scale factor, which measures the universal expansion

rate. The scale factor is a function of time only, and it tells us how physical separations

grows in time. Note that these equations show an evolution of the scale factor a,

implying an evolving universe. In summary, general relativity predicts an expanding

universe. In 1927, Georges Lemaitre who was a Belgium priest, astronomer and

physics professor at the Université catholique de Louvain, proposed a model of an

expanding universe where the universe had a beginning at the ‘big bang’8.

In order to conciliate his new theory of gravitation with a static universe, Einstein

introduced the cosmological constant Λ in his equations

Rµν −
1
2Rgµν + Λgµν = 8πGTµν (3.30)

the lambda-term affects the dynamical Friedmann equations like[33]

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 + Λ
3 (3.31)

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 (3.32)

8The cosmological ideas of Lemaitre were driven as well by his religious beliefs. He thought this
‘big bang’ corresponded to the moment of creation of the universe by God.
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Note that a sufficient large positive value of Λ, compensates the gravitational at-

traction represented by the first term to the right in (3.32). However in 1924, the

American astronomer Edwin Hubble concluded of his observations, that the distant

galaxies are ‘receding’ from us, validating the Friedmann-Lemaitre model. This led

Einstein to consider the inclusion of Λ as his “biggest blunder” in all his very pro-

lific career. Once the observations by Hubble supported the original predictions of

his theory, Einstein was determined to eliminate Λ of his equations. In a letter to

H. Weyl, Einstein wrote[19]: “If there is no quasi-static world, then away with the

cosmological term”.

However, once the rabbit is out of the hat, is not easy to put it back again.

Eddington was one of the detractors of the idea of eliminating Λ, which he considered

was a natural addition to the equations. In fact, Einstein himself was aware of this

term before discussing any idea about cosmology (see §1.4). Einstein realized that

the more general
(

0
2

)
tensor that satisfies the divergenceless condition is: Gµν +λgµν .

However, he neglected this additional term, because it ‘removed the beauty of the

theory’. But as we see, he recalled this term again once he found his theory was not

in concordance with a static universe.

How it is possible that the man who had the courage to change the Newtonian

ideas of space and time which were reigning in physics during almost two centuries,

was not brave enough to trust in his theory and predict an expanding universe and

to push the astronomers to improve his observations?. Instead of that he just added

a term, in a completely ad-hoc manner, just to match his theory with primitive

“observations”. I think what Einstein called his “biggest blunder” was the fact of not

being confident enough in his theory. Even a great genius, can be a ‘fool’ sometimes.

Recently with the discovery of the accelerating expansion of the universe[34], the

cosmological constant returns to the game as the most prominent explanation to this

effect. In principle the Λ-term is associated to the vacuum energy: an energy density
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characteristic of empty space[5]. Usually the energy-momentum tensor associated to

Λ is required to be Lorentz invariant in a locally inertial frame9. Lorentz invariance

implies that Tµν should be proportional to the metric tensor

T vacµν = −ρvacgµν (3.33)

On the other hand, we know that the energy-momentum tensor of a perfect fluid is

given by

Tµν = (ρ+ p)UµUν + pgµν (3.34)

where Uµ is the four-velocity. Comparing (3.33) with (3.34) (assuming a local rest

frame such that Uµ = 0) we have

pvac = −ρvac (3.35)

which implies that the vacuum energy density behaves as a ‘perfect’ fluid with an

isotropic pressure10. Using (3.35) we can rewrite the Einstein equation as follows

Rµν −
1
2Rgµν = 8πG

(
T (m)
µν − ρvacgµν

)
(3.36)

where T (m)
µν indicates the energy-momentum tensor of matter (baryonic matter let’s

say). Comparing (3.36) with (3.30) we can see a relation between the cosmological

constant and ρvac

ρvac = Λ
8πG (3.37)

In this model, cosmological constant and ‘vacuum energy’ are almost interchangeable.

Despite the fact of this ‘neat’ association, the previous interpretation suffers of a

9The vacuum is assumed to be isotropic, it does not pick out a preferred direction.

