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ABSTRACT 

The alarming rise in HIV-1 associated neurocognitive disorder (HAND) is, at least in 

part, associated with HIV-1 viral proteins shed from infected macrophages, including 

transactivator of transcription (Tat) despite the success of anti-retroviral therapies. The 

dopamine (DA) system is greatly involved in the progression of HAND and is influenced by 

psychostimulants like cocaine. The DA transporter (DAT), a key regulator of neurocognitive 

functions, is a major molecular target for both Tat and cocaine. Our lab previously reported 

that exposure to Tat decreases DA uptake through allosteric regulation and alters cocaine 

binding sites in DAT. 

In this research project the hypothesis ‘HIV-1 Tat protein via allosteric modulation of 

DAT induces inhibition of DA transport, leading to dysfunction of the DA system’ was 

tested. Initially, it was shown that Tat protein directly interacts with DAT to impair DA 

translocation. Based on the predictions of computational modeling and simulations, Y470, 

Y88 and K92 residues of the human DAT (hDAT) are essential to stabilize the compact 

structure of DAT and potentially recognize Tat. Mutating these residues in hDAT – Y470H, 

Y88F, and K92M attenuated Tat-induced inhibition of DA uptake. Additional substitutions 

Y470A and Y470F at 470 displayed attenuated or no effect on Tat-induced inhibition of DA 

uptake respectively, indicating the significant role of aromatic ring of Y470 in DAT and Tat 

interaction. Pharmacological characterization showed that compared to wild type hDAT, 

Y470H and K92M but not Y88F reduce Vmax with no change in the Km values for DA 

uptake. Moreover, Y470H, K92M, and Y88F mutants exhibited no alterations in IC50 values  
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 of DA to inhibit [3H]DA uptake  but increased [3H]DA uptake potency or [3H]WIN35,428 

binding potency for cocaine and GBR12909, suggesting that these three Tat-recognition 

residues do not overlap with substrate DA binding but influence binding of small molecule 

inhibitors. Besides, all five mutants reversed zinc-induced increase of [3H]WIN35,428 

binding and differentially altered basal DA efflux properties of the DAT, indicating that Tat 

protein through interaction at these recognition residues disrupts intermolecular interactions 

that are critical for maintenance of the outward-facing conformation of DAT.  

Another study was conducted to determine the effects of Tat on DAT 

phosphorylation, trafficking and its influence on sequestration of [3H]DA by vesicular 

monoamine transporter 2 (VMAT2). We found that protein kinase C (PKC) inhibitor, 

bisindolylmaleimide-I eliminates Tat effects on DA uptake and Tat increases intracellular 

DAT immunoreactivity. Moreover, Tat also produced inhibitory effects on VMAT2 

function. Collectively, these findings revealed that Tat inhibits DAT function through PKC 

and trafficking- dependent mechanisms; besides, both DAT and VMAT2 proteins may 

involve in Tat-induced dysregulation of the DA system.  

In conclusion, Tat inhibits DA translocation process principally by altering the 

conformational states of the DAT through interaction at specific recognition residues. 

Furthermore, regulatory pathways that control the functional attributes of DAT may play a 

vital role in Tat-mediated impairment of the DA system. Future studies will be necessary to 

identify and characterize other recognition residues for Tat binding and these molecular 

insights will be helpful to develop adjunctive therapies to restore the impaired DA system in 

HIV-1 positive individuals.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 HIV-ASSOCIATED NEUROCOGNITIVE DISORDER (HAND) 

The devastating effects of Human Immunodeficiency Virus-1 (HIV-1) infection were 

substantially reduced in HIV-infected individuals with the introduction of antiretroviral 

therapies (ARTs) in 1996 (Carpenter et al., 1996; Deeks et al., 2013). This resulted in 

reclassification of HIV-1 from life threatening disease to a manageable chronic illness 

(Clifford and Ances, 2013). However, HIV-1 has the propensity to have broad effects on 

central nervous system (CNS) and impairs CNS functions which results in serious 

consequences that lead to HIV-associated neurocognitive disorder (HAND). Approximately 

70% of HIV-1 positive adults and children exhibit a neurological disease at one point during 

the course of their infection (Grovit-Ferbas and Harris-White, 2010; Simioni et al., 2010; 

Bilgrami and O'Keefe, 2014). The spectrum of neurological complications in HAND ranges 

from asymptomatic neurocognitive impairment, to mild neurocognitive disorder, to the more 

severe form HIV-associated dementia (Antinori et al., 2007). The clinical impairments in 

HAND include attention, memory, learning, motor functioning and behavioral changes. 

ARTs improve the survival rate of infected people but cannot eliminate the virus from their 

brain (Antiretroviral Therapy Cohort, 2008; Heaton et al., 2010) meaning that these therapies 

do not offer complete cure. In addition, the incidences and progression of HAND are further 

compounded by the consumption of recreational drugs like cocaine and methamphetamine 
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(Buch et al., 2011; Nair and Samikkannu, 2012). If HAND can be prevented at early 

infection stage, quality of patient’s life will be improved and economic burden will be 

lessened on the health care system.  

During the course of HAND, HIV-1 infected monocytes infiltrates the brain by 

crossing the blood-brain barrier at the early infection stage approximately 2-3 weeks after 

primary infection (Davis et al., 1992; Nath and Clements, 2011; Williams et al., 2013). 

Subsequently, virus spreads to perivascular macrophages and microglia and establishes a 

reservoir within the brain. These infected cells release large number of viral particles daily 

which ultimately increase the viral load in the CNS. Moreover, these cells secrete neurotoxic 

HIV-1 viral proteins that include structural protein gp120 and nonstructural protein Tat 

(trans-activator of transcription) as well as proinflammatory cytokines and chemokines 

(Mattson et al., 2005). Several studies observed that HIV-1 cannot directly infect 

dopaminergic neurons but extracellularly discharged viral proteins through direct interaction 

progressively destruct the neurons and cause subsequent neurodegeneration (Nath et al., 

2000b; Ferris et al., 2008). Among these proteins, Tat has been highly linked to progressive 

neuronal dysegulation leading to the development of HAND. Lastly, dopamine (DA) 

dysregulation has been associated with cognitive deficits in HIV-1 positive people (Purohit 

et al., 2011; Jacobs et al., 2013). Long-term viral proteins exposure can accelerate the 

damage in the DA system (Del Valle et al., 2000; Ferris et al., 2008; Hudson et al., 2010; 

Nath, 2010). Considering the oxidative stress-induced damage to the dopaminergic neurons, 

long lasting exposure to viral proteins and elevated DA eventually lead to DA deficits which 

enhance the severity and acceleration of the HAND (Purohit et al., 2011). For the purpose of 

this dissertation, the following literature review broadly discusses HIV-1 viral proteins, DA 
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transporter (DAT) structure, function and regulation, and general effects of Tat protein on 

dopaminergic neurons through impairment of DAT function.  

1.1.1 HIV-1 VIRAL PROTEINS 

The proviral DNA of HIV-1 is composed of at least nine genes flanked by a repeated 

sequence called the long terminal repeats (LTRs). These genes encode proteins that can 

principally be divided into three categories: (1) major structural proteins – Gag, Pol and Env, 

(2) regulatory proteins – Tat and Rev, (3) accessory proteins – Vpu, Vpr, Vif and Nef (Gallo 

et al., 1988). These proteins are required at various stages of virus life cycle.  

Structural proteins  

The Gag (group-specific antigen) codes for Gag precursor protein (p55) which is 

associated with cell membrane after post-translational modifications. Viral protease 

processes this p55 to generate the following proteins: matrix protein (p17) – facilitates 

nuclear transport of viral genome, capsid (p24) protein – forms conical core of the viral 

particle, nucleocapsid (p9) – recognizes packaging signal and helps in reverse transcription, 

and p6 protein – aids in interaction of p55 and vpr, and release of viral particles from 

infected cells (Göttlinger et al., 1989; King, 1994; Lee et al., 2012). The pol gene expresses 

four essential enzymes that include, reverse transcriptase – transcribes DNA from RNA 

template, RNase H – facilitates complementary DNA strand synthesis by cleaving original 

RNA template, integrase – required for integration of proviral DNA into the host genome, 

protease – necessary to p55 protein (Lee et al., 2012). Furthermore, Env (for ‘envelope’) 

codes for gp160 protein and this protein is glycosylated in the endoplasmic reticulum before 

being processed by a cellular protease to produce gp41 and gp120 proteins. While gp41 acts 

as an anchor in the viral envelope, gp120 mediates HIV-1 infection by interacting with CD4 

receptor that is present on the lymphocytes (King, 1994; Merk and Subramaniam, 2013). 
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Regulatory proteins  

Tat, an RNA-binding protein is absolutely required for the HIV-1 replication. Tat acts 

as the transcriptional activator by interacting with transactivation response element (TAR) at 

the 5’ terminus of HIV-1 RNA template (Ruben et al., 1989; Feinberg et al., 1991). Rev 

(regulator of expression of virion proteins) is an RNA-binding protein that binds at Rev 

response element (RRE) within the second intron of the HIV-1 genome. Rev is essential to 

activate late genes and thus for synthesis of viral proteins to produce virions (Zapp and 

Green, 1989; Vercruysse and Daelemans, 2014). 

Accessory proteins 

 The other four viral genes such as Nef, Vpu, Vif and Vpr encode accessory proteins. 

These proteins perform multiple functions at different stages of viral infection (Trono, 1995; 

Strebel, 2013). It appears that they mostly work toward evasion of innate and adaptive 

immune systems. Specifically, Nef and Vpu proteins manipulate the localization and 

functional aspects of host cell membrane proteins. These alterations greatly influence viral 

replication and also help the virus to escape the immunity shield. Vif and Vpr proteins 

protect the virus by inhibiting cytoplasmic host defense molecules and by modifying host 

cell intracellular environment. 

1.1.2 HIV-1 TAT PROTEIN 

Tat is a key early regulatory protein for viral gene expression and replication. It is a 

small polypeptide encoded from two separate exons, length varies from 86 to 101 amino 

acids depending on the viral strain (Ratner et al., 1985; Jeang et al., 1999). Tat protein has 

been divided into five different protein domains.  The first exon encodes the first four well 

conserved domains that include acidic domain (residues 1-21), cysteine rich domain 
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(residues 22-37), hydrophobic core (residues 38-48) and basic domain (residues 49-72), 

whereas sixth domain (residues 73-101) is encoded by second exon (Li et al., 2012). Clinical 

isolates from HIV-infected patients’ display the presence of Tat1-101 or its truncated form, 

Tat1-86 in different target organs (Jeang et al., 1999; Barré-Sinoussi et al., 2004; Strazza et al., 

2011). Besides its canonical function as a transcriptional activator, Tat is actively secreted 

from infected cells and can be detected in cell culture supernatants, in serum and in 

cerebrospinal fluid of HIV-1 infected individuals (Ensoli et al., 1990; Westendorp et al., 

1995; New et al., 1997; Bachani et al., 2013; Midde et al., 2013). Westendorp et al. (1995) 

reported ~1 to 3 ng/mL and ~16 ng/mL of Tat levels in the plasma and the cerebrospinal 

fluid (CSF) of HIV-1 infected patients respectively. Furthermore, another study using 80 

anonymous HIV-1 positive patients’ sera found that soluble Tat levels range from 2 ng/ml to 

40 ng/ml (Xiao et al., 2000). However, authors argued that these estimations may be lower 

than the actual concentration present in the system (Westendorp et al., 1995; Xiao et al., 

2000). Although the precise Tat concentration in the brain is not yet known, one could 

expect that this level to be markedly elevated in CSF than plasma because of close proximity 

of HIV-1-infected cells in the brain (Hayashi et al., 2006). This secreted Tat can act as 

neurotoxin by effecting bystander cells including neurons (Del Valle et al., 2000) . The 

precise mechanism by which Tat damages neurons is not clear. However, it has been 

suggested that Tat can interact with specific cell surface proteins or can be taken up by 

neurons to manipulate intracellular signaling and trafficking events (Ensoli et al., 1990; Nath 

et al., 2000a; Chang et al., 2011). 
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1.1.3 EFFECT OF HIV-1 TAT PROTEIN ON DOPAMINERGIC NEURONS 

DA, a key catecholamine neurotransmitter is involved in a variety of functions 

including cognition, locomotion, reward and neuroendocrine secretion (Lyon et al., 2011; 

Money and Stanwood, 2013). A plethora of investigations suggest that HIV-1 infection 

damages DA-rich regions in the brain that include substantia nigra, caudate nucleus, basal 

ganglia and globus pallidus. Interestingly, studies using animal models and human subjects 

revealed that HIV-mediated damage to the DA neurons occurs at the early infection stage of 

the disease (Lopez et al., 1999; Koutsilieri et al., 2002). Moreover, in vitro studies showed 

that increased levels of DA enhances the replication of the virus in the infected lymphocytes 

and macrophages (Scheller et al., 2000; Gaskill et al., 2009) and promotes oxidative stress 

which subsequently causes neuronal death. In this backdrop, DAT, a crucial player to 

maintain DA homeostasis in the brain, is central focus for this dissertation for the following 

reasons (1) DAT is the primary regulator for the termination of the DA neurotransmission at 

the synapse; (2) it has been reported that DAT density is strikingly reduced in HIV-1 

infected patients and Tat protein inhibits DAT function (Wang et al., 2004; Chang et al., 

2008; Ferris et al., 2009a; Zhu et al., 2009); and (3) DAT is a major target for  highly 

addictive psychostimulants like cocaine and methamphetamines. Studies demonstrated that 

HIV-1 viral protiens in concert with these abused drugs have additive or synergistic effects 

to elevate the extracellular synaptic DA levels. This escalation of DA concentration leads to 

increased viral load and DA metabolism which ultimately  cause neuronal death (Nath et al., 

2000b; Gaskill et al., 2009; Gannon et al., 2011). While some investigators worked broadly 

on connections of HIV-1 infection, dysregulation of the DA system and drugs of abuse, 

limited studies have focused on the influence of Tat protein on DAT. This project is focused  



7 
 

to understand the effects of Tat protein on structure and functional regulation of DAT. 

Neurotoxic effects of Tat protein were first described in a study using neurblastoma 

cells (Sabatier et al., 1991). Although these cells are not dopaminergic, they provided basic 

idea of Tat protein interaction with the neurons and associated neurotoxicity. Application of 

synthetic Tat to the striatal regions of rat brain in vivo causes deleterious effects on the 

neurons (Hayman et al., 1993). Studies using Tat exposed cultured human fetal neurons  and 

microinjection of Tat into striatal neurons showed that Tat protein promotes neurotoxicity by 

triggering inflammatory cascades that eventually induce neuronal death by apoptosis (New et 

al., 1997; Jones et al., 1998; Zauli et al., 2000; Aksenov et al., 2001), suggesting that the 

dopaminergic neurons are predominantly susceptible to Tat protein. Moreover, Tat protein 

direct interaction with dopaminergic neurons increases intracellular calcium levels which in 

turn activate the caspases and generation of reactive oxygen species leading to neuronal 

injury (Kruman et al., 1998; Bonavia et al., 2001; Haughey and Mattson, 2002; Mattson et 

al., 2005). Elevated levels of Tat mRNA have been detected in the brain tissue extracts of 

HIV-1 infected patients (Wiley et al., 1996; Hudson et al., 2000) and these brain derived Tat 

sequences showed mutations at second exon region (Bratanich et al., 1998; Cowley et al., 

2011), indicating that the Tat protein exhibits significant molecular diversity and this 

heterogeneity may render the neuronal cells vulnerable to this protein. Extracellular Tat uses 

neuronal transport to reach different anatomical pathways that are distant from viral 

replication site (Bruce-Keller et al., 2003) and its passage to the spinal cord through 

cerebrospinal fluid (Pocernich et al., 2005) clearly implicate secreted Tat as a major 

contributor to HIV-1 associated dementia. Along these lines, an in vivo microdialysis study 

showed compromised DA levels in the striatum of the Tat-treated animals (Ferris et al., 
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2009b). Specifically, Tat protein contributed to the alterations in the dopaminergic markers 

expression levels that include tyrosine hydroxylase and dopamine receptor like-1 (Zauli et 

al., 2000; Silvers et al., 2006; Silvers et al., 2007). Thus, the above findings suggest that Tat 

protein directly or indirectly causes injury to dopaminergic pathways which are highly 

correlated with the dementia and motor deficits observed in HIV-1 positive individuals (Fig. 

1.1). 

1.1.4 ANIMAL MODELS OF HIV-INFECTED BRAINS 

Animal models for HAND are critical to understand the disease onset and 

progression, and to develop and test adjunctive therapies along with retroviral drugs. Non-

human primates such as chimpanzees are logical models to mimic HIV-1 infection and 

disease progression due to their genetic similarities to humans (van Maanen and Sutton, 

2003). However, financial considerations, maintenance, difficulty to obtain sufficient 

numbers to achieve statistically significant outcomes and public apprehensions limit their use 

in HAND research. Rodent models in contrast are extensively used to study HIV-1 and 

associated neurological dysfunctions despite the need of quite challenging efforts to generate 

disease in rodents because of species-specific nature of HIV-1 infection. These models offer 

several advantages that include low cost, easy maintenance during housing and subsequent 

experimental stage and well characterized genome that can be exploited to alter a particular 

cell or region of interest (Gorantla et al., 2012). These models may be created by employing 

several approaches that include stereotactic injection of viral proteins directly into the brain, 

expressing viral transgenes in animals, and transplantation of infected human cells into 

immunodeficient rodents (Van Duyne et al., 2009; Barreto et al., 2014).  
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In vivo mouse model was initially developed by introducing human neurofilament 

promoter controlled the whole HIV-1 proviral DNA into a mouse genetic background 

(Thomas et al., 1994). The transgene was expressed in anterior thalamic and spinal motor 

neurons, and animals exhibited neurological complications both in central and peripheral 

nervous systems. Another proviral mouse model that expresses gap-pol deleted mutant of the 

HIV-1 full length genome demonstrated that viral proteins and accessory genes may be 

sufficient to produce neurotoxicity and motor abnormalities observed in HIV-1 positive 

patients (Santoro et al., 1994). Further studies showed that individual viral components that 

include gp120/gp160, gp140, Tat, Nef, Vpr and Rev are capable of eliciting neurotoxicity in 

the brain (Nath, 2002; Li et al., 2005). Efforts were made to determine the role of Tat and 

gp120 in producing neurotoxic effects by direct injection of these proteins into the rodent 

brains (Jones et al., 1998; Bansal et al., 2000). 

 In advanced approaches, transgenic models were generated by inserting gp120 or Tat 

coding genes into the animal genome. Transgenic expression of HIV-1 env gene that encodes 

for gp120 revealed that extracellularly released gp120 is neurotoxic and produces alterations 

in neuronal and glial cells. These modifications are similar to the changes in HIV-1 infected 

human brains (Toggas et al., 1994). These transgenic animals also showed impairment in 

open filed activity and spatial reference memory in an age-dependent manner suggesting the 

role of gp120 in cognitive and motor decline observed in HIV-1 positive patients (D'Hooge 

et al., 1999). Another study created a transgenic mouse model that expresses Tat protein 

under the control of both GFAP promoter and doxycycline (Dox) inducible promoter (Kim et 

al., 2003). Interestingly, findings from these studies suggest that presence of Tat expression 

is adequate to attain neuronal damage in the brain and this neurotoxicity is severe than that 
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observed in gp120 transgenic animals (Toggas et al., 1994; Kim et al., 2003). Thus, these 

transgenic animal models are quite useful to study the HIV-associated neuropathogenesis. 

However, there are certain limitations to fully utilize these models to understand the HIV-1 

mediated neurocognitive dysfunctions. For example, these models can replicate certain 

features of the disease but do not represent the whole spectrum of neuropathology associated 

with HIV-1 (Nath, 2010; Jaeger and Nath, 2012). 

For the purpose of our project-2, to study whether HIV-1 viral proteins and nicotine 

together produce molecular changes in mesolimbic structures that mediate psychomotor 

behavior, we used HIV-1 transgenic (HIV-1 Tg) rat as small animal model that was 

developed by reid et al. (2001). HIV-1 Tg rats are derived from Fisher344/ BHsd strain 

and carry proviral DNA that is devoid of Gag and Pol genes. Expressing only seven of 

nine HIV- 1 genes makes this model as noninfectious, and displays immune, motor and 

behavioral abnormalities (Reid et al., 2001). Deficits in learning and cognition that are 

associated with asymptomatic HIV-1 infection have been reported in these animals 

(Vigorito et al., 2007; Lashomb et al., 2009). Observed dopaminergic alteration, 

neuroinflammation and deficits in several synaptic proteins (Persidsky and Fox, 2007; 

Webb et al., 2010; Rao et al., 2011) make HIV-1 Tg rat  as a suitable animal model to 

study the effects of HIV-1 viral proteins on nicotine induced behavioral sensitization and 

associated signaling protein changes. Furthermore, HIV-1 Tg rats have also been 

successfully employed to study the concerted effects of HIV-1 viral proteins and drugs of 

abuse (Liu et al., 2009; Kass et al., 2010; Moran et al., 2012).   
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1.2 DOPAMINE TRANSPORTER (DAT) 

1.2.1 STRUCTURE AND FUNCTION 

The DAT, a member of the Solute Carrier 6 family (SLCA3), comprises of 620 

amino acids with 12 putative transmembrane domains with both amino and carboxy termini 

located in the cytoplasmic side of the cells (Kristensen et al., 2011). The DAT, clears 

extracellular DA via rapid reuptake, is a primary determinant for the regulation of DA 

neurotransmission and maintaining DA homeostasis in the brain (Fig. 1.2). In addition to DA 

transport, DAT can move endogenous trace amines tyramine and β-phenethylamine; 

neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and amphetamines (Sulzer, 2011) into 

presynaptic terminal. Great insights into structure and function relations of DAT come from 

the mutagenesis analysis, engineering of zinc binding sites, substituted-cysteine accessibility 

method and homology modeling to bacterial leucine transporter LeuT, a prokaryotic 

homolog of DAT (Kitayama et al., 1992; Javitch, 1998; Chen and Reith, 2000; Loland et al., 

2003; Loland et al., 2004; Lin and Uhl, 2005; Yamashita et al., 2005). DAT uses Na+ and Cl- 

dependent process to translocate DA back into dopaminergic neurons against its 

concentration gradient. Active substrate translocation by DAT follows the alternating access 

model (Jardetzky, 1966; Yamashita et al., 2005). This model suggests that the transporter 

cycles through at least three conformational states: outward, occluded and inward, in order to 

re-accumulate DA into cell interiors. Correspondingly, recent studies suggest that substrate 

translocation is a dynamic process and it requires multiple interaction sites within DAT 

(Schmitt and Reith, 2011; Shan et al., 2011).  

Different chemical classes of ligands induce specific conformations in DAT to 

achieve a particular physiological or behavioral effect. For example, cocaine-like inhibitors 



12 

have inclination to outward facing conformation (Beuming et al., 2008; Reith et al., 2012) 

whereas benztropine and related analogs preferentially interact with inward facing 

conformation of the transporter (Loland et al., 2008; Schmitt and Reith, 2011). It is worth 

noting that benztropine was established as an anticholinergic agent in the management of 

Parkinson’s disease (Katzenschlager et al., 2003) and, it may also be used to treat 

extrapyramidal reactions caused by use of antipshycotics (Teoh et al., 2002; González-Lugo 

et al., 2010). Consistent with these findings, a recently solved X-ray crystal structure of DAT 

shows that tricyclic antidepressant nortriptyline occupies the substrate binding site and 

stabilizes the Drosophila melanogaster transporter in outward conformation and thus 

preventing substrate translocation (Penmatsa et al., 2013). Substrate efflux or reversal of 

transport is mechanistically distinct from the translocation process. Recent studies implied 

that synthetic compounds like N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine (SoRI-

20041) and point mutations at specific residues in DAT cause subtle alterations in the 

transporter conformation which in turn have differential effects on inward transport and 

efflux properties (Guptaroy et al., 2009; Rothman et al., 2009; Guptaroy et al., 2011). Thus, 

conformational transitions in the transporter protein and associated structural changes 

provide a basic framework for ligand binding and have a great impact on transport kinetics 

and functionality of the DAT.  

1.2.2 REGULATION 

DAT regulation is a complex and vital process for the spatial and temporal 

management of DA concentration in the brain. DAT mediated behavioral and physiological 

functions are dynamically controlled by multitude of exogenous factors, macromolecules and 

signaling cascades. Many of these check points work interactively while exerting their 
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actions. Although there is a lack of complete understanding of regulation of DAT, available 

information suggest that the diverse set of DAT-affecting molecules achieve their function 

through ligand-transporter interactions, trafficking, post-translational modifications and 

protein-protein interactions (Fig. 1.3). In recent years, several reviews comprehensively 

presented extensive details about DAT regulation (Chen et al., 2010; Eriksen et al., 2010; 

Schmitt and Reith, 2011; Vaughan and Foster, 2013) and for the purpose of this dissertation, 

I briefly discuss some of these DAT regulatory processes that are relevant to HIV-1 Tat 

protein and DAT interaction.  

1.2.2.1 ALLOSTERIC MECHANISM DEPENDENT REGULATION 

 Initial evidence for the existence of allosteric binding site for DA, a modulatory 

binding site on the transporter that is topographically distinct from the primary binding site 

comes from molecular dynamics and simulation studies (Shi et al., 2008; Shan et al., 2011). 

These studies suggest that direct interaction of substrates and ions at allosteric sites elicit 

progressive rearrangements in the transporter structure that help to shift the conformational 

state in order to transport substrate DA (Fig. 1.4). Furthermore, different structural classes of 

DAT ligands that include tricyclic antidepressants and selective reuptake inhibitors have 

been shown to influence this allosteric binding site (Zhou et al., 2007; Zhou et al., 2009). 

Likewise, investigations conducted by schmitt and reith (2010) further supported the 

presence of allosteric binding by using bivalent phenethylamines (two substrate like 

molecules connected with aliphatic spacer) that act as potent inhibitor rather than substrate 

molecule. In addition to the secondary binding site for DA, the existence of allosteric binding 

sites for synthetic DAT ligands were reported (Pariser et al., 2008). According to this study, 

N-(Diphenylmethyl)-2-phenyl-4-quinazolinamine (SoRI-9804), N-(2,2-diphenyl ethyl)-2-
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phenyl-4-quinazolinamine (SoRI-20040), and SoRI-20041 compounds inhibit the binding of 

[125I]3beta-(4'-iodophenyl) tropan-2beta-carboxylic acid methyl ester ([125I]RTI-55) by 

following allosteric inhibitory patterns, meaning that these compounds do not follow 

classical dose dependent competitive inhibition paradigm irrespective of the concentration of 

[125I]RTI-55. These modulators also slowed down the dissociation rate of prebound 

[125I]RTI-55 and presented a decrease in Bmax and increase in Kd values for [125I]RTI-55 

binding, further confirming the allosteric binding of these 4-quinazolinamine derivatives 

with the DAT. Taken together, these investigations strongly imply that various ligands 

allosterically regulate local rearrangements in the structural elements of the DAT that finally 

contribute to the formation of functionally unique conformation of the transporter to achieve 

targeted function.  

1.2.2.2 TRAFFICKING AND POST-TRANSLATIONAL DEPENDENT REGULATION 

Post-translational modifications, in particular phosphorylation of the transporter or its 

binding partners are the key strategy for controlling the function and distribution of the 

transporter. Numerous studies have showed that DAT trafficking to and away from plasma 

membrane is precisely regulated by various protein kinases that include protein kinase C 

(PKC), Ca2+/calmodulin kinase, phosphoinositide 3-kinase, protein tyrosine kinase and 

members of mitogen-activated protein kinase (MAPK) family (Foster et al., 2006; 

Ramamoorthy et al., 2011). Of these, PKC-mediated processes are most well characterized. 

Activation of PKC causes decrease in Vmax without effecting Km value by directing active 

transporter population to intracellular regions (Melikian, 2004). This mode of internalization 

controls short and long-term availability of the transporter on the surface. While acute 

endocytic regulation targets DAT to early and recycling endosomes, long-term endocytosis 
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triggers lysosomal degradation of the protein (Chen et al., 2010; Rao et al., 2011; Hong and 

Amara, 2013; Sorkina et al., 2013). Interestingly, it has also been reported that PKC-

stimulated direct phosphorylation of DAT does not require for internalization (Granas et al., 

2003; Pramod et al., 2013) indicating the involvement of accessory proteins for the 

regulation of DAT endocytosis. Correspondingly, protein-protein interactions have been 

implicated as the crucial regulators that dictate DAT function (Eriksen et al., 2010; Sager and 

Torres, 2011). For example membrane raft protein Flotillin-1/Reggie-1 (Flot-1) has been 

shown to be required for the PKC-mediated internalization of DAT (Cremona et al., 2011). 

Besides eliciting DAT endocytosis, PKC also induces DAT down regulation in the presence 

of endocytotic blockers (Foster et al., 2008; Foster and Vaughan, 2011), indicating 

phosphorylation led intrinsic kinetic alterations in the transporter.  On the other hand, MAPK 

family kinases enhance the functionality of the DAT by potentially phosphorylating serine 

and threonine residues in the transporter (Schmitt and Reith, 2010; Vaughan and Foster, 

2013). Overall, these studies reveal that a plethora of convergent and divergent pathways 

regulate DAT activities: substrate translocation, substrate efflux and ion conductance 

through alterations in conformational states and endocytosis of the transporter.    

1.2.3 DAT AND HIV-1 TAT PROTEIN 

The apparent indirect evidence for dysregulation of the DAT in HIV-1 positive 

patients comes from reduced DA levels observed in infected brains. Decreased DA and its 

major metabolite homovanillic acid (HVA) were observed in post mortem brain samples and 

CSF (Larsson et al., 1991; Berger et al., 1994; Sardar et al., 1996; Kumar et al., 2009). These 

DA deficits differ from region to region in the brain, however, greater neuronal loss is 

associated with dopaminergic neurons especially at the subcortical area. These claims were 
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further substantiated by imaging studies and neuropsychological performance tests (Aylward 

et al., 1993; Kieburtz et al., 1996; Kumar et al., 2011).  Although the above studies do not 

explain the underlying mechanism of HIV-infection and impairment of DA system, the 

possible explanation would be dysregulation of DAT that results from HIV-1 viral proteins. 

Because HIV-1 viral proteins load is usually peak in the dopaminergic rich areas, where the 

highest density of DAT protein is situated, it is reasonable to hypothesize that Tat protein 

impairs DAT function to promote neuronal injury. However, we cannot exclude the 

possibility of involvement of other HIV-1 neurotoxic proteins like coat glyco protein gp120, 

HIV-induced host chemokines and free radicals for the loss of dopaminergic neurons 

(Purohit et al., 2011). Indeed, significantly reduced DAT levels were reported in HIV-1 

associated dementia patients’ using positron emission tomography (Wang et al., 2004; 

Sporer et al., 2005; Chang et al., 2008). In contrary to these imaging studies, a recent 

biochemical characterization on human brain specimen collected from HIV-1 encephalitis 

subjects demonstrated elevated levels of DAT protein (Gelman et al., 2006). Furthermore, a 

single photon emission tomography imaging on treatment naïve HIV-1 patients showed 

enhanced DA levels with no change in the DAT density (Scheller et al., 2010). These 

contradictory outcomes for DAT levels suggest that the stage of the disease, treatment 

condition of the patient and host as well as viral factors may play a defining role in 

dopaminergic neuronal degeneration. Taken together, these findings indicate the altered 

regulation of DAT function in HIV-1 infected individuals. Although these studies clearly 

show the pivotal role of DAT in Tat-induced DA system impairment, mechanisms 

underlying alterations in the DAT activity remain elusive.  
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1.3 OBJECTIVES OF THE RESEARCH 

The overall objective of this research is to understand how Tat protein interacts with 

DAT at specific recognition sites and thereby modulating transporter structure-function 

coordination in DA translocation process. This study provides valuable information of Tat 

binding residues and mechanistic understanding of Tat action on DAT at the molecular level, 

which is important to study Tat induced DA deficits in the animal models. This project seeks 

to delineate structural and molecular basis of how Tat protein interacts with DAT through 

conceptual and technical innovations. First, this work aims to address the novel concept of 

allosteric influence of Tat on DAT via interaction at specific binding sites. Second, our study 

is technically innovative because combining computational modeling and neuro-

pharmacology represent a novel approach that allowed us to define potential Tat interacting 

residues on DAT. While previous studies broadly established Tat mediated dysfunction of 

the DAT, they have fallen short in precisely locating the molecular determinants of Tat 

recognition sites on DAT. This is the first time that this state-of-art-technique, integrated 

with conventional approaches was used to determine Tat and DAT protein interaction. We 

also employed molecular biological and cell surface biotinylation techniques to answer the 

fundamental question how Tat protein controls dynamic surface expression and trafficking of 

the DAT. Findings of this work lay a platform to study the relationship between Tat 

interaction and associated changes in DAT structure-function, and open the door to rational 

drug development to treat cognitive and motor deficits associated with neuroAIDS. 

1.4 SPECIFIC AIMS 

Our lab previously reported that Tat inhibits DAT function and that inhibition is due 

to a protein-protein interaction (Zhu et al., 2009). Recently, we have also demonstrated that 

Tat protein allosterically inhibits DAT function and influences cocaine binding sites on DAT 
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(Zhu et al., 2011). Moreover, our preliminary three dimensional computational modeling 

predicts that amino acid Tyr470 of human DAT is an important residue for favorable 

intermolecular interaction between DAT and HIV-1 Tat. Our initial pharmacological data for 

Tyr470His (Y470H) mutant DAT revealed significant attenuation of Tat-induced effects on 

DA uptake without changes in the binding affinity of DA to the DAT.  This is consistent 

with the observed attenuated effects of Cys22Gly mutant Tat on DA transport (Zhu et al., 

2009). Collectively, these observations ascertain the critical role of recognition sites for Tat-

mediated influence on DAT structure and function.  

Therefore, we hypothesized that HIV-1 Tat protein via allosteric modulation of 

DAT induces inhibition of DA transport, leading to dysfunction of the DA system. This 

central hypothesis was tested with the specific aims outlined below.  

