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ABSTRACT 

 Cytochrome P450 (P450 or CYP) catalysis involves the oxygenation of organic 

compounds via a series of catalytic intermediates, namely, the ferric-peroxo, ferric-

hydroperoxo, Compound I (Cpd I), and Fe
III
(H2O2) intermediates. The general 

consensus is that the Cpd I intermediate is the most reactive species in the reaction cycle, 

especially when the reaction involves hydrocarbon hydroxylation. Other than Cpd I, there 

is a multitude of evidence, both experimental as well as theoretical, supporting the 

involvement of other intermediates in various types of oxidation reactions. In part I of 

this work, the multiple oxidant hypothesis of P450 catalysis has been probed using P450-

CAM from Pseudomonas putida, a prototypical P450 enzyme. P450-CAM is a versatile 

catalyst that has been shown to catalyze many typical P450 reactions in camphor analog 

substrates. The active site threonine-252 to alanine (T252A) mutant of P450-CAM on 

reaction with camphor yields H2O2 and minimal oxidized camphor, presumably because 

it makes very little Compound I while still generating the ferric-peroxo and ferric-

hydroperoxo species. This makes T252A P450-CAM an ideal catalyst to probe the 

multiple oxidant hypothesis. Using heteroatom-containing substrates, including camphor 

analog substrates modified at the fifth position, we have compared the quantitative 

product formation between WT and T252A P450-CAM to gain an insight in the multiple 

oxidant hypothesis. 

 Magnetic circular dichroism  (MCD) spectroscopy also known as the Faraday 

effect, is an excellent fingerprinting tool of various heme systems.  
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It can be used for assigning axial ligand identity, coordination numbers as well as spin 

state determination of the heme iron, which can lead to important information about their 

structures and functions. In part two of this work, we present results from the application 

of MCD spectroscopy in the axial ligand(s) identification analysis of three novel heme 

proteins, sGAF2, Z-ISO and Phu_R, and in the characterization of the dioxygen complex 

of an engineered P450BM3 protein. 
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CHAPTER 1 

OXIDIZING INTERMEDIATES IN P450 CATALYSIS:  

A CASE FOR MULTIPLE OXIDANTS1 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
1 Anuja R. Modi and John H. Dawson, accepted for publication in Monooxygenase, 

Peroxidase and Peroxygenase Properties of Cytochrome P450 Enzymes and their 

Mechanisms of Action. 5/23/2014. 
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Abstract: 

Cytochrome P450 (P450 or CYP) catalysis involves the oxygenation of organic 

compounds via a series of catalytic intermediates, namely, the ferric-peroxo, ferric-

hydroperoxo, Compound I (Cpd I) and Fe
III
(H2O2) intermediates. Now that the 

structures of P450 enzymes have been well established, a major focus of current research 

in the P450 area has been unraveling the intimate details and activities of these reactive 

intermediates. The general consensus is that the Cpd I intermediate is the most reactive 

species in the reaction cycle, especially when the reaction involves hydrocarbon 

hydroxylation. Cpd I has recently been characterized experimentally. Other than Cpd I, 

there is a multitude of evidence, both experimental as well as theoretical, supporting the 

involvement of other intermediates in various types of oxidation reactions. The 

involvement of these multiple oxidants has been experimentally demonstrated using P450 

active-site mutants in epoxidation, heteroatom oxidation and dealkylation reactions. In 

this chapter, we will review the P450 reaction cycle and each of the reactive 

intermediates to discuss their role in oxidation reactions. 

1.1  Introduction 

Cytochrome P450 enzymes are heme-thiolate ligated monooxygenases that are 

ubiquitous in the biological kingdom and catalyze a variety of oxidation reactions 

covering a wide range of substrates.
1, 2

 Hemeproteins are classified as P450s when their 

Fe
II
CO complex has a maximum Soret absorbance at 450 nm.

3
 P450s were discovered 

five decades ago because of their important role in xenobiotic clearance from the human 

body, but the interesting nature of their chemistry has attracted attention from chemists, 

biochemists, biophysicists, structural biologists and now even biotechnologists. Oxygen 
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activation is central to life as spin forbiddance makes ground-state triplet molecular 

oxygen by itself inert toward organic molecules.
4
 Living beings therefore use enzyme 

systems for oxygen activation to perform biologically important reduction-oxidation 

(redox) reactions. P450s are one of the metal-containing oxygenases that utilize 

molecular oxygen to stereo- and regioselectively oxygenate substrates under 

physiological conditions. While P450s are capable of diverse reactions, they are in fact 

mostly known for their ability to catalyze the oxidation of inert substrate CH bonds 

under physiological conditions. To put into perspective, the bond strength of a typical 

secondary CH bond is about 101 kcal mol.
1
 

5
 Present understanding of the P450 

catalytic mechanism has been developed over the course of the last four decades by 

advances in genomics, molecular biology and spectroscopy.
6
 Comparison with analogous 

heme oxygen activation systems has also greatly contributed to our current understanding 

of its mechanism. Knowledge of the P450 intermediates is now being used for 

development of efficient inorganic catalysts for laboratory and commercial use.
7
 

Alternatively, in biotechnological setups, P450s are being modified to catalyze 

stereoselective oxidation reactions.
8
 

Oxidation of substrates by P450 can be summarized by the following equation: 

                                        

The catalytic mechanism of P450s occurs in a cyclic fashion involving systematic 

generation of intermediates, some of which are transient.
9
 Electrons for this oxidation 

reaction are provided by NAD(P)H and are shuttled to the P450 active site with the aid of 

reductase enzymes. Protons are donated by water molecules in the active site. Based on 

associated redox systems, P450s can be classified as type I or type II as shown in 
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Scheme. 1.1.
10

 Type I P450s are mainly the mammalian mitochondrial and bacterial 

P450s, which utilize a flavoprotein to transfer electrons to P450s via an intervening iron-

sulfur cluster protein (Fe2S2). Type II P450s are the mammalian xenobiotic-metabolizing 

enzymes that receive electrons via FAD- and FMN-containing reductases. There are 

certain exceptions such as P450BM3 in which the heme and FMN/FAD-containing 

reductase domains are part of a single polypeptide that functions as a self-sufficient 

unit.
11, 12

 

 
 

Scheme 1.1 Electron transfer chains in class I and class II of P450 enzymes, see Ref. 10. 

1.2 The P450 Catalytic Cycle  

P450-CAM (CYP101) is a bacterial P450 enzyme from Pseudomonas putida that 

converts 1R-(+)-camphor to 5-exo-hydroxycamphor. This enzyme is soluble and 

therefore easy to purify and was the first P450 whose crystal structure was solved.
13

 

Since then, its structure has been extensively studied and it has served as a prototype for 

structure-function studies of the entire P450 family. The reaction cycle for P450-CAM 

also holds true for the entire P450 family. The putative catalytic mechanism of P450s in 

which the substrate RH is oxidized to R-OH in a series of steps is shown in Scheme. 1.2. 

The catalytic cycle begins with the reversible substrate binding to the water-coordinated 

low-spin (S=1/2) resting state of the ferric enzyme (Scheme. 1.2, 1). Substrate binding 

FAD Fe2S2 P450

NAD(P)H + H+

NAD(P)+

FAD FMN P450

NAD(P)H + H+

NAD(P)+

Class I

Class II
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causes displacement of water as the sixth ligand to the heme with formation of the high-

spin (S=5/2) pentacoordinate enzyme-substrate adduct (Scheme. 1.2, 2). This causes the 

midpoint redox potential of the heme to shift to a more positive value (from 330 mV to 

173 mV).
14

 The sharp shift in the reduction potential resulting from substrate binding 

enables electrons to flow from NAD(P)H to the P450 enzyme via an associated reductase. 