10The minus sign is because we are using a signature (−,+,+,+).
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terrible trouble. One possible contribution of the vacuum energy, is provided by

quantum field theory as the zero-point fluctuations[35]. We know that the lowest

energy state has energy E0 = 1
2~ω. We can imagine the ‘empty’ space filled with

quantum harmonic oscillators11. The frequency of each oscillator is given by the

dispersion relation ω =
√
m2 + k2. Integrating all the contributions of each one of

these oscillators we have for the average value of ρvac

ρQFTvac = 1
(2π)3

∫ ∞
0

d3k
(1

2~ω
)

(3.38)

we don’t need to go further to realize that this integral goes to infinity. To bypass

this issue, the ‘trick’ is to integrate until a cut-off momentum kmax >> m (ultraviolet

momentum) so we can obtain a finite value[36]

ρQFTvac = 1
(2π)3

∫ ∞
0

d3k
(1

2~ω
)
≈

~
(2π)3

∫ kmax

0
4πk2dk

(1
2
√
m2 + k2

)
(3.39)

we can rewrite (3.39) like

ρQFTvac = 2π~
(2π)3

∫ kmax

0
dk

k3

√
1 + m2

k2


expanding the term in the radical at first order in the ratio m2

k2 and integrating, we

obtain

ρQFTvac '
~k4

max

16π2 (3.40)

If we believe that we can use QFT up to the Planck scale, where the reduced Planck

mass is given by: MP = 1√
8πG ∼ 1018GeV [11] we might say that ρvac is roughly

ρQFTvac ∼ (1018GeV )4 ∼ 10112erg/cm3 (3.41)

11Following the Dr. Creswick’s conjecture: ‘everything is a harmonic oscillator’.
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However, the observations of Type Ia Supernova plus observations of anisotropies in

the CMB[34] have put limits to the vacuum energy

ρobsvac ∼ 10−8erg/cm3 ∼ (10−3eV )4 (3.42)

comparison of (3.41) with (3.42) gives

ρobsvac ∼ 10−120ρQFTvac (3.43)

This is the ‘famous’ (I’d rather say infamous) discrepancy of 120 orders of magnitude.

This is probably the worst theoretical prediction in all the history of physics. Clearly

the cosmological constant suffers of this chronic issue, which is still unsolved. This

situation has put the ‘dark energy’ problem as the biggest one in the current physics,

and the one that is gaining most of the attention of the community. Some alternative

models have been proposed in the literature: quintessence fields, modified gravity,

timescape model[37], extensions of general relativity at large scale, among others. The

problem is still open, current and future missions (DES, Planck, Euclid) hopefully will

provide us with valuable information about the nature of this mysterious cosmological

constant.
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Chapter 4

The Einstein-Maxwell system and the

electrovac universe

The physical world is represented as a four-dimensional

continuum. If in this I adopt a Riemannian metric, and look for

the simplest laws which such a metric can satisfy, I arrive at the

relativistic gravitation theory of empty space. If I adopt in this

space a vector field, or the antisymmetrical tensor field derived

from it, and if I look for the simplest laws which such a field

can satisfy, I arrive at the Maxwell equations for free space.

...at any given moment, out of all conceivable constructions,

a single one has always proved itself absolutely

superior to all the rest...

Albert Einstein (1934)

In this final chapter a class of exact solutions to the Einstein’s equation, known

as electrovac universe, is discussed. The comformastat metric is introduced and its

consequences in the GR context are explored. The comformastat spacetime is ap-

plied to analyze the gravitational field due to a charged mass, which produces the

Majumdar-Papapetrou solutions. This solution is extended considering the cosmo-

logical constant. We offer solutions to the new extended equation.
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4.1 Static universes in conformastat form

In the following sections we use geometrized units c = G = 1. Per definition, a

general static universe is represented by the following metric

ds2 = −V 2(xi)dt2 + U2(xi)dxidxi (4.1)

which Synge[6] calls conformastat. Note that the metric elements in (4.1) depends

only on spatial coordinates, therefore the metric (4.1) is invariant under x0 → x0 +

const. In more techincal terms, we can find a Killing vector ξα associated with this

symmetry, namely

ξ · u = gttξαut = −V 2ut = const. (4.2)

where ξα = (1, 0, 0, 0) in the basis (t, x, y, z). The Christoffel symbols for the metric