Aim 1: To create and validate computational modeling predicted HIV-1 Tat recognition sites 

(Y88, K92 and Y470) on human DAT. (Chapter 2 and 3) 

Aim 2: To determine whether Tat has any influence on the trafficking and phosphorylation 

dependent regulation of DAT. (Chapter 4) 

In addition to the above stated aims, the findings from my second project, combined 

effects of HIV-1 viral proteins and nicotine on nicotine-induced behavioral sensitization and 

associated changes in the expression of intracellular signaling proteins were described in 

Chapter 5. Finally, Chapter 6 provides overall summary and conclusions for the dissertation 

followed by the future directions for this research.  
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Figure 1.1 Overview of HIV-1 Tat and cocaine synergistic or additive effects on dopamine 
neurotransmission in HIV-1 infected individuals. HIV-1 penetrates the brain at the early 
infection stage and infects macrophages and microglial cells. These cells exude viral proteins 
that including Tat and other neurotoxic factors. Cocaine, a major psycho stimulant blocks 
DAT to inhibit DA translocation. Both Tat and cocaine elevate synaptic DA levels by 
inhibiting DA reuptake into presynaptic terminal. This increased DA induces further 
replication of virus in infected cells. Persistent exposure to the viral proteins, oxidative stress 
induced by increased DA levels and other chemokines aggravate the severity of the 
neurocognitive deficits in HIV-1 positive population. 
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Figure 1.2 DAT is localized to the presynaptic terminal of the dopaminergic neurons. It 
regulates the DA availability at the synapse by rapid reuptake into the terminal. In addition to 
the DA, amphetamine and MPP+ (1-methyl-4-phenylpyridinium) act as substrates for DAT. 
Selective pharmacological inhibitors for DAT such as cocaine, GBR12909, WIN 35,428 and 
RTI-121 were also shown. The image was taken from Torres et al. (2003). 

 

 



21 
 

  

Figure 1.3 Illustration of potential regulatory pathways that control the function and 
availability of the DAT. (A) The surface localization of DAT is maintained by trafficking 
and endocytosis to and from the surface of the membrane. (B and C) Direct interaction of 
small molecules such as substrates and inhibitors may modulate the function of the DAT 
through conformational alterations. (D) Phosphorylation of DAT or its accessory proteins 
controls the catalytic activity of the transporter by influencing protein kinase signaling 
cascades. (E) Activation of G-protien coupled receptors and (F) direct interaction with D2-
like autoreceptors modulate the DAT function. (G) Post-translational modification such as 
ubiquitination of the DAT also dictates the number of active transporter molecules on the 
presynaptic plasma membrane. The figure was obtained from Schmitt and Reith (2010). 
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Figure 1.4 Model of substrate translocation cycle for DAT. Binding of the ions primes 
substrate-free (apo) DAT to fully stabilized outward-facing conformation with an open 
extracellular gate to bind to the substrate DA. Substrate binding at the S1 binding site 
promotes the formation of an occluded state and closure of the extracellular gate. Binding of 
a second substrate molecule at the S2 site induces the opening of an intracellular gating 
network leading to release of the S1-bound substrate from the inward-facing state of the 
DAT. The image was taken from Schmitt et al. (2013). 
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CHAPTER 2 

MUTATION OF TYROSINE 470 OF HUMAN DOPAMINE TRANSPORTER IS CRITICAL 

FOR HIV-1 TAT-INDUCED INHIBITION OF DOPAMINE TRANSPORT AND 

TRANSPORTER CONFORMATIONAL TRANSITIONS1 
 

ABSTRACT: HIV-1 Tat protein plays a crucial role in perturbations of the dopamine (DA) 

system. Our previous studies have demonstrated that Tat decreases DA uptake, and 

allosterically modulates DA transporter (DAT) function. In the present study, we have 

found that Tat interacts directly with DAT, leading to inhibition of DAT function. 

Through computational modeling and simulations, potential recognition binding site of 

human DAT (hDAT) for Tat was predicted. Mutation of tyrosine470 (Y470H) attenuated 

Tat-induced inhibition of DA transport, implicating the functional relevance of this 

residue for Tat binding to hDAT. Y470H reduced the maximal velocity of [3H]DA uptake 

without changes in the Km and IC50 values for DA inhibition of DA uptake but increased 

DA uptake potency for cocaine and GBR12909, suggesting that this residue does not 

overlap with the binding sites in hDAT for substrate but critical for these inhibitors. 

Furthermore, Y470H also led to transporter conformational transitions by affecting zinc 

modulation of DA uptake and WIN35,428 binding as well as enhancing basal DA efflux. 

                                                            
1 Midde NM, Huang X, Gomez AM, Booze RM, Zhan CG, Zhu J (2013) Mutation of tyrosine 
470 of human dopamine transporter is critical for HIV-1 Tat-induced inhibition of dopamine 
transport and transporter conformational transitions. Journal of neuroimmune pharmacology : the 
official journal of the Society on NeuroImmune Pharmacology 8:975-987. PMCID:PMC3740080 

 

 



24 
 

Collectively, these findings demonstrated Tyr470 as a functional recognition residue in 

hDAT for Tat-induced inhibition of DA transport and transporter conformational 

transitions. The consequence of mutation at this residue is to block the functional binding 

of Tat to hDAT without affecting physiological DA transport. 

2.1 INTRODUCTION  

The estimated prevalence of HIV-1-associated neurocognitive disorders (HAND) 

is about 70% of HIV-1 positive individuals with antiretroviral therapy (Robertson et al., 

2007; Tozzi et al., 2007; Ernst et al., 2009). Cocaine has been shown to increase the 

incidence and exacerbate the severity of HAND by enhancing viral replication (Nath et 

al., 2001; Ferris et al., 2008). Antiretroviral agents cannot prevent the production of HIV-

1 viral proteins, such as Tat protein, in HIV-1 infected brains in the early stage of HIV-1 

infection (McArthur et al., 2010; Nath and Clements, 2011). Tat has been detected in the 

brains (Del Valle et al., 2000; Hudson et al., 2000; Lamers et al., 2010) and the sera 

(Westendorp et al., 1995; Xiao et al., 2000) of HIV-1 infected patients. Furthermore, Tat 

interacting with cocaine exacerbates the progression of the neurocognitive impairment 

(Buch et al., 2011; Gannon et al., 2011). 

Accumulating clinical evidence supported by imaging (Chang et al., 2008; Meade 

et al., 2011a), neurocognitive (Kumar et al., 2011; Meade et al., 2011b), and postmortem 

examinations (Kumar et al., 2009; Gelman et al., 2012), reveals that abnormal 

neurocognitive function observed in HAND is associated with dysfunctions in dopamine 

(DA) neurotransmission (Berger and Arendt, 2000; Purohit et al., 2011). The DA 

transporter (DAT) terminates DA signaling and thus is central to control synaptic 

dopaminergic tone (Torres and Amara, 2007). DAT activity is strikingly reduced in HIV-
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1-infected patients with a history of cocaine use (Wang et al., 2004; Chang et al., 2008). 

We have demonstrated that Tat allosterically modulates DAT function and reduces DAT 

cell surface expression in rat striatal synaptosomes (Zhu et al., 2009; Zhu et al., 2011; 

Midde et al., 2012).  

Viral replication within HIV-1 infected brain regions results in Tat release, which 

elevates DA levels via inhibiting DAT function (Gaskill et al., 2009). Exposure of HIV-1 

infected patients to cocaine further impairs DAT function and increases synaptic DA 

levels (Ferris et al., 2010). Importantly, the elevated DA induced by Tat and cocaine 

stimulates viral replication and Tat release (Gaskill et al., 2009), which has been 

implicated in the neuropathogenesis of HAND (Li et al., 2009). Considering oxidative 

stress-induced damage to dopaminergic neurons, long lasting exposure to viral proteins 

and elevated DA eventually lead to a DAT deficit that potentiates severity and accelerates 

the progression of HAND (Purohit et al., 2011). To the best of our knowledge, the 

mechanisms of Tat and cocaine interaction with hDAT have been virtually unexplored. In 

order to explore the molecular mechanism(s) underlying the interplay of Tat with cocaine 

in disrupting DAT-mediated DA neurotransmission, we performed computational 

modeling and simulations to predict potential recognition binding sites of human DAT 

(hDAT) for Tat. Identifying the functional recognition residues in hDAT for Tat may 

provide therapeutic insights into HAND in concurrent cocaine abusers. Upon prediction 

and validation of the functional relevance of tyrosine 470 (Tyr470) in hDAT, we 

determined the mechanisms that underlie mutation of Tyr470 in Tat-induced inhibition of 

DA transport and transporter conformational transitions. 
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2.2 MATERIALS AND METHODS  

2.2.1 CONSTRUCTION OF PLASMIDS  

Plasmid pcDNA3.1+/Tat1-72 that encodes Tat1-72 protein was provided by Dr. 

Avindra Nath (NINDS/NIH). Plasmid GFP-tagged Tat1-86 was a gift from by Dr. Mauro 

Giacca (Molecular Medicine Laboratory, ICGEB, Italy). Plasmids pcDNA3.1+/Tat1-101 

that encodes Tat1-101 protein was provided by NIH AIDS Reagent Program. Mutation in 

hDAT (tyrosine to histidine, Y470H-hDAT) was generated based on WT hDAT sequence 

(NCBI, cDNA clone MGC:164608 IMAGE:40146999) by site-directed mutagenesis. 

Synthetic cDNA encoding hDAT subcloned into pcDNA3.1+ (provided by Dr. Haley E 

Melikian, University of Massachusetts) was used as a template to generate Y470H-hDAT 

using QuikChange™ site-directed mutagenesis Kit (Agilent Tech, Santa Clara CA). The 

sequence of the mutant construct was confirmed by restriction enzyme mapping and 

DNA sequencing. 

2.2.2 CELL CULTURE AND DNA TRANSFECTION 

CHO cells (ATCC #CCL-61) were maintained in F12 medium supplemented with 

10% fetal bovine serum (FBS) and antibiotics (100 U/ml penicillin and 100 µg/mL 

streptomycin) at 37°C in a 5% CO2 incubator. For hDAT transfection, cells were seeded 

into 24 well plates at a density of 1×105 cells/cm2. After 24h, cells were transfected with 

WT or mutant DAT plasmids using Lipofactamine 2000 (Life Tech, Carlsbad, CA). Cells 

were used for the experiments after 24 h of transfection.  

2.2.3 CO-IMMUNOPRECIPITATION (CO-IP) OF DAT AND TAT 

To determine whether Tat directly binds to DAT, Co-IP of Tat and DAT assays 

were performed in rat synaptosomes after exposure to recombinant Tat1-86 as described 
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previously (Li et al., 2008). In brief, rat anti-DAT antibody (6 µg, MAB369, Millipore, 

Temecula, CA) was incubated with 20 μl protein A/G agarose beads (SC2003, Santa 

Cruz Biotechnology Inc., Santa Cruz, CA) for 5-6 h at 4°C with constant rotating and 

were centrifuged at 8,000 g for 5 min.  The agarose-anti DAT antibody complex was 

washed five times with immunoprecipitation buffer (1% Triton X-100, 150 mM NaCl, 10 

mM Tris, 1 mM EDTA, 1 mM EGTA, 0.2 mM sodium ortho-vanadate, 0.2 mM PMSF, 

0.5% NP-40) to remove the unbound antibody. Rat synaptosomes from striatum and 

cerebellum, and spleen homogenates were prepared as described previously (Zhu et al., 

2009) and adjusted to equal protein concentration (1.5 mg/ml) using the Bradford protein 

assay (Bradford, 1976). Then, aliquots (500 µg) of synaptosomes or homogenates were 

incubated in Krebs-Ringer-HEPES (KRH) buffer (final concentration in mM: 125 NaCl, 

5 KCl, 1.5 MgSO4, 1.25 CaCl2, 1.5 KH2PO4, 10 D-glucose, 25 HEPES, 0.1 EDTA, 0.1 

pargyline, and 0.1 L-ascorbic acid; pH 7.4) containing recombinant Tat1-86 (350 nM, final 

concentration, Clade B, # REP0002a, DIATHEVIA, Fano, Italy) for 1 h at room 

temperature and were then centrifuged at 8,000 g for 5 min. The resulting pellets were 

washed 5 times with KRH buffer. The pellets were resuspended and added to the 

agarose-antibody complex and incubated with agitation at 4°C overnight. These samples 

(agarose-antibody-protein complex) were centrifuged at 8,000 g for 1 min and the 

resulting pellets were washed with immunoprecipitation buffer for 5 times. These 

samples were then mixed with 2 × Laemmli sample buffer and boiled for 5 min. To 

detect immunoreactivity of DAT or Tat protein, the samples were then subjected to 

Western blotting with either goat polyclonal DAT antibody (1:200, Cat # SC-1433, Santa 
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Cruz Biotechnology Inc., Santa Cruz, CA) or mouse anti HIV-1 Tat (1:1000, Cat # 

ab24778, Abcam, Cambridge, MA ) using our published method (Zhu et al., 2009).  

2.2.4 GST-PULL-DOWN ASSAY 

To confirm whether Tat interacts with DAT through a protein-protein interaction, 

GST-Tat fusion protein was used as bait for pull-down DAT to show their interaction as 

described previously (Li et al., 2008).  In brief, BL21 E. coli expressing pGEX-Tat1-86 

(obtained from Dr. Virginie W Gautier, University College Dublin, Ireland) and GST 

only (as negative control) were grown in liquid culture media and induced GST protein 

expression by 100 mM IPTG. These GST proteins were added to glutathione sepharose 

beads (17-0756-01, GE Healthcare) and then incubated with the cell lysates from CHO 

cells transfected with hDAT. The beads were washed with the immunoprecipitation 

buffer described above and mixed with protein sample buffer. The eluted proteins were 

subjected to immunoblotting with anti-DAT antibody (Cat # sc-1433, Santa Cruz 

Biotechnology Inc., Santa Cruz, CA). 

2.2.5 PREDICTING THE SITE FOR HDAT BINDING WITH TAT 

The binding structure of hDAT with HIV-1 clade B type Tat was modeled and 

simulated based on the nuclear magnetic resonance (NMR) structures of Tat (Peloponese 

et al., 2000) and the constructed structure of DAT(DA), as reported previously (Huang 

and Zhan, 2007; Huang et al., 2009). Briefly, Brownian dynamics (BD) simulations were 

performed to obtain the initial binding structure of the hDAT-Tat complex.  Starting from 

the available 11 NMR structures of Tat, the BD simulations were launched from a 

spherical surface around the extracellular side of hDAT, and the electrostatic interaction 

energy was calculated for each BD trajectory by multiplying the electrostatic potential of 
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hDAT with the atomic charges of Tat.  The initial complex for hDAT binding with Tat 

was identified from the BD trajectories, with the lowest interaction energy and the best 

geometric matching quality. The identified initial hDAT-Tat complex structures were 

energy-minimized in the same way as described in our previous studies on hDAT binding 

with DA and cocaine (Huang and Zhan, 2007; Huang et al., 2009). Molecular dynamics 

(MD) simulations were performed to further relax and equilibrate the energy-minimized 

structure of the hDAT-Tat binding complex. Finally, the MD-simulated hDAT-Tat 

binding structure was energy-minimized and analyzed.    

2.2.6 PREPARATION OF RELEASED TAT FROM TAT-EXPRESSING CELLS 

To generate released Tat from Tat-expressing cells, CHO cells were seeded into 

60 mm plates at a density of 1 × 106/cm2.  After 24 h, cells were transfected with different 

amounts (5 and 10 µg) of plasmid DNAs for Tat1-72, GFP-tagged Tat1-86 and Tat1-101 using 

Lipofactamine 2000. Cells transfected with pcDNA3.1+ were used as a negative control. 

After transfection, culture media from Tat- transfected cells were collected at 24, 48 and 

72 h. 

2.2.7 [3H]DA UPTAKE ASSAY 

Twenty four hours after transfection, [3H]DA uptake in CHO cells transfected 

with wild type hDAT (WT hDAT) and Y470H-hDAT was performed in KRH buffer 

using a modified procedure as reported previously (Zhu et al., 2009). To determine 

whether mutated hDAT alters the maximal velocity (Vmax) or Michaelis-Menten constant 

(Km) of [3H]DA uptake, kinetic analyses were conducted in WT hDAT versus Y470H-

hDAT in the presence or absence of recombinant Tat1-86. To generate saturation 

isotherms, [3H]DA uptake was conducted in duplicate wells containing one of six 
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concentrations of unlabeled DA (final DA concentrations, 1.0 nM–5 µM) and a fixed 

concentration of [3H]DA (500,000 dpm/well, specific activity, 31 Ci/mmol; PerkinElmer 

Life and Analytical Sciences, Boston, MA). In parallel, nonspecific uptake of each 

concentration of [3H]DA (in the presence of 10 µM nomifensine, final concentration) was 

subtracted from total uptake to calculate DAT-mediated uptake. To determine the effect 

of Tat on DA uptake, cells transfected with WT or Y470H-hDAT were preincubated with 

each concentration of [3H]DA in the presence or absence of the concentrations of 

released Tat or Tat1-86 (350 nM). The reaction was terminated by washing twice with ice 

cold uptake buffer. Cells were solubilized in 1% SDS and radioactivity was measured 

using a liquid scintillation counter (model Tri-Carb 2900TR; PerkinElmer Life and 

Analytical Sciences, Waltham, MA). Kinetic parameters (Vmax and Km) were determined 

using Prism 5.0 (GraphPad Software Inc., San Diego, CA).  

For the competitive inhibition experiment, assays were performed in duplicate in 

a final volume of 500 µl. Cells in each well were incubated in 450 µl buffer containing 50 

µl one of final concentrations of unlabeled DA (1 nM-1 mM), GBR12909 (1 nM-10 µM), 

cocaine (1 nM-1 mM), and ZnCI2 (10 µM) at 37°C for 10 min and [3H]DA uptake was 

determined by addition of 50 µl of [3H]DA (0.1 µM, final concentration) for an additional 

5 min.   

2.2.8 IMMUNODEPLETION 

Released Tat was prepared as described above. Seventy-two hours after 

transfection with Tat1-72 plasmid, aliquots (500 μl) of the conditioned media were 

incubated with mouse anti-Tat antibody (1:200, # ab6539, Abcam, Cambridge, MA) at 

4°C for 2 h on a shaking platform, followed by incubation with 20 μl of Protein A/G – 
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PLUS Agarose beads (# SC2003, Santa Cruz Biotechnology Inc., Santa Cruz, CA) at 4°C 

for 2 h.  After incubation, the agarose-antibody-Tat complex was pelleted at 12,000g for 

2 min at 4°C and supernatants were collected. For the immunodepletion assay, CHO cells 

transfected with hDAT were incubated with either Tat-conditioned media or supernatant 

at 37°C for 2 h, followed by [3H]DA uptake assay, as described above.  Anti-Tat 

antibody specificity for the Tat protein was determined by using mouse IgG1 kappa 

monoclonal antibody (1:200, # ab18447, Abcam, Cambridge, MA) as an isotype control.  

2.2.9 CELL SURFACE BIOTINYLATION 

To determine whether decreased DA uptake in Y470H-hDAT is due to a 

reduction of cell surface DAT, biotinylation assays were performed, as described 

previously (Zhu et al., 2005). CHO cells expressing hDAT and Y470H-hDAT were 

plated on 6 well plates at a density of 105 cells/well. Cells were incubated with 1 ml of 

1.5 mg/ml sulfo-NHS-SS biotin (Pierce, Rockford, IL) in PBS/Ca/Mg buffer (In mM: 

138 NaCl, 2.7 KCl, 1.5 KH2PO4, 9.6 Na2HPO4, 1 MgCl2, 0.1 CaCl2, pH 7.3). After 

incubation, cells were washed 3 times with 1 ml of ice-cold 100 mM glycine in 

PBS/Ca/Mg buffer and incubated for 30 min at 4°C in 100 mM glycine in PBS/Ca/Mg 

buffer. Cells were then washed 3 times with 1 ml of ice-cold PBS/Ca/Mg buffer and then 

lysed by addition of 500 ml of Triton X-100, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µM 

pepstatin, 250 µM phenylmethysulfonyl fluoride), followed by incubation and continual 

shaking for 20 min at 4 °C. Cells were transferred to 1.5 ml tubes and centrifuged at 

20,000g for 20 min. The resulting pellets were discarded, and 100 µl of the supernatants 

was stored at -20 °C for determination of immunoreactive total DAT. Remaining 

supernatants were incubated with continuous shaking in the presence of monomeric 
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avidin beads in Triton X-100 buffer (100 µl/tube) for 1 h at room temperature.  Samples 

were centrifuged subsequently at 17,000g for 4 min at 4°C, and supernatants (containing 

the nonbiotinylated, intracellular protein fraction) were stored at -20°C. Resulting pellets 

containing the avidin-absorbed biotinylated proteins (cell-surface fraction) were 

resuspended in 1 ml of 1.0% Triton X-100 buffer and centrifuged at 17,000g for 4 min at 

4°C, and pellets were resuspended and centrifuged twice. Final pellets consisted of the 

biotinylated proteins adsorbed to monomeric avidin beads. Biotinylated proteins were 

eluted by incubating with 50 µl of Laemmli sample buffer for 20 min at room 

temperature. If further assay was not immediately conducted, samples were stored at -20 

°C. 

2.2.10 [3H]WIN 35,428 BINDING ASSAY 

For the competitive inhibition experiment, cells transfected hDAT and Y470H-

hDAT were incubated in KRH buffer containing 50 µl of [3H]WIN 35,428 (5 nM, final 

concentration, specific activity, 85 Ci/mmol) and ZnCI2 (10 µM) using our published 

method (Zhu et al., 2009). The reaction was terminated by washing twice with ice cold 

KRH buffer. Nonspecific binding at each concentration of [3H]WIN 35,428 was 

determined in the presence of 30 µM cocaine (final concentration).  Cells were 

solubilized in 1% SDS and radioactivity was measured using a liquid scintillation 

counter.  

2.2.11 DA EFFLUX ASSAY 

Basal efflux from CHO cell transfected with hDAT or mutated hDAT was 

measured, as described previously (Guptaroy et al., 2009). Cells were incubated in 24 

well plates at a density of 105 cells/well for 24 h before assays were washed 3 times with 
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KRH buffer and preloaded with [3H]DA (0.05 µM, final concentration) for 20 min at 

room temperature. After loading, cells were washed 3 times with KRH buffer. To obtain 

an estimate of the total amount of [3H]DA in the cells at the zero time point, cells from a 

set of wells (four wells/sample) were lysed rapidly in 1% SDS after preloading with 

[3H]DA. Buffer (500 µl) was added into separate set of cell wells and transferred to 

scintillation vials after 1 min as fractional efflux at 1 min, and another 500 µl buffer was 

added to the same wells (where the buffer was just removed for 1 min point) and 

collected to vials after 10 min. Additional fractional efflux at 20, 30, 40 and 50 min, 

respectively, was repeated under the same procedure. After 40 or 50 min, cells were lysed 

and counted as total amount of [3H]DA remaining in the cells from each well. To 

determine whether exposure to Tat alters basal DA efflux, CHO cells transfected with 

hDAT were incubated with Tat- conditioned media from Tat-transfected cells collected at 

72 h after transfection at 37°C for 2 h, followed by DA efflux assay.   

2.2.12 DATA ANALYSIS  

Descriptive statistics and graphical analyses were used as appropriate. Results are 

presented as mean ± SEM, and n represents the number of independent experiments for 

each experiment group. IC50 values for DA, cocaine and GBR12909 inhibiting specific 

[3H]DA uptake were determined from inhibition curves by nonlinear regression analysis 

using a one-site model with variable slope. Kinetic parameters (Vmax or Km) of [3H]DA 

uptake were determined from saturation curves by nonlinear regression analysis using a 

one-site model with variable slope. For experiments involving comparisons between 

unpaired samples, unpaired Student’s t test was used to assess any difference in the 

kinetic parameters (IC50, Vmax or Km) between WT and mutant; log-transformed values of 
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IC50 or Km were used for the statistical comparisons. Significant differences between 

samples were analyzed with separate ANOVAs followed by post-hoc tests, as indicated 

in the results Section of each experiment. All statistical analyses were performed using 

IBM SPSS Statistics version 20, and differences were considered significant at p, < 0.05. 

2.3 RESULTS 

2.3.1 TAT PROTEIN DIRECTLY BINDS TO hDAT 

Exposure of rat striatal synaptosomes to Tat protein inhibits DA uptake (Zhu et 

al., 2009). To determine whether Tat protein directly binds to DAT, we performed Co-IP 

of hDAT and Tat assays. As depicted in Fig. 2.1A, recombinant Tat1-86 bound to Tat 

antibody was able to immunoprecipitate hDAT in rat striatal synaptosomes but not in 

spleen and cerebellum where the density of DAT was low.  To confirm this finding, we 

also used GST-Tat fusion protein (as bait) to pull down hDAT to show their interaction. 

Figure 2.1B shows that GST-Tat1-86 bound to hDAT protein. These data strongly suggest 

that the influence of Tat on DAT function involves a protein-protein interaction between 

Tat and DAT, which provides an experimental base for us to perform the following 

computational modeling analysis of the bindings between Tat and hDAT. 

2.3.2 BINDING STRUCTURE OF hDAT WITH HIV-1 TAT   

The energy-minimized binding structure of hDAT with Tat following the MD 

trajectory was shown in Fig. 2.1C and 1D.  Tat protein is located on the gate of the 

vestibule of hDAT(DA). A loop (formed from residues #19 to #22) of Tat is plunged into 

the vestibule of hDAT(DA), blocking the central pore of the substrate-entry tunnel of 

hDAT(DA). Tat and DAT molecules bind with each other through both electrostatic 

interactions and shape complementarity. Particularly, the side chain of Cys22 (C22) of 
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Tat is located inside the vestibule of hDAT(DA), contacting closely with the side chain of 

Tyr470 residue of hDAT and Lys19 (K19) side chain of Tat. The positively charged head 

group of Lys19 side chain of Tat is hydrogen-bonded with the hydroxyl oxygen on 

Tyr470 side chain of hDAT(DA). The positively charged side chain of Lys19 also 

interacts with the aromatic side chain of Tyr470 through the cation-π interaction; the 

modeled distance between the N atom of Lys19 side chain and the center of the aromatic 

ring of Tyr470 side chain of hDAT(DA) is 4.55 Å.  Based on the modeled hDAT-Tat 

complex structure, we predicted that residue Tyr470 is critical for the hDAT binding for 

Tat. 

2.3.3 EXTRACELLULARLY RELEASED TAT IS MORE POTENT THAN RECOMBINANT TAT IN 

INHIBITING hDAT FUNCTION 

Most previous studies of Tat-induced inhibition of DAT function have been 

performed using recombinant Tat. To mimic the nature of Tat released from HIV-1 

infected cells, we have established a technique to ensure that clade B type Tat can be 

released from Tat-expressing cells and the effects of released Tat on DA uptake were 

examined. CHO cells were transfected with different amount of plasmid Tat1-72, GFP-

tagged Tat1-86, and Tat1-101 DNA, and subsequently the conditioned media from these 

transfected cells were collected as a source of released Tat. The estimated amount (~1 

ng/ml) of released Tat in culture media was measured by the density of immunoreactive 

bands and quantitated by comparison to a known amount of recombinant Tat1-86.  

 To determine the effects of released Tat on DA uptake, we first performed the 

concentration and time-dependent studies for released Tat. Different amounts of released 

Tat from conditioned media collected at 24, 48 and 72 h were tested in [3H]DA uptake in 

CHO expressing hDAT. A maximal effect of released Tat on DA uptake was observed 
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when 100 µl conditioned media collected at 72 h were used (data not shown). As shown 

in Fig. 2.2A, released Tat from cells transfected with Tat1-72, Tat1-86 or Tat1-101 produced a 

similar magnitude of change from control in [3H]DA uptake (F(3, 12) = 29.6; p < 0.01, one-

way ANOVA with Dunnett’s Multiple comparison test), suggesting that Tat1-72, Tat1-86 

and full length Tat1-101 exhibit an equal ability in Tat-induced inhibitory effect on DA 

transport. We next determined whether the inhibitory effect on DA uptake was specific 

for released Tat by immunodepletion assay (Fig. 2.2B). Exposure to released Tat (1 

ng/ml) produced a significant reduction (31 ± 2.7%) of specific [3H]DA uptake compared 

to the control (media collected from cells transfected with vector alone). The released 

Tat-induced decrease in DA uptake was diminished by immunodepletion with anti-Tat 

antibody but not with an isotype control antibody (F(3, 12) = 13.4; p<0.001, one-way 

ANOVA with Tukey’s multiple comparison test).  These data also confirmed that the 

inhibitory effect of incubation with conditioned media on DA uptake was specific for 

released Tat.  

2.3.4 MUTATION OF TYR470 ALTERS DA UPTAKE KINETICS AND POTENCY OF SUBSTRATE AND 

INHIBITORS  

To validate the feasibility of the computational model of the DAT(DA)-Tat 

complex, we determined whether a specific residue (Tyr470, which was predicted by the 

computational modeling as one of favorable inter-molecular interactions between Tat and 

hDAT) in hDAT is important for intermolecular interaction between Tat and DAT. A 

mutation in hDAT (tyrosine to histidine, Y470H-hDAT) was generated by site-directed 

mutagenesis. We first determined the pharmacological profiles of [3H]DA uptake in CHO 

cells transfected with equal amount of plasmid DNA for WT hDAT and mutated hDAT.  

As shown in Fig. 2.3A, the Y470H-hDAT displayed a decrease in the Vmax values (2.8 ± 
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0.8 pmol/min/105 cells) compared with WT hDAT [15.7 ± 0.9 pmol/min/105 cells; t(3) = 

15.6, p<0.001, unpaired Student’s t test]; no difference in the Km values was observed.   

We have reported that Tat protein influences selective binding sites on the DAT, 

with differential impact on binding to GBR12935, WIN35,428 and cocaine (Zhu et al., 

2009; Zhu et al., 2011). To explore the potential relationship between the binding sites of 

Tat in DAT and the binding sites of DAT substrate and inhibitors, we also tested the 

ability of DA, cocaine and GBR12909 to inhibit [3H]DA uptake in WT hDAT and 

Y470H-hDAT (Table 1). The apparent affinity (IC50) for DA was not significantly 

different between the WT hDAT (895 ± 80 nM) and Y470H-hDAT (737 ± 72 nM). 

However, the potencies of cocaine and GBR12909 for inhibition of [3H]DA uptake were 

~3.5-fold greater in Y470H-hDAT as compared with WT hDAT (unpaired Student’s t 

test).   

To assess whether the decreased Vmax in this mutant was caused by decreased 

surface DAT expression, we determined DAT surface expression in CHO cells 

transfected with WT or Y470H-hDAT using cell surface biotinylation. As shown in Fig. 

2.3B, despite no difference in the ratio of surface DAT to total DAT between WT and 

Y470-hDAT (biotinylated/total: WT, 0.70 ± 0.06; and Y479H, 0.68 ± 0.1; p >0.05, one-

way ANOVA), the absolute surface DAT in the mutant hDAT was indeed decreased 

compared to WT hDAT (unpaired Student’s t test). Thus, the reduction of available DAT 

on the cell surface could contribute to the decreased DA uptake actually measured in 

Y470H-hDAT, relative to WT DAT.  

 

 



38 
 

2.3.5 MUTATION OF TYR470 ATTENUATES TAT-INDUCED INHIBITORY EFFECTS ON DA 

TRANSPORT 

To determine whether the mutation of Tyr470 alters inhibitory effects of Tat on 

DA uptake, we examined the specific [3H]DA uptake in WT hDAT and Y470H-hDAT in 

the presence or absence of released Tat1-72 (1 ng/ml) or recombinant Tat1-86 (350 nM). As 

shown in Figure 2.4A, two-way ANOVA on the specific [3H]DA uptake in WT and 

Y470H-hDAT revealed a significant main effect of mutation (F(1, 24) = 6.5; p < 0.05), Tat 

treatment (F(1, 24) = 7.5; p < 0.05) and a significant mutation × Tat interaction (F(1, 24) = 

8.9; p < 0.05). A subsequent simple effect analysis revealed a dramatic decrease (80%) in 

[3H]DA uptake in Y470H-hDAT (F(1, 12) = 25; p < 0.001) compared to WT hDAT in the 

absence of Tat. Exposure to Tat decreased [3H]DA uptake by 50% in hDAT (F(1, 12) = 

16.1; p < 0.01; Fig. 2.4A); however, no effect of Tat was observed in Y470H-hDAT (F(1, 

12) = 0.05; p > 0.05), suggesting that mutation of Tyr470 in hDAT attenuates Tat-induced 

reduction of hDAT function.  

With regard to the effect of recombinant Tat1-86 on DA uptake (Fig. 2.4B), a 

separate two-way ANOVA analysis revealed a significant main effect of mutation (F(1, 24) 

= 7.4; p < 0.05) and Tat treatment (F(1, 24) = 9.5; p < 0.05) as well as a significant 

mutation × Tat interaction (F(1, 24) = 12.9; p < 0.05). [3H]DA uptake in Y470H-hDAT was 

19% of that in WT hDAT in cells transfected with equal amount of plasmid DNA for WT 

and mutated DAT, which is consistent with the low DAT expression observed in Fig. 

2.3B. Exposure to Tat1-86 decreased [3H]DA uptake by 38% in WT hDAT (F(1, 12) = 12.8; 

p < 0.01); however, no effect of Tat on [3H]DA uptake was observed in Y470H-hDAT. 

Since DA uptake is linear with DAT expression, in order to rule out whether the lack of 

effect of Tat on DA uptake in this mutant hDAT is due to a low DAT expression level in 
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Y470H-hDAT relative to WT hDAT, we corrected Vmax value of Y470H-hDAT to 40% 

of that in WT hDAT using 3x amount of plasmid Y470H DNA in transfection (Fig. 

2.4C), as reported previously (Chen et al., 2004). A two-way ANOVA revealed a 

significant main effect of mutation (F(1, 24) = 6.4; p < 0.05) and Tat treatment (F(1, 24) = 

5.5; p < 0.05) as well as a significant mutation × Tat interaction (F(1, 24) = 11.2; p < 0.05). 

Similarly, exposure to recombinant Tat1-86 decreased Vmax by 35% and 6% in WT hDAT 

and Y470H-hDAT, respectively. Thus, this result supports the inference that Tyr470 in 

hDAT is critical for HIV-1 Tat-induced inhibition of dopamine transport.   