The first electron generates the reduced ferrous-substrate adduct (Scheme. 1.2, 3). 

Subsequent binding of dioxygen generates the oxyferrous complex or a resonance-

stabilized ferric superoxide complex Fe
+3

-OO


, a η
1
 superoxide radical anion 

coordinated to the ferric heme center with an unpaired electron on the terminal oxygen 

atom (Scheme. 1.2, 4).
15

 The second electron from NAD(P)H then reduces the oxyferrous 

complex resulting in the Fe
+3

-OO

 (Scheme. 1.2, 5) ferric-peroxo intermediate. This is 

also the rate-limiting step. Protonation of this intermediate leads to the Fe
+3

-OOH 

(Scheme. 1.2, 6) ferric-hydroperoxo intermediate, also known as Compound 0 (Cpd 0). A 

second protonation of this intermediate leads to OO bond heterolysis forming the highly 

transient and reactive porphyrin π radical cation ferryl complex (Scheme. 1.2, 7) known 

as Cpd I. Cpd I derives its name from the analogous high-valent Cpd I species of heme 

peroxidases.
16, 17

 According to the now well-accepted mechanism for hydrocarbon 

hydroxylation, Cpd I abstracts a H atom from the substrate resulting in a ferryl hydroxyl 

intermediate (Scheme. 1.2, 8) known as protonated Compound II (Cpd II) and a substrate 

radical. In what is known as the oxygen rebound, the hydroxyl moiety on the iron 

combines with the substrate radical to give the hydroxylated product, while the enzyme 

returns to its resting ferric state.  
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Scheme 1.2 Reactive intermediates and shunt pathways in the catalytic cycle of P450 

enzymes. 

In addition to the normal catalytic pathway, there are three uncoupling reactions 

within the cycle that lead back to the enzyme-substrate adduct without any product 

formation. The first is the auto-oxidation of the oxyferrous enzyme with simultaneous 

generation of a superoxide anion (Scheme. 1.2, I). In the second shunt pathway, the 

hydroperoxo anion dissociates from the ferric-hydroperoxo intermediate (Scheme. 1.2, 

II). Heterolytic cleavage of the OO bond is critical for Cpd I formation. Incorrect 
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protonation at the distal oxygen generates the Fe
+3

-H2O2 intermediate (Scheme. 1.2, 9) 

followed by dissociation of hydrogen peroxide without substrate turnover. This pathway 

is often seen in the active-site alcohol-alanine mutant.
18

 In the oxidase shunt (Scheme. 

1.2, III), the ferryl intermediate is reduced to water in lieu of substrate oxidation. In an 

alternative pathway to the normal reaction cycle, the enzyme can be turned over without 

the nucleotide-reducing equivalents via the peroxide shunt (Scheme. 1.2, IV). Cpd I can 

be generated from this pathway using oxygen atom donors such as peracids, peroxides 

and iodosobenzene.
19-21

  

1.3 Nature of the P450 Active Site 

There are over 20,000 known CYP genes 

(http://drnelson.uthsc.edu/CytochromeP450.html). P450s share their catalytic capabilities 

with other heme-containing enzymes, catalases, peroxidases and oxygenases, but they are 

all very different structurally. The architecture of the active site in P450s plays an 

important role in the sequential generation of intermediates in the catalytic cycle. For a 

complete understanding of P450 monooxygenation chemistry, the majority of research 

has focused on the factors influencing electron delivery and dioxygen binding to the 

heme iron, proton addition to the bound dioxygen in the distal pocket of the heme and 

cleavage of the OO bond. Residues most important for oxygen activation are the heme 

proximal cysteine ligand (Cys357 in P450CAM) and the acid-alcohol pair in the distal 

pocket of the heme (Thr252-Asp251 in P450CAM). These amino acids are conserved in 

the active site of almost all P450s. Since the active site is hydrophobic, a chain of water 

molecules provides access to bulk solvent outside and is held in place by H-bonding to 

http://drnelson.uthsc.edu/CytochromeP450.html
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each other and to the alcohol residue in the active site (Thr252 in P450CAM).
22

 The 

active site of camphor-bound oxy-P450-CAM is shown in Figure. 1.1. 

In this landmark work, Schlichting and coworkers structurally characterized the 

oxyferrous complex of P450CAM using cryocrystallography. 
9
 Important residues 

involved in oxygen activation were Cys357, Asp251, Thr252 as well as the bound 

camphor substrate and are shown in Fig. 3. The hydroxyl group of Tyr96 H-bonds to the 

keto group of camphor to orient the site of oxygenation above the heme. The water 

molecules Wat901 and Wat902 seen in the active site are implicated as the source of 

protons required for formation of the active Fe
IV

=O species. Accordingly, the Thr252 H-

bonds to Wat901, which serves as the H-bond donor to the distal oxygen atom of the 

heme-bound dioxygen in P450CAM. 

1.3.1 Role of Cys as Proximal Heme Ligand 

The heme in P450 enzymes is of the heme-b type, where the iron protoporphyrin-

IX is covalently linked to the protein backbone via a Fe-S bond to cysteine. In the case of 

P450CAM, Cys357 serves as the cysteine residue as seen in Figure. 1.1. The proximal 

cysteine thiolate ligand is indispensible for P450 catalytic activity and mutation of the 

cysteine residue leads to loss of activity.
23

 In the P450 catalytic cycle, one electron 

reduction of the oxyferrous state followed by protonation of the distal oxygen leads to the 

ferric-hydroperoxo intermediate. A second protonation of the ferric-hydroperoxo 

intermediate followed by heterolytic cleavage of the OO bond leads to formation of Cpd 

I, which is the primary oxidant in the cycle. Maintaining the cysteine as a thiolate anion 

on the proximal side of the heme at the same time as the iron in the ferrous state is crucial 

for Cpd I generation.
24
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Figure 1.1 Active site of camphor-bound oxy-P450-CAM constructed using PDB file 

1DZ8.
9
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The thiolate anion is stabilized by H bonds from the protons of the adjacent residues, Leu 

358 (3.5 Å), Gly 359 (3.3 Å), Gln 360 (3.3 Å). Mutation of these residues led to 

distortion in H-bonding and an increase in the uncoupling of the ferric-hydroperoxo 

intermediate.
25, 26

 

Dawson and coworkers suggested that the polarizable nature of the cysteine 

thiolate anion ligand provides a strong ‘push’ of electron density via the heme onto the 

OO bond of the ferric-hydroperoxo intermediate, thus promoting heterolytic OO bond 

cleavage.
27, 28

 Furthermore, the electron-donating nature of the thiolate ligand also helps 

to stabilize the resulting Cpd I intermediate. This result is similar to the effect seen in 

cytochrome c peroxidase that contains a partially deprotonated proximal histidine ligand, 

wherein the imidazolate ‘push’ in concert with a ‘pull’ from the conserved distal His-Arg 

amino acids lead to heterolytic cleavage of the OO bond to generate Cpd I. 