(4.1) can be readily calculated to be

Γ0
i0 = V −1V,i ; Γi00 = U−2V V,i

Γiij = U−1U,j ; Γijj = −U−1U,i for i 6= j (4.3)

The spatial part of the Ricci tensor (3.18) is

Rij = U−1(U,ij + δijU,kk)− 2U−2U,iU,j + V −1V,ij

−(UV )−1(U,iV,j + U,jV,i) + (UV )−1δijU,kV,k (4.4)

whereas the temporal part takes the form

R00 = −V U−2(V,kk + U−1U,kV,k) (4.5)

This allows us to calculate the Ricci scalar (3.19) as

R = 4U−3
(
U,kk −

1
2U
−1U,kU,k

)
+ 2U−2V −1(V,kk + U−1U,kV,k) (4.6)

Note that we have not specified any energy-momentum tensor, therefore these results

are valid for any metric of the conformastat type. Before applying theses results to
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the Einstein-Maxwell system (where Tµν is given by the electromagnetic tensor), let

us explore what results we obtain if we specialize to the vacuum case i.e.

Rµν = 0 (4.7)

Equation (4.7) implies

R = 0 (4.8)

using (4.5) we have

V,kk + U−1U,kU,k = 0 (4.9)

Therefore equation (4.6) reduces to

U,kk −
1
2U
−1U,kU,k = 0 (4.10)

which can be arranged to be written as the Laplace equation

(
√
U),kk = 0 (4.11)

Therefore, only from the vacuum condition Rµν = 0, we conclude that all
√
U must

be harmonic functions. Thus, knowing U we can obtain V by solving (4.9) which

shows the form of the Poisson equation. Let us analyze an example of this general

result. A well known solution is, of course, the Schwarzschild spacetime which was

discussed in §3.4. In isotropic coordinates, this metric is given by[28]

ds2 = −
(

1− ξ
1 + ξ

)2

dt2 + (1 + ξ)4(dρ2 + ρ2dΩ2) (4.12)

where ξ = m
2ρ . Comparing (4.12) with (4.1) we conclude that

U = (1 + ξ)2 ; V = 1− ξ
1 + ξ

(4.13)

with ρ2 = xixi. Is straightforward to see that
√
U is a harmonic function in the

isotropic coordinates.
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So far, we have specialized on the vacuum case. Let us now introduce the condi-

tion UV = 1 such that the metric takes the form

ds2 = −U−2dt2 + U2dxidxjδij (4.14)

Equation (4.4) can be written as

Rij = U−1(U,ij + δijU,kk)− 2U−2U,iU,j + U(U−1),ij

− Ui(U−1),j − Uj(U−1),i + δijU,k(U−1),k

after simplifications this equation gives

Rij = δijU
−1(U,kk − U−1U,kU,k) + 2U−2U,iU,j (4.15)

where we used (U−1),ij = 2U−3U,jU,i − U−2U,ij . The corresponding spatial compo-

nents of the Ricci tensor and the Ricci scalar are:

R00 = U−5(U,kk − U−1U,kU,k) (4.16)

R = 2U−3U,kk (4.17)

Note that in the last development we have not used the Einstein equation, therefore

these results are purely geometrical consequences of the Ricci tensor. We conclude

that equation (4.17) represents a general result for the function U if R is known

(e.g. vacuum case, conformal energy-momentum tensor with T µµ = 0, etc.). We will

recall this result when we introduce the energy-momentum tensor and the Einstein’s

equation.

4.2 Electrovac universe

Let’s suppose we have a static electric charge located somewhere in an empty universe.

In the exterior region of the charge, we have only an electric field, but no matter.