2.3.6 MUTATION OF TYR470 AFFECTS ZINC REGULATION OF DAT CONFORMATIONAL 

TRANSITIONS AND BASAL DA EFFLUX 

We hypothesize that Tat, via allosteric modulation sites, alters conformational 

states of DAT, thereby decreasing DA transport. To test this possibility, we determined 

whether mutation of Tyr470 affects zinc regulation of DAT conformational transitions 

and basal DA efflux. In general, the conformational changes in DA transport process 

involve conversions between outward- and inward-facing conformations (Zhao et al., 

2010). Occupancy of the endogenous Zn2+ binding site in WT hDAT (His193, His375, 

and Glu396) stabilizes the transporter in an outward-facing conformation, which allows 

DA to bind but inhibits its translocation, thereby increasing [3H]WIN 35,428 binding 

(Norregaard et al., 1998; Moritz et al., 2013), but decreasing DA uptake (Loland et al., 

2003). Addition of Zn2+ is able to partially reverse an inward-facing state to an outward-

facing state (Norregaard et al., 1998; Loland et al., 2003). On the basis of this principle, 

the addition of Zn2+ to WT hDAT would inhibit DA uptake, whereas in a functional 

mutation in DAT Zn2+ might diminish the preference for the inward-facing conformation 

and thus enhance DA uptake. To explore this possibility, we examined the effects of 
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Tyr470 mutation on Zn2+ modulation of [3H]DA uptake and [3H]WIN35,428 binding that 

are thought to reflect stabilization of outwardly facing transporter forms (Richfield, 1993; 

Norregaard et al., 1998).  For these experiments, CHO cells expressing WT and Y470H-

hDAT were treated with 10 µM ZnCI2 and assayed for both [3H]DA uptake and [3H]WIN 

35,428 (Fig. 2.5A and 5B). As shown in Fig. 2.5A, two-way ANOVA on the specific 

[3H]DA uptake in WT and Y470H-hDAT revealed a significant main effect of mutation 

(F(1, 24) = 11.5; p < 0.05), zinc (F(1, 24) = 9.1; p < 0.05) and a significant mutation × zinc 

interaction (F(1, 24) = 9.9; p < 0.05). The addition of Zn2+ decreased [3H]DA uptake in WT 

and Y470H-hDAT by 89% versus 32%, respectively (Fig. 2.5A, p< 0.001 relative to 

control, unpaired Student’s t test). A two-way ANOVA on the specific [3H]WIN35,428 

binding in WT and Y470H-hDAT revealed a significant main effect of mutation (F(1, 24) = 

6.5; p < 0.05), zinc (F(1, 24) = 4.3; p < 0.05) and a significant mutation × zinc interaction 

(F(1, 24) = 4.2; p < 0.05).  Zn2+ caused a 40% increase in [3H]WIN 35,428 binding in WT 

but had no effect on Y470H-hDAT (Fig. 2.5B, p< 0.001 relative to control, unpaired 

Student’s t test). The data suggest that Tyr 470 mutation disrupts an intermolecular 

interaction key for maintenance of the outward‐facing conformation. 

To further determine the role of Y470H-hDAT in the transition between outward-

facing and inward-facing states, we also examined basal DA efflux in WT hDAT and this 

mutant. As shown in Fig. 2.5C, after preloading with 0.05 µM [3H]DA for 20 min at 

room temperature, cells were washed and fractional DA efflux samples were collected at 

the indicated times.  A two-way ANOVA revealed significant main effects of mutation 

(F(1, 14) = 170; p<0.001) and time (F(4, 56) = 145; p<0.001). A significant mutation × time 

interaction (F(4, 56) = 78; p<0.001) was also found. Post-hoc analysis revealed robust 
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increases in DA efflux at 1, 10, 20, and 30 min compared to WT hDAT (p < 0.05, 

Bonferroni t-test). To determine whether exposure to Tat represents similar results, basal 

DA efflux in WT hDAT was determined in the presence or absence of released Tat1-72 

(Fig. 2.5D). The fractional basal DA efflux data in WT hDAT were expressed as a 

percentage change in the respective controls of total DA content in cells with or without 

Tat. Analysis of two-way ANOVA revealed that a significant main effect of treatment 

(F(1, 10) = 18.7; p < 0.01) and time (F(5, 50) = 291.9; p<0.001) as well as a significant 

treatment × time interaction (F(5, 50) = 9.9; p<0.001). Although a lower magnitude of DA 

efflux in response to Tat treatment was found in WT hDAT in comparison to DA efflux 

in Y470H-hDAT (Fig. 2.5D), post-hoc analysis revealed that exposure to released Tat1-72 

significantly increased basal DA efflux at 1, 10, 20 and 30 min compared to control (p < 

0.05, Bonferroni t-test). These data further support the possibility that Tyr 470 mutation 

causes a regional conformational change that affects hDAT associated with Tat.  

2.4 DISCUSSION 

In the current study, we used an integrated approach including computational 

modeling and simulations, protein mutagenesis and molecular pharmacological function 

assays to explore a key residue in the intermolecular interactions between HIV-1 Tat and 

hDAT. Our data provide additional evidence showing a direct interaction between Tat 

and hDAT as suggested in our previous report (Zhu et al., 2009). Through modeling and 

simulations, the site for Tat interaction with DAT has predicted that residue Tyr470 in 

hDAT is crucial for HIV-1 Tat-induced inhibition of DA transport. Tyr470 mutation did 

not alter the affinity for DA uptake but increased DA uptake potency for cocaine and 

GBR12909, suggesting that Tyr470 does not overlap with the substrate binding site but 
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disrupts the binding sites on DAT for these inhibitors. Importantly, mutation of Tyr470 

alters Zn2+ modulation of DAT and basal DA efflux, compared to WT hDAT, implying a 

mechanistic context for the transporter conformational transitions by this mutant. 

Collectively, our results provide a relatively comprehensive molecular insight into this 

important residue for DA translocation and the underlying allosteric mechanism in DAT 

for Tat binding.  

In response to the fundamental question how Tat interacts with hDAT through 

their recognition binding sites to interrupt DAT-mediated DA transmission, our 

computational model has predicted Tyr470 of hDAT and Cys22 as well as Lys19 in Tat 

as one of the favorable inter-molecular interactions between hDAT and Tat protein. Data 

from Co-IP and GST pull-down experiments demonstrate a direct interaction between Tat 

and DAT, which is consistent with the predictions from computational modeling and 

simulations. This study, based on the computational prediction, demonstrated that 

mutation of Tyr470 changes hDAT conformation and attenuates Tat-induced inhibition of 

DA transport.  Despite the importance of Tyr470, our computational modeling does not 

anticipate that a single residue in hDAT is sufficient to control the interaction of Tat with 

hDAT.  Therefore, once all recognition residues in hDAT are identified, an essential task 

in our future study will be to determine the influence of combined recognition residues on 

Tat-DAT interaction. The computational prediction of the binding mode was based on a 

series of computational modeling studies including homology modeling, Brownian 

dynamics simulations (Gabdoulline and Wade, 1998), and molecular dynamics 

simulations. Considering the fact that the Tat molecule has a large positive electrostatic 

potential, and hDAT(DA) bears negative charge, the long-range electrostatic attraction 
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can be viewed as the driving force for the association of Tat with hDAT. The binding 

mode of hDAT with Tat demonstrates that the Tat molecule is associated with DAT 

through inter-molecular electrostatic attractions and complementary hydrophobic 

interactions. In support of our proposed model, the current study and our previous report 

(Zhu et al., 2009) demonstrate that mutation of either Tyr470 in hDAT or Cys22 in Tat 

leads to attenuation of WT Tat-induced inhibitory effects on DA transport, implicating a 

structural and functional relationship between Tat and hDAT. Since Lys19 is also 

predicted as a critical residue for Tat interacting with the Tyr470 residue in DAT, we will 

also determine whether mutation of Lys19 produces a similar effect as mutation of Cys22 

in Tat on DAT function in our future investigation. These data also qualitatively support 

that our computationally simulated model of the hDAT(DA)-Tat complex is reliable to be 

used to predict the intermolecular interactions between Tat and DAT.  

Although both recombinant Tat and Tat released from cells expressing Tat 

produced a strong inhibitory effect on DA transport, released Tat was ~4000-fold more 

potent than recombinant Tat. This finding is consistent with a previous report showing 

this form of Tat was more neurotoxic than recombinant Tat protein (Li et al., 2008). We 

also found that Tat1-72, Tat1-86 and full length Tat1-101 exhibited an equivalent inhibitory 

effect on DAT function, which is consistent with the previous studies showing that equal 

ability of Tat protein in Tat-induced neurotoxicity (Li et al., 2008; Aksenov et al., 2009). 

The concentration of released Tat (1 ng/ml) used in this study is similar to native HIV-1 

Tat actually detected in the serum of patients with HIV infection (Westendorp et al., 

1995) and in the conditioned medium of HIV-infected cells (Albini et al., 1998). Thus, 

our data support that physiologically secreted Tat is more neurotoxic to neuronal targets, 
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such as DAT. The advantage of this approach is feasible for further determination of the 

recognition sites of Tat (WT versus mutated) that functionally interact with hDAT. 

The present results show that mutation of Tyr470 decreased the Vmax with no 

changes in Km value and IC50 value for DA inhibiting DA uptake compared to WT 

hDAT, demonstrating that the Tyr470 residue does not affect substrate transport 

characteristics. These data are consistent with the aforementioned computational 

prediction based on the modeled hDAT(DA)-Tat complex structure: Tat binding site in 

hDAT(DA) complex does not overlap with the binding site of substrate DA (Fig. 2.2). In 

contrast, the DA uptake potency of cocaine and GBR12909 was increased in Y470H-

hDAT compared to WT hDAT. While GBR12909 labels the classic DA uptake site in 

rodent brain, binding to the piperazine acceptor site (Andersen et al., 1987) was affected 

much less by mutation of hDAT than cocaine (Loland et al., 2002; Guptaroy et al., 2011), 

consistent with the fact that cocaine preferentially stabilizes the hDAT in the outward-

facing conformational state, resulting in a reduction of DA uptake (Reith et al., 2001; 

Loland et al., 2002). One interpretation of our finding is that Tat allosterically modulates 

DA transport rather than overlaps DA uptake sites on DAT as previously suggested (Zhu 

et al., 2011). However, the Tat binding site in hDAT may be close to the binding sites in 

hDAT for cocaine and GBR12909, increasing their DA uptake potency. Thus, the results 

may suggest synergistic influences of Tat and cocaine on DAT function: Tat, via 

allosteric modulation of the DAT, enhances the inhibitory effects of cocaine on DA 

transport. These findings also provide evidence to support our previous reports that Tat 

and cocaine synergistically inhibit DAT function in vivo and in vitro (Harrod et al., 2008; 

Ferris et al., 2010).  
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Our previous work provides evidence that Tat allosterically modulates DAT 

function (Zhu et al., 2009; Zhu et al., 2011). The allosteric modulation of DAT is 

responsible for conformational transitions via substrate- and ligand-binding sites on DAT 

(Zhao et al., 2010; Shan et al., 2011). In the present study, we found that mutation of 

Tyr470 diminished Zn2+-induced inhibition of [3H]DA uptake and attenuated increased 

[3H]WIN 35,428 binding compared to WT hDAT.  The endogenous Zn2+ binding sites in 

hDAT have been widely employed to investigate whether mutations of hDAT alter 

transporter conformational transitions in DA transport (Norregaard et al., 1998).  The 

Zn2+-mediated inhibition of DA transport and stimulation of WIN35,428 binding to DAT 

occur by stabilization of outwardly facing transporter conformations (Richfield, 1993; 

Norregaard et al., 1998; Moritz et al., 2013). Although analysis of Zn2+ regulation of 

DAT function only reflects one mechanistic aspect of DAT mutant-induced 

conformational change, our data provide strong evidence for the context of an allosteric 

mechanism responsible for conformational transitions in DAT. To explore the possible 

mechanism, we also examined the effects of mutant hDAT on basal DA efflux and 

observed extremely low accumulation of DA over time in Y470H-hDAT relative to WT 

hDAT. One possible explanation for the low accumulation of DA is that basal DA efflux 

can be elevated in this mutant, resulting in reduced accumulation of intracellular DA. 

One caveat is that DA efflux data may reflect not only DA moving out of the cell through 

the transporter, but also non-specific diffusion and reuptake. However, there is evidence 

(Guptaroy et al., 2009; Guptaroy et al., 2011) that this measurement largely reflects basal 

DA efflux through DAT because such basal DA efflux is consistent with amphetamine- 

or voltage-stimulated efflux of intracellular DA in cells expressing hDAT and its mutant. 
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Amphetamine, a substrate for DAT, competitively inhibits DA reuptake and elicits 

outward transport of DA by reversal of the transporter (Sulzer et al., 2005). Thus, it is 

possible that Y470H mutation shifts the conformation of DAT from physiologically 

favored substrate influx mode to an efflux one; a conformational switch promoted by Tat 

protein, and disturbs transition between inward- and outward-facing conformations. 

Taken together, these findings infer a potential mechanism that mutation of Tyr470 alters 

the transporter conformational transitions, which is consistent with our previous findings 

that Tat mediates allosteric modulation of DAT (Zhu et al., 2011). Additionally, the 

enhanced DA efflux was also observed in WT hDAT in the presence of Tat. Interestingly, 

the magnitude of DA efflux in WT hDAT was lower in response to Tat compared to that 

in Y470H-hDAT. One possible explanation for the discrepancy is that in addition to 

residue Y470, other recognition residues of the DAT may be involved in the effects of 

Tat on DA efflux. Therefore, to fully understand the mechanisms by which Tat inhibits 

DAT function, future studies based on the combined experimental and computational 

approaches will be necessary to further analyze the changes in the conformational 

transition attributed to the identified residues in DAT (i.e. an outward-facing form and an 

inward-facing form).   

In conclusion, we have begun to identify the specific intermolecular interactions 

between Tat and DAT and the molecular mechanism(s) that underlies how Tat, via the 

recognition binding sites in DAT, interrupts DA transport. Particularly, our results 

provide relatively a broad molecular validation of this important residue of DA 

translocation and the underlying allosteric mechanism in DAT for Tat.  We propose that 

multiple recognition residues in the DAT are involved in the dynamic and complex 
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interactions between Tat and DAT. Results obtained from Tyr470 only reflect the role of 

this residue in DAT-Tat interaction. The current findings have shed light on further 

mapping and validating the predicted sites for Tat interaction with DAT towards an 

ultimate goal to develop compounds that specifically block Tat binding site(s) in DAT 

without affecting physiological DA transport. Ideally, these compounds would be 

therapeutic candidates for stabilizing physiological dopaminergic tone. 
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Table 2.1 Summary of inhibitory activities in [3H]DA uptake in WT and mutated hDAT 
in the presence of DA, cocaine or GBR12909 

 
 

DA 
 

cocaine GBR12909 

IC50 (nM) 
 

WT hDAT 
 

895 ± 80 370 ± 40 160 ± 30 

 
Y470H-hDAT 

 
737 ± 72 100 ± 30* 50 ± 10* 

 
Data are calculated as a percentage of DA uptake in the absence of substrate or inhibitor 
and analyzed by nonlinear regression. Data are presented as mean ± S.E.M. of IC50 values 
from three to four independent experiments performed in duplicate. * p < 0.05 compared 
with WT hDAT (unpaired Student’s t test).   
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Figure 2.1 A direct interaction between Tat and DAT and the energy-minimized 
hDAT(DA) binding complex following the MD simulation. Co-IP of DAT and Tat was 
performed by immunoprecipitation (IP) with anti-DAT antibody as bait and immunoblot 
(IB) with anti-Tat antibody. (A) Co-IP of DAT and Tat. Rat synaptosomes from spleen, 
cerebellum, striatum were preincubated with (+, lanes 1, 2 and 4, from left) or without (-, 
lane 3) 350 nM recombinant Tat1-86 (rTat1-86). Top panel: DAT immunoreactivity was 
detected in striatum but not in spleen and cerebellum. Bottom panel: rTat1-86 bound to 
agarose beads was able to immunoprecipitate DAT in rat striatum but not in spleen and 
cerebellum. rTat1-86 (10 ng) was loaded in lane 5 as the positive control for Tat 
immunoreactivity. (B) GST-Tat1-86 bound to WT hDAT protein. Top panel: The GST-
Tat1-86 fusion proteins were bound to glutathione-sepharose beads, and then incubated 
with cell lysates from CHO cells transfected with WT hDAT at room temperature for 1h 
following Western Blot using anti-DAT. GST-Tat fusion protein bound to glutathione-
sepharose was able to pull down DAT, but GST alone was not. Bottom panel: DAT 
immunoreactivity in CHO cells expressing hDAT was shown in all lanes. (C) Side view 
of the complex structure. Tat is shown as ribbon in cyan color and hDAT(DA) as ribbon 
in gold color. Atoms of residue C22 (Cys22) of Tat are shown as overlapped balls in cyan 
color. Atoms of substrate dopamine (DA) and the Cl- ion are shown as overlapped balls 
in green color. 2 Na+ ions are shown as balls in blue color. The vestibule (colored in 
purple) is represented as molecular surface calculated by using program HOLLOW (Ho 
and Gruswitz, 2008). (D)  Local view of the anchoring residues Lys 19 (K19) and Cys22 
(C22) of Tat inside the vestibule of hDAT(DA). Residues K19 and C22 of Tat are shown 
in ball-and-stick style, and colored by the atom types. Residue Tyr470 (Y470) of 
hDAT(DA) is also shown in ball-and-stick style and colored by the atom types. The 
hydrogen bonding between the K19 side chain of Tat and the hydroxyl oxygen atom on 
Y470 side chain of hDAT(DA) is indicated with the dashed line. The non-polar hydrogen 
atoms are not shown for clarity. The positions of trans membrane domain11 and 12 
(TM11 and TM12) of hDAT(DA) are also labeled. 
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Figure 2.2 Inhibition of DA uptake by released Tat from Tat-expressing cells. (A) CHO 
cells transfected with WT hDAT were preincubated in KRH buffer including 100 µl 
conditioned media collected at 72 h from cells transfected with plasmid Tat1-72, Tat1-86, 
Tat1-101 DNAs and vector alone (Control) followed by addition of [3H]DA uptake. *p < 
0.05 different from control (Dunnett’s Multiple comparison test). (B) Specificity of 
released Tat in inhibition of [3H]DA uptake. Conditioned media collected at 72 h from 
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cells transfected with Tat1-72 were preincubated with anti-Tat antibody or isotype control 
IgG at 4°C for 3h, followed by incubation with protein A/G – Agarose beads 4°C for 2h. 
Media collected at same time from cells transfected with vector alone was used as 
control. Cells transfected with WT hDAT were preincubated in KRH buffer containing 
supernatants from the agarose-antibody-medium-beads complex, followed by [3H]DA 
uptake. Released Tat1-72 caused significant decrease in [3H]DA uptake, which was 
attenuated by immunodepletion with anti-Tat antibody but not isotype control antibody 
(one-way ANOVA followed by Tukey’s multiple comparison test). * p < 0.05 different 
from control. # p < 0.05 different from Tat1-72 and Tat1-72 + Con IgG. (n = 4).  
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Figure 2.3 [3H]DA uptake and DAT surface expression in WT hDAT and mutant. (A) 
Kinetic analysis of [3H]DA uptake in WT hDAT and Y470H-hDAT. CHO cells 
transfected with WT hDAT or Y470H-hDAT were incubated with one of six mixed 
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concentrations of the [3H]DA as total rate of DA uptake. In parallel, nonspecific uptake 
of each concentration of [3H]DA (in the presence of 10 µM nomifensine, final 
concentration) was subtracted from total uptake to calculate DAT-mediated uptake. * p < 
0.05 compared to control value (unpaired Student’s t test) (n = 5). (B) Cell surface of WT 
hDAT (WT) or Y470H-hDAT (Y470H) was analyzed by biotinylation. Top panel: 
representative immunoblots in CHO cells expressing WT hDAT or Y470H-hDAT. 
Bottom panel: DAT immunoreactivity is expressed as mean ± S.E.M. densitometry units 
from three independent experiments (n = 3). * p < 0.05 compared to WT hDAT (unpaired 
Student’s t test).  
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Figure 2.4 Effects of Tat on kinetic analysis of [3H]DA uptake in WT hDAT and mutant. 
(A) CHO cells transfected with WT or Y470H-hDAT were preincubated with or without 
released Tat1-72 (1.0 ng/ml) at room temperature for 20 min followed by the addition of 
one of six mixed concentration of the [3H]DA.  In parallel, nonspecific uptake at each 
concentration of [3H]DA (in the presence of 10 µM nomifensine, final concentration) was 
subtracted from total uptake to calculate DAT-mediated uptake. (B) [3H]DA uptake in 
cells transfected with WT or Y470H-hDAT was determined in the presence or absence of 
recombinant Tat1-86 (rTat1-86, 350 nM, final concentration). (C) [3H]DA uptake in cells 
transfected with WT (0.8 µg plasmid cDNA) or Y470H-hDAT (2.4 µg plasmid cDNA) 
was determined in the presence or absence of rTat1-86 (350 nM). Data are expressed as 
means from three independent experiments ± S.E.M. * p < 0.05 compared with the 
respective control values. # p < 0.05 compared to WT hDAT. (n = 5) 
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Figure 2.5 Mutation of Tyr470 alters transporter conformational transitions.  Tyr470 
mutation of DAT affects zinc regulation of DA uptake (A) and [3H]WIN 35,428 binding 
(B). CHO cells transfected with WT or Y470H-hDAT were incubated with assay buffer 
alone (control) or ZnCl2 (10 µM, final concentration) followed by [3H]DA uptake or 
[3H]WIN 35,428 binding (n = 4). The histogram shows [3H]DA uptake and [3H]WIN 
35,428 binding expressed as mean ± S.E.M. of the respective controls set to 100% for the 
mutant. * p < 0.05 compared to control. # p < 0.05 compared to WT hDAT with ZnCl2. 
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(C) Functional DA efflux properties of WT hDAT and mutant. CHO cells transfected 
WT or Y470H-hDAT were preincubated with [3H]DA (0.05 µM, final concentration) at 
room temperature for 20 min. After incubation, cells were washed and incubated with 
fresh buffer as indicated time points. Subsequently, the buffer was separated from cells, 
and radioactivity in the buffer and remaining in the cells was counted. Each fractional 
[3H]DA efflux in WT hDAT and Y470H-hDAT was expressed as percentage of total [3H] 
in the cells at the start of the experiment. Fractional [3H]DA efflux at 1, 10, 20, 30 and 40 
min are expressed as the percentage of total [3H]DA with preloading with 0.05 µM (WT 
hDAT: 15379 ± 1800 dpm and Y470H-hDAT: 2488 ± 150 dpm) present in the cells at 
the start of the experiment (n = 4).  × p < 0.05 and ×× p < 0.01, compared to WT hDAT 
(Bonferroni t-test). (D) Functional DA efflux properties of WT hDAT in the presence or 
absence of Tat1-72. CHO cells transfected with WT hDAT were preincubated with 
released Tat1-72 (1 ng/mg) followed by DA efflux assay. Fractional [3H]DA efflux at 1, 
10, 20, 30, 40 and 50 min are expressed as the percentage of total [3H]DA with 
preloading with 0.05 µM (control: 14200 ± 1448 dpm and released Tat: 10102 ± 1505 
dpm) present in the cells at the start of the experiment (n = 6). ^ p < 0.05 and ^^ p < 0.01, 
compared to WT hDAT in the absence of Tat (Bonferroni t-test).  
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CHAPTER 3 

POINT MUTATIONS AT TYR 88, LYSINE 92 AND TYR 470 OF THE HUMAN 

DOPAMINE TRANSPORTER ATTENUATE TAT-INDUCED INHIBITION OF DOPAMINE 

TRANSPORTER FUNCTION 

 
ABSTRACT: HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) 

neurotransmission by inhibiting DA transporter (DAT) function, leading to increased 

neurocognitive impairment in HIV-1 infected individuals. Through computational modeling 

and simulations, three functional residues in human DAT (hDAT) were predicted as 

potential recognition binding sites for Tat.  We previously showed that mutation of 

tyrosine470 (Y470H) of hDAT attenuates Tat-induced inhibition of DA uptake by changing 

the transporter conformational transitions. In the present study we examined the functional 

influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) 

and lysine92 (K92M), two other predicted residues for Tat binding to hDAT, in Tat-induced 

inhibitory effects on DA transport. Compared to wild type (WT) hDAT, K92M but not Y88F 

reduced Vmax without changes in Km.  Both Y88F and K92M did not alter IC50 values for DA 

inhibition of [3H]DA uptake but increased [3H]DA uptake or [3H]WIN35,428 binding 

potencies for cocaine and GBR12909, indicating that these residues do not overlap with the 

binding sites in hDAT for DA transport but are critical for these inhibitors. Besides, Y88F, 

K92M and Y470A attenuated Tat-induced inhibition of DA transport that is observed in WT 

hDAT. Y470F, Y470A, Y88F and K92M mutants reversed the zinc-induced increase of 

[3H]WIN35,428 binding but not the [3H]DA uptake. Moreover, Y470A and K92M mutants
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displayed enhanced DA basal efflux compared to WT hDAT. Taken together, these results 

demonstrate that Tyr88 and Lys92 along with Tyr470 as functional recognition residues in 

hDAT for Tat interaction-induced inhibition of DA transport and provide mechanistic 

insights into identifying target residues on the DAT for Tat binding.  

3.1 INTRODUCTION  

HIV-associated neurocognitive disorder (HAND) that encompasses neurological and 

psychiatric complications has been on the considerably rise in people living with HIV-1 and 

AIDS even in the era of highly active antiretroviral therapy (HAART)(Heaton et al., 2010; 

Simioni et al., 2010; Mothobi and Brew, 2012). The growing body of evidence indicates that 

the HAND progression and severity is exacerbated by comorbid factors like widely abused 

drugs, particularly cocaine (Buch et al., 2011; Nair and Samikkannu, 2012). Lower 

adherence to medication regimen by HIV-1 positive people is also strongly associated with 

the active cocaine use (Arnsten et al., 2002; Norman et al., 2009). HAND is highly correlated 

with neurotoxic effects of HIV-1 viral proteins that are exuded from infected microglial cells 

(Bansal et al., 2000; Kaul et al., 2001; Mattson et al., 2005; Kaul and Lipton, 2006). Tat, a 

non-structural viral protein required for productive infection of virus, is one of the major 

neurotoxins responsible for neurotoxicity and oxidative stress in the central nervous system 

(Pocernich et al., 2005; Wallace et al., 2006). Studies have demonstrated that Tat protein and 

cocaine interaction have deleterious effects in HIV-1 positive brains by altering viral 

replication, neuropathogenesis and behavioral effects (Gandhi et al., 2010; Paris et al., 2013).    

Dysregulation of dopamine (DA) neurotransmission in HIV-1 infected patients is 

greatly associated to HAND pathophysiology and has been reviewed extensively elsewhere 

(Koutsilieri et al., 2002; Ferris et al., 2008; Purohit et al., 2011). HIV-infection has been 
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shown to deplete intracellular DA levels in postmortem brains (Scheller et al., 2005; Kumar 

et al., 2009). Recently, enhanced DA levels were reported in cerebrospinal fluid of HIV-1 

positive individuals with no treatment compared to normal subjects (Scheller et al., 2010). 

An explanation for this elevated level of DA is possibly due to impairment of DA transporter 

(DAT) function (Purohit et al., 2011). DAT is a presynaptic membrane protein that rapidly 

clears extracellular DA via rapid reuptake and is a primary determinant for the regulation of 

DA homeostasis in the brain (Vaughan and Foster, 2013). Clinical results using positron 

emission tomography imaging have demonstrated that HIV-associated dementia patients 

show a dramatic loss of DAT protein in the putamen and ventral striatum regions (Wang et 

al., 2004; Chang et al., 2008). Likewise, previous animal and in vitro studies including 

published data from our own laboratory indicated that the Tat manipulates the function of 

DAT (Ferris et al., 2009b; Ferris et al., 2009a; Zhu et al., 2009; Perry et al., 2010). 

Furthermore, we showed that Tat down regulates DAT function through allosteric 

mechanism (Zhu et al., 2011); also it decreases DAT cell surface expression in rat striatal 

synaptosomes (Midde et al., 2012). Therefore, it is expected that DAT would be a promising 

clinical target for therapeutic interventions to curb the damage of DA system instigated by 

the Tat protein.  

It has been proposed that different ligands exert their actions on DAT by inducing 

specific conformational changes in the transporter that can influence DA uptake and efflux 

(Schmitt et al., 2013). DAT substrates and inhibitors initially recognize specific amino acids 

and are likely followed by a series of molecular changes to modulate DAT function (Tanda 

et al., 2009; Shan et al., 2011).  Previous studies suggest that allosteric modulators of DAT 

differentially regulate transporter uptake and efflux properties (Pariser et al., 2008; Rothman 
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et al., 2009). Along these lines, our published report showed that Tat decreases DAT activity 

via binding to allosteric sites and also alters cocaine binding sites (Zhu et al., 2011), 

indicating different mode of Tat interaction that does not directly  interfere with substrate 

translocation.  Likewise, computational and experimental studies have focused to identify the 

binding mode and pocket of dopamine as well as cocaine (Li et al., 2002; Beuming et al., 

2008; Huang et al., 2009; Shan et al., 2011). Having emerging evidence for additive and/or 

synergistic effects of Tat and cocaine (Gandhi et al., 2010; Paris et al., 2013), it is worth 

noting that molecular relationship between Tat binding site and the binding site of cocaine on 

the transporter remain unclear. Thus, in order to identify the binding pocket for Tat protein in 

DAT, it is necessary to identify the residues forming the crevice and understand the 

contribution of these recognition residues in substrate translocation, cocaine binding and 

conformational rearrangements in the transporter. 

In the process of understanding the combined effects of Tat and cocaine on down 

regulation of DA transport through alteration of DAT function, using biophysical (Zhu et al., 

2009) and biochemical  methods (Midde et al., 2013), we demonstrated that Tat directly 

interacts with DAT. Based on predictions of computational modeling and simulations, as a 

proof of principle study we showed evidence that mutating Y470 of human DAT (hDAT) 

attenuates Tat-mediated inhibition of DA uptake but increases the potency of DAT inhibitor 

cocaine (Midde et al., 2013). It has also been demonstrated that Tyr470His-hDAT (Y470H-

hDAT) mutant differentially modulates zinc-mediated regulation of DA uptake and 

WIN35,428 binding, and basal DA efflux properties, suggesting a role of Tyr470 in 

maintaining structural integrity of the transporter and mutating this amino acid resulted in a 

transporter that favors an inward facing conformation. As a follow up to this published data, 
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in the current study we investigated the role of additional substitutions at Tyr470 and other 

predicted potential Tat binding residues, Tyr88 and Lys92 of hDAT in Tat-induced decrease 

of DA translocation by generating points mutations Tyr470F (Y470F-hDAT), Tyr470A-

hDAT (Y470A-hDAT), Tyr88Phe (Y88F-hDAT), Lys92Met (K92M-hDAT) and assessing 

their variability in function, surface expression, interaction with ligands and underlying 

mechanism for these alterations.  

3.2 MATERIALS AND METHODS  

3.2.1 PREDICTING THE SITE FOR hDAT BINDING WITH TAT  

The binding structure of hDAT with HIV-1 clade B type Tat was modeled and simulated 

based on the nuclear magnetic resonance (NMR) structures of Tat (Peloponese et al., 2000) 

and the constructed structure of hDAT-DA complex.  According to D-Y470 site-directed 

mutation experimental data as reported previously (Midde et al., 2013), Y470 of hDAT is a 

functional recognition residue for Tat-induced inhibition of DAT transport cycle. Therefore, 

Y470 of hDAT is expected to interact with Tat directly. The protein docking program 

ZDOCK (Pierce et al., 2011) was applied for obtaining the initial binding structure of the 

hDAT-Tat complex, with the constraint of contact between D-Y470 and Tat. Total 535 

potential conformations were generated based on 11 NMR structures of Tat, then all of these 

conformations were evaluated and ranked by ZRANK (Pierce and Weng, 2007). Top 107 

conformations (top 20%) were selected for further investigation by MD simulation. Then 

initial binding structure of the hDAT-Tat was identified from these simulations, with the best 

geometric matching quality and rational interaction between D-Y470 and Tat. With further 

relaxing and equilibrating the system, final MD-simulated hDAT-Tat binding structure was 

energy-minimized and analyzed.  
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3.2.2 CONSTRUCTION OF PLASMIDS  

All point mutations of Tyr88, Lys92, and Tyr470 in hDAT were selected based on the 

predictions of the 3D-computational modeling and simulations. Mutations in hDAT at Tyr88 

and Tyr470 (tyrosine to phenylalanine, Y88F-hDAT and Y470F-hDAT) are expected to 

destroy the hydrogen bond only. Since methionine is nearly isosteric with lysine, substitution 

at Lys92 (lysine to methionine, K92M-hDAT) should abolish hydrogen bond with minimal 

perturbations to the native structure of the transporter. Substitution of tyrosine at 470 with 

alanine or tryptophan (Y470A-hDAT and Y470W-hDAT) is expected to eliminate both 

hydrogen bond and cation-π interactions that is similar to Y470H-hDAT, but with different 

spatial effects on structural organization of the transporter. All mutations in hDAT were 

generated based on wild type human DAT (WT hDAT) sequence (NCBI, cDNA clone 

MGC: 164608 IMAGE: 40146999) by site-directed mutagenesis. Synthetic cDNA encoding 

hDAT subcloned into pcDNA3.1+ (provided by Dr. Haley E Melikian, University of 

Massachusetts) was used as a template to generate mutants using QuikChange™ site-

directed mutagenesis Kit (Agilent Tech, Santa Clara CA). The sequence of the mutant 

construct was confirmed by DNA sequencing at University of South Carolina EnGenCore 

facility. Plasmid DNA were propagated and purified using plasmid isolation kit (Qiagen, 

Valencia, CA, USA) 

3.2.3 CELL CULTURE AND DNA TRANSFECTION 

Chinese hamster ovary (CHO, ATCC #CCL-61) cells were maintained in F12 medium 

supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 U/ml penicillin and 

100 µg/mL streptomycin). Pheochromocytoma (PC12, ATCC #CRL-1721) cells were 

maintained in Dulbecco’s modified eagle medium supplemented with 15 % horse serum, 2.5 
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% bovine calf serum, 2 mM glutamine and antibiotics (100 U/ml penicillin and 100 µg/mL 

streptomycin). Both cells were cultured at 37°C in a 5% CO2 incubator. For hDAT 

transfection, cells were seeded into 24 well plates at a density of 1×105 cells/cm2. After 24h, 

cells were transfected with WT or mutant DAT plasmids using Lipofectamine 2000 (Life 

Tech, Carlsbad, CA). Cells were used for the experiments after 24 h of transfection.  