1.3.2 Role of the Acid-Alcohol Pair in Oxygen Activation 

An acid-alcohol pair that is highly conserved in almost all P450 enzymes aids 

oxygen activation in the distal heme pocket. The alcohol in most cases is threonine or 

serine and the acid can be aspartate or glutamate. In the case of P450CAM, these residues 

are Asp251-Thr252. Given their highly conserved nature and proximity to the heme-

dioxygen binding site, the role of this acid-alcohol pair in catalysis has been examined in 

several mutagenesis studies. Specifically, the role of Thr was investigated by changing 

the residue to Ala. In P450CAM, the Thr252Ala mutant was almost completely 

uncoupled, leading to normal NADH and O2 consumption but essentially no product 

formation.
18, 29

 Based on this result in P450CAM and other P450s as well,
30, 31

 the alcohol 

residue is thought to stabilize water molecules in the active site by H-bonding during 
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substrate oxygenation.
18, 29, 32

 Ishimura and coworkers demonstrated that the uncoupling 

reaction is promoted when the Thr in P450CAM is mutated to a Ser or Asn, thereby 

ascertaining the role of Thr in stabilizing the H-bonding network in the distal pocket and 

controlling proton delivery to the distal oxygen of bound dioxygen.
22

 The Thr252Ser and 

Thr252Asn mutant enzymes retained more than half of the hydroxylating capability of 

the enzyme. The Thr252 residue also participated in H-bonding with the distal oxygen of 

the oxyferrous-P450 complex in P450CAM.
33

 The high-resolution crystal structure of the 

P450CAM Thr252Ala mutant showed a clearly perturbed H-bonding network and excess 

water molecules in the active site.
32

 It is thought that this perturbation leads to uncoupling 

due to incorrect delivery of the second proton to the proximal oxygen.
34

 Just as in 

P450CAM, the Thr268 in P450BM3 has been shown to play an important role in 

sustaining the proton pathway from the bulk solvent to the dioxy-bound heme. Mutation 

of Thr268 to Ala also leads to uncoupling followed by reduced substrate oxidation.
30, 35

 

Unlike the alcohol residue, the acid residue has an important role in electron 

transfer following oxyferrous intermediate formation. In P450CAM, the mutagenesis of 

Asp251 to Asn leads to decreased turnover in the mutant enzyme rather than 

uncoupling.
36, 37

 The Asp251Asn mutant displays an increased kinetic solvent isotope 

effect compared to the wild-type enzyme and a directly linear correlation to NADH 

consumption on bulk proton concentration, indicating that the proton delivery pathway 

has been modified in the Asp251Asn mutant.
36

 Structural analysis of the Asp251Asn 

mutant reveals significant changes in the active site. The Asn251 and Lys178 side chains 

rotate away from the active site and the Asn251 H-bonds to Asp182, causing open access 

to the heme.
36

 The flexibility of the Asp251 side chain stabilized by electrostatic bonding 
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plays an important role in dioxygen scission in P450CAM and suggests a similar role for 

the conserved acid functionality in other P450 enzymes. 

1.4 Multiple Oxidants in P450 Catalysis 

Although the P450s are a single family of enzymes, the wide variety of substrates 

oxidized by P450 is quite astounding. The catalytic cycle of P450s has been well 

established based on P450CAM as the prototype. The key catalytic intermediates have 

been detected and well characterized. Even the ferryl Cpd I intermediate, initially thought 

to be too short lived to detect has now been well characterized.
38

 Despite the fact that this 

intermediate has not been detected in the normal P450 catalytic cycle, it has been 

observed in the peroxide shunt pathway and there is little doubt about its involvement in 

substrate oxidation. While the ferryl Cpd I intermediate is thought to be the oxidant of 

choice in most oxidation reactions, the nature of certain catalytic intermediates and 

comparison with analogous reactions catalyzed in other enzyme systems make it difficult 

to deny the existence of multiple oxidizing species in the catalytic cycle. As seen in 

Scheme 1.3, several reaction intermediates other than Cpd I are thought to be capable of 

catalyzing some oxidation reactions depending on the type of substrate. 
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Scheme 1.3 Multiple P450 oxidants and types of reactions catalyzed. 

1.4.1 The P450 Dioxygen Complex 

In P450 enzymes, binding of dioxygen to the ferrous heme traps O2 for substrate 

oxidation. This generates the ferrous-dioxygen complex (Fe
+2

-OO), which is in resonance 

with the ferric superoxide complex (Fe
+3

-OO

) (Fig. 2, 4). The binding constant of 

dioxygen to P450CAM is 1.7 x 10
6
 M

1
 s
1

 at 4
o 
C.

39
 The oxyferrous complex of P450s is 

not as stable as that of oxygen carrier proteins. In P450CAM, it is moderately stable in 

the presence of camphor and auto-oxidizes back to the ferric state at the rate of 0.01 s
1

 at 

room temperature.
39, 40

 The oxyferrous-P450 complex is similar to that of many of the 

analogous hemeproteins such as myoglobin, hemoglobin, CPO, NOS, etc.
41-44

 The 

oxyferrous stretching band of oxyferrous P450CAM as determined by resonance Raman 

spectroscopy is 1141 cm
1

, which is typical for superoxide complexes.
45

 Using 

cryocrystallization, the oxyferrous complex of P450CAM was determined at atomic 

resolution. A representative figure is shown in Scheme 1.4.
9
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Scheme 1.4 Oxyferrous complex of P450-CAM determined using PDB file 1DZ8.
9
 

The oxygen is coordinated to the heme iron in a slightly bent fashion with the Fe-OO 

angle being 142
o
. The oxyferrous complex is stabilized with the aid of a H-bond between 

the distal oxygen and hydroxyl of the nearby Thr252 residue. While the oxyferrous 

complex by itself is not known to catalyze any oxidation reaction, its formation is 

necessary to generate the subsequent catalytic intermediates in the reaction cycle.  

1.4.2 Ferric-peroxo Intermediate as a Nucleophilic Oxidant 

 Akhtar and coworkers first proposed a role for the ferric-peroxo intermediate in 

the final step of oxidative deformylation catalyzed by lanosterol 14 -demethylase.
46, 47

 

The enzyme catalyzes the oxidative deformylation of lanosterol, concomitantly forming 

olefin in three oxidative steps, and each step utilizing a single equivalent of NADPH and 

O2 as seen in Scheme 1.5. The final step results in cleavage of the C14C32 bond with 

stereoselective removal of 15-H, resulting in the formation of a 14,15 double bond and 

release of formic acid. The proposed mechanism involves homolytic cleavage of the O–O 

bond in a peroxy-aldehyde adduct to give an alkoxy free radical that decays to the olefin 

as a result of H abstraction by the simultaneously-created ferryl species. 
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Scheme 1.5 Mechanism of oxidative deformylation catalyzed by lanosterol 14α-

demethylase, see Ref. 47. 