This scenario was called by Synge the electrovac universe [6]. This situation can be
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understood as the generalization of the Reissner-Nordström metric [5] who considered

the spherically symmetric case. The implications of the Reissner-Nordström metric

in a cosmological context, was studied by Posada [40] by using curvature and geodesic

coordinates. Let us first choose the metric to be of the form

ds2 = −V 2(xi)dt2 + hij(xk)dxidxj (4.18)

We will first derive general results by using this metric, later on we will specialize to

the conformastat case (4.1). We are looking for the solutions of the Einstein equation

(here still with Λ = 0)

Rµν −
1
2Rgµν = 8πTµν (4.19)

where the source Tµν is the electromagnetic energy-momentum tensor

Tµν = 1
4gµνFαβF

αβ − FµαFα
ν (4.20)

and the Maxwell equations in vacuum

F µν
;ν = F µν

,ν
+ ΓνανF µα + ΓµανFαν = 0 (4.21)

under the condition that the system is purely electrostatic. This implies that there

is only one component of the electromagnetic tensor

Fµν = Aν,µ − Aµ,ν (4.22)

which is non-zero1:

F0i = −A0,i = −φ,i (4.23)

where φ is the electric potential. In terms of this potential the spatial components of

the electromagnetic tensor can be obtained as

Tij = V −2
(1

2hij∆1φ− φ,iφ,j
)

(4.24)

1The mathematically possible case F23 = −F32 6= 0 would indicate a magnetic monopole which
we leave out of our discussion.
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where we have defined

∆1φ ≡ hijφ,iφ,j (4.25)

The temporal components are simply

T00 = −1
2h

ijφ,iφ,j = −1
2∆1φ (4.26)

The explicit form of the energy-momentum tensor can be now used to write down

the Einstein equation as

Rij = 8πV −2
(1

2hij∆1φ− φ,iφ,j
)

(4.27)

R00 = 4π∆1φ = V∆2V (4.28)

In the above we used the traceless condition of the electromagnetic tensor T µµ = 0,

such that the Einstein equation takes the form Rµν = 8πGTµν . Here we introduced

a new definition, namely

∆2φ ≡ hijφ||ij (4.29)

The double vertical lines indicates the covariant derivative with respect to the spatial

metric hij. Note that the remaining components of the Einstein equation, Ri0 =

8πGTi0 are identically satisfied. It is clear that the only relevant component of the

Maxwell equation is

F 0i
;i = F 0i

,i
+ Γi ikF 0k + Γ0

0iF
0i = 0 (4.30)

with

F 0i = g00hijF0j = V −2hijφ,j (4.31)

one obtains easily

F 0i
,i

= V −2(−2V −1V,ih
ijφ,j + φ,jh

ij
,i

+ hijφ,ij) (4.32)

On the other hand we have

Γi ikF 0k = 1
2V
−2hlm(hlm,k)(hkjφ,j) (4.33)
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Γ0
0iF

0i = V −3hijV,iφ,j (4.34)

Using (4.32) and (4.33) equation (4.30) takes the form

F 0i
;i = V (hijφ,ij + hij,i φ,j) + 1

2V
[
hlm(hlm),khkjφ,j

]
− hijV,iφ,j = 0 (4.35)

which can be simplified further noticing that hij,i = (hij)−1
,i

= −h−2
ij hij,i and

φ||ij = (φ,i);j = φ,ij − Γγijφγ = φ,ij −
1
2h

kmhkm,iφ,j

Making use of the definition (4.29) we can rewrite equation (4.35) in an elegant form,

namely

F 0i
;i = V∆2φ− hijV,iφ,j = 0 (4.36)

In particular, we are interested in solutions where V and φ are functionally related

V = V (φ)[7, 8]. This condition, allows us to write the following

V||ij = V ′φ||ij + V ′′φ,iφ,i ; V ′ = dV

dφ

V ′′ = d2V

dφ2 ; V,i = V ′φ,i (4.37)

To summarize, we are looking for V , φ y hij such that the Einstein equation (4.27),

(4.28) and the Maxwell equation (4.36) are satisfied. Concentrating first on (4.28)

and (4.36) this means that we have to solve

V∆2V − 4π∆1φ = 0 (4.38)

and

V∆2φ− V ′∆1φ = 0 (4.39)

Making explicit use of (4.37) and the definitions (4.25) and (4.29) we have the iden-

tities

∆1V = hijV,iV,j = hijV ′2φ,iφ,j = V ′2∆1φ (4.40)
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∆2V = hijV||ij = hij(V ′φ||ij + V ′′φ,iφ,j)