3.2.4 [3H]DA UPTAKE ASSAY 

Twenty four hours after transfection, [3H]DA uptake in PC12 cells transfected with WT 

hDAT and mutants was performed as reported previously (Midde et al., 2013). To determine 

whether mutated hDAT alters the maximal velocity (Vmax) or Michaelis-Menten constant 

(Km) of [3H]DA uptake, kinetic analyses were conducted in WT hDAT and mutants. To 

generate saturation isotherms, [3H]DA uptake was measured in Krebs-Ringer-HEPES (KRH) 

buffer (final concentration in mM: 125 NaCl, 5 KCl, 1.5 MgSO4, 1.25 CaCl2, 1.5 KH2PO4, 

10 D-glucose, 25 HEPES, 0.1 EDTA, 0.1 pargyline, and 0.1 L-ascorbic acid; pH 7.4) 

containing one of six concentrations of unlabeled DA (final DA concentrations, 1.0 nM–5 

µM) and a fixed concentration of [3H]DA (500,000 dpm/well, specific activity, 21.2 

Ci/mmol; PerkinElmer Life and Analytical Sciences, Boston, MA). In parallel, nonspecific 

uptake of each concentration of [3H]DA (in the presence of 10 µM nomifensine, final 

concentration) was subtracted from total uptake to calculate DAT-mediated uptake. The 

reaction was conducted at room temperature for 8 min and terminated by washing twice with 

ice cold uptake buffer. Cells were lysed in 500 μl of 1% SDS for an hour and radioactivity 

was measured using a liquid scintillation counter (model Tri-Carb 2900TR; PerkinElmer 

Life and Analytical Sciences, Waltham, MA). Kinetic parameters (Vmax and Km) were 

determined using Prism 5.0 (GraphPad Software Inc., San Diego, CA). To determine the 
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inhibitory effects of Tat on [3H]DA uptake, cells transfected with WT hDAT or mutants 

were preincubated with Tat1-86 or Tat Cys22 (500 nM, final concentration) for 20 min.  Tat 

Cyc22 was used as a negative control because our previous study shows that Tat Cyc22 has 

no effect on DA uptake (Zhu et al., 2009).  

The competitive inhibition DA uptake experiments were performed in duplicate in a 

final volume of 500 µl. Cells in each well were incubated in 450 µl KRH buffer containing 

50 µl one of final concentrations of unlabeled DA (1 nM-1 mM), GBR12909 (1 nM-10 µM), 

cocaine (1 nM-1 mM), WIN 35,428 (1 nM-1 mM) or ZnCI2 (10 µM) at room temperature for 

10 min and [3H]DA uptake was determined by addition of 50 µl of [3H]DA (0.1 µM, final 

concentration) for an additional 8 min.   

3.2.5 [3H]WIN 35,428 BINDING ASSAY 

Binding assays were conducted to determine whether mutated hDAT alters the 

kinetic parameters (Bmax or Kd) of [3H]WIN 35,428 binding in PC12 cells transfected with 

WT hDAT and mutants. Twenty four hours after transfection, PC12 cells were dissociated 

with trypsin/EDTA (0.25%/0.1%, 1 mL for 100 mm dish) and resuspended in growth 

medium. After 10 min incubation at room temperature, the dissociated cells were harvested 

by centrifugation at 3000 rpm for 5 min and washed once with phosphate-buffered saline 

(PBS). The resulted cell pellets were resuspended in sucrose-phosphate buffer (final 

concentration in mM: 2.1 NaH2PO4, 7.3 Na2HPO47H2O, and 320 sucrose, pH 7.4) for 

binding assay.   

To generate saturation isotherms, aliquots of cell suspensions (100 µl) were incubated 

with one of the eight concentrations of [3H]WIN 35,428 (84 Ci/mmol, PerkinElmer, 0.5 – 30 

nM final concentrations) in a final volume of 250 μl on ice for 2 h. In parallel, nonspecific 
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binding at each concentration of [3H]WIN 35,428 (in the presence of 30 µM cocaine, final 

concentration) was subtracted from total binding to calculate the specific binding. For the 

competitive inhibition experiment, assays were performed in duplicate in a final volume of 

500 μl. Aliquots of the cell suspensions (50 μl) were added to the assay tubes containing 50 

μl of [3H]WIN 35,428 (final concentration, 5 nM) and one of seven concentrations of 

unlabeled substrate DA (1 nM – 100 μM), inhibitors cocaine (1 nM – 100 μM) or GBR12909 

(0.01 nM – 1 μM) and incubated on ice for 2 h. Assays were terminated by rapid filtration 

onto Whatman GF/B glass fiber filters, presoaked for 2 h with assay buffer containing 0.5% 

polyethylenimine, using a Brandel cell harvester. Filters were rinsed three times with 3 ml of 

ice-cold assay buffer. Radioactivity remaining on the filters was determined by liquid 

scintillation spectrometry (model Tri-Carb 2900TR; PerkinElmer Life and Analytical 

Sciences, Waltham). 

3.2.6 CELL SURFACE BIOTINYLATION  

To determine whether DAT mutations alter DAT surface expression, biotinylation 

assays were performed as described previously (Zhu et al., 2005). CHO cells transfected with 

hDAT and mutants were plated on 6 well plates at a density of 105 cells/well. Cells were 

incubated with 1 ml of 1.5 mg/ml sulfo-NHS-SS biotin (Pierce, Rockford, IL) in PBS/Ca/Mg 

buffer (In mM: 138 NaCl, 2.7 KCl, 1.5 KH2PO4, 9.6 Na2HPO4, 1 MgCl2, 0.1 CaCl2, pH 7.3). 

After incubation, cells were washed 3 times with 1 ml of ice-cold 100 mM glycine in 

PBS/Ca/Mg buffer and incubated for 30 min at 4°C in 100 mM glycine in PBS/Ca/Mg 

buffer. Cells were then washed 3 times with 1 ml of ice-cold PBS/Ca/Mg buffer and then 

lysed by addition of 500 ml of Triton X-100, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µM 

pepstatin, 250 µM phenylmethysulfonyl fluoride), followed by incubation and continual 

shaking for 20 min at 4 °C. Cells were transferred to 1.5 ml tubes and centrifuged at 20,000g 
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for 20 min. The resulting pellets were discarded, and 100 µl of the supernatants was stored at 

-20 °C for determination of immunoreactive total DAT. Remaining supernatants were 

incubated with continuous shaking in the presence of monomeric avidin beads in Triton X-

100 buffer (100 µl/tube) for 1 h at room temperature. Samples were centrifuged subsequently 

at 17,000g for 4 min at 4°C, and supernatants (containing the nonbiotinylated, intracellular 

protein fraction) were stored at -20°C. Resulting pellets containing the avidin-absorbed 

biotinylated proteins (cell-surface fraction) were resuspended in 1 ml of 1.0% Triton X-100 

buffer and centrifuged at 17,000g for 4 min at 4°C, and pellets were resuspended and 

centrifuged twice. Final pellets consisted of the biotinylated proteins adsorbed to monomeric 

avidin beads. Biotinylated proteins were eluted by incubating with 75 µl of Laemmli sample 

buffer for 20 min at room temperature. If further assay was not immediately conducted, 

samples were stored at -20 °C. 

3.2.7 BASAL EFFLUX ASSAY  

DAT-mediated basal substrate efflux was carried out, as described previously 

(Guptaroy et al., 2009). We have reported that Y470H-hDAT significantly increased DA 

efflux compared to WT hDAT (Midde et al., 2013). In this study, we compared the effects of 

two types of substrates, DA or MPP+ on basal efflux in WT hDAT and mutants. The MPP+ 

was chosen because MPP+ has less diffusive properties than DA in heterologous expression 

systems (Scholze et al., 2001). CHO cells were seeded into 24 well plates and transfected 

with WT hDAT and mutants. Twenty four hours after transfection cells at a density of 105 

cells/well were washed 3 times with KRH buffer and preloaded with [3H]DA (50 nM, final 

concentration) or 5 nM final concentrations of [3H]1-methyl-4-phenylpyridinium 

([3H]MPP+, 5 nM, final concentration, specific activity, 83.9 Ci/mmol; PerkinElmer Life and 
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Analytical Sciences, Boston, MA) at room temperature for 20 or 30 min, respectively. After 

incubation, cells were washed 3 times with KRH buffer.  To obtain an estimate of the total 

amount of [3H]DA or [3H]MPP+ in the cells at the zero time point, cells from a set of wells 

(four wells/sample) were lysed rapidly in 1% SDS. To determine the time course of the 

fractional basal efflux, fresh buffer (500 µl) was added into separate set of cell wells (four 

wells/sample) and transferred to scintillation vials after 1 min as initial fractional efflux at 1 

min, and another 500 µl buffer was added to the same wells (where the buffer was just 

removed for 1 min point) and collected to vials after 10 min. Additional fractional efflux at 

20, 30, 40 and 50 min, respectively, was repeated under the same procedure. After last time 

point (50 min), cells were lysed in 1% SDS and counted as total amount of [3H]DA 

remaining in the cells from each well. 

3.2.8 DATA ANALYSES  

Descriptive statistics and graphical analyses were used as appropriate. Results are 

presented as mean ± SEM, and n represents the number of independent experiments for each 

experiment group. Kinetic parameters (Vmax, Km, Bmax, and Kd) were determined from 

saturation curves by nonlinear regression analysis using a one-site model with variable slope. 

IC50 values for substrate and inhibitors inhibiting [3H]DA uptake or [3H]WIN 35,428 were 

determined from inhibition curves by nonlinear regression analysis using a one-site model 

with variable slope. For experiments involving comparisons between unpaired samples, 

unpaired Student’s t test was used to assess any difference in the kinetic parameters (Vmax, 

Km, Bmax, Kd or IC50) between WT and mutant; log-transformed values of IC50, Km or Kd 

were used for the statistical comparisons. Significant differences between samples were 

analyzed with separate ANOVAs followed by post-hoc tests, as indicated in the results 
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Section of each experiment. All statistical analyses were performed using IBM SPSS 

Statistics version 20, and differences were considered significant at p < 0.05. 

3.3 RESULTS 

3.3.1 STRUCTURAL INDICATIONS FROM MOLECULAR MODELING AND DYNAMICS SIMULATIONS 

The transporting process of dopamine by DAT involves the conformational changes of DAT, 

typically from outward-open DAT (Figure 3.1A) bound with ions (2Na+, and Cl-) to 

outward-occluded DAT bound with both ions and substrate dopamine, and then to the 

inward-open DAT bound with Cl- (Figure 3.1C). The mode of intra-molecular interactions 

guarantees the smooth conformational change of DAT during dopamine transporting. We 

could assume that the transporter is optimized via natural evolution and energy barrier of 

conformation change is relatively low for an efficient transporting process. Therefore any 

mutation of key residues that make the structure incline to certain state may decrease the 

efficiency of dopamine transporting process. Based on the results of molecular modeling and 

molecular dynamics simulations, we found that the Y470 is the key component of a 

hydrophobic core, which is critical to stabilize the compact structure of DAT and then reduce 

the barrier of conformation change between outward-open and outward-occlude state of 

DAT (Figure 3.1B). In addition, residues Y88, K92 and D313 also help to stabilize TM1b 

and TM6a through hydrophobic or electrostatic intra-molecular interactions, which make the 

outward-open and outward-occlude state of DAT keep compact and be ready for 

conformation changing. The hydroxyl group at the aromatic side chain of Y88 reduces the 

hydrophobicity and makes the hydrophobic core nearby Y88 less stable than Y88F mutation, 

as a result, the Y88F mutation is expected to make the TM1b and EL4 more compact and 

bring about positive effect on the transporting kinetics of dopamine, i.e. increasing the 
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Vmax. However, the compact conformation of TM1b also squeeze the vacant of dopamine 

binding site, which may bring about negative effect of binding affinity of dopamine, i.e., 

increasing the Kmax. Specifically, the positive charged side chain of K92 could interact with 

the negative charged side chain of residue D313 through electrostatic interaction, and 

hydrogen bonding which is mediated by surrounding water molecules. As observed in our 

simulation, TM1b and TM6a move together during the conformation change of transporting, 

therefore K92-D313 interaction could stabilize the connection between TM1b and TM6a and 

consequently decrease the energy barrier of conformation change. It can be expected that the 

K92M mutation would bring about negative effects on the transporting kinetics of dopamine, 

i.e. decreasing the Vmax.  Moreover, the carboxyl of D79 in TM1b and carbonyl in main 

chain of F320 in TM6a interact directly with dopamine, so the K92M would pull away 

TM1b and TM6a, and these associated hydrogen bonding groups, which brings about 

negative effect of binding affinity of dopamine, i.e., increasing the Kmax (Figure 3.1D). 

Besides, as shown in the binding structure of HIV-1 TAT-DAT complex (Figure 3.2), the D-

Y470 interacts with the positive charged N-terminal of T-M1 through cation- interaction. 

Hydroxyl of D-Y88 forms hydrogen bond with side chain of T-K19. Side chain of D-K92 of 

DAT forms hydrogen bond with carbonyl of main chain of T-P18. Based on the mode of 

interaction between DAT and HIV-1 TAT, it could be expected that the mutating of residues 

Y88 and K92 into residues without hydrogen-bonding capacity will weaken the interaction 

between DAT and TAT. This is why that the mutations of Y88F and K92M decrease the 

inhibitory potency of HIV-1 TAT against the function of dopamine uptake by DAT.   
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3.3.2 MUTATIONS OF TYR88 AND LYS92 ALTER DA UPTAKE KINETICS AND POTENCY OF 

SUBSTRATE AND INHIBITORS  

To examine the functional relevance of Tyr88 and Lys92 residues of hDAT in 

intermolecular interaction between Tat and DAT, mutations in Tyr88 and Lys92 residues of 

hDAT (tyrosine to phenylalanine, Y88F-hDAT and lysine to methionine, K92M-hDAT) 

were generated by site-directed mutagenesis. We first determined the pharmacological 

profiles of [3H]DA uptake in CHO cells transfected with WT hDAT or mutated hDAT.  As 

shown in Table 3.1 and Fig. 3.4A, compared to WT hDAT (15.7 ± 0.9 pmol/min/105 cells), 

the Y88F-hDAT did not alter the Vmax values, whereas the K92M-hDAT displayed a 

decrease in the Vmax values (4.5 ± 1.7 pmol/min/105 cells, t(3) = 3.7, p<0.05, unpaired 

Student’s t test); no difference in the Km values was observed.  WIN 35,428 binding site 

shares pharmacological identity with the DA uptake carrier and is part of the cocaine binding 

domain (Pristupa et al., 1994). We also determined the effects of these mutants on possible 

relationship between the binding site of Tat on DAT and the WIN 35,428 binding site.  As 

shown in Table 3.1, the Bmax values were not altered in Y88F-hDAT (5.8 ± 0.9 pmol/105 

cells, t(8) = 2.1, p=0.07, unpaired Student’s t test) but decreased in K92M-hDAT (2.4 ± 0.4 

pmol/105 cells, t(8) = 4.4, p<0.01, unpaired Student’s t test) compared with WT hDAT (9.7 ± 

1.6 pmol/105 cells). However, the Kd values were significantly decreased in both in Y88F-

hDAT (4.0 ± 0.6 nM, t(8) = 3.6, p<0.01, unpaired Student’s t test) and K92M-hDAT (3.5 ± 

1.1 nM, t(8) = 3.2, p<0.01, unpaired Student’s t test) compared with WT hDAT (8.6 ± 1.1 

nM).     

We tested the ability of substrate and DAT inhibitors to inhibit [3H]DA uptake in WT 

hDAT and its mutants (Table 3.2). The apparent affinity (IC50) for DA was not significantly 

different among the WT hDAT (1730 ± 82 nM), Y88F-hDAT (3010 ± 60 nM) and K92M-
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hDAT (2870 ± 48 nM). However, the potencies of cocaine and GBR12909 for inhibition of 

[3H]DA uptake were 1.4 ~4.0-fold greater in Y88F-hDAT (Cocaine: 160 ± 9 nM and 

GBR12909: 95 ± 7 nM) and K92M-hDAT (Cocaine: 69 ± 4 nM and GBR12909: 101 ± 12 

nM)  as compared with WT hDAT (Cocaine: 285 ± 49 nM and GBR12909: 224 ± 41 nM).  

The apparent affinity (IC50) for WIN 35,428 was not significantly different in Y88F-hDAT 

(20 ± 2 nM) but more potent in K92M-hDAT (10 ± 1.0 nM) compared to WT hDAT (39 ± 

10 nM). The ability of substrate and DAT inhibitors to inhibit [3H]WIN 35,428 binding in 

WT hDAT and its mutants was also examined (Table 3.2). The apparent affinity (IC50) for 

DA was significantly lower in Y88F-hDAT (2071 ± 340 nM) and K92M-hDAT (4211 ± 118 

nM) than the WT hDAT (827 ± 120 nM). In addition, the IC50 for cocaine was increased in 

Y88F-hDAT (85 ± 60 nM, t(8)=5.8, p<0.01) but not K92M-hDAT compared to WT hDAT 

(150 ± 8.6 nM).         

To validate the relationship between the Vmax values and surface DAT expression in 

these mutants, we determined DAT surface expression in CHO cells transfected with WT or 

Y88F-hDAT or K92M-hDAT using biotinylation assay. As shown in Fig. 3.4B, despite no 

difference in the ratio of surface DAT (biotinylated DAT) to total DAT between WT (1.0 ± 

0.05), Y88F-hDAT (1.13 ± 0.13; p >0.05, one-way ANOVA) and K92M-hDAT (1.09 ± 

0.09; p >0.05, one-way ANOVA). The biotinylated DAT was not altered but total DAT was 

significantly decreased in K92M-hDAT compared to WT hDAT (t(8) = 4.6, p<0.01, 

unpaired Student’s t test). Thus, the decreased DA uptake in K92M-hDAT is not due to 

alteration of the available DAT on the cell surface.  
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3.3.3 MUTATIONS OF TYR88, LYS92 AND TYR470 DIFFERENTIALLY INFLUENCE TAT-INDUCED 

INHIBITORY EFFECTS ON DA TRANSPORT 

We have recently reported that mutation of either Tyr470 in hDAT or Cys22 in Tat 

attenuated Tat-induced decrease in DA uptake (Zhu et al., 2009; Midde et al., 2013). To 

determine whether other substitutions at Tyr470 residue show differential effects on Tat-

induced decrease in DA uptake, we generated two mutations in Tyr470 residue of hDAT 

(tyrosine to phenylalanine, Y470F-hDAT and tyrosine to alanine, Y470A-hDAT) based on 

the predictions from computational modeling. We examined the specific [3H]DA uptake in 

WT hDAT and mutants in the presence or absence of recombinant Tat1-86 (500 nM) or 

recombinant Tat Cys22 (500 nM).  

As shown in Fig. 3.5A, two-way ANOVA on the specific [3H]DA uptake in WT 

hDAT and Tyr470 mutants revealed a significant main effect of mutation (F(2, 36) = 88.1; p < 

0.001) and Tat treatment (F(2, 36) = 15.5; p < 0.05), as well as a significant mutation × Tat 

interaction (F(4, 36) = 5.2; p< 0.01). The DA uptake was gradually decreased as Y470F (42%) 

> Y470H (72%) > Y470A (92%) compared to WT hDAT in the absence of Tat. Exposure to 

Tat decreased [3H]DA uptake by 32% in WT hDAT (F(1, 8) = 23.6; p < 0.01) and Y470F-

hDAT (47%, F(1, 8) = 15.4; p < 0.01); however, no effect of Tat was observed in Y470H-

hDAT (p > 0.05) and Y470A-hDAT (p > 0.05), suggesting that the different substitutions at 

Tyr470 residue in hDAT differentially influence Tat-induced down regulation of DA uptake. 

We have demonstrated that mutation of Cys22 in Tat shows no inhibitory effect on [3H]DA 

uptake (Zhu et al., 2009). As illustrated in Figure 3.5A, Tat Cyc22 did not alter DA uptake in 

WT hDAT and three Tyr470 mutants compared to respective controls, suggesting that Cyc22 

residue in Tat plays a critical role in Tat-induced regulation DAT function.     
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As shown in Figure 3.5B, two-way ANOVA on the specific [3H]DA uptake in WT 

and mutants revealed a significant main effect of mutation (F(2, 54) = 124; p < 0.001) and Tat 

treatment (F(2, 54) = 4.7; p < 0.05), however, mutation × Tat interaction (F(4, 54) = 1.9; p > 

0.05) was not significant. In control group, a subsequent simple effect analysis revealed 

decreased [3H]DA uptake in Y88F-hDAT (40%, p<0.05) and K92M-hDAT (72%, p<0.05) 

compared to WT hDAT in the absence of Tat. Exposure to Tat decreased [3H]DA uptake by 

32% in WT hDAT (F(1, 12) = 8.0; p < 0.05; Fig. 3.5B); however, no effect of Tat was 

observed in Y88F-hDAT (F(1, 12) = 1.1; p > 0.05) and K92M-hDAT (F(1, 12) = 1.4; p > 0.05), 

suggesting that mutation of either Tyr88 or Lys92 in hDAT attenuates Tat-induced reduction 

of hDAT function. With regard to the effect of recombinant Tat Cys22 on DA uptake (Fig. 

3.5B), exposure to Tat Cyc22 did not alter DA uptake in Y88F-hDAT and K92M-hDAT 

compared to WT hDAT.  

3.3.4 EFFECTS OF TYR88, LYS92, AND TYR470 MUTANTS ON ZINC REGULATION OF DAT 

CONFORMATIONAL TRANSITIONS AND BASAL DA EFFLUX 

 In general, occupancy of the endogenous Zn2+ binding site in WT hDAT (His193, 

His375, and Glu396) stabilizes the transporter in an outward-facing conformation, which 

allows DA to bind but inhibits its translocation, thereby increasing [3H]WIN 35,428 binding 

(Norregaard et al., 1998; Moritz et al., 2013), but decreasing [3H]DA uptake (Loland et al., 

2003) . Addition of Zn2+ is able to partially reverse an inward-facing state to an outward-

facing state (Norregaard et al., 1998; Loland et al., 2003). On the basis of this principle, the 

addition of Zn2+ to WT hDAT would inhibit DA uptake, whereas in a functional mutation in 

DAT Zn2+ might diminish the preference for the inward-facing conformation and thus 

enhance DA uptake. We recently reported that Y470H-hDAT exhibit an attenuation of Zn2+-

mediated decreased [3H]DA uptake and increased [3H]WIN35,428 binding observed in WT 
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hDAT, which demonstrates a preference for the inward-facing conformation of the 

transporter (Midde et al., 2013).  

To investigate the role of additional substitutions at Tyr470 and Tyr88, Lys92 

residues in DAT conformational transitions, we examined the effects of respective mutations 

on Zn2+ modulation of [3H]DA uptake and [3H]WIN35,428 binding. As described in Fig. 

3.6A, two-way ANOVA on the specific [3H]DA uptake in WT and Y470F-hDAT and 

Y470A-hDAT revealed a significant main effect of mutation (F(2, 24) = 99; p < 0.001), zinc 

(F(1, 24) = 40; p < 0.001) and a significant mutation × zinc interaction (F(2, 24) = 8.9; p < 0.02). 

The addition of Zn2+ decreased [3H]DA uptake in WT and Y470F-hDAT and Y470A-hDAT 

by 47%, 49% and 72% respectively (Fig. 3.6A, p< 0.01 relative to control, unpaired 

Student’s t test). A two-way ANOVA on the specific [3H]WIN35,428 binding in WT and 

Y470F-hDAT and Y470A-hDAT revealed a significant main effect of mutation (F(2, 44) = 38; 

p < 0.01), zinc (F(1, 44) = 5; p < 0.04); however, no significant mutation × zinc interaction (F(2, 

44) = 2; p > 0.13) was observed. Moreover, as presented in Fig. 3.6B. compared to respective 

control (in the absence of Zn2+), Zn2+ caused a 48% increase in [3H]WIN 35,428 binding in 

WT but 17% and 7% in Y470F-hDAT and Y470A-hDAT, respectively (p< 0.05 relative to 

control, unpaired Student’s t test). Additionally, as shown in Fig. 3.7A, two-way ANOVA on 

the specific [3H]DA uptake in WT and Y88F-hDAT and K92M-hDAT revealed a significant 

main effect of mutation (F(1, 24) = 170; p < 0.001), zinc (F(1, 24) = 102; p < 0.001) and a 

significant mutation × zinc interaction (F(2, 24) = 8.3; p < 0.01). The addition of Zn2+ 

decreased [3H]DA uptake in WT and Y88F-hDAT and K92M-hDAT by 48%, 73% and 81%, 

respectively (Fig. 3.6A, p< 0.001 relative to control, unpaired Student’s t test). A two-way 

ANOVA on the specific [3H]WIN35,428 binding in WT and Y88F-hDAT and K92M-hDAT 
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revealed a significant main effect of mutation (F(1, 18) = 7.8; p < 0.01), zinc (F(1, 18) = 26; p < 

0.001); however, no significant mutation × zinc interaction (F(2, 18) = 0.9; p > 0.05) was 

observed.  As displayed in Fig. 3.7B. compared to respective control (in the absence of 

Zn2+), Zn2+ caused a 54% increase in [3H]WIN 35,428 binding in WT but 22% and 19% in 

Y88F-hDAT and K92M-hDAT respectively (p< 0.001 relative to control, unpaired Student’s 

t test). These results suggest that Y88F, K92M, Y470F and Y470A mutants attenuate zinc 

modulation of [3H]WIN 35,428 binding sites but not [3H]DA uptake.  

To further evaluate the effects of mutations on transporter conformational transitions, 

we examined the fractional efflux levels of [3H]DA and [3H]MPP+ in WT hDAT and these 

mutants.  As shown in Fig. 3.6C, after preloading with 0.05 µM [3H]DA for 20 min at room 

temperature, cells were washed and fractional DA efflux samples were collected at the 

indicated times. A two-way ANOVA revealed significant main effects of mutation (F(2, 9) = 

10; p<0.05), time (F(5, 45) = 175; p<0.001) and significant mutation × time interaction (F(10,45) 

= 13; p<0.001) for Y470F-hDAT and Y470A-hDAT compared to WT. Post-hoc analysis 

showed that compared to WT hDAT, DA efflux levels were elevated at 1 and 10 min in 

Y470A-hDAT only (Figure 3.6C; p < 0.05, Bonferroni t-test). Similarly, a two-way ANOVA 

revealed significant main effects of mutation (F(3, 13) = 45; p<0.001) and time (F(5, 65) = 75; 

p<0.001) for Y88F-hDAT and K92M-hDAT compared to WT. A significant mutation × time 

interaction (F(15, 65) = 24; p<0.001) was also found. Post-hoc analysis revealed that compared 

to WT hDAT, DA efflux levels were at 1 and 10 min in K92M-hDAT (Figure 3.7C; p < 

0.05, Bonferroni t-test) but not in Y88F-hDAT. With regarding to MPP+ efflux, a two-way 

ANOVA revealed significant main effects of mutation (F(2, 9) = 19; p<0.05), time (F(5, 45) = 

253; p<0.001) and significant mutation × time interaction (F(10, 45) = 10; p<0.001) for Y470F-
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hDAT and Y470A-hDAT compared to WT. Post-hoc analysis displayed that compared to 

WT hDAT, MPP efflux levels were elevated at 1, 10, 20, 30, 40 and 50 min in Y470A-

hDAT only (Figure 3.6D; p < 0.05, Bonferroni t-test). Taken together, this data suggest that 

Tyr470, Tyr88 and Lys92 residues differentially affect the basal efflux levels of either DA or 

MPP+.  

3.4 DISCUSSION 

 Recently, we have demonstrated that Tyr470 in hDAT is a key residue in the 

intermolecular interaction between Tat and hDAT (Midde et al., 2013). In the current study, 

we extended characterization of Tyr470 by additional substitution mutations. Further, we 

pursued to characterize other predicted amino acids Tyr88 and Lys92 in the interaction of 

Tat with DAT. Tyr470 mutants exhibited differential impact on DAT uptake capacity and 

Tat-induced inhibition of DAT function, indicating the importance of Tyr470 in DAT 

interaction with Tat protein through cation- interaction. Mutations at Tyr88 and Lys92 

exhibited increased potencies for inhibitors to inhibit [3H]DA uptake and [3H]WIN 35,428 

binding with less impact on potencies for DA substrate to inhibit [3H]DA uptake and 

[3H]WIN 35,428 binding, suggesting the influence of Tat interaction on inhibitors binding to 

DAT without interfering  the DA uptake site. Notably, Y470F, Y470A, Y88F and K92M 

mutants did not reverse the Zn2+-facilitated inhibition of DA uptake but decreased the zinc-

mediated potentiation of WIN35,428 binding. In addition, Y470A and K92M displayed 

significant elevation in DA basal efflux compared to WT, suggesting the involvement of 

these residues in maintenance of conformational states of the transporter. Overall, our 

experimental evidence shows that Tyr88, Lys92 and Tyr470 play an essential role in 
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imparting Tat-induced conformational alterations in DAT and thereby inhibiting DA 

translocation process.  

 The current results show that K92M decreases Vmax but not the Y88F, and both 

mutants failed to show appreciable change in Km values compared to WT, reflecting that 

K92M indirectly involve in DA transport but not the Y88F. The likely reasons for impaired 

translocation in K92M would be either loss of transporter density on the membrane or 

alteration of DA turnover rate. Because of surface biotinylation data revealed similar 

amounts of WT and K92M mutant in the plasma membrane (Fig 3.4B) and Km value for DA 

uptake was not changed, the turnover for DA is possibly decreased in this mutant. 

Furthermore, decreased binding capacity and increased affinity for [3H]WIN35,428 binding 

(Table 3.2) were noted in both mutants. These observations indicate that Tat binding sites, 

Y88 and K92 are localized close to WIN35,428 binding site. Remarkably, our previous work 

showed that Tat protein decreases Bmax for [3H]WIN35,428 binding in dose dependent 

manner (Zhu et al., 2009). In addition, IC50 values for DA inhibiting [3H]DA uptake were not 

significantly altered in both mutants supporting the view that Y88 and K92 residues do not 

manipulate the DA binding affinities for the transporter. In contrary, IC50 values for 

inhibitors cocaine, GBR12909 inhibiting [3H]DA uptake are considerably decreased in both 

mutants compared to WT (Table 3.1), suggesting that increased potency for inhibitors 

observed in these mutants is a consequence of influence of Y88 and 92 on inhibitors binding 

sites. Similarly, this interpretation was further supported by increased potencies for inhibitors 

to inhibit [3H]WIN35,428 binding in these mutants (Table 3.2). Cocaine and its analog 

WIN35,428, and atypical inhibitor GBR12909 represent different classes of DAT inhibitors. 

While cocaine-like compounds exhibit increased binding affinity, GBR12909 shows weaker 
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binding affinity for DAT mutants (W84L, D313N and Y335A) that influence the 

conformational states of the transporter (Chen et al., 2001; Loland et al., 2002; Chen et al., 

2004). Unlike these reported mutants, Y88F and K92M displayed enhanced potencies for 

both cocaine and GBR12909, revealing that Tat may increase the effectiveness of cocaine 

through interaction at Tat binding sites. Furthermore, cocaine-like compounds were shown to 

interact with TM1 and TM6 of DAT, in the vicinity of substrate binding site (Beuming et al., 

2008; Parnas et al., 2008). As our computational modeling data indicated Tat impacts TM1b 

and TM6a helices movement through interacting with Tyr 88, Lys 92 and Tyr 470 (Figure 

3.2), it is conceivable that Tat and cocaine may have synergistic or additive effects on DAT 

function. In support of this interpretation, a recent study demonstrated that Tat expression in 

brain potentiates cocaine behavioral effects in mice (Paris et al., 2013) . Thus, these results 

support the idea of interactive effects of Tat and cocaine on DAT function. 

We demonstrated that mutating Tyr470 to His attenuates the inhibitory effects of Tat 

on DA uptake by eliminating both hydrogen bond and cation- interactions with Tat (Midde 

et al., 2013). To further validate Tyr470 residue, substitution mutants Y470A, Y470W and 

Y470F were generated with the expectation that Y470A and Y470W show characteristics 

similar to Y470H but with different sizes. Y470F mutant abolishes only hydrogen but not the 

cation- interactions (Figure 3.3). We did not characterize Y470W mutant because our 

efforts failed to improve basal uptake in this mutant irrespective of increased DNA for 

transfections or protein concentration for assays. Y470A displayed mitigation of Tat 

inhibitory effects on DA translocation (Figure 3.5A), which is similar to our reported mutant 

Y470H (Midde et al., 2013). Interestingly, other mutant Y470F failed to diminish Tat-

mediated effects on DA transport, indicating the important role of aromatic ring of Y470 in 
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DAT and Tat interaction. Moreover, Y88F and K92M mutants clearly showed attenuation of 

Tat-induced inhibition of DA uptake (Figure 3.5B) which is in line with Y470H and Y470A. 

Importantly, Tat Cys22 protein inhibitory effect was evidently attenuated by the mutant 

transporters irrespective of substitution, signifying the importance of physical interaction of 

Tat with DAT on transporter function. However, other residues of Tat protein that are 

involved in this interaction are needed to be evaluated. Taken together, this data demonstrate 

that Tat exploits Y470, Y88 and K92 amino acids of DAT to induce inhibitory effects on 

transporter function.    

In our recent report we revealed that Y470H mutant transporter prefers inward-facing 

conformational state (Midde et al., 2013). Zinc, a DAT modulator that stabilizes the 

transporter in outward conformation by loosely binding to the transporter, is extensively used 

to study the conformational effects of mutants on transporter function (Loland et al., 2003). 

Accordingly, studies show that Zn2+ inhibits DA uptake and increases WIN35,428 binding in 

WT. In the present study, we showed that Y88F, K92M, Y470F and Y470A mutants do not 

attenuate Zn2+-mediated inhibition of [3H]DA transporter but decrease potentiation of 

[3H]WIN 35,428 binding compared to WT. Established evidence indicate that transporters 

that prefer inward facing state reverse Zn2+ inhibitory effects on DA uptake and decrease 

Zn2+ -mediated WIN35,428 binding (Loland et al., 2002; Loland et al., 2004; Guptaroy et al., 

2009; Liang et al., 2009; Midde et al., 2013). A possible explanation for Y88F, K92M, 

Y470F and Y470A mutants failing to reverse Zn2+ influence on DA uptake could be that 

these particular mutants induce an aberrant structure of the DAT that may not be suitable for 

Zn2+ inhibitory effects on DA translocation because Zn2+ binding require strict geometrical 

structural constraints (Alberts et al., 1998). However, our data strongly supports a modified 
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conformational change in the mutant transporters by attenuation of Zn2+ induced [3H]WIN 

35,428 binding (Figure 3.6B, 3.7B) and by showing increased inhibitor potency values  for 

inhibiting [3H]WIN 35,428 binding (Table 3.2). The effect of mutations on conformational 

states of DAT was further probed by measuring substrate basal efflux. We used both DA and 

MPP+ for efflux studies to produce more accurate outcomes as MPP+ has less diffusive 

properties than DA. In our recent study we showed that Y470H mutant robustly increases 

DA efflux compared to WT (Midde et al., 2013). In the present study, we found that Y470A 

exhibits increased efflux of both DA and MPP+ but not the Y470F mutant. The likely 

explanation for normal efflux in Y470F would be due to less impact of this substitution on 

the structural integrity of the transporter. Interestingly, K92M displayed increased DA efflux 

at two initial time points but failed to retain this ability when MPP+ efflux was measured. 