Similar mechanisms have also been proposed for demethylation in estrogen formation by 

aromatase (CYP19A1) and in the CYP17A1-catalyzed CC bond scission of 17-

hydroxyprogesterone.
47, 48

 The formic acid formed in these P450-catalyzed oxidative 

deformylations has been shown to retain the original carbonyl oxygen and hydrogen as 

well as an atom from molecular oxygen, clearly pointing to the involvement of the ferric-

peroxo intermediate in the mechanism. In the CYP17A1 (17-hydroxylase-17,20-

lyase)catalyzed reaction, oxygen labeling experiments also point to homolytic scission 

of the OO bond in the peroxo-substrate adduct.
49

 Vaz and coworkers analyzed the 

elimination reaction of the aliphatic aldehyde in the rabbit drug-metabolizing CYP2B4 

enzyme. These reactions also seem to corroborate the involvement of peroxy anion-

supported homolytic scission, followed by fragmentation of the adduct into a carbon 

radical and a formyl species that yields olefin products.
50

 Further evidence supporting 
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this mechanism is found when the carbon radical formed during the reaction inactivates 

the heme in P450.
51, 52

 

The electrophilic nature of aldehydes makes them easily susceptible to attack 

from the nucleophilic peroxy anion. Such an example of nucleophilic attack is also seen 

in nitric acid synthase (NOS) (Scheme 1.6). NOS is a heme-containing enzyme that 

catalyzes the conversion of arginine to N-hydroxyarginine and then to citrulline and nitric 

oxide. The second step of this reaction has been proposed to involve nucleophilic 

addition of the ferric-peroxo species to the –C=NOH bond of the substrate.
53

 Inorganic 

metalloporphyrins mimicking the ferric-peroxo intermediate have also been shown to 

catalyze the deformylation, as well as epoxidation, of ,-unsaturated carbonyl groups.
54, 

55
 

 
 

Scheme 1.6 Mechanism of oxidative deformylation catalyzed by NOS, see Ref. 53.  

H2N

NH

NH2

R

NADPH

O2

H2N

NH

NOH

R

1/2 NADPH

O2

H2N

NH

NOH

R

H2N

NH

NO

R

FeIII-NOS FeII-O2 4 FeIII-OO- 5

L-arginine N-hydroxy-L-arginine

H2N

NH
R

N-O

H2N

NH

O

R

NO

FeIII-O O

H+

FeIII-OH

L-citrullineNitric oxide



 

17 

 

1.4.3 The Ferric-hydroperoxo Intermediate as an Electrophilic Oxidant 

The ferric-hydroperoxo intermediate has been proposed as an oxidant in catalysis 

involving nucleophilic substrates. However, unlike in the case of the ferric-peroxo 

intermediate, the hypothetical involvement of the ferric-hydroperoxo species in oxidative 

catalysis is not supported by solid evidence. Given the electrophilic nature of most 

substrates oxidized by P450s, Cpd I is the clear favorite oxidant in these cases due to its 

high reactivity. The most compelling evidence for involvement of the ferric-hydroperoxo 

intermediate was demonstrated via substrate oxidation by active-site mutants in P450s. In 

P450CAM, the Thr252 alcohol side chain was mutated to Ala and the resulting 

Thr252Ala mutant was unable to catalyze the hydroxylation of camphor. Instead, the 

mutant was highly capable of accepting electrons from the nucleotide cofactor to convert 

dioxygen to hydrogen peroxide (Scheme 1.2, II).
18, 29

 Improper protonation to the 

proximal oxygen of the ferric-peroxo intermediate thus leads to uncoupling. This mutant 

is, therefore, unable to form Cpd I but generates both the ferric-peroxo and ferric-

hydroperoxo intermediates. ENDOR spectroscopic analysis of the cryoreduced 

Thr252Ala mutant shows a buildup of the ferric-hydroperoxo intermediate at 77 K. 

Annealing at high temperatures yields the ferric enzyme but no hydroxylated product.
56, 57

 

As such, the Thr mutant of several P450s has been used in the study of a number of 

electrophilic oxidation reactions.  

Vaz, Coon and coworkers were the first to study the effects of the active-site Thr 

to Ala mutation in rabbit drug-metabolizing CYP2B4 and CYP2E1 enzymes using 

various alkene substrates (Scheme 1.7).
58

 The researchers observed a decrease in allyllic 
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oxidation of the alkenes. In contrast, the Thr303Ala mutation in CYP2E1 significantly 

increased the rates of epoxidation compared to the wild-type enzyme.  

 
 

Scheme 1.7 Possible epoxidation reaction products in P450 enzymes.   

On the other hand, the corresponding Thr302Ala mutant of CYP2B4 demonstrated 

reduced rates of both allylic hydroxylation and epoxidation. Increased epoxidation versus 

allylic hydroxylation was observed in the CYP2E1 Thr303Ala mutant and was construed 

as evidence that epoxidation could be catalyzed by the ferric-hydroperoxo intermediate, 

while decreased Cpd I formation led to decreased hydroxylation. However, failure to 

observe similar results with CYP2B4 along with high quantities of hydroxylated product 

made the data somewhat less reliable, apparently because Cpd I was still being generated 

to a significant extent.  

Dawson and coworkers, in collaboration with the Sligar laboratory, studied the 

reactivity of the ferric-hydroperoxo intermediate in the Thr252Ala mutant of P450CAM 

using the alkene epoxidation reaction. Unlike the CYP2B4 and CYP2E1 enzymes, the 

Thr252Ala P450CAM mutant catalyzed the formation of less than 1% of the 

hydroxylated product, thus providing a more robust system to analyze the presence of a 

second oxidant, in this case the ferric-hydroperoxo intermediate. Both substrates were 

easily oxidized to epoxides (Scheme 1.8) at a rate of ~1520% compared to that of wild-

type P450CAM.
59

 These results substantiated the work of Vaz and coworkers regarding 

O

OH
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the involvement of a second electrophilic oxidant. Shaik and coworkers examined alkene 

epoxidation in the context of the two-state reactivity theory involving Cpd I
60, 61

 and 

proposed that the ferric-hydroperoxo species is a sluggish oxidant compared to the highly 

reactive Cpd I species. The researchers concluded that the ferric-hydroperoxo species has 

a large energy barrier to overcome, whereas ferric-hydroperoxo conversion to Cpd I is 

barrierless.
62

 P450 reactivity also appears to be influenced by H-bonding to the proximal 

thiolate ligand and polarity changes in the vicinity.
62-64

 

 
 

Scheme 1.8 Olefin epoxidation by P450 CAM, see Ref. 59. 

P450 reactivity is also proposed to be influenced by changes in the relative amounts of 

high-spin and low- spin Cpd I, rather than amounts of the ferric-hydroperoxo and Cpd I 

species.
62

. However, the ‘two-state’ reactivity theory cannot clearly explain why the 

Thr252Ala mutant does not hydroxylate camphor. If the Cpd I oxidizing species only 

displays variation in the amounts of high-spin and low-spin states, the mutant enzyme 

should have displayed significant hydroxylation activity.  

The ferric-hydroperoxo intermediate has also been investigated as a potential 

oxidant in heteroatom oxidations. Jones and coworkers have looked particularly at 

sulfoxidation and N-dealkylation reactions utilizing P450BM3. Using clever substrate 
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design and the Thr268Ala mutant, the researchers sought to test whether the two products 

originated from the same oxidant species (Scheme 1.9).
65

 Thus, substrate 10a showed 

four times increased sulfoxidation activity compared to N-dealkylation activity. Next, the 

investigators used an isotopically-sensitive N-dealkylation substrate, 10b, to test the 

premise that due to a large kinetic isotope effect (KIE), sulfoxidation activity would be 

higher than N-dealkylation activity if both products arose from a single oxidant. 

 
 

Scheme 1.9 Heteroatom oxidation by P450 BM3, see Ref. 65.  