= V ′∆2φ+ V ′′∆1φ

The above identities are now used to put equation (4.38) in the form

V V ′∆2φ+ (V V ′′ − 4π)∆1φ = 0 (4.41)

This form is in particular useful as multiplying (4.39) by (−V ′) and adding the result

to (4.41) we arrive at

∆1φ(V V ′′ + V ′2 − 4π) = 0 (4.42)

which is equivalent to

V V ′′ + V ′2 − 4π = 0 (4.43)

assuming ∆1φ 6= 0. Integrated once we obtain

V V ′ − 4πφ− β = 1
2(V 2)′ − 4πφ− β = 0 (4.44)

where β is an arbitrary integration constant. A second integration yields the desired

relation between V and φ, namely

V 2 = A+Bφ+ 4πφ2 (4.45)

whereA yB are arbitrary constants. This functional relation is part of the Majumdar-

Papapetrou solution[7, 8]. Note that we still have not used the Einstein equation

(4.27), and we will not do it in the following. Instead we assume that the electrovac

universe given by the metric (4.18) takes a particular form of the conformastat type

(4.1). This is to say we assume hij + V −2δij or

ds2 = −V 2dt2 + V −2dxidxjδij (4.46)

such that V = U−1. Recalling that T µµ = 0 implies R = 0, equation (4.17) reduces

then to the Laplace equation

∆U ≡ U,kk = 0 (4.47)
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In vacuum we found that
√
U must be a harmonic function (see (4.11)). Now with

(4.47) we find that U satisfies Laplace equation. Therefore we have a simple way

to specify an electrovac solution: take any harmonic solution U and define V by

UV = 1, then use (4.45) to solve for the potential. In order to recover the flat

spacetime far from the source, we must choose U such that U2 → 1 at infinity.

As in the vacuum case, the isotropic coordinates play a special role here and it is

illuminating to dwell upon their role in the Reissner-Nordström case (which is the

spherically symmetric sub-case of the more general one studied above). This metric

in Schwarzschild coordinates is given by[5]

ds2 = −
(

1− 2m
r

+ Q2

r2

)
dt2 +

(
1− 2m

r
+ Q2

r2

)−1

dr2 + r2dΩ2 (4.48)

The transformation to isotropic coordinate ρ involves

r = ρ

(
1 + m

ρ
+ m2 −Q2

4ρ2

)
(4.49)

and we obtain

ds2 = −
[
m2 − 4ρ2 −Q2

(m+ 2ρ)2 −Q2

]2

dt2 +
(

1 + m

ρ
+ m2 −Q2

4ρ2

)2 (
dρ2 + ρ2dΩ2

)
(4.50)

Comparing (4.50) with (4.1) we can conclude that the function U is

U = 1 + m

ρ
+ m2 −Q2

4ρ2 (4.51)

However, a straightforward calculation tells us that

∆U = 1
2ρ4

(
m2 −Q2

)
(4.52)

Hence only if Q = m holds, U satisfies the Laplace equation. For this extreme case

we also have

ds2 = −
 1

1 + m
ρ

2

dt2 +
(

1 + m

ρ

)2

[dρ2 + ρ2dΩ2] (4.53)

and therefore V = U−1, which shows the consistency of the model.
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4.3 Electrovac universe with Λ

Having reviewed the electrovac universe with vanishing cosmological constant, let

us discuss a relative fast derivation of the corresponding situation where Λ 6= 0[10].

Right from the beginning we can specialize to the conformastat case i.e.

ds2 = −f 2dt2 + f−2dxidxjδij (4.54)

The Einstein equation reads now

Rµν −
1
2Rgµν + Λgµν = −8πTµν (4.55)

From the traceless condition of the electromagnetic tensor, we have

R = 4Λ (4.56)

This can be used to re-write the Einstein equation in a form which is more suitable

fur our purposes

Rµν − Λgµν = −8πTµν (4.57)

This makes it evident which modification the cosmological constant Λ introduces as

compared to the results from the last section. Equation (4.27) becomes

Rij − Λhij = −8πf−2
(1

2hij∆1φ− φ,iφ,j
)