The possible reason for K92M not replicating elevated efflux levels in [3H]MPP+ efflux 

assay as in [3H]DA efflux may be due to assuming a putative conformation that is not 

favorable to MPP+ binding  (Liang et al., 2009). This conformation may favor slower 

transition between inward and outward facing states and less effective at inducing DAT-

mediated efflux at least for substrate MPP+. The alternative explanation would be quick loss 

of substrate DA but not MPP+ by diffusion after short period of accumulation.  Taken 

together these findings infer that Y470A and K92M disrupt the inter-molecular interaction 

required to maintain transporter outward facing conformation. Nevertheless, we proposed 

that Tat promotes alterations in transporter conformation through allosteric regulation (Zhu 

et al., 2009; Zhu et al., 2011). Intriguingly, this mechanism is similar to the exogenous full 

substrates like amphetamines action on DAT (Robertson et al., 2009; Rothman et al., 2009). 

Therefore, it is important that systemic identification and characterization of all Tat binding 
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sites in DAT are required in order to pin point the mode of action of Tat on rearrangements 

of DAT conformational cycle.  

In summary, we have evaluated different substitutions at 470 (Y470F and Y470A) 

and identified additional residues (Y88 and K92) in DAT that are predicted to be interact 

with Tat. All mutants attenuated the inhibitory action of Tat on DA translocation except 

Y470F and we reasoned that these alterations are the result of disruption of critical 

intramolecular interactions in DAT by Tat binding. As different substitutions at 470 

consistently favored against Tat-induced decrease in DA uptake it is apparent that Tyr 470 of 

DAT plays central role in Tat and DAT interaction, and Tyr 88 and Lys 92 may work as 

supporting residues along with other unidentified residues. Because Tat-driven allosteric 

mechanism down regulates DA uptake (Zhu et al., 2011) and mutations at predicted amino 

acids show alterations in conformational distribution of DAT, future investigations that 

identify and validate other recognition residues will certainly improve our understanding of 

functional relevance of Tat binding sites on DAT. This information would be useful to 

develop therapeutics that alleviate imbalances of the DA system in HIV-infected individuals.     
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Table 3.1 Summary of kinetic properties and inhibitory activities in [3H]DA uptake in 
CHO cells expressing WT and mutated hDATs. 

 
Vmax  

(pmol/105 
cells)  

Km (µM)

 
IC50 (nM) 

 
 

DA 
 

Cocaine GBR12909 
 

WIN35,428
 

 
WT- 

hDAT 
 

12.4 ± 4.6 1.2 ± 0.4
1730 ± 

82 
285 ± 49

 
224 ± 41 

 
39 ± 10 

 
Y88F-
hDAT 

 

14.8 ± 3.7 1.9 ± 0.3
2010 ± 

60 
160 ± 9* 95 ± 7* 20 ± 2 

 
K92M-
hDAT 

 

4.5 ± 1.7* 1.9 ± 0.4
2870 ± 

48 
69 ± 4* 101 ± 12* 10 ± 1* 

 

Data are presented as mean ± S.E.M. values from 5-7 independent experiments performed in 
duplicate. * p < 0.05 compared with WT hDAT (unpaired Student’s t test).    
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Table 3.2 Summary of kinetic properties and inhibitory activities in [3H]WIN 35,428 
binding in PC12 cells expressing WT and mutated hDATs.  

 
 
 

Bmax  
(pmol/105 

cells)  
Kd (nM) 

 
IC50 (nM) 

 
 

DA 
 

Cocaine GBR12909

 
WT-hDAT 

 
9.7 ± 1.6 8.6 ± 1.1 827 ± 102 150 ± 8.6 

 
20.7 ± 6.3 

 
 

Y88F-hDAT 
 

5.8 ± 0.9 4.0 ± 0.6* 2071 ± 340* 85 ± 6.9 15.1 ± 5.1 

 
K92M-hDAT 

 
2.4 ± 0.4* 3.5 ± 1.1* 4211 ± 118* 106 ± 31.5 12.8 ± 14.3

 

Data are presented as mean ± S.E.M. of IC50 values from five independent experiments 
performed in duplicate. * p < 0.05 compared with WT hDAT (unpaired Student’s t test).   
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Figure 3.1 MD simulated structure of outward-open DAT (A and B) and structure of 
inward-open DAT (C and D). (A) Side view of outward-open state of DAT structure shown 
as cyan-colored ribbon. 2 Na+ ions and 1 Cl- ion are shown as spheres. (B) Local view of the 
residues around the mouth of the vestibule of outward-open state of DAT. These residues are 
R85, Y88, K92, D313, Y470 and D476 shown in stick-style. Hydrogen bond between K92 
and D313 are represented as dashed lines with labeled distances (between hydrogen bond 
donor and acceptor, unit in Å), which stabilized the TM1b and TM6a. (C) Side view of 
inward-open state of DAT structure shown as colored ribbon. 1 Cl- ion is shown as sphere. 
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(D) Local view of residues around the mouth of the vestibule of inward-open state of DAT. 
We also found that the salt bridge formed by the positive side chain of residue R85 and the 
negative side chain of D476 act as the gate for the entry of substrate dopamine into its biding 
pocket. The R85-D476 salt bridge are also labeled, which stabilized the inward-open state of 
DAT.  
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Figure 3.2 MD simulated structure of HIV-1 Tat-DAT binding complex. (A) HIV-1 Tat protein is shown as ribbon and colored in golden, 
and DAT is represented as cyan ribbon. Residues T-M1, T-P18 and T-K19 of HIV-1 Tat are represented as sticks and colored by atom 
types. Dopamine is shown as green spheres. One Cl- ion is shown as a green sphere, and two Na+ ions as blue spheres. (B) Atomic 
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interactions between HIV-1 Tat and DAT as observed from the binding structure. Critical residues of inter-molecular interactions from 
HIV-1 Tat and DAT are shown in stick style and colored by atom types. Two dashed lines on the left represent inter-molecular hydrogen 
bonds with labeled distances. The orange ball indicates the center of aromatic ring, and the dashed line pointing to the orange ball 
represents the cation-π interaction with labeled distance.
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Figure 3.3 Interaction between TAT-M1 and DAT-Y470 mutations. (A) Residues T-M1 and 
D-Y470 are represented as sticks and colored by atom types. The orange ball indicates the 
center of aromatic ring, and the dashed line pointing to the orange ball represents the cation-
π interaction with labeled distance. (B) Y470F mutation retains the cation-π interaction 
between T-M1 and D-Y470. It can be expected Y470F would bring little influence on the 
TAT effect, which is consist with experimental data. (C) Y470W would eliminate the cation-
π interaction because of the unfavorable van der Waals interaction, which is expected to 
exhibit attenuation on DAT-TAT binding affinity. (D) Y470A would eliminate the cation-π 
interaction between T-M1 and D-Y470, which is also expected to exhibit attenuation on 
DAT-TAT binding affinity. 
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Figure 3.4 [3H]DA uptake and DAT surface expression in WT hDAT and mutants. (A) 
Kinetic analysis of [3H]DA uptake in WT hDAT, Y88F-hDAT and K92M-hDAT. CHO cells 
transfected with WT hDAT, Y88F-hDAT or K92M-hDAT were incubated with one of six 
mixed concentrations of the [3H]DA as total rate of DA uptake. In parallel, nonspecific 
uptake of each concentration of [3H]DA (in the presence of 10 µM nomifensine, final 
concentration) was subtracted from total uptake to calculate DAT-mediated uptake. * p < 
0.05 compared to control value (unpaired Student’s t test) (n = 5). (B) Cell surface 

0

5

10

15

20

25
Total

Biotinylated

    WT         Y88F        K92M

*

D
A

T
 Im

m
u

n
o

re
a

ct
iv

ity
(1

0
3
  

ar
b

itr
a

ry
 u

ni
ts

)
0 1 2 3 4 5

0

5

10

15

20

25
WT-hDAT    (15.7  0.9       1.2  0.1)

Y88F-hDAT (14.8  3.7       1.9  0.3)

Vmax Km

K92M-hDAT (4.5  1.7*       1.9  0.4)

DA concentration (uM)

S
p

e
ci

fic
 [

3 H
]D

A
 u

p
ta

ke
(p

m
o

l/m
in

/1
0

5  c
el

ls
)



 

92 
 

expression of WT hDAT (WT), Y88F-hDAT (Y88F) and K92M-hDAT (K92M) was 
analyzed by biotinylation assay. Top panel: representative immunoblots in CHO cells 
expressing WT hDAT, Y88F-hDAT or K92M-hDAT. Bottom panel: DAT immunoreactivity 
is expressed as mean ± S.E.M. densitometry units from three independent experiments (n = 
3). * p < 0.05 compared to WT hDAT (unpaired Student’s t test). 



 

93 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Effects of Tat or Tat Cys22 on [3H]DA uptake in WT hDAT and mutants. (A) 
PC12 cells transfected with WT, Y470F-hDAT (Y470F), Y470H-hDAT (Y470H) or 
Y470A-hDAT (Y470A) were preincubated with or without recombinant Tat Cys22 or Tat1-86 

(rTat1-86) at 500 nM final concentration at room temperature for 20 min followed by the 
addition of 0.05 μM final concentration of the [3H]DA. Nonspecific uptake was determined 
in the presence of 10 µM final concentration of nomifensine. (B) [3H]DA uptake in cells 
transfected with WT hDAT (WT), Y88F-hDAT (Y88F) and K92M-hDAT (K92M) was 
determined in the presence or absence of Tat Cys22 or rTat1-86 (500 nM, final concentration). 
Data are expressed as means from seven independent experiments ± S.E.M. * p < 0.05 
compared with the respective control values. # p < 0.05 compared to WT hDAT. (n = 5)  
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Figure 3.6 Effects of Y470F, Y470A and Y470H mutants on transporter conformational 
transitions.  Mutations of Tyr470 affect zinc regulation of [3H]DA uptake (A) and [3H]WIN 
35,428 binding (B). CHO cells transfected with WT hDAT (WT), Y470F-hDAT (Y470F) 
and Y470A-hDAT (Y470A) were incubated with assay buffer alone (control) or ZnCl2 (10 
µM, final concentration) followed by [3H]DA uptake or [3H]WIN 35,428 binding (n = 6). 
The histogram shows [3H]DA uptake and [3H]WIN 35,428 binding expressed as mean ± 
S.E.M. of the respective controls set to 100% for the mutant. * p < 0.05 compared to control. 
# p < 0.05 compared to WT hDAT with ZnCl2.   Functional efflux of (C) DA and (D) MPP+ 
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was determined in WT hDAT and mutants. CHO cells transfected with WT hDAT or 
mutants were preincubated with [3H]DA (0.05 µM, final concentration) or [3H]MPP+ (5 nM, 
final concentration) at room temperature for 20 or 30 min, respectively. After incubation, 
cells were washed and incubated with fresh buffer as indicated time points. Subsequently, 
the buffer was separated from cells, and radioactivity in the buffer and remaining in the cells 
was counted. Each fractional efflux of [3H]DA or [3H]MPP+ in WT hDAT (WT), Y470F-
hDAT (Y470F), Y470A-hDAT (Y470A) or Y470H-hDAT was expressed as percentage of 
total [3H]DA or [3H]MPP+ in the cells at the start of the experiment. Fractional [3H]DA 
efflux at 1, 10, 20, 30, 40 and 50 min are expressed as the percentage of total [3H]DA with 
preloading with 0.05 µM (WT hDAT: 26837 ± 5089 dpm, Y470F-hDAT: 20908 ± 4209 
dpm, Y470A-hDAT: 1158 ± 123 dpm and Y470H-hDAT: 2488 ± 150 dpm) present in the 
cells at the start of the experiment (n = 3).  ×× p < 0.05 compared to WT hDAT (Bonferroni t-
test). Fractional [3H]MPP+ efflux at 1, 10, 20, 30, 40 and 50 min are expressed as the 
percentage of total [3H]MPP+ with preloading with 0.05 µM (WT hDAT: 12120 ± 397 dpm, 
Y470F-hDAT: 7399 ± 359 dpm, Y470A-hDAT:  460 ± 46 dpm and Y470H-hDAT:  602 ± 
28 dpm) present in the cells at the start of the experiment (n = 3).  ×× p < 0.05, compared to 
WT hDAT (Bonferroni t-test). 
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Figure 3.7 Effects of Y88F and K92M mutants on transporter conformational transitions. 
Mutations of Tyr88 and Lys92 affect zinc regulation of [3H]DA uptake (A) and [3H]WIN 
35,428 binding (B). The histogram shows [3H]DA uptake and [3H]WIN 35,428 binding 
expressed as mean ± S.E.M. of the respective controls set to 100% for the mutant. * p < 0.05 
compared to control. # p < 0.05 compared to WT hDAT with ZnCl2.   Functional efflux of 
(C) DA and (D) MPP+ was determined in WT hDAT and mutants. Each fractional efflux of 
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[3H]DA or [3H]MPP+ in WT hDAT (WT), Y88F-hDAT (Y88F) or K92M-hDAT (K92M) 
was expressed as percentage of total [3H]DA or [3H]MPP+ in the cells at the start of the 
experiment. Fractional [3H]DA efflux at 1, 10, 20, 30, 40 and 50 min are expressed as the 
percentage of total [3H]DA with preloading with 0.05 µM (WT hDAT: 70082 ± 8256 dpm, 
Y88F-hDAT: 41805 ± 6887 dpm and K92M-hDAT: 9655 ± 2160 dpm) present in the cells at 
the start of the experiment (n = 3).  ×× p < 0.05 compared to WT hDAT (Bonferroni t-test). 
Fractional [3H]MPP+ efflux at 1, 10, 20, 30, 40 and 50 min are expressed as the percentage 
of total [3H]MPP+ with preloading with 0.05 µM (WT hDAT: 15516 ± 920 dpm, Y88F-
hDAT: 5695 ± 450 dpm and K92M-hDAT:  967 ± 121 dpm) present in the cells at the start 
of the experiment (n = 3).   
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CHAPTER 4 

HIV-1 TAT PROTEIN DECREASES DOPAMINE TRANSPORTER CELL SURFACE 

EXPRESSION AND VESICULAR MONOAMINE TRANSPORTER-2 FUNCTION IN RAT 

STRIATAL SYNAPTOSOMES2 
 

ABSTRACT: The dopamine (DA) transporter (DAT) and vesicular monoamine transporter 

(VMAT2) proteins interact as a biochemical complex to regulate dopaminergic 

neurotransmission. We have reported that HIV-1 Tat1-86 decreases the specific [3H]DA 

uptake and [3H]WIN 35,428 binding sites without a change in total DAT immunoreactivity 

in rat striatum (Zhu et al., 2009b). The present study determined the effects of Tat on DAT 

phosphorylation and trafficking, and vesicular [3H]DA uptake. Pre-incubation of rat striatal 

synaptosomes with the protein kinase C (PKC) inhibitor bisindolylmaleimide I (1 µM) 

completely blocked Tat1-86 -induced reduction of  [3H]DA uptake, indicating that Tat 

regulates DAT function through a PKC-dependent mechanism. After exposure of 

synaptosomes to Tat1-86 (1 µM), DAT immunoreactivity was decreased in plasma membrane 

enriched fractions (P3) and increased in vesicle-enriched fractions (P4) relative to controls 

without change in total synaptosomal fractions (P2), suggesting that Tat-induced inhibition 

of DA uptake is attributable to DAT internalization. Although both DAT and VMAT2 

proteins are essential for the regulation of DA disposition in synapse and cytosol, Tat 
                                                            
2 Midde NM, Gomez AM, Zhu J (2012) HIV-1 Tat Protein Decreases Dopamine Transporter Cell 
Surface Expression and Vesicular Monoamine Transporter-2 Function in Rat Striatal Synaptosomes. 
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune 
Pharmacology. PMCID: PMC3688268 
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inhibited the specific [3H]DA uptake into vesicles (P4) and synaptosomes (P2) by 35% and 

26%, respectively, inferring that the inhibitory effect of Tat was more profound in VMAT2 

protein than in DAT protein.  Taken together, the current study reveals that Tat inhibits DAT 

function through a PKC and trafficking-dependent mechanism and that Tat impacts the 

dopaminergic tone by regulating both DAT and VMAT2 proteins. These findings provide 

new insight into understanding the pharmacological mechanisms of HIV-1 viral protein-

induced dysfunction of DA neurotransmission in HIV-infected patients.  

4.1 INTRODUCTION 

The prevalence of HIV-1-associated neurocognitive disorders (HAND) in HIV-1 

positive individuals remains high (~50%), regardless of the success with treatments of anti-

retroviral agents effectively controlling viral replication and dramatically improving 

longevity (Robertson et al., 2007; Tozzi et al., 2007; Ernst et al., 2009).  Notably, the 

incidence and severity of HAND are greatly enhanced (~70%) due to concomitant use of 

drugs of abuse such as cocaine (Norman et al., 2009), which has been postulated as a co-

morbid factor in the susceptibility and progression of HAND (Larrat and Zierler, 1993; Fiala 

et al., 1998; Webber et al., 1999; Buch et al., 2011). While HIV-1 virus enters the brain and 

produces proviral DNA in the early stage of HIV-1 infection (Nath and Clements, 2011), 

anti-retroviral agents cannot prevent the production of HIV-1 viral proteins in infected brain 

cells (McArthur et al., 2010; Nath and Clements, 2011).  HIV-1 viral proteins, such as Tat, 

have been detected in brains of patients with HIV-1 infection (Del Valle et al., 2000; Hudson 

et al., 2000; Lamers et al., 2010), and have been implicated in the pathophysiology of HAND 

(Li et al., 2009).  Moreover, Tat protein has been found to synergize with psychostimulant 

drugs in producing profound neural and behavioral impairments in preclinical models (Ferris 
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et al., 2008), consistent with the findings in the human HIV-1 positive drug abusing 

population (Larrat and Zierler, 1993).  Unfortunately, there are no promising therapeutic 

approaches for such HIV-1-associated neurocognitive impairments. 

The development of neurocognitive dysfunction in HAND patients is associated with 

perturbations of the central dopamine (DA) neurotransmission (Kumar et al., 2011; Meade et 

al., 2011a).  The DA system is a clinically relevant HAND target as evidenced by recent 

human imaging (Chang et al., 2008; Meade et al., 2011a), neurocognitive (Kumar et al., 

2011; Meade et al., 2011b), and post-mortem examinations (Silvers et al., 2007; Kumar et 

al., 2009), that HAND is associated with vulnerability of the DA system. Limited studies 

have reported that DA levels are decreased in DA-rich brain area (Sardar et al., 1996; Kumar 

et al., 2009), but increased in the CSF (Scheller et al., 2010) of HAND patients. The DA 

transporter (DAT) is critical for DA homeostasis, which is critical for neurocognitive 

function (Chudasama and Robbins, 2006).  DAT is a target for HIV-1 viral proteins (Hu et 

al., 2009; Zhu et al., 2009b) and cocaine to impact the DA system (Zhu and Reith, 2008).  

We have demonstrated that Tat inhibits DA uptake in rat striatal synaptosomes and that 

influence of Tat on DAT ligand binding sites involves a protein-protein interaction (Zhu et 

al., 2009b). In particular, we have shown that Tat allosterically inhibits DAT function and 

modulates cocaine binding sites on DAT in rat striatal synaptosomes and heterologous cells 

expressing human DAT (Zhu et al., 2011).  

The dynamic regulation of DAT function and cell surface localization of DAT are 

under the control of complex processes involving phosphorylation, protein-protein 

interaction, substrate pretreatment, and interaction with presynaptic receptors (Zhu and 

Reith, 2008).  For example, activation of protein kinase C (PKC) results in reduced DA 
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transport activity, decreased transporter recycling and DAT cell surface expression, thereby 

causing reduced DA uptake (Daniels and Amara, 1999; Melikian, 2004; Zahniser and 

Sorkin, 2004).  On one hand, dynamic cell surface localization of DAT is regulated by 

cellular signaling pathways and endocytotic trafficking (Zhu and Reith, 2008). On the other 

hand, the DAT and vesicular monoamine transporter (VMAT2) proteins interact as a 

biochemical complex to regulate dopaminergic tone in response to motivationally relevant 

stimuli, including abused drugs (Vergo et al., 2007; Zhu and Reith, 2008; Egana et al., 2009).   

This study was aimed to understand the molecular mechanisms underlying Tat-

induced decrease in DAT reuptake activity. The primary hypothesis tested here was that Tat-

induced reduction of DA transport is attributable to acceleration of DAT endocytosis through 

the dynamic-trafficking and phosphorylation-dependent mechanisms and that both DAT and 

VMAT-2 function contribute to Tat-induced impairment of DA neurotransmission.  

4.2 MATERIAL AND METHODS 

4.2.1 ANIMALS  

Adult male Sprague – Dawley rats (225-250g body weight) were obtained from 

Harlan Laboratories, Inc. (Indianapolis, IN). Rats were housed in standard polyurethane 

cages and provided normal rodent food (ProLab Rat/Mouse/Hamster Chow 3000) and water 

ad libitum. The colony was maintained at 21±2 °C, 50±10% relative humidity and a 12L: 

12D cycle with lights on at 0700 h (EST).The animals were maintained according to the 

National Institute of Health (NIH) guidelines in AAALAC accredited facilities. The 

experimental protocol was approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of South Carolina. 
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4.2.2 DRUGS AND CHEMICALS 

[3H]DA (3,4-ethyl-2[N-3H]dihydroxyphenylethylamine; specific activity, 31 

Ci/mmol) and [3H]WIN 35,428 (specific activity, 85 Ci/mmol) were purchased from 

PerkinElmer Life and Analytical Sciences (Boston, MA). Recombinant HIV-1 transactivator 

of transcription (Tat1–86, Clade B, REP0002a) protein and its mutant protein Tat Cys22 

(cysteine 22 was substituted to glycine, REP0032) were purchased from Diatheva (Fano, 

Italy). D-amphetamine, cocaine and Bisindolylmaleimide-I (BIM-I) were purchased from 

Tocris Biosciences (Ellisville, MO).  Tetrabenazine (TBZ) was provided by NIMH Chemical 

Synthesis and Drug Supply Program (Bethesda, MD).  Antibodies recognizing rat DAT (C-

20; goat polyclonal antibody) and actin (C-2; mouse monoclonal antibody) were purchased 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Anti-goat IgG horseradish 

peroxidase was purchased from Jackson ImmunoResearch Laboratories Inc. (West Grove, 

PA). Goat anti-mouse IgG-horseradish peroxidase was purchased from Santa Cruz 

Biotechnology, Inc. D-Glucose, L-ascorbic acid, WIN35,428, L-leucine, L-lysine, bovine 

serum albumin, pyrocatechol, EDC, HEPES, isopropanol, nomifensine maleate, pargyline 

hydrochloride, polyethylene glycol, sucrose, and Tween 20 were purchased from Sigma-

Aldrich (St. Louis, MO).  

4.2.3 PREPARATION OF SYNAPTOSOMES, SUBFRACTIONS AND SYNAPTIC VESICLES  

Striata from individual rats were homogenized in 20 ml of ice-cold 0.32 M sucrose 

containing 5 mM NaHCO3, pH 7.4, with 16 up-and-down strokes using a Teflon pestle 

homogenizer (clearance, approximately 0.003 in.).  Crude synaptosomal preparation was 

centrifuged at 2000g for 10 min at 4°C, and the resulting supernatants were then centrifuged 

at 20,000g for 15 min at 4°C. The resulting pellets (P2 fractions) were resuspended in 5 ml 
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of ice-cold Krebs-Ringer-HEPES assay buffer (final concentration in mM: 125 NaCl, 5 KCl, 

1.5 MgSO4, 1.25 CaCl2, 1.5 KH2PO4, 10 D-glucose, 25 HEPES, 0.1 EDTA, 0.1pargyline, 

and 0.1 L-ascorbic acid, saturated with 95% O2, 5% CO2; pH 7.4) for the synaptosomal 

[3H]DA uptake.  To determine the distribution of DATs in subcellular fractions after 

exposure to Tat, striata from every two rats were pooled to achieve sufficient vesicles and the 

subcellular fractions were prepared using a previously published method with minor 

modifications (Middleton et al., 2007).  Striata were homogenized in ice-cold 0.32 M sucrose 

buffer using a Teflon pestle homogenizer and then centrifuged at 800g for 12 min, 4°C.  The 

resulting supernatant (S1) was centrifuged at 22,000g for 15 min at 4°C to yield a crude 

synaptosomal pellet (P2). The P2 pellet was then resuspended in DA uptake assay to obtain 

synaptosomes. In order to determine whether Tat (1 µM)-induced decreases of [3H]DA 

uptake, as observed in our previous report (Zhu et al., 2009b), was associated with a 

reduction of DAT expression in plasma membrane, half of the synaptosomes were 

preincubated with Tat1–86 (1 µM), and the other half were preincubated without Tat1–86 as 

control at 34°C for 15 min.  This concentration of Tat1–86 was chosen based on our previous 

report showing that the inhibitory effect of Tat (1 µM) on DA uptake was reversible (Zhu et 

al., 2009b). Subsequently, the synaptosomal samples were centrifuged at 22,000g for 15 min 

at 4°C and synaptosomes in the pellets (P2) were then lysed in ice-cold 25 mM HEPES, pH 

7.5, and 100 mM potassium tartrate (pH 7.4) plus phosphatase inhibitor cocktails I (P2850, 

Sigma-Aldrich, St. Louis, MO) and protease inhibitor cocktail (P8340, Sigma-Aldrich, St. 

Louis, MO).  After thorough mixing of all contents, the resulting mixture was centrifuged at 

20,000g for 15 min at 4°C to get the plasma membrane enriched (P3) and vesicle-enriched 

supernatant (S3). The S3 was then centrifuged at 100,000g for 45 min at 4°C to yield the 
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cytoplasmic vesicles pellet (P4).  The three fractions (P2, P3, and P4) were used for Western 

blot assay.  Protein concentrations were determined by the Bradford protein assay (Bradford, 

1976) using bovine serum albumin as the standard (Bio-Rad Laboratories, Hercules, CA). 

4.2.4 SYNAPTOSOMAL [3H]DA UPTAKE  

[3H]DA uptake was determined using previously described methods (Zhu et al., 

2009b). Assays were performed in triplicate with a final volume of 1 mL.  Aliquots of striatal 

synaptosomes were preincubated in assay buffer containing BIM-I (100 µM, final 

concentration) at 34 °C for 5 min in an oxygenated metabolic shaker, and then incubated 

with amphetamine (20 µM, final concentration) or Tat (0.7 µM) for an additional 15 min. 

The concentration of BIM-I was chosen based on the previous report showing that BIM-I 

(100 µM) alone did not show inhibitory effect on [3H]DA into rat striatal synaptosomes 

(Richards and Zahniser, 2009).  A low concentration of Tat (0.7 µM) was chosen because 

our previously published study (Zhu et al., 2009b) has demonstrated that Tat at both 0.7 and 

1.0 µM concentrations significantly decreases [3H]DA uptake by 21% and 26%, respectively. 

The purpose of the experiment was to determine whether Tat-induced decrease in DAT 

function is PKC-dependent. We selected the low concentration because it was sufficient to 

elicit a significant decrease in DA uptake for the PKC experiment.  Subsequently, the 

synaptosomes were centrifuged at 20,000g for 15 min and the resulting pellets were 

resuspended with ice cold assay buffer. Aliquots of the well-washed synaptosomes were 

incubated with 5 nM [3H]DA (final concentration) at 34 °C for 10 min. The reactions were 

terminated by the addition of 3 ml of ice-cold assay buffer. Nonspecific uptake was 

determined in duplicate at each [3H]DA concentration by including 10 µM nomifensine in 

the assay buffer. Samples were filtered through Whatman GF/B glass fiber filters (Whatman, 
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Maidstone, UK), presoaked with assay buffer containing 1 mM pyrocatechol. Filters were 

washed three times with 3 ml of ice-cold assay buffer containing 1 mM pyrocatechol using a 

Brandel cell harvester (model M-48; Biochemical Research and Development Laboratories 

Inc., Gaithersburg, MD). Pyrocatechol (catechol) is a catechol-O-methyltransferase inhibitor. 

In the current study, pyrocatechol (1 mM) was included in the DA uptake assay buffer to 

prevent the degradation of [3H]DA during the processes of washes and harvesting (Zhu et al., 

2004). Radioactivity was determined using liquid scintillation spectrometry (model Tri-Carb 

2900TR; PerkinElmer Life and Analytical Sciences). 

4.2.5 VESICULAR [3H]DA UPTAKE  

To determine inhibitory effects of Tat on VMAT-2 function, vesicular [3H]DA 

uptake was measured using previously described methods (Volz et al., 2007).  In brief, 

assays were performed in duplicate with a final volume of 250 µl. For the competitive 

inhibition experiment, aliquots of P4 suspensions were preincubated in VMAT-2 assay 

buffer (final concentration in mM: 25 HEPES, 100 potassium tartrate, 0.05 EGTA, and 0.1 

EDTA, 1.7 ascorbic acid, and 2 ATP-Mg2+, pH 7.5) containing Tat, Tat Cys22 or TBZ (final 

concentration, 0.1 nM-10 µM) at 34 ºC for 15 min in an oxygenated metabolic shaker and 

subsequently incubated with a fixed concentration of [3H]DA (1 µM, final concentration) at 

34 ºC for additional 8 min. To determine if Tat differentially inhibits DAT and VMAT-2 

function, in a separate experiment, synaptosomes were preincubated with 1 µM Tat at 34 ºC 

for 15 min. Subsequently the synaptosomes were washed with fresh ice-cold assay buffer, 

and P2 and P4 fractions were then separated as described above.  Aliquots of P4 fractions 

were incubated in the assay buffer with 1 to 8 concentrations of [3H]DA (0.03-5 µM) at 34 

ºC for 8 min. Nonspecific uptake was determined in the presence of 10 µM TBZ. Reactions 
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were terminated by addition of 1 ml of cold wash buffer (assay buffer containing 2 mM 

MgSO4 substituted for the ATP-Mg2+, pH 7.5) and rapid filtration through Whatman GF/B 

filters soaked previously in 0.5% polyethylenimine. Filters were washed 3 times with the 

VMAT-2 assay buffer and radioactivity was measured using a liquid scintillation counter. 

4.2.6 WESTERN BLOTS 

Proteins were extracted from each fraction (P2, P3 and P4) as described above with 

the Laemmli sample buffer (Sigma-Aldrich, St. Louis, MO) containing  phosphatase 

inhibitor cocktail 1 (P2850, Sigma-Aldrich, St. Louis, MO) and protease inhibitors (P8340, 

Sigma-Aldrich, St. Louis, MO) and boiled for 5 min. To detect the immunoreactive DAT 

protein in these fractions, samples were subjected to gel electrophoresis and Western 

blotting. Proteins were separated by 10% SDS-polyacrylamide gel electrophoresis for 90 min 

at 150 V and transferred to Immobilon-P transfer membranes (Millipore, Billerica, MA) in 

transfer buffer (50 mM Tris, 250 mM glycine, and 3.5 mM SDS) using a Mini Trans-Blot 

Electrophoretic Transfer Cell (Bio-Rad Laboratories) for 110 min at 72 V. Transfer 

membranes were incubated with blocking buffer (5% dry milk powder in phosphate-buffered 

saline containing 0.5% Tween 20) for 1 h at room temperature, followed by incubation with 

goat polyclonal DAT antibody (1 µg/ml in blocking buffer) overnight at 4°C. Transfer 

membranes were washed five times with wash buffer (phosphate-buffered saline containing 

0.5% Tween 20) at room temperature and then incubated with rabbit anti-goat DAT antibody 

(1:2500 dilution in blocking buffer) for 1 h at 22°C. Blots on transfer membranes were 

detected using enhanced chemiluminescence and developed on Hyperfilm ECL-Plus (GE 

Healthcare, Chalfont St. Giles, Buckinghamshire, UK). After detection and quantification of 

the DAT protein, each blot was stripped in 10% Re-blot plus mild antibody stripping 
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solution (Millipore Bioscience Research Reagents, Temecula, CA) for 20 min at room 

temperature and reprobed for detection of actin. Actin was used as an intracellular control 

protein to monitor protein loading between samples and determined using a mouse 

monoclonal antibody (1:1000 dilution in blocking buffer). Multiple autoradiographs were 

obtained using different exposure time, and immunoreactive bands within the linear range of 

detection were quantified with densitometric scanning (Scion Image software; Scion 

Corporation, Frederick, MD). Band density measurements, expressed as relative optical 

density, were used to determine levels of the DAT immunoreactivity in synaptosomes. 

4.2.7 [3H]WIN 35,428 BINDING ASSAY  

To determine whether Tat-induced inhibition of [3H]DA uptake was the result of 

alterations in the maximal number of binding sites (Bmax) or affinity (Kd) for [3H]WIN 

35,428 binding in P3 fraction, kinetic analysis of [3H]WIN 35,428 binding was determined 

using a previously described method (Zhu et al., 2009b). After exposure of synaptosomes to 

Tat (1 µM) or vehicle (control) as described above, the P3 pellets were resuspended in ice-

cold sodium-phosphate buffer (2.1 mM NaH2PO4, 7.3 mM Na2HPO47H2O, and 320 mM 

sucrose, pH 7.4). Aliquots of P3 fractions were incubated with one of the eight 

concentrations of [3H]WIN 35,428 (final concentration, 0.5–30 nM) on ice for 2 h. In 

parallel, nonspecific binding at each concentration of [3H]WIN 35,428 (in the presence of 30 

µM cocaine, final concentration) was subtracted from total binding to calculate the specific 

binding. Assays were terminated by rapid filtration onto Whatman GF/B glass fiber filters, 

presoaked for 2 h with the assay buffer containing 0.5% polyethylenimine, using a Brandel 

cell harvester. Filters were rinsed three times with 3 ml of ice-cold assay buffer. 