However, a negligible KIE was observed leading to several possible conclusions: (1) both 

products arose from different oxidants, (2) binding of substrate to the P450BM3 enzyme 

caused an interchange in the position of substituents, thereby changing their position in 

the catalytic site, and (3) the inherent KIE of N-dealkylation was very small. Using 

substrate 11, the researchers were able to demonstrate the rapid interchange of 

substituents at the end of the molecule. This result combined with an intramolecular KIE 

for substrate 10c eliminated the last two possibilities, leading to the proposal that both the 

N-dealkylation and sulfoxidation products arose from two different oxidants. The authors 
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suggested that N-dealkylation was a product of Cpd I-mediated oxidation while 

sulfoxidation likely involved the ferric-hydroperoxo intermediate, without eliminating the 

possibility that the data could result from different forms of the same active oxygen 

species i.e Cpd I. In accordance with the ‘two-state’ state theory, where the low spin and 

high spin states form different enzyme-substrate (ES) complexes, the N-dealkylation and 

sulfoxidation reactions products can result from two non-interchangeable ES 

complexes.
63, 65

 Watanabe has also proposed that the altered reactivity in the active site 

threonine to alanine mutants may be a result of the altered water molecule network in the 

active site, which affects the hydrogen bonding of the Cpd I-ES complex.
66

 This 

alteration can skew the ratios of the low spin and high spin state of Cpd I, thereby 

affecting the mutant reactivity.  

The ferric-hydroperoxo species has also been implicated as an oxidant in 

hydrocarbon hydroxylation reactions. Catalysis by the ferric-hydroperoxo species was 

proposed to involve a cationic protonated alcohol intermediate
67

 (Scheme 1.10) as 

opposed to a radical intermediate formed in the radical rebound pathway (Scheme 1.2).  

 

 
 

Scheme 1.10 Proposed hydrocarbon hydroxylation mechanism by the ferric-hydroperoxo 

species, see Ref. [67,68].   

Newcomb and coworkers used ‘radical clock’ experiments to provide evidence for 

involvement of a cationic intermediate.
67-71

 In the first of such studies, the oxidation of 

trans-1-methyl-2-(4-trifluoromethyl)-phenylcyclopropane was examined. The substrate 
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could be oxygenated either on the methyl group yielding methyl alcohol as an 

unrearranged product or on the phenyl ring giving a ring-opened alcohol as a rearranged 

product. Using CYP2B1 as a biocatalyst, the substrate 12b was shown to generate a ring-

opened product, characteristic of a cationic rearrangement pathway (Scheme 1.11).
72

 

 

 
 

Scheme 1.11 Radical clock probes for mechanistic elucidation in CYP2B4, see Ref. 72. 

Reaction of substrate 12a with the CYP2B4 Thr302Ala mutant enzyme showed a mixture 

of products, both unrearranged and rearranged methyl oxidation as well as phenyl ring 

oxidation products. There was little difference in the ratio of rearranged to unrearranged 

product between the wild-type and mutant enzyme. However, a higher ratio of phenyl 

oxidation was seen in the mutant enzyme. The authors suggested that this result clearly 

indicated an alternative oxidant at play in the mutant enzyme that preferred the easier 

phenyl ring oxidation. To suppress phenyl ring oxidation in substrate 12b, the phenyl ring 

was replaced with an electron withdrawing CF3 group, which produced an altered ratio 

between the ring-opened and ring-closed products. This intimated a change in the oxidant 

in the hydroxylation reaction for that substrate. While these results satisfyingly conveyed 

involvement of the ferric-hydroperoxo species in the hydroxylation of certain substrates, 

the species is indeed a sluggish oxidant whereas Cpd I appears to be the oxidant of choice 

in hydrocarbon hydroxylations.
61

 While the ferric-hydroperoxo species appears in almost 
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all heme-based oxygen activation enzymes, there are a few examples where it plays a 

primary role in substrate oxidation. For example, heme oxygenase catalyzes the oxidation 

of heme to biliverdin
73

 and the first step of this oxidation involves an -meso-

hydroxylation of the heme group that is thought to be catalyzed by an electrophilic 

oxidant, most likely, the ferric-hydroperoxo intermediate.
74-76

 

1.4.4 Cpd I as the Most Powerful Oxidant 

The mechanism of oxidation in P450s has been established by comparison with 

other heme-based oxygen activating enzymes as well as spectroscopic characterization of 

the reaction intermediates. P450s are similar to other metalloenzymes such as NOS and 

chloroperoxidase (CPO) in that they all have heme coordinated to a cysteine thiolate 

ligand. P450s and NOS are oxidoreductases that activate molecular oxygen.
77, 78

 The 

P450s have long been presumed to oxidize substrates via a reactive porphyrin radical 

cation ferryl species known as Cpd I. Additional evidence for reactive intermediates was 

also collected by direct observation through a combination of various spectroscopic 

techniques.
79

 Based on the observed activation of P450s by hydrogen peroxide, alkyl 

hydroperoxides, periodate and iodosobenzene, oxygen activation was assumed to occur 

by a two-electron reduction of dioxygen to the level of H2O2 followed by formation of the 

ferryl intermediate as seen in heme-containing peroxidases.
80

 Synthetic 

metalloporphyrins could form a porphyrin radical cation (ferryl) species at low 

temperature in polar medium on reaction with peroxy acids and this intermediate had the 

reactivity to insert an oxygen atom into hydrocarbon substrates (Scheme 1.12).
81
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Scheme 1.12 Cpd I formation in synthetic metalloporphyrins by peroxy acids, 

reproduced with permission from Groves, J. T. (2003) The bioinorganic chemistry of iron 

in oxygenases and supramolecular assemblies, Proc. Natl. Acad. Sci. U. S. A. 100, 3569-

3574, Copyright 2003 National Academy of Sciences, U.S.A.  

When the transfer of an oxygen atom from the peroxy acid to produce the ferryl 

intermediate occurs, then the substrate is referred to as an ‘oxygen-rebound’ substrate.
82

 

Cpd I has been well characterized in CPO
83

 and was thought to be elusive in P450s. 

However, recently, Green and coworkers were successfully able to directly observe Cpd I 

in CYP119A1 for the first time.
38

 Cpd I was formed in about 75% yield by the reaction of 

ferric CYP119A1 with m-chloroperbenzoic acid. The resulting Cpd I species could then 

hydroxylate CH bonds in lauric acid with an apparent rate constant of kapp = 1.1 x 10
7
. 

The Mossbauer spectrum of this Cpd I species was similar to that seen using Cpd I of 

CPO. The mechanism of oxygen transfer from Cpd I to form the hydroxylated product 

has been a hotly debated topic. The initially proposed concerted mechanism of oxygen 

insertion
84

 fell aside in favor of the two-step H atom abstraction/oxygen rebound 

mechanism
82

. As explained in subsection 4.3, the ferric-hydroperoxo intermediate has 

also been implicated as an oxidant in a few hydrocarbon hydroxylations. ENDOR 

spectroscopic studies with cryoreduced wild-type P450CAM and its active-site mutants 

provided compelling evidence in favor of H atom abstraction/hydroxyl rebound.
57

 Active 

oxidant species of P450CAM were prepared by cryoreduction at 77 K of the oxyferrous 
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intermediate in the P450CAM-camphor complex. The ferric-peroxo and ferric-

hydroperoxo intermediates were observed upon slowly warming to 119 K and were 

subsequently characterized by EPR and ENDOR spectroscopy. Around 200 K, the ferric-

hydroperoxo species was quantitatively converted to 5-exo-hydroxycamphor, the natural 

product of camphor hydroxylation. While the ferryl intermediate was not observed 

directly, this oxidation was assumed to proceed through the hydroxyl intermediate 

because of the following observations in the experiment. After formation of the ferric-

hydroperoxo species upon slowly warming of the sample, the first species observed had 

the hydroxyl group bound to the heme iron, as was expected for the H atom abstraction in 

the ferryl-involved mechanism. Had the ferric-hydroperoxo species been involved in the 

oxidation, it would have initially formed hydroxycamphor via hydroxy insertion of the 

distal oxygen atom of the ferric-hydroperoxo species. Hydroxycamphor would be 

required to displace the hydroxyl/water that was bound to heme, but this displacement 

reaction was implausible to occur at 200 K. Furthermore, ENDOR spectroscopy showed 

that the hydrogen attached to the hydroxyl oxygen in the hydroxycamphor product 

originated from the C-5 position of camphor, further supporting the ferryl mechanism. 