(4.58)

whereas (4.28) is simply

R00 + Λf 2 = 4π∆1φ = f∆2f (4.59)

Reproducing the steps from section 3, we obtain the analogy to (4.42)

f∆2f − Λf 2 − 4π∆1φ = 0 (4.60)

which integrated twice with respect to φ gives

f 2 = A+Bφ+ 4πφ2 + Λ
[

1
(lnφ),i

]2

(4.61)
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As compared to the algebraic equation (4.45), the above equation (which reduces to

(4.45) in the case of Λ = 0) is a non-linear partial differential equation. Finally, the

combination of (4.17) with (4.56) results in

∆U = 2ΛU3 (4.62)

which is the the generalization of (4.47). The linear Laplace equation becomes now

in a non-linear partial differential equation for U . To summarize, if we know U we

can use (4.61) to infer the electric potential φ by the relation fU = 1. We note that

the level of mathematical complication introduced by Λ is quite formidable. Note

that the right side of (4.62) shows a coupling between the cosmological constant

and the function U which is related to the potential φ. This informs us that the

electromagnetic phenomena (in our case the electric potential) will be affected by the

cosmological constant[10]. In the following section, we will offer some solutions to

this equation.

4.4 Solutions

Before we come to the non-pertubative solution we mention that an iterative one

can be found by using the standard technique. In case Λ is small, we can attempt a

pertubative solution by the ansatz

U = U0 + Λ1U1 + Λ2U2 + ... (4.63)

Back into equation (4.62) this ansatz gives first a Laplace equation followed by a

series of Poisson equations:

∆U0 = 0

∆U1 = 2U3
0

∆U2 = 6U2
0U1

... (4.64)
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Next we offer special cases of non-pertubative solutions. Let us first concentrate on

the one dimension case. In one dimension equation (4.62) becomes an autonomous

second order differential equation, namely

d2U

dx2 = 2ΛU3. (4.65)

By means of the substitution u(U) = dU/dx the above equation can be reduced to

the first order ODE
du2

dU
= 4ΛU3 (4.66)

that can be integrated yielding

u2 = ΛU4 + c1 (4.67)

where c1 is an integration constant. The last step consists in integrating the ODE

dU

dx
= ±

√
ΛU4 + c1 (4.68)

and we obtain

c2 ± x =
∫ dU√

ΛU4 + c1
. (4.69)

The integration constants c1 and c2 should be fixed so that the metric becomes de

Sitter in the limit x→∞. However, the integral can be solved in terms of the elliptic

function F as

c2 ± x = 1√
i
√

Λc1

F

(√
i
√

Λ/c1, i

)
. (4.70)

Independently of the sign of c1 the above solution will be complex. Hence, the

requirement that U is a real function of the spatial variable x will imply that c1 = 0.

In this case the solution is

U(x) = − 1√
Λ (c2 ± x)

. (4.71)

Now, let us consider the more complicated situation where U depends on two spatial

variables x and y. In this case the equation to solve is

∂2U

∂x2 + ∂2U

∂y2 = 2ΛU3 (4.72)
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with U = U(x, y). The above equation is a special case of the following more general

stationary heat equation with nonlinear source, namely

∂2U

∂x2 + ∂2U

∂y2 = f(U) ; f(U) = 2ΛU3 (4.73)

As in [?] let us suppose that U = U(x, y) is a solution of our equation. Then, the

functions

U1 = U(±x+ C1,±y + C2)

U2 = U(x cos β − y sin β, x sin β + y cos β) (4.74)

where C1, C2 and β are arbitrary constants, are also solutions of the original equation.