Radioactivity remaining on the filters was determined by liquid scintillation spectrometry. 
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4.2.8 DATA ANALYSIS  

Data are presented as mean ± S.E.M., and n represents the number of independent 

experiments for each experiment.  The effect of BIM-I on Tat-induced changes in DA uptake 

was analyzed by one-way ANOVA. Student-Newman-Keuls comparisons were made for 

post hoc analyses. Separate paired Student’s t test was conducted on DAT immunoreactivity 

for comparisons between control and Tat treated samples. Kinetic parameters (Bmax and Kd) 

of [3H]WIN 35,428 binding were determined from saturation curves by nonlinear regression 

analysis using a one-site model with variable slope. For experiments involving comparisons 

between two paired samples, paired Student’s t test was used to determine the ability of Tat 

to alter the kinetic parameters [Km and Vmax for [3H]DA uptake; Kd and Bmax for [3H]WIN 

35,428 compared with control (the absence of Tat)]; log-transformed values of Km or Kd 

were used for these statistical comparisons. IC50 values for Tat-induced inhibition in specific 

vesicular [3H]DA uptake were determined from inhibition curves by nonlinear regression 

analysis using a one-site model with variable slope.  All statistical analyses were performed 

using SPSS, standard version 19.0 (SPSS Inc., Chicago, IL), and differences were considered 

significant at p < 0.05. 

4.3 RESULTS 

4.3.1 INVOLVEMENT OF PKC IN TAT-INDUCED DOWN-REGULATION OF DAT FUNCTION IN RAT 

STRIATAL SYNAPTOSOMES 

To determine whether the Tat-induced down-regulation of DAT function was 

mediated by activation of PKC, synaptosomes were preincubated with the PKC inhibitor 

BIM-I (1 µM) for 5 min prior to preincubation with Tat (0.7 µM) or amphetamine (20 µM) 

for additional 15 min. Amphetamine was used as a positive control, because the previous 

report has shown that amphetamine-induced down-regulation of DAT activity was blocked 
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by preincubation of BIM-I (Richards and Zahniser, 2009). As shown in Figure 4.1, 

amphetamine (F(3, 15) = 8.83, p < 0.01) or Tat (F(3, 15) = 8.28, p < 0.05) alone significantly 

reduced [3H]DA uptake, and preincubation of BIM-I completely blocked both amphetamine- 

and Tat-induced reductions.  

4.3.2 TAT PROTEIN DECREASED CELL SURFACE DAT EXPRESSION IN RAT STRIATAL 

SYNAPTOSOMES  

To determine if the Tat-induced decrease in [3H]DA uptake  of DAT function was 

attributed to a reduction in the plasma membrane of the DATs, DAT expression in 

subfractions was examined.  As shown in Figure 4.2, after exposure of synaptosomes to Tat 

(1 µM), DAT immunoreactivity was decreased by 46% in P3 fractions (t(3) = 3.22, p<0.05) 

and increased by 49% in P4 fractions (t(3) = 5.64, p<0.05) without changes in P2 fractions. 

To verify the Tat-induced decreases in P3 fractions, the Bmax of [3H]WIN 35,428 in P3 

fractions was determined. Figure 4.3 shows that 15 min preincubation of synaptosomes with 

Tat (1 µM) led to a significant decrease of the Bmax value by 64% (3.99 ± 0.6 pmol/mg 

protein) compared with the control [11.2 ± 1.3 pmol/mg protein; t(3) = 5.6, p<0.05, paired 

Student’s t test]. There was no change in the Kd value between Tat-treated and control 

samples (38.9 ± 8.7 and 33.9 ± 11.4 nM).     

4.3.3 INHIBITORY EFFECTS OF TAT ON VMAT-2 AND DAT FUNCTION 

To determine whether Tat differentially inhibited DAT and VMAT-2 function, the 

ability of Tat protein to inhibit vesicular [3H]DA uptake or synaptosomal [3H]DA uptake was 

measured.  As shown in Figure 4.4, 15 min preincubation of synaptosomes with Tat (1 µM) 

caused a 35 ± 1.8 and 26 ± 1.5% reduction in [3H]DA uptake into vesicles and 

synaptosomes, respectively.    
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To determine the concentration-dependent inhibitory effect of Tat on specific [3H]DA 

uptake into striatal vesicles, vesicular [3H]DA uptake was examined in the presence of 

various concentrations of Tat. Specific [3H]DA uptake was substantially inhibited by Tat 

(IC50 = 210 ± 19 nM; Figure 4.5). TBZ was used as a positive control for the [3H]DA uptake 

assay and had a IC50 value of 9.8 ± 0.7 nM.  Tat Cys22 was a negative control for the assay, 

which showed no inhibitory effect on vesicular [3H]DA uptake across the concentration 

range from 0.1 nM to 10 µM.   

4.4 DISCUSSION 

We have reported previously that Tat protein induced decrease of [3H]DA uptake in 

rat striatal synaptosomes (Zhu et al., 2009b). The current study investigated the mechanism 

of this Tat-induced impairment of DAT activity.  This study also determined the effect of Tat 

on VMAT-2 function. The results provide evidence that the Tat-induced decrease in DA 

uptake is ascribed to a DAT trafficking- and phosphorylation-dependent mechanism. Further, 

we demonstrated that Tat inhibited not only DAT activity but also VMAT-2 function. These 

findings provide new insight into understanding the molecular mechanisms of HIV-1 viral 

protein-induced dysfunction of DA neurotransmission in HIV-1 infected patients. 

The present results are in agreement with previous work showing that in vitro 

exposure of rat striatal synaptosomes to Tat protein leads to a decrease in DAT uptake 

function (Wallace et al., 2006; Zhu et al., 2009b).  In this study, while a PKC inhibitor, BIM-

I, alone had no effect on DA uptake, Tat (0.7 µM)-induced decrease (21%) in specific 

[3H]DA uptake was ablated by BIM-I. Similarly, preincubation of the synaptosomes with 

BIM-I completely blocked amphetamine-induced decrease (31%) in [3H]DA uptake, which 

is consistent with a previous report (Richards and Zahniser, 2009). Therefore, compared to 
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amphetamine, Tat produces a similar regulatory effect on DAT uptake function through a 

PKC-dependent mechanism. It has been well documented that exposure to amphetamine 

results in DAT internalization or reduced DA uptake in cell lines expressing DAT and 

synaptosomes (Chen et al., 2010).  Also, DAT shows a time-dependent, biphasic trafficking 

pattern in vitro and in vivo upon short- and long-exposure to amphetamine (Chen et al., 

2010). For example, rapid treatment (less than 1 min) of rat striatal synaptosomes with 

amphetamine increased DAT surface expression (Furman et al., 2009), whereas a prolonged 

stimulation (30-60 min) led to reductions of surface DAT (Gulley et al., 2002; Johnson et al., 

2005; Thwar et al., 2007), indicating that rapid amphetamine-induced DAT surface 

expression may contribute to amphetamine-induced DA efflux.  While the current results and 

previous studies (Cervinski et al., 2005; Gorentla and Vaughan, 2005; Richards and 

Zahniser, 2009) have demonstrated that amphetamine-induced reduction of DA uptake can 

be blocked by pretreatment of BIM-I, it was reported that amphetamine-induced reduction in 

surface DAT in human DAT-PC12 cells was not inhibited by BIM-I (Boudanova et al., 

2008), suggesting that amphetamine regulates DAT activity through a PKC-independent 

pathway. In contrast, this study shows that Tat decreased DA uptake via activation of PKC 

pathway. Importantly, we have demonstrated that the influence of Tat on DAT function 

involves a protein-protein interaction between Tat and DAT (Zhu et al., 2009b) and that Tat 

acts as an allosteric modulator of DAT rather than as either a reuptake inhibitor (e.g. cocaine) 

or a substrate releaser (e.g. amphetamine) (Zhu et al., 2011).  Allosterism has been shown to 

be responsible for the conformational transitions via substrate- and ligand-binding sites on 

the DAT (Shan et al., 2011).  Tat-induced inhibition of DA transporting may involve a 

change in the DAT conformation that requires DAT phosphorylation. Previous studies 
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suggest that Tat protein and amphetamine synergistically impair DAT function in vitro (Cass 

et al., 2003; Theodore et al., 2006) and in vivo (Kass et al., 2010); however, underlying 

mechanism(s) are unclear.  To investigate the synergistic effects of Tat and amphetamine on 

DAT function and trafficking will be an essential task in our future study.  

In the current study, exposure to Tat (0.7 µM) for 15 min decreased [3H]DA uptake 

activity in rat synaptosomes.  In general, Tat-induced decrease of DA transport could be 

accomplished in several manners: increased DAT protein degradation, decreased turnover 

rates of DAT, or changes in DAT trafficking on the cell surface expression without changes 

in total DAT immunoreactivity. To validate these potential mechanisms, first, we have 

demonstrated that a 15-min exposure to Tat1-86 induced a rapid and reversible decrease in 

Vmax of [3H]DA uptake without changes in total DAT levels (Zhu et al., 2009b), suggesting 

that Tat-induced reduction in Vmax of DA uptake is not caused by DAT degradation. Second, 

transporter turnover rate, which reflects the number of DA molecules transported per second 

per site (Lin et al., 2000), was determined and shown that 15-min exposure of synaptosomes 

to 1 µM Tat did not alter the ratio of Vmax for [3H]DA uptake/Bmax for [3H]WIN 35,428 

binding. This result provides evidence that Tat does not decrease the turnover rates of DAT 

(Zhu et al., 2009b).  The current results display that the levels of DAT immunoreactivity 

were increased by 49% in vesicle-enriched fractions (P4) and decreased by 46% in plasma 

membrane enriched fractions (P3) without changes in total synaptosomal fractions (P2) in 

Tat-exposed samples compared to the respective controls. These data indicate that exposure 

to Tat results in a redistribution of DAT from the cell surface to intracellular compartments 

(i.e. internalization) and that loss of DAT from the plasma membrane is responsible for the 

decrease in Vmax observed after Tat exposure.  
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The efficiency of DA transport depends on the number of DAT molecules expressed 

on the plasma membrane, which is regulated by a dynamic-trafficking mechanism (Zhu and 

Reith, 2008). This has been consistently reported  in a number of studies using cells 

expressing DAT (Saunders et al., 2000; Chi and Reith, 2003) and rat striatal synaptosomes 

(Chi and Reith, 2003; Zhu et al., 2005; Zhu et al., 2009a).  Changes in DAT dynamics in 

plasma membranes can be detected using either biotinylation assay (Zhu et al., 2005; Zhu et 

al., 2009a) or subfractionation method (Middleton et al., 2007). In the current study, a 49% 

decrease in DAT surface expression (P3) was not comparable to the magnitude (26%) of the 

decrease in Vmax for [3H]DA uptake in rat striatal synaptosomes demonstrated in our 

previous report (Zhu et al., 2009b). This result is also supported by [3H]WIN 35,428 binding 

experiment showing that the Bmax was decreased in P3 of Tat-treated samples compared to 

controls.  As reported in our previous studies, levels of the changes in DAT cell surface 

expression were less than (Zhu et al., 2009a) or similar (Zhu et al., 2005) to the magnitude of 

the changes in Vmax for [3H]DA uptake.  Trafficking of plasma membrane transporters is 

associated with changes in posttranslational modifications of the DAT protein, including 

phosphorylation states and protein-protein interactions (Sager and Torres, 2011).  Therefore, 

the current results infer that Tat-induced great decrease of DAT expression in plasma 

membranes could be regulated by both phosphorylation (i.e. PKC-dependent mechanism) 

and protein-protein interactions (e.g. allosteric modulation).  In contradiction with our 

results, 30-min exposure of PC12 cells expressing human DAT to 120 nM Tat1-86 increased 

(24%) DA uptake using measurement of the fluorescence ASP+, which was accompanied by 

a profound increase (177%) in plasma membranes and a minor decrease (14%) in 

cytoplasmic membranes compared to respective controls (Perry et al., 2010).  The 
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contrasting results might be due to differences in DAT expression models (rat synaptosomes 

versus a human DAT cell line), Tat concentration, exposure time and methodology.  Tat-

induced changes in DAT surface levels could arise from increased PKC-mediated 

endocytosis, decreased DAT recycling rates, or both.  Rat synaptosomes express DAT 

endogenously and have less surface DAT expression compared to DAT expressed in 

heterologous cells such as PC12 cells (Johnson et al., 2005; Boudanova et al., 2008). In 

addition, synaptosomes exhibit fast DAT recycling rates for basal DAT levels in plasma 

membranes, whereas the PC12 cells overexpressing DAT have slow DAT recycling rates 

(Johnson et al., 2005; Boudanova et al., 2008).  These differences may, at least in part, 

contribute to the contrasting results between the current study and the previous report (Perry 

et al., 2010).  Nevertheless, the results from Perry et al’s study demonstrate that increased 

membrane DAT may be a compensatory response to decreased transporting efficiency of 

individual DAT (Perry et al., 2010).         

Another important finding from this study is that Tat inhibited not only DAT function 

and trafficking but also VMAT-2 function. Although both DAT and VMAT-2 proteins are 

essential for the regulation of DA disposition in the synapse and cytosol, our data show that 

the inhibitory effects of Tat are more profound in VMAT2 protein than in DAT protein. 

Moreover, the potency of Tat for inhibiting synaptosomal [3H]DA uptake (IC50 = 3.1 µM) 

(Zhu et al., 2009b) is 15-fold higher than that for inhibiting vesicular [3H]DA uptake (IC50 = 

0.21 µM). Thus, VMAT-2 protein may play a more critical role in Tat-induced alterations of 

extracellular DA concentrations.  In the current study, the affinity of TBZ, a highly selective 

compound for VMAT-2 (Erickson et al., 1996) was about 20-fold greater than that of Tat 

protein. Interestingly, our recent study shows that the influence of Tat on DAT ligand 
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binding sites involves a protein-protein interaction and that a mutation of Tat (Cys22Gly) 

significantly attenuates Tat-induced inhibitory effects on DA transport (Zhu et al., 2009b).  

In addition to influencing DAT function, the current study demonstrates that this mutant of 

Tat (Cys22Gly) also attenuates Tat-induced decrease in VMAT-2 function. Together, these 

findings suggest that the residue (Cys22) of Tat may share a favorable inter-molecular 

interaction between Tat protein and human DAT (or VMAT-2). Furthermore, this result also 

suggests that Tat protein may cause synergistic effects on impairing DA neurotransmission 

by inhibition of both DAT and VMAT-2 proteins. At the functional level, plasma membrane 

DAT translocates substrates through a sodium- and chloride-dependent mechanism (Rudnick 

and Clark, 1993; Gu et al., 1994), whereas vesicular transporters use the proton 

electrochemical gradient across the vesicular membrane to transport monoamines (Johnson, 

1988).  Many DAT inhibitors have an ability to rapidly regulate VMAT-2 localization and 

function (Fleckenstein et al., 2009). For example, methamphetamine leads to releases of DA 

from synaptic vesicles into the cytosol via an interaction with the VMAT2 and by disruption 

of the vesicular proton gradient (Sulzer et al., 1995; Fleckenstein et al., 2007). Subsequently, 

available cytosolic DA is reversely transported by the DAT into the extracellular space 

(Sulzer et al., 1995).  Co-exposure to Tat and methamphetamine produces synergistic effects 

on impairing DA terminals (Theodore et al., 2006) and methamphetamine-mediated behavior 

(Kass et al., 2010). Thus, the current results provide a mechanistic basis to interpret the 

synergistic effects of Tat and methamphetamine.   

  HIV-1 associated dementia and neurocognitive disorder progress gradually over 

months or years. Such long time intervals are not practical or feasible for in vitro 

determination of long-term alteration of DAT function.  Hence, we investigated acute effects 
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of Tat exposure on DAT dynamics. Using this in vitro model, we have found that 15-min 

exposure of synaptosomes to Tat (1 µM) caused a reversible reduction of DA uptake, 

whereas 60-min Tat exposure greatly inhibited DA uptake that was not reversible (Zhu et al., 

2009b). It is possible that reduction of DA uptake and plasma membrane DAT in response to 

a short-term Tat exposure is a protective mechanism against the build-up of toxic levels of 

DA, whereas a long-term Tat exposure accelerates DAT degradation.  Excessive levels of 

cytosolic DA and its oxidative products can be toxic to dopaminergic neurons and are 

postulated to contribute to the development of HIV-associated dementia and neurocognitive 

disorders (Mosharov et al., 2009).  HIV-1 infection causes the hallmark decrease in CD4+ T 

cells, which results from programmed cell death, apoptosis (McCune, 2001). Tat protein 

released from infected cells can induce apoptosis in uninfected bystander T cells (Ma and 

Nath, 1997) or neurons (New et al., 1997) and these cells subsequently become toxic cells 

and can destroy other bystander cells (Campbell and Loret, 2009).  While the present study 

has provided evidence that in vitro exposure of rat synaptosomes to Tat functionally 

regulates DAT function and trafficking, it also indicates potential roles of Tat in dynamic 

regulation of DAT in vivo. Given that Tat can be absorbed by non-infected neurons, our 

results infer that Tat-induced decrease in DAT function and cell surface expression in this in 

vitro model may continue to produce long-term impairments of dopaminergic terminals in in 

vivo models.  Several studies have reported that continued presence of HIV-1 viral proteins 

may be not required for Tat-induced long-term process of neurotoxicity. For example, an 

exposure to Tat for a few minutes was sufficient for sustained releases of cytokines for 

several hours (Nath et al., 1999); following a single intraventricular injection of Tat in rats, 

progressive glial activation and macrophage infiltration could maintain for several days, 
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whereas Tat was undetectable in the brain a few hours after the injection (Jones et al., 1998).  

Further, an exposure of Tat for only milliseconds is adequate to induce prolonged 

depolarization in neurons (Magnuson et al., 1995). Therefore, it is possible that a transient 

exposure to Tat in dopaminergic target proteins, such as DAT, may share a similar “hit and 

run” phenomenon to initiate a cascade of events, leading to progressive neuropathogenesis, 

such as HIV-1 associated dementia (Wang et al., 2004).  

In conclusion, Tat protein exposure led to changes of DAT and VMAT2 function and 

expression in rat striatal synaptosomes. The Tat-induced reduction of DAT uptake function 

is mediated by DAT trafficking- and PKC-dependent mechanisms.  These findings may have 

important implication for preclinical studies of the role of DAT and VMAT-2 in drugs of 

abuse in HIV-1 infected individuals. Future studies will be necessary to investigate how 

DAT interacts with VMAT-2 to promote Tat-induced dysfunction of DA neurotransmission 

and which DAT residues are required for interactions of Tat and DAT.   
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Figure 4.1 PKC inhibition attenuated Tat- and d-amphetamine (AMPH)-induced reduction 
of [3H]DA uptake in rat striatal synaptosomes.  After pre-incubation of synaptosomes with 1 
µM BIM-I for 5 min, Tat (0.7 µM, A) or AMPH (20 µM, B) were added for another 15 min 
and subsequently all reagents were washed off, specific uptake of 5 nM [3H]DA uptake was 
measured.  * P < 0.05 versus Tat or AMPH only.  
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Figure 4.2 Tat protein decreased DAT cell surface expression. Rat striatal synaptosomes 
were incubated with or without Tat (1 µM). Subsequently, total synaptosomal fractions (P2), 
plasma membrane enriched fractions (P3), and vesicle-enriched fractions (P4) were prepared 
for western blot analysis. The same portion of P3 fraction were used in [3H]WIN 35,428 
binding assay (see Figure 4.3).  The levels of DAT immunoreactivity are increased in P4 and 
decreased in P3 without changes in P2 in Tat-exposed samples compared to the respective 
controls. * P < 0.05, paired Student’s t-test. 
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Figure 4.3 Tat protein decreased the specific [3H]WIN35,428 binding in plasma membrane 
enriched fraction. Rat striatal synaptosomes were incubated with or without Tat (1 µM), and 
then total synaptosomal fractions (P2), plasma membrane enriched fractions (P3) and 
vesicle-enriched fractions (P4) were prepared and used for the specific [3H]WIN35,428 
binding. * P <0.05, paired Student’s t-test. 
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Figure 4.4 Inhibitory effects of Tat on synaptosomal [3H]DA uptake and vesicular [3H]DA 
uptake in rat striatum. Rat striatal synaptosomes were preincubated with or without Tat (1 
µM) for 15 min. Drug was then washed off, and specific synaptosomal and vesicular uptake 
of 0.1 µM [3H]DA uptake were measured. Tat inhibited the specific [3H]DA uptake into 
vesicles (A; via VMAT2) and synaptosomes (B; via DAT) by 35% and 26%, respectively, 
compared to the respective control values (*P <0.05, paired Student’s t-test). 
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Figure 4.5 Pharmacological profiles of vesicular [3H]DA uptake in rat striatum in the 
presence of Tat1–86, Tat Cys22, or tetrabenazine (TBZ, a VMAT2 inhibitor).  Striatal 
synaptosomes were preincubated with various concentrations of Tat1–86, Tat Cys22, or TBZ 
(0.1 nM–10 µM) at 34°C for 15 min followed by the addition of [3H]DA (final 
concentration, 0.1 µM) for 8 min. Tat Cys22 and TBZ were used as negative and positive 
controls, respectively.  Data are expressed as mean ± S.E.M. as percentage of control (CON) 
values (28,205 ± 1965 dpm) from five independent experiments performed in duplicate. 
Nonspecific [3H]DA uptake was determined in the presence of 10 µM nomifensine. All 
curves were best fit to a single class of binding site and generated by nonlinear regression. 
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CHAPTER 5 

GENETICALLY EXPRESSED HIV-1 VIRAL PROTEINS ATTENUATE NICOTINE-
INDUCED BEHAVIORAL SENSITIZATION AND ALTER MESOCORTICOLIMBIC ERK 

AND CREB SIGNALING IN RATS3 
 

Abstract: The prevalence of tobacco smoking in HIV-1 positive individuals is 3-fold greater 

than that in the HIV-1 negative population; however, whether HIV-1 viral proteins and 

nicotine together produce molecular changes in mesolimbic structures that mediate 

psychomotor behavior has not been studied.  This study determined whether HIV-1 viral 

proteins changed nicotine-induced behavioral sensitization in HIV-1 transgenic (HIV-1Tg) 

rats. Further, we examined cAMP response element binding protein (CREB) and 

extracellular regulated kinase (ERK1/2) signaling in the prefrontal cortex (PFC), nucleus 

accumbens (NAc) and ventral tegmental area (VTA).  HIV-1Tg rats exhibited a transient 

decrease of activity during habituation, but showed attenuated nicotine (0.35 mg/kg, s.c.)-

induced behavioral sensitization compared to Fisher 344 (F344) rats. The basal levels of 

phosphorylated CREB and ERK2 were lower in the PFC of HIV-1Tg rats, but not in the 

NAc and VTA, relative to the controls. In the nicotine-treated groups, the levels of 

phosphorylated CREB and ERK2 in the PFC were increased in HIV-1Tg rats, but decreased 

in F344 animals. Moreover, repeated nicotine administration reduced phosphorylated ERK2 

in VTA of HIV-1Tg rats and in the NAc of F344 rats, but had no effect on phosphorylated

                                                            
3 Midde NM, Gomez AM, Harrod SB, Zhu J (2011) Genetically expressed HIV-1 viral proteins 
attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB 
signaling in rats. Pharmacology, Biochemistry, and Behavior 98:587-597. PMCID: PMC3091851 
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CREB, indicating a region-specific change of intracellular signaling.  These results 

demonstrate that HIV-1 viral proteins produce differences in basal and nicotine-induced 

alterations in CREB and ERK signaling that may contribute to the alteration in psychomotor 

sensitization.  Thus, HIV-1 positive smokers are possibly more vulnerable to alterations in 

CREB and ERK signaling and this has implications for motivated behavior, including 

tobacco smoking, in HIV-1 individuals who self-administer nicotine.   

5.1 INTRODUCTION  

Tobacco smoking prevalence among HIV-1 positive population is 3-fold greater than 

that in HIV-1 negative population, according to Centers for Disease Control and Prevention 

(2007).  HIV-1 infected patients are more likely to become dependent on nicotine, and less 

likely to quit than HIV-1 negative individuals (Hershberger et al., 2004; Fuster et al., 2009; 

Nahvi and Cooperman, 2009).  There is an increasing body of clinical and experimental 

evidence that tobacco smoking is associated with a more rapid progression to AIDS (Nieman 

et al., 1993; Crothers et al., 2005; Furber et al., 2007; Zhao et al., 2010) and HIV-1 

associated dementia (Burns et al., 1996; Manda et al., 2010).  Considering that the HIV-1 

positive population exhibits a greater risk for tobacco-associated morbidity and mortality 

(Palella et al., 2006; Triant et al., 2007), there is a critical need to define the molecular 

mechanisms underlying the enhanced susceptibility to nicotine dependence in this 

population.    

HIV-1 infection is associated with a variety of neurological impairments that result, 

in part, from the presence of HIV-1 viral proteins, such as Tat and gp120.  Some of the 

neurological deficits caused by these viral proteins reflect an apparent dysfunction of the 

mesocorticolimbic dopamine (DA) system (Nath et al., 1987; Berger and Arendt, 2000; 
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Koutsilieri et al., 2002), the motivation pathway of the brain (Wise and Bozarth, 1987; 

Everitt and Robbins, 2005; Berridge, 2007).  Indeed, long-term viral protein exposure can 

accelerate damage in this DA system (Del Valle et al., 2000; Ferris et al., 2008; Hudson et 

al., 2010; Nath, 2010).  For example, a significant reduction in DA transporter (DAT) 

density in striatum was observed in HIV-1 positive patients (Wang et al., 2004; Chang et al., 

2008), and in vitro Tat and gp120 in vitro decreased the specific [3H]DA uptake in rat 

striatum (Wallace et al., 2006; Zhu et al., 2009).  Importantly, the use of addictive drugs by 

HIV-1 positive individuals results in greater neurological impairments relative to individuals 

who are infected with HIV-1 but do not abuse drugs (Del Valle et al., 2000; Ferris et al., 

2008; Hudson et al., 2010; Nath, 2010).  Furthermore, the mesocorticolimbic DA pathway is 

compromised in HIV-1 positive individuals that exhibit co-morbid drug abuse (Kumar et al., 

2009; Norman et al., 2009; Obermann et al., 2009).  The extent to which HIV-1 related viral 

proteins and drugs of abuse alter motivation in humans is not well understood.    

Our laboratory uses a rodent model to investigate the neurobehavioral and 

neurochemical changes induced by the combination of HIV-1 viral proteins and abused 

drugs.  Several approaches are utilized to study these viral proteins because experimental 

rodents cannot be infected with HIV-1: 1) in vitro exposure to Tat (Zhu et al., 2009), 2) 

direct microinjection of Tat into rat brain (Fitting et al., 2008; Harrod et al., 2008), 3) 

transgenic mice that express Tat protein (Kim et al., 2003; Duncan et al., 2008), and 4) HIV-

1 transgenic (HIV-1Tg) rats, which express HIV-1 viral proteins (Reid et al., 2001).  These 

models mimic different aspects of viral protein-induced neurotoxicity, although none of 

these models fully represent the spectrum of HIV-1 viral protein insult in humans (Nath, 

2010).  We are using the HIV-1Tg model in combination with basic behaviors that are 
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mediated by the mesocorticolimbic system.  This pathway organizes motivated behaviors 

that range various levels of complexity.  For example, psychomotor behavior, such as 

locomotor/exploratory activity, represents the integration of sensory and motor information 

(Wise and Bozarth, 1987; Berridge, 2007), whereas drug maintained responding is a 

combination of Pavlovian and operant conditioning processes (Rescorla, 1991; Robinson and 

Berridge, 2003; Everitt and Robbins, 2005), and is a relatively more complex form of 

motivated behavior.  Insult to this pathway produces significant changes in both types of 

responding (Kelly and Iversen, 1976; Roberts et al., 1977; Fink and Smith, 1980; Joyce and 

Koob, 1981; Koob et al., 1981; Kubos et al., 1987; Corrigall et al., 1992).   

Nicotine activates nicotinic acetylcholine receptors (nAChRs) located throughout the 

mesocorticolimbic DA system, specifically in the prefrontal cortex (PFC), nucleus 

accumbens (NAc) and ventral tegmental area (VTA) (Kita et al., 1992; Panagis and Spyraki, 

1996; Mansvelder et al., 2002; Laviolette and van der Kooy, 2004).  Nicotine increases DA 

levels in the NAc (Nisell et al., 1994b, a), and repeated nicotine treatment induces a 

progressive increase in psychomotor behavior, which represents the initiation of behavioral 

sensitization (Post, 1980; Clarke and Kumar, 1983b, a; Kalivas, 1995).  Accordingly, the 

locomotor stimulant properties of nicotine are blocked by lesion of mesolimbic DA neurons 

(Louis and Clarke, 1998) or by nicotinic receptor antagonists (Clarke and Kumar, 1983b; 

Corrigall et al., 1994).  The behavioral sensitization procedure is sensitive to behavioral 

changes produced by the psychostimulant effects of abused drugs, however, it is not a 

measure of drug reward (Wise and Bozarth, 1987; Robinson and Berridge, 1993; Berridge 

and Robinson, 1998).  This procedure was used in the present experiment to determine 

whether HIV-1 Tg rats exhibited deficits in locomotor sensitization to nicotine.  
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Furthermore,  HIV-1 viral proteins alter dopaminergic pathways that medaite behavioral 

sensitization.  For example, intra-accumbal or striatal Tat rats show decreased DAT activity 

in striatum (Maragos et al., 2002), decreased DA levels (Cass et al., 2003), and attenuated 

behavioral sensitization to cocaine (Harrod et al., 2008).  Moreover, HIV-1Tg rats show 

enhanced behavioral sensitization to methamphetamine (Liu et al., 2009; Kass et al., 2010).  

However, whether the combination of nicotine and HIV-1 viral proteins alters psychomotor 

behavior has not been investigated.        

The extracellular regulated protein kinase (ERK) and its downstream transcriptional 

signaling protein, the cyclic AMP response element-binding protein (CREB), appear critical 

for long-term adaptations in individuals who exhibit drug abuse (Berhow et al., 1996; 

Carlezon et al., 1998; Nestler, 2001; Girault et al., 2007).  ERK is one of the mitogen-

activated protein kinases involved in numerous cellular processes, including long-term 

neuronal plasticity and survival (Hetman and Gozdz, 2004; Subramaniam and Unsicker, 

2010).  Abundant evidence suggests that ERK is an essential component of the signaling 

pathways involved in synaptic plasticity and the long-term effects of drugs of abuse (Berhow 

et al., 1996; Valjent et al., 2006; Girault et al., 2007; Lu et al., 2009).  Two major isoforms of 

ERK, ERK1 and ERK2, are very similar in sequence (Yoon and Seger, 2006), but have 

distinct functions (Lloyd, 2006; Lu et al., 2009).  It has implicated that ERK2 is more 

strikingly changed than ERK1 in the long-term effects of drugs of abuse (Valjent et al., 

2005; Girault et al., 2007; Iniguez et al., 2010).  Moreover, acute nicotine treatment increases 

CREB phosphorylation in the NAc, striatum and VTA (Walters et al., 2005; Jackson et al., 

2009).  Chronic nicotine exposure in mice decreases CREB phosphorylation in the NAc, 

whereas nicotine withdrawal increases CREB phosphorylation in the VTA (Brunzell et al., 
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2003).  In addition, the levels of CREB and phosphorylated CREB are decreased in the 

cortex and amygdala after withdrawal from repeated nicotine administration (Pandey et al., 

2001).  Thus, long-term nicotine exposure leads to neural adaptations in intracellular 

signaling through the changes of ERK and CREB signaling (Brunzell et al., 2003; Brunzell 

et al., 2009; Mineur et al., 2009).  To date, the effects of HIV-1 viral proteins on ERK and 

CREB signaling are unknown. 

It was hypothesized that the combination of HIV-1 viral proteins and nicotine would 

alter nicotine-induced behavioral sensitization, and would also produce changes in the 

expression of intracellular signaling proteins.  To test these hypotheses, HIV-1Tg rats and 

Fischer 344/NHsd (F344) non-transgenic, wild-type control rats were used to determine if 

genetically expressed HIV-1 viral proteins produce altered nicotine-induced behavioral 

sensitization.  To investigate a potential mechanism, the modulation of ERK and CREB 

signaling following repeated nicotine exposure was determined in the PFC, NAc and VTA 

regions of the mesocorticolimbic DA system.  

5.2 MATERIALS AND METHODS  

5.2.1 SUBJECTS 

Male HIV-1Tg Fisher 344/NHsd rats and age-matched male nontransgenic Fisher 

344/NHsd rats were obtained from Harlan Laboratories, Inc. (Indianapolis, IN).  The HIV-

1Tg rat model carries a gag-pol-deleted HIV-1 provirus regulated by the viral promoter 

expressing seven of the nine HIV-1 viral proteins (Reid et al., 2001).  Since the HIV-1Tg rat 

model is developed from F344 strain, F344 rats were used as the control animals.  Rats at 

age of 7-9 weeks arrived in the animal care facilities and were pair housed throughout the 

experiment.  Rodent food (Pro-Lab Rat, Mouse Hamster Chow #3000) and water were 
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provided ad libitum.  The colony was maintained at 21 ± 2 °C, 50 ± 10% relative humidity 

and a 12L:12D cycle with lights on at 0700 h (EST).  The animals were weighed daily.  The 

animals were maintained according to the National Institute of Health (NIH) guidelines in 

AAALAC accredited facilities.  The experimental protocol was approved by the Institutional 

Animal Care and Use Committee (IACUC) at the University of South Carolina. 

5.2.2 DRUGS 

Nicotine hydrogen tartrate salt was purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and dissolved in sterile saline (0.9% sodium chloride).  Nicotine was prepared 

immediately prior to injection.  The nicotine solution was neutralized to pH 7.0 with 

NaHCO3.  Nicotine (0.35 mg/kg, freebase) was administered subcutaneously (s.c.) in a 

volume of 1 ml/kg once daily for 20 days.   