Involvement of the ferric-hydroperoxo species would have required this H atom to 

originate from the surrounding solvent.  

Shaik and coworkers examined the mechanism of hydrocarbon hydroxylation 

using theoretical calculations and proposed a two-state reactivity instead of two-oxidant 

reactivity.
85-88

 The researchers showed that the porphyrin radical cation ferryl species 

exists in two spin states, a quartet spin state and a doublet spin state that are close in 

energy. Both species initiate the reaction by nearly identical H atom abstraction transition 
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states. The species in the doublet state can quickly collapse to the product in a barrierless 

reaction with no formation of an intermediate. This almost-concerted mechanism is aided 

by the increased interaction of the cysteine thiolate ligand with the heme iron, the push 

effect. On the other hand, the quartet state must overcome a significant energy barrier to 

form the product, thus allowing formation and rearrangements of radicals if any. The 

two-state reactivity model has provided a good explanation for the stereochemical 

scrambling and structural rearrangement resulting from the radical clock experiments. 

Direct observation and characterization of Cpd I has cemented the H atom 

abstraction/hydroxyl rebound mechanism of P450 enzymes.
89

 

1.4.5 Fe
III
(H2O2) as an Oxidant in Sulfoxidation Reactions 

As described earlier, Jones and coworkers, based on the oxidation of a substrate 

with both amine and thioether functional groups in P450BM3, proposed that two 

different oxidants can be responsible for their oxidation. The ferric-hydroperoxo species 

was proposed as the oxidant responsible for sulfur oxidation.
65

 In the same vein, De Voss 

and coworkers analyzed the oxidation of thia fatty acids using P450BM3 (Scheme 

1.13).
90

 

 
 

Scheme 1.13 Fatty acid oxidation by P450BM3, arrows indicate sites of oxidation and 

stereochemistry of products formed, see Ref. 90. 
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Analysis of the products indicated that presence of the thioether functionality 

dramatically shifted the regiochemistry of the reaction. With substrates 13 and 14, the 

oxidation was distributed across the last three methylene groups. However, replacement 

of the second methylene group with sulfur resulted in the oxidation in 15 and 16 

occurring exclusively at the sulfur. Interestingly, the sulfoxides were S enantiomers 

whereas the alcohols were R enantiomers. While it was speculated that thioethers 

undergo unusual binding to yield S sulfoxides, it has been shown in the past that modified 

fatty acids undergo R oxidation exclusively.
90-92

 Substrates were also reacted with the 

P450BM3 Thr268Ala active-site mutant, based on previous studies showing that the 

mutant enzyme formed very little Cpd I and was able to accumulate the ferric-

hydroperoxo species.
18, 29, 30

 Despite the low turnover in the mutant for substrate 14, 

product distribution and enantioselectivity remained unchanged between the wild-type 

and mutant enzyme. This demonstrated that there occurred reduced Cpd I formation in 

the mutant. For the thia fatty acid substrates, negligible change was observed in the 

turnover, product distribution and enantioselectivity of the products between the products 

of the wild-type and mutant enzyme. The authors proposed that sulfur oxidation must be 

easily catalyzed by the ferric-hydroperoxo species, thereby enabling the mutant enzyme 

to form comparable amounts of product compared to that of the wild-type enzyme.
90

 

However, Shaik and coworkers have recently used theoretical calculations to 

show that the Fe
III
(H2O2) complex (Scheme 1.2, 9) is a very efficient oxidant for 

sulfoxidation reactions in P450s and iron corrolazine compounds.
93

 The Fe
III
(H2O2) 

complex was shown to undergo a nucleophilic attack from the distal oxygen atom of the 

peroxo complex resulting in heterolytic OO bond scission that is coupled to proton 
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transfer (Scheme 1.14). The Fe
III
(H2O2) complex could also catalyze the oxidation on 

sulfur much faster than could Cpd I. The ferric-hydroperoxo intermediate, in contrast, 

had a high barrier via the homolysis pathway of oxygen insertion.
93

 This finding offers a 

new paradigm for sulfoxidation reactions in P450s and their synthetic monologues. 

 
 

Scheme 1.14 Fatty acid oxidation by P450BM3, arrows indicate sites of oxidation and 

stereochemistry of products formed, see Ref. 93. 

1.5 Conclusions  

The mechanistic complexity of P450 enzymes has been intensely debated for the 

last few decades. The recent direct observation of P450 Cpd I and resulting studies of its 

reactivity have provided strong support for the validity of the hydrogen atom 

abstraction/radical rebound mechansim. The role of the ferric-peroxo intermediate as a 

nucleophilic oxidant is also well established. The proposed role of the ferric-hyroperoxo 

intermediate as an electrophilic oxidant remains to be established. Its role as an oxidant 

has been proposed mainly based on turnover studies in P450 mutants with impaired 

ability to form Cpd I. A recent addition to this oxidant puzzle is the Fe
III
(H2O2) 

intermediate which has been proposed to be more active than Cpd I in thio-ether 

oxidation reactions. The two-state reactivity theory involving Cpd I has also provided 

some explanations for the disparate experimental data. Additional experimental and 

theoretical data are still needed to provide further insights into the mechanisms of P450 

catalysis. 
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CHAPTER 2 

PROBING HETEROATOM-CONTAINING SUBSTRATE OXIDATION IN P450-CAM 

FOR NON-FERRYL REACTIVE INTERMEDIATES. 
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Abstract: 

The multiple oxidant hypothesis of P450 catalysis has been probed in this study 

using P450-CAM from Pseudomonas putida, a prototypical P450 enzyme. The oxidation 

of substrates is accomplished by a catalytic cycle via a series of intermediates generated 

sequentially at the active site. Of these intermediates, the iron(IV)-oxo porphyrin radical 

cation, also known as Compound I, is believed to be the ultimate oxidant. However 

according to several studies in different types of P450s, it has been shown that the 

peroxoferric and the hydroperoxoferric intermediates formed prior to the Compound I 

may also be responsible for substrate oxidations depending on the reactivity of the 

specific substrate. P450-CAM is a versatile catalyst that has been shown to catalyze many 

typical P450 reactions in camphor analog substrates. The active site threonine-252 to 

alanine (T252A) mutant of P450-CAM on reaction with camphor yields H2O2 and 

minimal 5-hydroxycamphor, presumably because it makes very little Compound I while 

still generating the peroxoferric and hydroperoxoferric species. This makes T252A P450-

CAM an ideal catalyst to probe the multiple oxidant hypothesis. Using primarily 

electrophilic substrates, including camphor analog substrates modified at the fifth 

position, we have compared the quantitative product formation between wild type (WT) 

and T252A P450-CAM to gain an insight in the multiple oxidant hypothesis. 