Implicit solutions can be found in the form
∫ [

C + 2
A2 +B2F (U)

]−1/2
= Ax+By +D

F (U) =
∫
f(U)dU (4.75)

where A, B, C and D are arbitrary constants. Notice that for f(U) = 2ΛU3 the

above integral gives rise to a complex elliptic function and again the requirement

that U has to be a real function fixes C = 0 and we obtain

U(x, y) = −
√
A2 +B2

Λ
1

Ax+By +D
. (4.76)

If we assume a solution with central symmetry about the point (−C1,−C2) with

U = U(ξ) where

ξ =
√

(x+ C1)2 + (y + C2)2 (4.77)

and C1, C2 are arbitrary constants, then the function U(ξ) is determined by the

second order non-linear differential equation

d2U

dξ2 + 1
ξ

dU

dξ
= f(U). (4.78)

Since it is a quasi-linear equation it can be reduced to its normal form

d2U

dω2 = 2Λe2ωU3 (4.79)
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by means of the transformation ω = ln ξ. If we set 2ω = x̃ the previous equation

becomes
d2U

dx̃2 = Λ
2 e

x̃U3 (4.80)

which is a particular case of the equation

d2y

dx2 = Aexym
(
dy

dx

)`
(4.81)

given in [38]. Since in our present case ` 6= 1−m we have a particular solution

U(ω) = 1√
2Λ
e−ω. (4.82)

On the other side m 6= 0 and ` 6= 1 and we can reduce equation (4.80) with the help

of the transformation

t = dU

dx̃
, w = ex̃ (4.83)

to a generalized Emden-Fowler equation with respect to w = w(t), namely

d2w

dt2
= −3

(
Λ
2

)1/3

tw−1
(
dw

dt

)7/3

. (4.84)

Unfortunately, the above equation does not match with those listed in [38]. Moreover,

equation (4.73) can be seen as a particular case of

∂2U

∂x2 + ∂2U

∂y2 = aU + bUn. (4.85)

For a = 0 there is a self-similar solution of the form [39]

U(x, y) = x2/(1−n)F (z) , z = y

x
. (4.86)

In our case for b = 2Λ and n = 3 we shall have

U(x, y) = x−1F (z) (4.87)

where F (z) is a solution of the second order nonlinear ODE

(1 + z2)d
2F

dz2 + 4zdF
dz

+ 2F = 2ΛF 3. (4.88)
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The solution of the above equation can be expressed in terms of the Jacobi amplitude

function JSN as follows

F (z) = A2√
(1− Λ + A2

2Λ)(1 + z2)
×

JSN

√1− Λ arctan(z) + A1√
1− Λ + A2

2Λ
, A2

√
Λ(1− Λ)
Λ− 1

 (4.89)

Finally, equation (4.62) can be seen as a special case of the more general equation

∂2U

∂x2 + ∂2U

∂y2 = aUn + bU2n−1 (4.90)

with a = 2Λ, n = 3 and b = 0. For this choice the solutions of the above equation

are [39]

U(x, y) =
[

Λ
2 (x sinα1 + y cosα1 + α2)

]−1/2

(4.91)

and

U(x, y) = 1√
2Λ [(x+ α1)2 + (y + α2)2]

(4.92)

where α1 and α2 are arbitrary constants. In contrast to the vanishing Λ case, here

we must recover the de Sitter spacetime at infinity. Note that (4.92) shows in explicit

form the idea discussed previously about the coupling between electromagnetism and

cosmology in this theory, i.e., the cosmological constant affects the local electromag-

netic phenomena, considering that U (which now is a function of Λ) will determine the

potential φ. Notice that except for the case of a self-similar solution the above results

can be easily generalized to the case when U depends on all three spatial variables[10].
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Conclusions

• The cosmological constant Λ is a natural addition to the Einstein’s equation.

There is no physical or mathematical argument, against the introduction of the

Λ term. In fact, the current accelerated expansion of the universe, puts Λ in the

cosmological scenario as a possible explanation for this phenomena. However,

its physical nature is still a mystery.

• The Majumdar-Papapetrou electrovac universe model, provides an intimate re-

lation between metric elements (by using a comformastat spacetime) and the

electrostatic potential. The metric elements satisfies the Laplace equation, and

these are related to the electrostatic potential by a simple algebraic equation.

• We found that the introduction of the cosmological constant Λ into the elec-

trovac universe, increases the complexity in great manner. The Majumdar-

Papapetrou functional relation becomes in a differential equation, and the met-

ric elements now satisfies a non-linear second order differential equation. We

investigated families of solutions to this equation in the 1-dimension and 2-

dimensions cases, and we found a relation between cosmology and electromag-

netism. The more important conceptual result, is that the cosmological constant

affects the local electromagnetic phenomena.
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