5.2.3 LOCOMOTOR ACTIVITY PROCEDURE 

5.2.3.1 BEHAVIORAL APPARATUS  

The activity monitors were square (40 × 40 cm) locomotor activity chambers 

(Hamilton-Kinder Inc., Poway, CA) that detect free movement of animals by infrared 

photocell interruptions.  This equipment uses an infrared photocell grid (32 emitter/ detector 

pairs) to measure locomotor activity.  The chambers were converted into round (~ 40 cm in 

diameter) compartments by adding clear Plexiglas inserts; photocell emitter/detector pairs 

were tuned by the manufacturer to handle the extra perspex width.  Total horizontal activity 

represents all beam breaks in the horizontal plane.  All activity monitors were located in an 

isolated room.   

5.2.3.2 HABITUATION 

Rats in the HIV-1Tg-Saline (HIV1Tg-Sal; n = 8/group), HIV-1Tg-Nicotine (HIV-

1Tg-Nic; n = 8/group), F344-Saline (F344-Sal; n = 8/group) and the F344-Nicotine (F344-
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Nic; n = 8/group) groups were habituated to the locomotor activity chambers for two 60-min 

sessions, once/day.  No injections were administered on the habituation days.  Twenty four 

hours after the second habituation session, all rats were habituated to the chambers for 30 

min prior to injection, and then injected (s.c.) with saline and placed into the activity 

chambers for 60-min to measure baseline activity. 

5.2.3.3 PRE-INJECTION HABITUATION AND NICOTINE-INDUCED BEHAVIORAL SENSITIZATION  

The behavioral sensitization procedure began 24 hours after the saline baseline 

measurement.  First, all rats received a 30-minute habituation period in the testing chamber 

prior to nicotine (0.35 mg/kg) or saline injection as previously reported (Addy et al., 2007).  

This was done so that the onset of nicotine’s effects did not overlap with the period that rats 

showed the most exploratory behavior in the chamber, which was during the first 15 min.  

Previous research indicates that control rats exhibit asymptotic levels of within-session 

habituation by 20 to 30 min, according to similar procedures and use of the same automated 

chambers (Harrod et al., 2008; Harrod and Van Horn, 2009).  Rats were administered 

nicotine or saline subcutaneously every day for a total of 20 days.  Locomotor activity was 

assessed every other day, i.e., on days 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19, for 60 min.  On 

alternate days, nicotine and saline administered in the home cage.   

5.2.4 WESTERN BLOT ANALYSIS 

Following completion of the behavioral study, brains were removed by rapid 

decapitation 4 hours after the last injection on day 20.  Brains were placed in ice-cold PBS 

and dissected in a chilled matrix.  PFC, NAc and VTA were dissected and immediately 

sonicated on ice in a homogenization buffer containing 20 mM HEPES, 0.5 mM EDTA, 0.1 

mM EGTA, 0.4 M NaCI, 5 mM MgCI2, 20% glycerol, 1 mM PMSF, phosphatase inhibitor 
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cocktails I (Sigma, P2850) and protease inhibitors (Sigma, P8340).  Samples were 

centrifuged at 12000 g for 15 min.  The supernatant was stored at -80°C.   Protein 

concentrations were determined in duplicate using Bio-Rad DC protein detection reagent.  

Proteins (30, 10 or 15 µg per sample in the PFC, NAc or VTA) were loaded for ERK, 

phosphorylated ERK (pERK), CREB, phosphorylated CREB (pCREB) and Tyrosine 

Hydroxylase (TH) immunoreactivity. 

Proteins were separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) for 90 min at 150 V, and subsequently transferred to Immobilon-P transfer 

membranes (Cat # IPVH00010, 0.45 µm pore size; Millipore Co., Bedford, MA) in transfer 

buffer (50 mM Tris, 250 mM glycine, 3.5 mM SDS) using a Mini Trans-Blot Electrophoretic 

Transfer Cell (Bio-Rad, Hercules, CA) for 110 min at 72 V.  Transfer membranes were 

incubated with blocking buffer (5% dry milk powder in PBS containing 0.5% Tween 20) for 

1 h at room temperature followed by incubation with primary antibodies diluted in blocking 

buffer overnight at 4 ºC.  Antisera against ERK½ (V114A, Promega, Madison, WI) and 

pERK½  (SC-16982R, Santa cruz biotechnology, inc, Santa Cruz, CA) were used at a 

dilution of 1:2000 and 1:1000, respectively.  Anti-CREB (9104, Cell signaling, Danvers, 

MA) and anti-pCREB (9196, Cell signaling, Danvers, MA) antibodies were used at a 

dilution of 1:1000 and 1:500, respectively.  Anti-TH (2792) was diluted 1:2000 (Cell 

signaling, Danvers, MA).  Blots were washed 5 min × 5 times with wash buffer (PBS 

containing 0.5% Tween 20) at room temperature, and then incubated for 1 h in affinity-

purified, peroxidase-labeled, anti-rabbit IgG (1:10000 for  ERK½, 1:5000 for pERK½, 

1:20000 for TH, Jackson ImmunoResearch, West Grove, PA) and 1:2000 anti-mouse IgG 

(7076, Bio-Rad, Hercules, CA) in blocking buffer for 1 h at room temperature.  Blots on the 
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transfer membranes were detected using enhanced chemiluminescence and developed on 

Hyperfilm (ECL-plus; Amersham Biosciences UK Ltd., Little Chalfont Buckinghamshire 

UK).  After detection and quantification of these proteins, each blot was stripped in 10% of 

Re-blot plus mild antibody stripping solution (CHEMICON, Temecula, CA) for 20 min at 

room temperature and reprobed for detection of β-tubulin (sc-9104, Santa cruz 

biotechnology, inc, Santa Cruz, CA).  β-tubulin was used to monitor protein loading among 

samples.  Multiple autoradiographs were obtained using different exposure times, and 

immunoreactive bands within the linear range of detection were quantified by densitometric 

scanning using Scion image software (Scion Corp., Frederick, MD).      

5.2.5 DATA ANALYSES 

 The data are presented as mean values ± standard error of the mean (S.E.M.).  In 

order to analyze the effects of nicotine exposure on body weight gain, the body weights of 

the rats were expressed as a percentage of the body weights on the day prior to nicotine 

injection.  The effect of nicotine administration on body weight gain was analyzed with a (2 

× 2 × 20) mixed factorial analysis of variance (ANOVA), with genotype (HIV1-Tg or F344) 

and treatment (nicotine or saline) as the between-subjects factors, and day as the within-

subjects factor.  A genotype × day × time (2 × 2 × 12) mixed factorial ANOVA was used to 

analyze data from the 2 habituation days, and a genotype x time (2 × 12) factorial ANOVA 

was conducted on the saline baseline day.  The pre-injection habituation part of the 

experiment was analyzed using a genotype × treatment × day × time (2 × 2 × 10 × 12) 

ANOVA.  The effect of repeated nicotine injection on total horizontal activity was analyzed 

using a genotype × treatment × day × time (2 × 2 × 10 × 12) factorial ANOVA, with 

genotype and treatment as between-subjects factors, and day and time as within-subjects 
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factors.  To determine the effects of repeated nicotine administration on the activity of 

signaling proteins (ERK, CREB and TH), separate genotype x treatment (2 × 2) factorial 

ANOVAs were performed on the data from the PFC, NAc, and VTA.  Simple effect 

comparisons were made for post hoc analyses.  All statistical analyses were performed using 

SPSS (standard version 18.0, Chicago, IL) and differences were considered significant at p < 

0.05.  

5.3 RESULTS 

5.3.1 EFFECT OF NICOTINE ON BODY WEIGHT 

Daily body weights were analyzed using a genotype × treatment × day ANOVA.  

There were significant main effects of genotype (F(1,28) = 25.71; p < 0.001) and day 

(F(19,532) = 384.28; p < 0.001), indicating that HIV-1Tg rats weighed less than F344 

controls, and that all animals gained weight over days.  Body weight gain across days was 

not different between HIV-1Tg rats and F344 rats (F(19,532) = 1.24; p = 0.22): these groups 

showed 11 and 12% increase in weight gain from day 1 to day 20, respectively (Figure 5.1).     

5.3.2 HABITUATION, PRE-INJECTION HABITUATION, AND NICOTINE-INDUCED LOCOMOTOR 

ACTIVITY IN HIV-1TG AND F344 RATS  

Habituation and Saline Baseline 

Animals were habituated to the chambers for two days, 60 min per day.  The total 

horizontal activity that occurred during the two habituation days is shown on Figures 5.2A 

and 2B.  A genotype × day × time ANOVA (2 × 2 × 12) revealed main effects of day (F(1, 

30) = 55.95, p < 0.001) and time (F(11, 330) = 147.6, p < 0.001), and a significant genotype 

× day × time interaction (F(11, 330) = 2.14, p < 0.05).  Both genotypes showed the most 

activity at the beginning of the habituation session, and the activity decreased over the 30-

min period, and both groups of rats were at asymptote for the remaining 30 min of the 
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session.  HIV-1Tg rats exhibited less locomotor activity than did F344 rats in the first 30 min 

of the first habituation session (p < 0.01 Bonferroni t-test), and this is observed as a 

downward, and leftward shift in the habituation curve (Figure 5.2B).  No significant 

differences in total horizontal activity during second habituation session were detected (Fig. 

5.2B).  On the third day, total horizontal activity was recorded for all groups after a saline 

injection to determine baseline activity prior to the induction of sensitization phase of the 

experiment.  The genotype × time ANOVA revealed a main effect of time (F(11, 330) = 

41.77, p < 0.001), and a genotype × time interaction (F(11, 330) = 2.41, p < 0.05).  No main 

effect of genotype was found.  In general, both genotypes showed lower activity during the 

first 5 min of the saline baseline day, acquired asymptotic levels of activity more quickly, 

and showed a lower asymptote compared to that of the habituation sessions (Fig. 5.2C).  

Within the first 30 min period, the F344 habituation curve crosses and slightly goes below 

that of the HIV-1Tg curve.  The habituation curve crosses again at minute 30, and this was 

observed again at the end of the session within the last 30 min (data not shown).  None of the 

comparisons indicated differences between the HIV-1Tg and F344 rats (all p >.05). 

Pre-injection habituation 

 Animals were placed into locomotor chambers for 30 min prior to the activity 

measurement to produce within-session habituation of activity prior to nicotine or saline 

injection.  Total horizontal activity during the 30 min habituation period across the 19-day 

treatment was recorded and is shown in Figure 5.3A.  A mixed-factor genotype × treatment × 

day × time ANOVA (2 × 2 × 10 × 12) revealed main effects of treatment (F(1, 28) = 4.76, p 

< 0.05), day (F(9, 252) = 9.15, p < 0.05), time (F(5, 140) = 705.56, p < 0.05) and a 

significant day × treatment interaction (F(9, 252) = 2.74, p < 0.01).  There was no main 
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effect of genotype and there were no significant interactions containing this factor.  The 

treatment × day interaction indicates that, regardless of genotype, animals treated with 

nicotine show increased activity during the pre-injection habituation measures as the number 

of habituation/injection days increased.  To test this, activity from the first and last pre-

injection habituation days were compared using a within-subjects comparison of the saline 

(HIV-1Tg Sal and F344 Sal) and nicotine (HIV-1Tg Nic and F344 Nic) treated groups.  The 

saline treated rats showed activity counts of 652.6 (± 39.3) and 586.4 (± 20.3) on days 1 and 

19, respectively; no change in pre-injection habituation activity was observed (F(1, 15) = 

2.6, p > 0.05).  The nicotine treated animals exhibited 640.3 (± 29.9) and 764.6 (± 35.5) 

activity counts on days 1 and 19, respectively, and this increase in locomotor activity during 

pre-injection habituation sessions was significant (F(1, 15) = 25.0, p < 0.001).  These data 

indicate that animals injected with nicotine, but not saline, exhibit a significant increase in 

activity during the pre-injection observation.   

Nicotine-induced behavioral sensitization 

To determine the effect of HIV-1 viral proteins on nicotine-mediated locomotor 

sensitization, we measured horizontal activity following administration of nicotine (0.35 

mg/kg, s.c.) or saline in HIV-1Tg and F344 rats (Fig. 5.3B).  A genotype × treatment × day × 

time ANOVA revealed significant main effects of genotype (F(1, 27) = 4.37, p < 0.05), 

treatment (F(1, 27) = 965.71, p < 0.001), day (F(9, 243) = 23.52, p < 0.001) and time (F(11, 

297) = 536.04, p < 0.001).  A significant treatment × day interaction (F(9, 243) = 37.40, p < 

0.05) was found, indicating that repeated nicotine injection produced behavioral 

sensitization.  Rats treated with saline exhibited decreased activity across treatment days, 

from a mean (±S.E.M.) of 357 (±27) activity counts on day 1, to 245 (±32) on day 19.  
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Nicotine treated rats exhibited 763 (±28) activity counts on day 1, but showed increased 

locomotor counts of 1287 (±33) on day 19.  The genotype × treatment (F(1, 27) = 4.40, p < 

0.05) and genotype × day (F(9, 243) = 2.76, p < 0.05) interactions indicate that genotype 

significantly interacted with the effects of repeated nicotine administration.  The pattern of 

nicotine-induced sensitization was similar for the HIV-1Tg and F344 rats following the first 

ten nicotine injections; however, the nicotine-induced behavioral sensitization was attenuated 

in HIV-1Tg rats compared to F344 rats during treatment days 11-19.  The HIV-1Tg rats 

showed decreased nicotine-induced activity on four of the remaining five nicotine behavioral 

assessments, thus suggesting that transgenic animals do not acquire the same magnitude of 

nicotine-induced behavioral sensitization. 

  A genotype × treatment × day ANOVA was conducted on the first and final 

injection days to determine if HIV-1Tg rats exhibited attenuated nicotine-induced behavioral 

sensitization (Figures. 5.4A and 4B).  There were significant main effects of genotype 

(F(1,28) = 6.27; p < 0.05), treatment (F(1,28) = 192.05; p < 0.001) and day (F(1,28) = 14.97; 

p < 0.01).  A significant genotype × day interaction (F(1,28) = 5.29; p < 0.05) and a 

significant treatment × day interaction (F(1,28) = 40.96; p < 0.001) were found.  On day 1, 

the HIV-1Tg and F344 rats in nicotine-treated groups exhibited more activity than their 

saline controls (p < 0.001; p < 0.001, Bonferroni t-test, respectively).  No differences 

between the HIV-1Tg-Nic and F344-Nic groups were observed (p > 0.05).  Similarly, there 

were no differences between HIV-1Tg-Sal and F344-Sal groups on day 1 (p > 0.05).  On day 

19, HIV-1Tg and F344 rats injected with nicotine displayed greater activity compared to 

their saline controls (p < 0.001), however, both groups showed enhanced activity following 

repeated nicotine injection relative to day 1 (F(1,6) = 136.5;  p< 0.001), and day 19 (F(1,7) = 
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98.8; p < 0.001, respectively).  The HIV-1Tg-Nic group, however, exhibited less locomotor 

activity relative to the F344-Nic group (p < 0.01), suggesting that the HIV-1Tg rats exhibited 

attenuated psychomotor sensitization relative to the F344 rats.   

The time course data from Day 1 and Day 19 are illustrated in Figures 5.4C and 4D.  

Figure 5.4C shows that rats treated with nicotine and saline had the same amount of activity 

in the first five min of the session, and that nicotine injected rats showed more activity than 

did the rats administered saline.  Figure 5.4D, which represents day 19, clearly shows that 

animals treated with nicotine exhibited higher activity counts in the first 5 min relative to the 

saline groups, and although both groups showed within-session habitua-tion, animals in the 

nicotine conditions exhibited higher activity counts throughout the remainder of the hour.  

Furthermore, HIV-1Tg rats treated with nicotine showed less activity than the F344 rats 

treated with nicotine throughout the remainder of the hour measurement.   

5.3.3 LEVELS AND ACTIVITY OF ERK AND CREB SIGNALING PROTEINS IN HIV-1TG AND 

F344 RATS 

To determine whether the nicotine-induced behavioral change is associated with 

mesocorticolimbic DA signaling, we examined the effects of repeated nicotine 

administration on the levels and the phosphorylation state of CREB and ERK in the PFC, 

NAc and VTA from the HIV-1Tg and F344 rats used in the behavioral experiment.   

Prefrontal Cortex (PFC) 

Separate two-way ANOVAs were performed to determine the effect of nicotine on 

the levels and phosphorylation state of the signaling proteins.  As shown in Figure 5.5, no 

significant differences in total CREB, ERK1, ERK2 and TH were found in the PFC among 

the groups.  With respect to the ratio of pCREB /β-tubulin, a main effect of genotype (F(1, 

27) = 4.34, p < 0.05) and a significant genotype × treatment interaction (F(1, 27) = 9.47, p < 
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0.05) were found.  Post hoc analysis revealed that the ratio of pCREB /β-tubulin was lower 

in the HIV-1Tg rats than that in the F344 rats in saline-control groups (F(1, 13) = 5.64, p < 

0.05).  The level of pCREB was greater in the nicotine-treated HIV-1Tg group than that in 

the saline-treated HIV-1Tg group (F(1, 13) = 4.69, p < 0.05).  In contrast, pCREB levels 

were decreased in the nicotine-treated F344 group compared to the saline-treated F344 group 

(F(1, 13) = 4.31, p < 0.05).   

With respect to the ratio of pERK2/β-tubulin in the PFC, a main effect of genotype 

(F(1, 27) = 4.32, p < 0.05) and a significant genotype × treatment interaction were found 

(F(1, 27) = 8.81, p < 0.05).  Post hoc analysis revealed that the ratio of pERK2/β-tubulin in 

the PFC was lower in HIV-1Tg rats than that in F344 rats in saline-treated group (F(1, 13) = 

13.2, p < 0.05).  Nicotine increased the ratio in HIV-1Tg rats compared to the saline-treated 

group (F(1, 13) = 6.64, p < 0.05).  There was a trend toward a decrease in the ratio of 

pERK2/β-tubulin in F344 rats after repeated nicotine injection (F(1,13) = 3.31; p = 0.07).  

The ratio of pERK2/β-tubulin was greater in HIV-1Tg-Nic group than that in F344-Nic 

group (p < 0.05).   

Nucleus Accumbens (NAc) 

There were no changes in total and phosphorylated CREB, in total ERK and pERK1, 

or in the levels of TH observed in NAc of HIV-1Tg and F344 rats following nicotine or 

saline injection.  With respect to ratio of pERK2/β-tubulin, the two-way ANOVA revealed a 

significant main effect of treatment (F(1, 27) = 5.31, p < 0.05), but neither the main effect of 

genotype nor the genotype × treatment interaction was significant (Fig. 5.6).  Repeated 

nicotine administration decreased the ratio of pERK2/β-tubulin in F344 rats (F(1, 14) = 7.05, 

p < 0.05), but not in the HIV-1Tg rats (F(1.14) = 0.51, p > 0.05). 
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Ventral Tegmental Area (VTA)  

There was no change in total and phosphorylated ERK and CREB, or in the levels of TH 

observed in the VTA following nicotine administration.  Regarding the ratio of pERK2/β-

tubulin, two-way ANOVA revealed a significant main effect of treatment (F(1, 27) = 4.45, p 

< 0.05), but neither the main effect of genotype nor the genotype × treatment interaction was 

not significant (Fig. 5.7).  Repeated nicotine administration produced a decreased ratio of 

pERK2/β-tubulin in HIV-1Tg rats (F(1, 14) = 6.74, p < 0.05), but not in the F344 rats 

(F(1.14) = 0.34, p > 0.05).   

5.4 DISCUSSION 

The present findings demonstrate that genetically expressed HIV-1 viral proteins alter 

the sensitivity of the locomotor effects of repeated nicotine administration.  HIV-1Tg rats 

exhibited diminished locomotor activity during habituation to a novel context and showed an 

attenuation of nicotine-induced behavioral sensitization.  Importantly, the basal levels of 

pCREB and pERK2 in the PFC were lower in the HIV-1Tg saline group compared to F344 

saline controls.  Following repeated nicotine administration, the levels of pCREB and 

pERK2 in PFC were decreased in F344 rats, but increased in HIV-1Tg rats, suggesting 

opposite effects of nicotine on these phosphorylated signaling proteins.  In addition, repeated 

nicotine administration decreased pERK2 levels in the NAc of F344 rats and this effect was 

also observed in the VTA of HIV-1Tg rats.  Thus, HIV-1 viral protein-induced alterations in 

the CREB and ERK signaling pathway in the mesocorticolimbic DA system appear to have 

played a role in the locomotor effects of repeated nicotine in HIV-1Tg rats.     

Regarding the behavioral portion of the experiment, we observed that HIV-1Tg rats 

exhibited alterations in locomotor activity during both the habituation and behavioral 
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sensitization phases of the experiment.  First, the transgenic rats showed less activity during 

day 1 of habituation compared to F344 rats, indicating that the novelty of the initial context 

exposure produced less activity in the transgenics relative to control rats.  This difference in 

habituation between the HIV-1Tg and F344 rats was transient, as the transgenic rats did not 

continue to exhibit the blunted locomotor response, relative to F344 controls, on either day 2 

of habituation or on the saline baseline measure.  A recent study reported HIV-1Tg rats 

exhibited less rearing and head movement activity compared to F344 rats following repeated 

saline injections (Liu et al., 2009), but these differences did not reach significance in another 

report (Kass et al., 2010).  The lower baseline activity exhibited by HIV-1Tg rats in the 

present study and reported by Liu et al. (2009) appear to be the result of manipulation of 

dopaminergic system by genetically expressed viral proteins (Fink and Smith, 1980).  

Indeed, HIV-1Tg rats exhibited increased expression of D1 receptors in the PFC (Liu et al., 

2009) and a decrease in DAT mRNA (Webb et al., 2010).  These studies are consistent with 

clinical studies showing a significant reduction of DAT density in the putamen and ventral 

striatum in HIV-1 infected patients (Wang et al., 2004; Chang et al., 2008).  In addition, D1 

expression has been reported to be negatively correlated with baseline locomotor activity 

observed in D1 receptor-deficient mice (El-Ghundi et al., 2010).  Thus, our behavioral data 

indicate that the attenuated habituation curve in HIV-1Tg rats is related to neural adaptations 

produced by HIV-1 viral proteins, and that this transient effect represents an attenuation of 

activity in response to the novelty of the locomotor activity chambers.  

The induction of nicotine-induced behavioral sensitization was altered in transgenic 

rats as well.  In this study, enhanced locomotor activity was observed in both genotypes 

across days following repeated nicotine administration.  Although no difference in acute 
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nicotine-induced activity between the two genotypes was observed on day 1, the HIV-1Tg 

group displayed reduced nicotine-induced locomotor activity during the later days, i.e., 13-

19, relative to the nicotine-treated F344 group.  Thus, although transgenic rats showed a 

blunted response to repeated nicotine exposure during the induction of sensitization, those 

animals did not exhibit a deficit in developing behavioral sensitization.  Rather, HIV-1Tg 

rats exhibited less sensitivity to the repeated effects of nicotine, and this deficit may 

contribute to an alteration in nAChR-mediated dopamine neurotransmission.  In accord with 

these behavioral data, we recently found that HIV-1Tg rats had lower IC50 values for 

[3H]nicotine binding with 5-fold rightward shift of the nicotine concentration curve, 

compared to F344 controls (unpublished data).  Similarly, previous research showed that 

intra-accumbal Tat infusion attenuated cocaine-induced behavioral sensitization in rats 

(Harrod et al., 2008), suggesting that the viral protein Tat is involved in the altered 

behavioral response to psychostimulant drugs.  Together, the results indicate that the HIV-

1Tg rats are a pertinent model to investigate how chronic exposure to viral proteins and 

nicotine alter dopaminergic pathways that mediate motivated behavior.   

Notably, although behavioral sensitization is a sensitive measure for the influence of 

psychostimulants on the mesocorticolimbic system (Berridge, 2007), it does not measure 

drug reward.  Thus, predictions regarding cigarette smoking in HIV-1 positive individuals 

are limited.  Given that two behavioral models of viral protein exposure produced diminished 

psychostimulant-induced behavioral sensitization (Harrod et al., 2008), it is suggested that 

cigarette smoking by HIV-1 positive individuals will produce alterations in motivated 

behavior due to the interplay of nicotine exposure and HIV viral proteins within the 

mesocorticolimbic DA system.   
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Previous research suggests the possibility that the sensitization of one type of 

behavior, like rearing, could result in the decrease of another behavior, such as horizontal 

activity (Iwamoto, 1984; Jerome and Sanberg, 1987; Ksir, 1994; Reid et al., 1998).  That the 

attenuation of total horizontal activity exhibited by the HIV-1Tg rats was diminished in 

response to the emergence of a competing behavior like rearing or stereotypy, however, is 

not likely.  First, our automated activity chambers measure rearing as all beam breaks in the 

vertical plane.  In the present experiment, there were no effects or interactions with the factor 

of genotype so the data are not shown; however, animals progressively exhibited 

sensitization and both genotypes showed asymptotic levels by day 7.  Thus, rearing did not 

emerge on days 11-19, which corresponds to the treatment days that transgenic rats exhibited 

less nicotine-induced total horizontal activity.  Although nicotine-induced sensitization of 

stereotypy has been reported (Reid et al., 1998), it is not a consistent finding (Jerome and 

Sanberg, 1987; Ksir, 1994; Harrod et al., 2004; Harrod et al., 2008).  We did not use 

observational procedures in the present experiment, so the levels of nicotine-induced 

stereotypy were not determined.  Our previous studies, which used a combination of 

automated and observational procedures, show that repeated nicotine or cocaine injection 

induced sensitization of horizontal activity and rearing incidence, but not of stereotypy 

(Harrod et al., 2004; Harrod et al., 2008).  It is unlikely that the attenuation of total horizontal 

activity observed for the HIV-1Tg rats is attributable to an emergence of stereotypic 

behavior. 

The present results show that animals injected with nicotine, regardless of genotype, 

exhibited increased locomotor activity during pre-injection habituation, which was 

particularly evident on days 13-15.  Rats in the saline control groups showed steady activity 
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across the 19 day period.  The increase in activity in the nicotine treated groups likely 

represents drug-induced conditioned hyperactivity, which is well documented to be mediated 

by Pavlovian conditioning processes (Anagnostaras and Robinson, 1996; Bevins and 

Palmatier, 2003).  Repeated psychostimulant injection within the same context allows for 

contextual cues to function as a conditional stimulus, and the drug effect, e.g., hyperactivity, 

to act as an unconditional stimulus (Anagnostaras and Robinson, 1996).  In the present 

experiment, repeated context-nicotine pairings support the standard associative model 

described above, and exposure to the chamber prior to daily drug injection represents 

presentation of the conditional stimulus, or the context alone, without the influence of the 

unconditional stimulus.  Our results indicate that after being placed in the context, 

hyperactivity, which is similar to the unconditional stimulus effects of repeated nicotine, was 

observed and there were no effects of genotype on this effect.   

The second part of the experiment determined levels of transcriptional factors 

throughout the mesocorticolimbic DA system in nicotine sensitized HIV-1 rats relative to 

F344 controls.  First, HIV-1Tg-saline rats exhibited lower basal levels of pCREB and 

pERK2 in the PFC, but not in the VTA or NAc, compared to F344-saline controls.  These 

findings suggest that viral proteins produced a neurobiological adaptation in ERK and CREB 

signaling in the PFC.  The observed changes in signaling have implications for the 

functionality of the mesocorticolimbic DA system.  For example, neuronal firing elicits ERK 

activity in the brain of rats (Davis et al., 2000; Thiels et al., 2002; Ying et al., 2002), whereas 

blocking ERK activity decreases the firing rate of DA neurons (Iniguez et al., 2010).  

Increased tonic release of DA enhances ERK activity, which is attenuated in DA D1 receptor 

mutant mice (Chen and Xu, 2010).  Further, deletion of DA D1 receptors in mice produces 
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higher pCREB levels in the striatum (El-Ghundi et al., 2010), suggesting that CREB 

phosphorylation is stimulated by DA D1 receptor activation.  ERK activation is coupled to 

activation of CREB (Nakayama et al., 2001; Ying et al., 2002) and, in turn, supports adaptive 

processes such as long-term potentiation and psychostimulant-induced sensitization (Ying et 

al., 2002; DiRocco et al., 2009).  It has been reported that Tat, gp120 and other viral proteins 

have higher expression in the PFC compared to other brain regions of HIV-1Tg rats (Peng et 

al., 2010).  Thus, the lower basal levels of pERK2 and pCREB could contribute to the 

differences in DA D1 receptor expression that was previously reported between HIV-1Tg 

rats and the F344 controls (Liu et al., 2009).  Moreover, although the regional high 

expression of these viral proteins may contribute to the PFC-specific changes of pERK2 and 

pCREB, it is also possible that these signaling proteins in PFC are more sensitive to HIV-1 

viral protein insult.  Together, the molecular data show that the basal levels of particular 

transcriptional factors, which are implicated in the regulation of mesocorticolimbic function, 

are altered in HIV-1Tg animals.    

  Repeated nicotine administration significantly decreased pCREB in the PFC of 

F344-nicoitne rats compared to F344-saline group.  Although delivering chronic nicotine 

through drinking water increased the ratio of pCREB/CREB in the PFC in C57BI/6J mice 

(Brunzell et al., 2003),  another report showed that the levels of CREB and pCREB were 

decreased in the cortex of rats 18 h after withdrawal from repeated administration of 2 mg/kg 

of nicotine (Pandey et al., 2001).  Thus, nicotine-mediated regulation of CREB activity is 

largely dependent on the species, dosage, route of administration, and the time needed to 

harvest brains (Pandey et al., 2001; Brunzell et al., 2003).  The current results show that 

repeated nicotine increased pCREB in cortical tissue of HIV-1Tg rats, with no change in 
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CREB.  This finding is interesting for two reasons.  First, F344 rats exhibited decreased 

pCREB following repeated nicotine administration, and second, the nicotine-induced 

increase in pCREB occurred despite lower basal levels of this transcription factor in HIV-

1Tg rats relative to F344 controls.  This suggests that the processes that mediate the lower 

basal levels of pCREB in the transgenic rats do not prevent repeated nicotine from regulating 

CREB signaling.  Rather, the current results suggest that nicotine and HIV-1 viral proteins 

act synergistically to alter CREB signaling in the PFC.  Decreased CREB activity is 

associated with an increase in drug reward and food preference (Carlezon et al., 1998).  In 

general, this suggests that an aberrant decrease in CREB activity, as is shown in the present 

experiment, may negatively impact normal function of the mesocorticolimbic DA system.  

Determining if PFC CREB activity is also implicated in the reduced rate of nicotine-induced 

reward in HIV-1Tg rats is of future interest.   

  Regarding the ERK experiments, we observed significant alterations in pERK2 

levels in the PFC, NAc, and VTA with no change in ERK1, ERK2, or pERK1 in either HIV-

1Tg or F344 rats.  Notably, the overall levels of pERK2 in the PFC were similar to those 

changes observed with pCREB in the PFC.  Basal levels of pERK2 from the HIV-1Tg-Saline 

rats were lower than that of the F344-Saline rats, which indicates that the presence of viral 

proteins reduces pERK2 in the PFC.  Following repeated nicotine injection, F344 animals 

exhibited a trend for decreased pERK2 relative to F344-Saline rats, whereas HIV-1Tg 

showed increased pERK2 relative to their saline controls.  Regarding the VTA, basal pERK2 

levels did not differ by genotype in the saline control group, but repeated nicotine decreased 

this transcriptional factor in HIV-1Tg rats relative to the saline controls.  In the NAc, 

however, there were no differences between levels of pERK2 in the HIV-1Tg-Nic and HIV-
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1Tg-Saline rats, but the nicotine sensitized F344 rats exhibited decreased pERK2 relative to 

controls.  This is consistent with the diminished pCREB levels observed in the PFC of HIV-

1Tg rats, and this result indicates that viral proteins manipulate ERK signaling in a region 

specific manner.    

Our results suggest that viral protein-induced changes in ERK phosphorylation may 

exacerbate the plasticity related to the magnitude of the attenuated nicotine-induced 

sensitization observed in the behavioral part of our experiment.  This conclusion is supported 

by recent reports (Valjent et al., 2005; Valjent et al., 2006; Girault et al., 2007; Iniguez et al., 

2010).  For example, blocking ERK1/2 activity by SL327, a selective inhibitor of mitogen-

activated protein kinase, prevented the induction of locomotion sensitization by repeated 

injection of cocaine or amphetamine (Valjent et al., 2005; Valjent et al., 2006).  Further, 

discrete manipulation of ERK2 within the VTA, using viral-mediated dominant negative 

mutant of ERK2, blunted the expression of cocaine-induced behavioral sensitization (Iniguez 

et al., 2010).  The current findings suggest that low levels of prefrontal pERK2 may 

contribute to the blunted nicotine-induced locomotor activity observed in transgenic rats.  

Thus, the present study provides evidence that HIV-1 viral proteins impair ERK signaling, 

thereby contributing to the long-term behavioral changes induced by repeated nicotine.  

Additional research is needed to elucidate the role of HIV-1 viral proteins on ERK and 

CREB signaling in the PFC on nicotine reward.  As mentioned above, whether the combined 

effects of nicotine and HIV-1 viral proteins alter the rewarding effects of nicotine cannot be 

inferred from the present experiment.  Nonetheless, these findings further indicate that HIV-

1 positive individuals who smoke cigarettes may experience a synergistic effect of viral 

proteins and nicotine on transcriptional factors that regulate mesocorticolimbic function.  
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   The current study found no differences in basal TH levels regardless of region or 

genotype, which is consistent with the findings of a recent report showing no change in 

protein levels of TH in the striatum of naive HIV-1Tg rats (Webb et al., 2010).  Notably, 

regardless of the nicotine-induced changes in pCREB and pERK in the PFC, repeated 

nicotine injection did not alter the level of TH in any region.  This is in contrast to the 

findings of Brunzell et al. who reported that chronic nicotine exposure in drinking water 

increased TH levels in the PFC in mice 1.5 h after the last nicotine injection; an increase that 

returned to normal levels 24 h after withdrawal (Brunzell et al., 2003).  The discrepant 

findings between the current and previous experiments may be related to differences in 

species and in the route of nicotine administration.  However, a recent report showed that in 

vitro exposure to nicotine only increased TH mRNA levels of mouse midbrain slices within 

1 hour, but did not change TH protein for different periods of time up to 48 hours (Radcliffe 

et al., 2009).  Hence, it is possible that nicotine stimulation transiently changes 

transcriptional TH levels, without changing the protein levels of TH. 