2.1 Cytochrome P450-CAM as Prototype  

Much of the current information about P450s has been achieved through 

extensive studies of P450-CAM from the camphor degrading bacterium Pseudomonas 

putida. P450-CAM, the first soluble P450 was discovered by Gunsalus and co-workers.
1
 

Later, Poulos and co-workers published its crystal structure, which provided important 
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insight into the mechanistic details of the reaction cycle.
2
 Although P450-CAM shares 

less than 30% sequence identity with other P450s, the all-important aspects of active site 

are conserved in the enzyme.
3
 The active site lies buried deep within the protein with the 

hydrophobic inner environment of the protein surrounding the heme macrocycle as well 

as the substrate camphor. The conserved proximal cysteine residue C357, which tethers 

the heme to the protein, and the conserved acid-alcohol pair, D251-T252 are seen in the 

active site (Fig. 2.1A and B). The acid-alcohol pair has an important role to play in 

formation of the catalytic cycle intermediates. In wild-type P450-CAM enzyme the T252 

residue lies on the distal side of the heme and is implicated in the protonation of the outer 

oxygen atom in the ferric hydroperoxo species that leads to water being formed as a 

leaving group with concomitant formation of Compound I. In the mutant enzyme where 

the active site threonine 252 was changed to alanine (T252A), the catalytic cycle has 

been found to undergo a short circuit pathway (Scheme 2.1, A). In this case the second 

protonation happens incorrectly on the proximal oxygen on the hydroperoxo ferric 

intermediate leading to H2O2 formation. D251 is known to support the chain of water 

molecules that supply protons to the active site. Alteration of the D251 residue leads to 

change in the rate-determining step of the catalytic cycle.
4
  



 

46 
 

 

 
Figure 2.1 A) Crystal structure of P450CAM showing the heme macrocycle (red) and the 

substrate camphor (yellow) deep within the protein (blue) at the active site.
5
 B) Active 

site of camphor-bound oxy-P450-CAM, showing conserved residues (Cys357, Glu366, 

Thr252, Asp251 and Tyr96) in the active site. Image constructed in PyMOL using PDB 

file 1DZ8. 
6
 

A 

B 
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Scheme 2.1 P450 reaction cycle and intermediates. A non-productive uncoupling 

pathway that involves species 9 is shown in the inside of the outer cycle. 

2.2 The Multiple Oxidant Hypothesis in P450 Catalysis 

The exact intermediate responsible for adding oxygen to the hydrocarbon 

substrate has now been affirmatively shown to be Compound I; however the possibility 

of existence of multiple oxidants in the catalytic cycle also has been under consideration 

for past few years.
7
 Scientists have used various techniques such as electron 

paramagnetic resonance, electron nuclear double resonance, electron absorption 
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spectroscopy following cryoreduction of the oxyferrous enzyme, stopped flow rapid scan 

experiments and rapid freeze-quench methods by mixing ferric enzyme with oxygen 

atom donors, P450-like inorganic models and theoretical calculations to experimentally 

characterize the catalytic cycle intermediates.
8-11

 In addition to Cpd I, scientists have 

looked at the reactivity of the peroxoferric intermediate (Scheme 2.1, 5) in nucleophilic 

reactions and the hydro-peroxoferric intermediate (Scheme 2.1, 6) in electrophilic 

reactions as shown in Scheme 2.2. 

 
 

Scheme 2.2 Multiple oxidants in the P450 reaction cycle and types of reactions catalyzed 

by them. 

Apart from reaction intermediates, Shaik and co-workers have proposed that the 

two states of Cpd I intermediate, i.e the high-spin and low-spin forms, are responsible for 

different reactions.
12

 While the peroxoferric intermediate involves a nucleophilic role for 

P450 enzyme, most of the reactions catalyzed by P450s are electrophilic reactions in 
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nature. Based on the turnover experiments of camphor, the T252A mutant of P450CAM 

has shown to be ineffective at catalyzing the hydroxylation of camphor, Table 2.1.  

Table 2.1 Amounts of 5-exo-hydroxycamphor formed during turnover of WT and T252A 

P450-CAM with camphor, indicated as nmol product formed per nmol of P450 per min. 

 

 

In this study T252A P450CAM formed less than 2% of the oxidized product as 

compared to the WT. The T252A variant however, is capable of accepting electrons from 

NADH and reducing bound dioxygen to H2O2 (Scheme 2.1, pathway A).
13

 This indicates 

that the T252A mutant is essentially incapable of forming Compound I and thus, is a 

good system to study the reactivity of the preceding alternate non-ferryl oxidants. The 

T252-A active site mutant of P450-CAM and analogous mutants of other P450s have 

been widely studied to understand the role played by active site residues in dioxygen 

activation and substrate oxidation mechanism.
14-17

 The Dawson lab in collaboration with 

the Sligar lab first tested the reactivity of the T252A P450CAM mutant with camphor 

alkene analogues to look for the presence of alternate oxidants.
16

 Reaction with alkene 

substrates gave the corresponding epoxide products, however the rate of epoxidation was 

only 15-20% of the rate at which the wild-type enzyme oxidized the substrate. The higher 

rate of epoxidation as compared to that of camphor hydroxylation indicated that the 

T252A mutant could utilize hydroperoxoferric intermediate for epoxidation, but that 

Compound I remained the oxidant of choice in the wild-type enzyme for epoxidation. It 

also indicated that the hydroperoxoferric intermediate is a rather sluggish oxidant. 

P450-CAM WT T252A % of WT 

1-R-camphor 1170.7 ± 2 21.2 ± 3.6 ~ 1.8 
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In order to further investigate the multiple oxidant hypothesis of P450 catalysis, 

we have studied the reaction between other electrophilic substrates and T252A P450-

CAM enzyme in this study. The substrates include camphor analogues containing 

reactive functional groups at C-5, which is the normal site of P450 catalyzed oxidation in 

camphor, and the corresponding functional groups in benzene substrates. Reactions of 

these substrates have been performed with both wild-type (WT) P450CAM as well as the 

T252A mutant using the fully reconstituted electron transfer system consisting of NADH, 

putidaredoxin (PdX) and putidaredoxin reductase (PdR). In this chapter, we report our 

findings from the quantitative comparison of the product formation between the WT and 

T252A to gain an insight into the multiple oxidant hypothesis.  