In conclusion, the current results suggest that genetically expressed HIV-1 viral 

proteins in rats diminish basal expression levels of pERK2 and pCREB in the PFC, which 

may explain, at least in part, the low baseline locomotor activity of HIV-1Tg rats.  The 

opposite effects of nicotine on pERK2 and pCREB in the PFC between HIV-1Tg rats and 

F344 rats may play a role in the blunted locomotor response to repeated administration of 

nicotine noted in HIV-1Tg rats.  Determining how HIV-1 viral proteins and nicotine 

influence ERK and CREB signaling in the mesocorticolimbic system will be important to 

understand why HIV-1 positive individuals exhibit increased vulnerability for nicotine 

addiction.   
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Figure 5.1 Body weights of HIV-1Tg and F344 rats during the nicotine or saline treatment 
period.  Beginning at 12 weeks of age, rats were injected subcutaneously with nicotine or 
saline prior to locomotor measurement.  Data are presented as the mean ± S.E.M.  n=8 rats 
per group. 
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Figure 5.2 The time-course data during the habituation and the saline baseline sessions.  Panels A and B show the total horizontal activity 
(mean ± S.E.M.) during the first 30 min of the habituation period.  Panel C shows the total horizontal activity (mean ± S.E.M.) across the 
first 30 min of the session following saline injection.  * p < 0.05, difference between HIV-1Tg and F344 rats at the corresponding time 
interval.  n=8 rats per group. 
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Figure 5.3 The time-course data during the behavioral sensitization phase. HIV-1Tg and F344 rats were administered nicotine (Nic; 0.35 
mg/kg; s.c.) or saline (Sal) on Days 1-19.  Panel A shows the total horizontal activity (mean ± S.E.M.) during the 30 min pre-injection 
habituation period.  Panel B shows the total horizontal activity (mean ± S.E.M.) during 60 min following nicotine or saline injection.  n=8 
rats per group.  
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Figure 5.4 The time-course data for total horizontal activity during day 1 and day 19 of the 
behavioral sensitization phase.  Panels A and B show the total horizontal activity (mean ± 
S.E.M.) across the 60-min session.  Panels C and D show the time course of the total 
horizontal activity (mean ± S.E.M.) during each 5-min time interval.  * p < 0.05 difference 
between HIV-1Tg and F344 rats.  # p < 0.05 difference between nicotine- and saline-
treatment group.  n=8 rats per group.  
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Figure 5.5 Levels of ERK, CREB and TH proteins in the PFC in HIV-1Tg and F344 rats. 
(A) Representative western blots showing the protein density of CREB, pCREB, ERK1/2, 
pERK1/2, TH and β-tubulin in nicotine or saline treated HIV-1Tg (HIV-1Tg-Nic, HIV-1Tg-
Sal) and F344 rats (F344-Nic, F344-Sal). (B) Total and phosphorylated protein levels of 
ERK1, ERK2 and CREB along with levels of TH after chronic nicotine or saline injection.  
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Ratios are presented as the mean percentage of β-tubulin ± S.E.M.  * p < 0.05 difference 
between HIV-1Tg and F344 rats.  # p < 0.05 difference between the nicotine- and saline-
treatment groups. n=8 rats per group.      
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Figure 5.6 Levels of ERK, CREB and TH proteins in the NAc in HIV-1Tg and F344 rats. 
(A) Representative western blots showing the protein density of CREB, pCREB, ERK1/2, 
pERK1/2, TH and β-tubulin in the nicotine or saline treated HIV-1Tg (HIV-1Tg-Nic, HIV-
1Tg-Sal) and F344 rats (F344-Nic, F344-Sal). (B) Total and phosphorylated protein levels of 
ERK1, ERK2 and CREB along with levels of TH after chronic nicotine or saline injection.  
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Ratios are presented as the mean percentage of β-tubulin ± S.E.M.  # p < 0.05 difference 
between the nicotine- and saline-treatment groups. n=8 rats per group.      

 

 

 

 

 

 

  



 

157 
 

VTA 

 

0.0

0.5

1.0

1.5

2.0

HIV-1Tg-Sal HIV-1Tg-Nic F344-Sal F344-Nic

CREB  pCREB   ERK1  ERK2    pERK1  pERK2     TH

#

B

R
at

io
(s

ig
n

a
lin

g
 p

ro
te

in
:

-t
u

b
u

lin
)

 

Figure 5.7 Levels of ERK, CREB and TH proteins in the VTA in HIV-1Tg and F344 rats. 
(A) Representative western blots showing the protein density of CREB, pCREB, ERK1/2, 
pERK1/2, TH and β-tubulin in the nicotine or saline treated HIV-1Tg (HIV-1Tg-Nic, HIV-
1Tg-Sal) and F344 rats (F344-Nic, F344-Sal). (B) Total and phosphorylated protein levels of 
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ERK1, ERK2 and CREB along with levels of TH after chronic nicotine or saline injection.  
Ratios are expressed as the mean percentage of β-tubulin ± S.E.M.  # p < 0.05 difference 
between the nicotine- and saline-treatment group.  n=8 rats per group. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

6.1 SUMMARY AND CONCLUSIONS 

Increasing evidence suggest that the alarming rise in HIV-1 associated 

neurocognitive disorder is, at least in part, associated with HIV-1 viral proteins shed from 

infected macrophages/microglia, including the nonstructural viral protein Tat, despite the 

success of anti-retroviral therapies. Tat enhances extra synaptic DA levels by inhibiting 

DAT, and the concerted effects of Tat and cocaine escalate the severity and amelioration of 

the HAND. In order to develop adjunctive therapies that can stabilize the altered DA system 

in the HIV-1 positive brains, it is crucial to understand the underlying mechanism for Tat 

inhibitory effects on DAT function. The research described in this dissertation focused on 

addressing the central hypothesis- ‘HIV-1 Tat protein via allosteric modulation of DAT 

induces inhibition of DA transport, leading to dysfunction of the DA system’. This chapter 

summarizes the findings that were presented in earlier chapters with the following 

subheadings: (1) protein-protein interactions between Tat and DAT, (2) molecular dynamics 

simulated structure of HIV-1 Tat and DAT binding complex, (3) mutational analysis of DAT 

residues involved in HIV-1 Tat-DAT binding complex, (4) effect of HIV-1 Tat protein on 

trafficking dependent regulation of DAT, (5) effect of HIV-1 Tat protein on VMAT2 

function, and (6) released Tat is more potent than synthetic Tat. Finally, the chapter 

concludes with the proposed model for HIV-1 Tat protein effects on DAT and VMAT2 
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functions, and future directions for this work. 

PROTEIN-PROTEIN INTERACTIONS BETWEEN TAT AND DAT 

The preliminary evidence for protein-protein interaction between Tat and DAT 

comes from Zhu et al. (2009), using a biophysical technique, surface plasmon resonance. 

This real time measurement using immobilized membranes that overexpress hDAT-GFP 

revealed that the transporter interacts with Tat protein but not with Tat Cys22. This proposed 

biomolecular interaction was further strengthened by the lack of inhibitory effects of Tat 

mutant proteins Tat∆31-61 and Tat Cys 22 on DA transport. However, there is lack of evidence 

for this protein-protein interaction from a biochemical perspective. In the current dissertation 

work, I addressed this gap by performing Co-IP and GST-pull down assays to confirm the 

direct interaction between Tat and DAT proteins (Chapter 2) (Midde et al., 2013). In Chapter 

2, it was shown that recombinant Tat protein can immuneprecipitate DAT from the rat 

striatal synaptosomes and Glutathione S-transferases (GST)-tagged Tat protein was able to 

pull-down DAT (Figure 2.1B and C). Taken together, these results strongly support that Tat-

mediated inhibitory effect on DAT function is triggered by a protein-protein interaction 

between these two proteins.    

MOLECULAR DYNAMICS SIMULATED STRUCTURE OF HIV-1 TAT AND DAT BINDING COMPLEX 

The above described experimental evidence provides a strong base to further evaluate 

the mechanism of Tat binding and to predict molecular determinants for DAT and Tat 

interaction. Binding structure of DAT-Tat-DA-Cocaine was constructed  based on the 

crystallized structure of the leucine transporter (Yamashita et al., 2005) – the bacterial 

homolog of NSS family proteins, modeling studies of DA substrate and inhibitor cocaine 

binding to DAT (Huang and Zhan, 2007; Beuming et al., 2008; Huang et al., 2009), and 
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nuclear magnetic resonance structure of Tat (Peloponese et al., 2000). As displayed in Figure 

2.1C (Chapter 2) and Figure 6.1, the proposed binding of Tat protein at the substrate entry 

tunnel region through electrostatic inter-molecular interactions does not directly interfere 

with DA binding sites. However, the cocaine binding site is located inside the substrate 

transport path in the vicinity of DA binding site, and cocaine binding has a direct impact on 

affinity and transport kinetics of substrate.  

According to the most embraced model, the alternating access model of Jardetzky 

(1966), the substrate binding site is only available to either side of membrane surface at a 

given time during the DA translocation process. This model proposes that the transporter 

exists primarily in an outward facing conformation and stabilization of this conformation 

require a network of intra-molecular interactions. Binding of substrate, two Na+ and one Cl- 

ions trigger allosteric rearrangements of the transporter to the inward facing conformation 

followed by initiation of substrate release into the intracellular milieu. A schematic showing 

the outward open state structure of DAT is depicted in Figure 3.3A and B (Chapter 3). 

According to this model and Singh et al. (2008), residues located in TM1b (TM, 

transmembrane) and TM6a helices are highly required for conformational transitions during 

functional DA translocation. These two helices move as group to the inner side of transporter 

during conversion from outward-open to inward-open state of DAT. TM1b and TM6a 

involve in a direct interaction with TM11 and EL4 (EL, extracellular) helices. As part of 

extracellular gating creation Arg85 and Asp476 form a salt-bridge (joint hydrogen and ionic 

interactions), which drives EL6 to stabilize the TM10 by hydrophobic interaction with 

Tyr470. Tyr470 is critical to overcome the impermeable barrier of conformational alterations 

between outward-open and outward-occluded state. Furthermore, this salt-bridging enhances 
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the flexibility of TM1b for easy movement than TM6a. As a result salt-bridge between 

Lys92 and Asp313 play an essential role for synchronizing motion of TM1b and TM6a. 

Thus, residues Tyr88, Lys92 and Asp313 support to stabilize TM1b and TM6a through 

hydrophobic or electrostatic intra-molecular interactions, and Tyr470 is the key residue in 

the hydrophobic core of the central cavity of the plasma membrane. 

Molecular modeling and molecular dynamics simulations predict the plausible 

interaction of Tat protein with DAT as presented in Figure 3.2 (Chapter 3). According to this 

model, the aromatic ring of Tyr470 of DAT interacts with the amino terminal of Met1 of Tat 

through cation-π interaction. Hydroxyl group of Tyr88 of DAT participates in hydrogen 

bond attractions with ε-amino group of Tat Lys19. Besides, the side chain of Lys92 of DAT 

forms hydrogen bond with carbonyl group of main chain of Pro18 of Tat protein. This initial 

binding structure of Tat and DAT binding complex demonstrates that Tat molecule is 

associated with DAT through inter molecular electrostatic attractions and complementary 

hydrophobic interactions.  

MUTATIONAL ANALYSIS OF DAT RESIDUES INVOLVED IN HIV-1 TAT-DAT BINDING COMPLEX 

As described above, DAT residues that are involved in favorable inter-molecular 

interaction with Tat are part of the conformational stabilizing network that is critical for 

smooth conformational transitions during DA transport cycle. Consequently, mutation of 

these residues may cause alterations in the conformation of the transporter that will 

manipulate affinity and kinetics of DA transporting process. The research shown in this 

dissertation uses a systemic mutagenesis approach to define the predicted binding sites in 

DAT for Tat binding. As a proof of concept, initially Y470H mutant was generated in DAT 

with the expectation that Y470H disrupts critical cation-π interaction required for Tat 
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binding (Chapter 2) (Midde et al., 2013). In Y470H mutant, the effect of recombinant Tat1-86 

on DA uptake was attenuated compared to 38% decrease in WT-hDAT transfected cells that 

are exposed to Tat1-86, suggesting the antagonistic nature of Tat to inhibit transporter function 

through direct interaction with Tyr470 of hDAT (Figure 2.4). As our hypothesis regarding 

role of Tyr470 in Tat interaction with DAT was verified to be correct, additional 

substitutions at 470 – Y470F, Y470A and mutation of other predicted residues such as Tyr88 

and Lys92 of DAT would be expected to show similar attenuation in response to Tat 

treatment (Chapter 3). Indeed, all other mutants exhibited similar diminution in Tat-induced 

inhibition of DA uptake except Y470F (Figure 3.5) emphasizing the importance of aromatic 

ring of Tyr470 in Tat binding with DAT, and the involvement of Y88 and K92 in Tat and 

DAT interaction. Thus, these observations further confirm our prediction that Tyr470, Tyr88 

and Lys92 are part of the critical network that is required for DA transport and Tat reduces 

the transporter efficiency by altering the conformation of the transporter by interacting with 

these residues.  

Pharmacological characterization revealed that Y470H and K92M mutations were 

not only accompanied by decreased Vmax with no noticeable change in Km for DA uptake, 

but also by significant increase in apparent affinities (IC50) for inhibitors (Chapter 2 and 3). 

Whereas the apparent affinity for substrate DA was not significantly different from WT, the 

apparent affinities for cocaine and GBR12909 inhibitors were significantly increased to 

inhibit [3H]DA uptake (Table 2.1 and 3.1). These results indicate that Tat binding sites do 

not overlap with the binding sites of substrate DA and do not influence the affinity for DA 

uptake. However, increased apparent inhibitor affinities suggest the direct involvement of 

Tat binding sites with cocaine binding. This close proximity of Tat and cocaine binding sites 
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was further supported by Tat-induced decrease in Bmax for [3H]WIN35,428 binding (Chapter 

3, Table 3.2 and (Zhu et al., 2009)).  These observations are in line with previous report 

demonstrating that Tat protein allosterically interacts with the transporter and modulates 

cocaine binding sites (Zhu et al., 2011). In addition, Y88F and K92M mutants displayed 

decreased IC50 values for cocaine and GBR12909 to inhibit [3H]WIN35,428 binding, a 

structural derivative of cocaine. Cocaine and GBR12909 belong to different DAT inhibitor 

classes that are structurally distinct and label different binding sites on the transporter. 

Furthermore, substantial evidence indicate that inhibitor binding require a specific 

conformational state of the DAT and cocaine –like compounds prefer the outward facing 

conformation (Reith et al., 2001; Schmitt et al., 2013). It is interesting to note that mutants 

increased both cocaine and GBR12909 apparent affinities similarly but with varying degrees 

of impact. One possible explanation for this variability is that Tat-mediated allosteric effects 

cause subtle conformational alterations in the transporter which consequently enhances DA 

uptake potencies for cocaine. An alternative possibility is that GBR12909 can bind to several 

conformations or is less dependent on conformation of the DAT (Schmitt and Reith, 2011). 

Nevertheless, these inferences underscore the importance of extensive characterization of 

predicted Tat recognition residues before concluding the influence of Tat binding on 

inhibitors affinities. Taken together, it is evident that Tat through allosteric modulation of 

transporter function escalates the inhibitory action of cocaine on DA translocation.   

To explore the molecular basis for mutants altered pharmacological properties and 

thereby to substantiate our hypothesis that Tat down regulates DAT function through 

allosteric regulation, this research employed DA uptake and WIN35,428 binding studies in 

the presence of zinc, a noncompetitive DAT inhibitor  that blocks the DA uptake but 
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potentiates WIN35,428 binding by stabilizing the transporter in the outward facing state 

(Norregaard et al., 1998; Loland et al., 2003). Ample evidence indicates that specific 

conformational effects in DAT that differ in response to bound ligand or mutations can be 

investigated by Zn2+. In the presence of zinc, the uptake ability in Y470H was increased but 

not in all other four mutants (Chapter 2 and 3). Interestingly, zinc-induced increase in 

WIN35,428 binding was attenuated not only in Y470H but in all tested mutants with 

different proportions. It was reasoned that Y470H mutation may cause the transporter to stay 

principally in an extreme inward facing conformation that is highly suitable to reverse Zn2+-

mediated effects on DA uptake and WIN35,428 binding (Guptaroy et al., 2009; Liang et al., 

2009). In the case of Y88F, K92M, Y470F and Y470A mutations induce an inward 

conformation that is able to abolish the binding preference for WIN35,428 without  

interfering with zinc stimulated down regulation in DA uptake. These conformational 

preferences of the mutants were further screened by measuring basal efflux (DAT-mediated 

release of preloaded substrate). Y470H and Y470A displayed significant increase in both DA 

and MPP+ efflux but not the Y470F and Y88F (Chapter 3). The most likely reason for the 

low retention of substrate is that elevation of efflux without improving the uptake capacity 

i.e. forward transport. Curiously, the K92M mutant exhibited considerable increase in the 

DA basal efflux but not MPP+ efflux. It was interpreted that this may be due to K92M 

inclination for a conformation that is not suitable for MPP+ binding (Liang et al., 2009). 

Alternatively, the observed DA efflux in K92M is merely a quick leakage of substrate by 

non-specific diffusion as MPP+ was showed to exhibit less diffusive properties compared to 

DA in heterologous expression systems (Scholze et al., 2001). However, provided that the 

effect of mutants on kinetic differences, increased inhibitor apparent affinities and the 
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attenuation of zinc-mediated increase in WIN35,428 binding, it was deduced that the 

reported mutants adopt similar molecular mechanisms that are ranging  from closed-to-out 

(occluded) to open-to-in (inward) conformational states. While these results strongly support 

the allosteric mode of regulation by Tat protein to inhibit DAT function, further strategies 

are required to confirm specific conformational states that are attributed to the identified 

residues in transporter. For example substituted-cysteine accessibility method (Javitch, 1998; 

Norregaard et al., 2003; Loland et al., 2008) and amphetamine-induced substrate efflux 

(Khoshbouei et al., 2004; Guptaroy et al., 2011) can be used to further support the above 

stated inferences for Tat induced effects on DAT structure and function.  

EFFECT OF HIV-1 TAT PROTEIN ON TRAFFICKING DEPENDENT REGULATION OF DAT 

A recent NMR spectroscopy study has shown Tat as a “natively unfolded” protein 

with no distinctive three-dimensional structure but with fast dynamics (Shojania and O'Neil, 

2006). Moreover, the unique genetic arrangement of Tat sequence and post-translational 

modifications (Hetzer et al., 2005) enhances the likelihood of Tat protein interaction with 

multiple cellular proteins. As described earlier, due to the complex nature of the DAT 

regulation it is possible that Tat may impact other regulatory partners of DAT because of its 

flexible and versatile nature, which ultimately leads to the reduction in DA uptake. As 

previous studies (Aksenova et al., 2006; Zhu et al., 2009) indicated exposure to Tat reduces 

Vmax of [3H]DA uptake  with no change in the total DAT immunoreactivity levels. It clearly 

suggests that there is no degradation of DAT protein due to Tat treatment at least in the acute 

treatment time periods. However, it remains uncertain whether Tat causes any alterations in 

the surface expression levels of the transporter. Ample experimental evidence has 

demonstrated that redistribution of DAT proteins to and away from the presynaptic 
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membrane is a predominant mechanism of DAT regulation (Chen et al., 2010). In an attempt 

to understand the effects of Tat on DAT surface localization, rat striatal synaptosomes were 

exposed to Tat protein for 15 min and it was found that  DAT immunoreactivity levels were 

decreased by 46% in the plasma membrane enriched fractions (P3) with no changes in the 

total synaptosomal fractions (P2) (Chapter 4) (Midde et al., 2012). It was reasoned that Tat 

could promote the redistribution of surface DAT to intracellular compartments possibly 

through manipulating trafficking events, results in the reduction of DAT density at the 

surface, which causes the observed decrease in Vmax of DA uptake. This hypothesis was 

further supported by the decrease in Bmax of [3H]WIN 35,428 binding in P3 of Tat-treated 

samples.  

 These findings raise vital questions, what is underlying mechanism for Tat-induced 

shift in the surface DAT? Is it due to acceleration of endocytosis or diminution of recycling 

to the membrane, or a combination of both? Numerous studies have demonstrated that DAT 

undergo both constitutive and regulated endocytic trafficking. Following internalization, 

DAT can be recycled back to the plasma membrane via the endocytic recycling pathways, or 

targeted to lysosomal degradation pathways (Sorkina et al., 2009). Since PKC has been 

shown as a key mediator for regulating recycling to the plasmalemma and internalization of 

DAT to the early/late endosomes (Loder and Melikian, 2003; Chen et al., 2010), we exposed 

rat striatal synaptosomes to the Tat protein that were pre-treated with PKC inhibitor, 

bisindoylmaleimide-I (BIM-I) and observed the attenuation of Tat inhibitory effects on DA 

uptake (Chapter 4). This outcome indicates that Tat exploits PKC-dependent signaling 

pathway to modulate the functional regulation of the DAT. However, it is worth noting that 

residues 587-596 at carboxyl-terminal of the DAT are required for the PKC-mediated 
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internalization of the transporter (Holton et al., 2005). Furthermore, studies suggest that 

mutating classical PKC consensus serine and threonine sites (Chang et al., 2001) and 

truncation of amino-terminal of DAT (Granas et al., 2003) prevent direct phosphorylation of 

the transporter but not the internalization. Collectively, these findings suggest that Tat may 

manipulate the structural determinants that lead to rapid PKC-stimulated internalization of 

DAT. Alternatively, Tat potentially interferes with functions of other downstream kinases 

and/or scaffolding proteins in the PKC signaling cascade (Yang et al., 2010). Future studies 

are necessary to address whether Tat-mediated influences on DAT endocytic trafficking is 

phosphorylation dependent or independent.  

EFFECT OF HIV-1 TAT PROTEIN ON VMAT2 FUNCTION 

In the central nervous system, vesicular monoamine transporter 2 (VMAT2, Slc18a2) 

is the only transporter that sequesters cytoplasmic monoamines, in particular DA, into 

synaptic vesicles for storage and subsequent release (Zheng et al., 2006; Vergo et al., 2007). 

This packaging process is highly regulated and dysfunction plays a role in a variety of 

disorders including Parkinson’s disease (Caudle et al., 2008; Taylor et al., 2009; Rilstone et 

al., 2013), Huntington’s disease (Ondo et al., 2002; Paleacu et al., 2004; Morrow, 2008), and 

neuropsychiatric disorders (Zubieta et al., 2001; Zucker et al., 2001; Eiden and Weihe, 

2011). Moreover, VMAT2 is one of the principal targets for amphetamine-derived 

psychoactive drugs (Sulzer et al., 2005; Fleckenstein et al., 2007; Fleckenstein et al., 2009). 

Having proven evidence for Tat induced effects on dopaminergic neurons especially on DAT 

it was hypothesized that Tat may follow a similar mode of action to impair VMAT2 

function.  



170 
 

  To test this hypothesis, synaptic vesicular uptake in the presence of 1 µM Tat was 

performed and demonstrated that inhibitory effects of Tat are more profound in VMAT2 

(35%) than DAT (25%) protein. Importantly, current data show that Tat potency for 

inhibiting vesicular DA uptake (IC50 =0.21 µM) (Chapter 4) is 15-fold higher than that for 

inhibiting synaptosomal DA uptake (IC50 = 3.1 µM) (Zhu et al., 2009). These results visibly 

imply the essential role played by Tat protein in the impairment of VMAT2 that results in the 

reduction of the loading and storage of DA into the synaptic vesicles. Moreover, mutant Tat 

Cys22 (Cys22Glys) protein attenuates Tat-induced decrease in VMAT2 function, which is 

similar to reported attenuation of Tat effects on DAT function (Zhu et al., 2009). Along these 

lines, Theodore et al. (2012) using in vivo microdialysis reported that striatal synaptic 

vesicles incubated with Tat show ~35% decrease in DA uptake and ~30%  reduction in K+ -

evoked total DA overflow in rats injected with Tat. Taken together, these findings tempting 

to speculate that Tat may directly influence VMAT2 structure through protein-protein 

interactions. However, future investigations are necessary to delineate this possible 

mechanism. Furthermore, recent studies proposed a physical and functional coupling 

between DAT and VMAT2 to regulate dopaminergic tone in response to normal and drug-

induced stimuli (Zhu and Reith, 2008; Egaña et al., 2009; Sager and Torres, 2011), 

suggesting that Tat protein may increase the neurodegeneration of dopaminergic terminal by 

simultaneously targeting both DAT and VMAT2. In addition, it was reported that 

simultaneous exposure of Tat protein and amphetamine synergistically impairs DAT 

function in vitro (Cass et al., 2003; Theodore et al., 2006) and in vivo (Kass et al., 2010). 

Having established evidence for VMAT2 as a target for amphetamine class of drugs (Sulzer 

et al., 2005; Sulzer, 2011), it is conceivable that co-exposure of Tat protein and abused drugs 
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by complementing each other may further deteriorate neuronal terminal loss that eventually 

contribute to HAND (Purohit et al., 2011; Purohit et al., 2013).  

RELEASED TAT IS MORE POTENT THAN SYNTHETIC TAT 

Unconventional secretion of Tat (Pugliese et al., 2005; Rayne et al., 2010; Bachani et 

al., 2013) by infected cells without cell lysis causes neurotoxicity to the neighboring 

uninfected cells including neurons (Li et al., 2009). This extracellularly released Tat is 

biologically active and can interact with DAT (Zhu et al., 2009; Midde et al., 2013) 

suggesting that Tat protein is very flexible and can assume a unique conformation to bind 

with the target molecule. It was demonstrated that a point mutation in Tat that substitutes 

cysteine with alanine at 22 (Tat Cys22) attenuates Tat-mediated inhibition of DA uptake 

(Zhu et al., 2009). In addition, this study also showed that deletion of residues 31-61 (Tat∆31-

61) abolishes inhibitory effects of Tat on DAT function indicating that specific recognition 

residues of Tat are responsible for Tat and DAT interaction. However, one caveat here is that 

synthetic Tat used for these experiments is substantially less potent than Tat released from 

Tat-expressing astrocytes (Li et al., 2008). Degradation of Tat during purification process, 

high susceptibility of Tat to freeze/thaw cycles, and ability to get oxidized easily are the most 

likely reasons for less Tat activity (Nath et al., 2000). As a part of this dissertation work, Tat-

conditioned medium which was obtained from the cells that were transiently transfected with 

Tat plasmid DNA was evaluated to confirm whether it can be substituted for commercially 

available recombinant Tat in the proposed experiments (Chapter 2) (Midde et al., 2013). This 

approach was chosen because extracellularly released Tat exhibits more relevant 

constitutively produced Tat effects than recombinant protein (Nath et al., 2000). As shown in 

Figure 2.5B secreted Tat1-72, Tat1-86 or Tat1-101 variants exhibited a similar inhibitory pattern 
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which decreased DA uptake in heterologous cells that were expressing hDAT, and this 

diminished effect was attenuated when released Tat was immunodepleted with anti-Tat 

antibodies (Figure 2.5C). Furthermore, released Tat displayed ~4000 times more potent 

inhibitory effects on DA uptake than recombinant Tat (Chapter 2). Therefore, these results 

indicate that secreted Tat is more neurotoxic and Tat-conditioned media can be used as a 

source of extracellular Tat (by producing different Tat mutant proteins) to characterize 

unique binding sites of Tat that are required for functional interaction with DAT.  

OVERALL CONCLUSIONS 

In summary, the Tat protein plays a significant role in the impairment of DA system 

by affecting regulatory pathways that control the functional attributes of DAT and VMAT2. 

A graphical representation of potential ways by which Tat protein exerts its actions are 

depicted in Figure 6.2 that include (1) direct protein-protein interaction with DAT, (2) 

stimulation of PKC-mediated endocytosis, (3) diminution of recycling of DAT to the plasma 

membrane, (4) alteration of direct phosphorylation state of the DAT, and (5) direct protein-

protein interaction with VMAT2 protein. Even though most of these regulatory components 

are interconnected, here they were shown separately for the sake of clarity. It is quite 

possible that Tat interaction or influence at one molecular component can trigger activation 

of other factors or cellular events that ultimately lead to dysregulation of the DA system. As 

described in this work, it appears that Tat will have a profound impact on DA translocation 

process principally by altering the conformational states of the DAT through direct protein-

protein interaction. We do not know whether this Tat-mediated impact on structure of DAT 

could also prompt increased endocytosis to early/recycling endosomes or diminished 

recycling to the surface. Curiously, recent findings suggest that modifications in the 
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conformational equilibrium of the DAT influence the endocytic trafficking of the transporter 

molecules (Sorkina et al., 2009).    

6.2 FUTURE DIRECTIONS 

Several studies with various approaches and models tried to explain the evolution of 

neuroAIDS. HAND begins as HIV-1 enters the brain and ARTs have little impact on viral 

reservoir in the CNS, insisting the need to develop adjunctive therapies to treat neurological 

complications associated with HIV-1 infection that can improve the HIV-1 positive 

individual’s capability to perform daily activities. With increasing evidence it is almost 

certain that HIV-1 viral proteins dysregulate the dopaminergic system and cause subsequent 

neurodegeneration (Purohit et al., 2011; Barreto et al., 2014). However, delineating the 

mechanism of action of Tat protein on target molecules, such as DAT, is a key step forward 

to combat the progression of neuronal damage in HIV-1 infected brains. As described above, 

the initial findings show that Tat recognition residues Tyr88, Lys92 and Tyr470 of DAT are 

part of the crucial framework of substrate permeation pathway in DAT. Nonetheless, this 

information is not sufficient to completely understand Tat and DAT interaction. Doubtlessly, 

identification and characterization of other recognition residues is necessary to construct a 

ligand-binding pocket for the functional interaction of Tat with DAT. Moreover, the 

fundamental role of these DAT domains involved in DAT-Tat interaction are subject of great 

debate, and shedding light on these regions will greatly improve our understanding of the 

basic functionality of DA transport process. As it is hypothesized that neurocognitive deficits 

and alterations in DA homeostasis are more severe in HIV-1 positive drug abusers (Nath, 

2010; Gaskill et al., 2013), understanding how concerted effects of Tat and cocaine 

manipulate the structural and functional attributes of the transporter is an important goal for 



174 
 

future research in this area. Finally, the major obstacle would be how to translate these 

computational and in vitro findings into a preclinical setting. This is very important because 

evaluating the molecular mechanisms in a relevant model system is a key step before 

exploiting them as clinically effective strategies. Hence, HIV-1 Tg rat model that was 

utilized to demonstrate that genetically expressed HIV-1 viral proteins modify the locomotor 

sensitization in response to nicotine administration (Chapter 5) (Midde et al., 2011) could be 

used to investigate perturbations of DA neurotransmission that are present in HIV-infected 

brains. Considering the alteration in dopaminergic biomarkers and behavioral evaluations 

(Persidsky and Fox, 2007; Vigorito et al., 2007; Lashomb et al., 2009; Webb et al., 2010; 

Rao et al., 2011), HIV-1 Tg rat model may be an appropriate model to evaluate the ligand-

binding pocket in DAT for Tat binding and to screen potential small molecules that can 

block Tat-specific effects on DAT functional regulation.   
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Figure 6.1 Structure of DAT-Tat-Dopamine-Cocaine complex. DAT, Tat, cocaine, and 
dopamine are colored in cyan, orange, red and blue respectively. Tat, cocaine and dopamine 
bind to different region of DAT. Cocaine can block the entry of substrate dopamine, but not 
Tat protein. 
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Figure 6.2 Proposed model of HIV-1 Tat protein effects on DAT and VMAT2 proteins. Tat 
protein may elicit its effects on DA system by influencing the structure, function and 
endocytic trafficking of the DAT. (1) physical interaction of Tat with DAT induces 
transporter down regulation and this physical coupling may encourage (2) PKC-stimulated 
endocytosis and/or, (3) reduced recycling to the surface. Tat may also play a role in 
alterations of (4) phosphorylation status of the DAT. (5) The direct interaction of Tat with 
VMAT2 is also an important mechanism to dysregulate DA synaptic vesicular loading 
through VMAT2.  
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APPENDIX A 

GENERAL STATISTICAL ANALYSES CONSIDERATIONS 

1. Replicates 

For all the experiments performed in this dissertation, I used a minimum of two or 

three technical replicates. These replicates were either cell culture wells or tubes carrying 

same amount cell suspension. The reason for such technical replicates was to establish the 

validity of the method (e.g. pipetting errors). Three to eight biological replicates (sample 

size) were used to differentiate the random effect from “true” biological difference that is 

triggered by the treatment. The major advantage with the replicates is that they provide the 

ability to run various statistics to evaluate the variability. Ability to detect smaller but 

important changes and the capacity to spot the outliers in a dataset are the other benefits 

that can be achieved from the replicates. Using both technical and biological replicates in 

the experimental design increases the confidence of conclusions drawn from these 

experiments. 

2. Power Analyses 

A priori type power analysis was conducted for behavioral experiments for HIV-1 

Tg and nicotine project using G*power software (Faul et al. 2007). This analysis indicated 

that a total sample of 32 animals would be needed to detect medium effects (0.40) with 

80% power using an analysis of variance with alpha set at 0.05. A detailed statistical design 

for behavioral assays was described in the data analysis section of chapter 5. For the in 

vitro assays a priori power analysis was not estimated, however 0.75 to 0.99 ‘observed
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power’ was noted after experimental data was analyzed. Nevertheless, this post-hoc power 

analyses doesn’t convey any new information as the significant p value (<0.05) indicates 

actually observed effect (Hoenig and Heisey, 2001; Levine and Ensom, 2001). Factorial 

design and statistical methods used for analysis of pharmacological data were elaborated 

in respective chapters in the dissertation.  

3. Outlier detection 

The outlier labeling rule (Hoaglin and Iglewicz, 1987) was used to identify the 

outliers in the data set. The formulae Upper limit = Q3 + (2.2 * (Q3 - Q1)); Lower limit = 

Q1 - (2.2 * (Q3 - Q1)) were used to detect extreme values from both ends. If an outlier was 

spotted, a root cause analysis was performed to determine the potential reason (e.g. 

measurement error). The data points were trimmed which accounts for only less than 5% 

of total data set for further analyses. 

4. Randomization 

To minimize the possibility of bias in the behavioral experiments, both HIV-1 Tg and 

F344 rats were randomly assigned to two treatment groups such as nicotine and saline. 

Sixteen HIV-1 Tg and 16 F344 animals were randomized into blocks of 8, 8 respectively. 

The randomization scheme was generated by using the Web site Randomization.com 

(http://www.randomization.com). Animal handling, drug treatment and placing the 

animals into locomotor chambers were performed by three technicians to further insure 

against human introduced bias into the procedure. Overall, randomization eliminates the 

selection bias and assures equality of treatments for accurate statistical analyses.  
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