2.3 Experimental Methods. 

Expression and Purification of Proteins 

a) WT and T252A P450-CAM: Both the WT and T252A P450-CAM enzymes were 

purified according to protocol described in Dr. Glascock’s dissertation.
18

 TB1 stock cells 

of E. coli bearing the pEMBL P450CAM containing plasmid were streaked on a LB-

Ampicillin agar plate and incubated over night at 37
o
C. A single colony from this plate 

was used to inoculate a 100 mL of LB-Broth supplemented with ampicillin and the cells 

are grown until the OD600 is about 0.8. 10 mL of this solution was then added to 6-L LB-

broth supplemented with ampicillin and the cells are grown for 18 h. The cells are then 

harvested by centrifugation at 4
o 

C for 10 min at 5000 x g. The cells were finally washed 

with buffer containing 1 mM 1R-(+)-camphor, 50 mM potassium phosphate (KPi) at pH 

7.4 (buffer A). To purify the protein, the cell pellet was dissolved in buffer A as 

described above in the washing step. The cell walls were broken by exposing them to 30 
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s. sonication intervals at 90% output with 2 min interval between sonication, while being 

stored on dry ice to prevent denaturation of the protein. The lysed cell debris was 

removed by centrifugation at 4
o 

C for 25 min at 10000 x g. The supernatant was loaded 

on a Whatman DE52 cellulose anion exchange column and washed with the 1 mM 1R-

(+)-camphor, 50 mM KCl, 50 mM KPi at pH 7.4 (buffer B). The protein was eluted by a 

linear KCl gradient from 50-250 mM KCl in buffer B. The purity of each sample was 

analyzed by measuring the UV-visible (UV-vis) absorbance at 391 nm over that at 280 

nm, the higher the ratio, better is the purity. To achieve higher purity, the protein was 

loaded onto a Biogel P-100 size exclusion column and eluted with 1 mM 1R-(+)-

camphor, 50 mM KCl, 50 mM KPi at pH 7.4 (buffer C). Fractions with UV-vis 

absorbance ratio A(391)/A(280) values greater than 1.4 were used for experimental work. 

Proteins in buffer B containing excess camphor were concentrated to ~1 mM, flash-

frozen in liquid nitrogen and stored at -80
o 
C.  

b) PdR and PdX: Dr. Thomas Poulos (University of California, Berkeley, USA) kindly 

provided overexpression systems for PdR and PdX enzymes. Expression and purification 

of these proteins were achieved as per published protocols with minor modifications.
19, 20

 

For both PdR and PdX, the cell lysis was achieved by sonication as described above for 

P450-CAM. For PdX, the two-step column purification was achieved by first loading the 

lysate on to a Whatman DE52 cellulose anion exchange column, followed by a Biogel P-

100 size exclusion column. Protein fractions with UV-vis absorbance ratio 

A(412)/A(280) values between 0.48-0.5 were used for experimental work. For PdR, the 

final step of column purification was achieved on a Biogel P-100 size exclusion column, 
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and the protein fractions with UV-vis absorbance ratio A(280)/A(454) values of 7.0 or 

less were used.  

Turnover Experiments: 

a) Camphor removal and buffer exchange: In order to perform turnover experiments, the 

P450-CAM enzymes had to be stripped of camphor. This was achieved using a Biogel 

P6DG desalting column equilibrated with 0.05 M MOPS buffer at pH 7.0, followed by 

buffer exchange on another Biogel P6DG desalting column equilibrated with camphor 

free buffer B. Successful removal of camphor was confirmed by a shift in the Soret 

absorbance from 391 nm to 417 nm.  

b) Substrates: Benzene derivative substrates, styrene and thioanisole were purchased 

from Sigma-Aldrich. 5-methylenylcamphor was synthesized by Shengxi Jin.
21

 (1R)-5-

exo-thiomethoxycamphor was newly synthesized according to the methods described by 

Kemnitzer 
22

 and Jin 
21

 with minor modifications as described in Scheme 2.3. All the 

intermediates and the final products of the synthesis were monitored by 
1
H-NMR and 

GC-MS and were confirmed by comparing with previously published data.  
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Scheme 2.3 Synthetic scheme for (1R)-5-exo-thimethoxycamphor.  

c) Catalytic turnover and NADH consumption experiments: Reaction mixtures were set 

up in 50 mM KPi pH 7.4 buffer containing a mixture of the P450CAM-WT (0.5 µM), 

PdX (10 µM), substrate (0.5 mM for camphor analogues and 1 mM for benzene 

analogues), and NADH (1.0 mM). Catalase (5 µM, based on heme) was used for benzene 

substrates. The reactions were initiated by adding PdR (4.0 µM). Reactions were carried 

out for 15 min. for the camphor analog substrates and 30 min. for the benzene substrates 

and were quenched by adding 1 mL CH2Cl2. Suitable internal standards were added to 

the reaction mix before extracting the products. To measure the kinetic solvent isotope 

effect (KSIE), the reaction was carried out in D2O KPi buffers (see above). Prior to the 

reaction, the P450-CAM enzymes were allowed to acclimatize in the buffer for at least 30 

min. To monitor the NADH consumption during thioether substrate oxidation, the 

turnover reaction was conducted in a 0.5 cm quartz cuvette and the decrease in absorption 

at 340 nm was monitored on Agilent UV-vis instrument.  
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d) Calculation of product formed: Oxidized products were analyzed by GC-MS. The 

amount of products formed was quantitated using standard curves of the oxidized product 

and internal standard, 3-bromocamphor for camphor analog substrates and 4-tert-

butylphenol for benzene substrates.  

2.4 Results and Discussion 

In the first set of turnover experiments (Scheme 2.4), we looked at the products of 

the turnover reaction of 5-methylenylcamphor (Scheme 2.4, 10) and styrene (Scheme 2.4, 

12), followed by (1R)-5-exo-thiomethoxycamphor (Scheme 2.4, 14) and thioanisole 

(Scheme 2.4, 15) with the WT and T252A P450-CAM mutant enzymes. The two olefin-

containing substrates formed epoxide products (Scheme 2.4, 11 and 13) as has been 

demonstrated previously in WT P450-CAM.
16, 23

 However, of the two sulfur-containing 

substrates, thioanisole formed a sulfoxide (Scheme 2.4, 17) while the camphor analogue, 

[(1R)-5-exo-thiomethoxycamphor], underwent an oxidative dealkylation to form a ketone 

product (Scheme 2.4, 15). The results of the turnover experiments are summarized in 

Table 2.2 below. With the olefinic substrates, the rate of epoxidation of styrene in T252A 

P450-CAM was observed to be about 25% of the rate seen in WT P450-CAM. This value 

is similar to the results previously reported for camphor olefin.
16

 In similar reactions 

conducted in mammalian P450s, Coon and co-workers have reported similar findings and 

have proposed a mechanism involving the hydroperoxo intermediate in the epoxidation 

reaction.
15

  

Oxidation of the two thiomethoxy substrates however, provided the most 

surprising results. Both in camphor analogue substrate (14) and benzene substrate (16), 

the rate of substrate oxidation observed in the T252A mutant was greater than 50% the 
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rate seen with WT enzyme. We then looked at the NADH consumption and calculated 

the coupling and uncoupling data for the thiomethoxy substrates as shown in the Table 

2.3 below. 

 

 
 

Scheme 2.4 Products of turnover reactions with olefins and thioethers catalyzed by P450-

CAM. 

Table 2.2 Amounts of products formed with WT and T252A camphor indicated as nmol 

product formed per nmol of P450 per min. 

Substrate P450CAM-

WT 

P450CAM-T252A Rate of product 

formed by 

T252A 

compared to 

WT 

5-Methylenyl-camphor 

(10) 

107.5± 0.2
a
 22.9 ± 0.6

a
 21.4 % 

Styrene (12) 0.9 ± 0.2
a
 0.2 ± 0.1 24.4 % 

5-(1R)-exo-Thiomethoxy-

camphor (14) 

3.35 ± 0.6 1.79 ± 0.3  53.5 % 

Thioanisole (16) 2.14 ± 0.2 1.65 ± 0.04 68.4 % 

5-methylenylcamphor styrene 

O

(1R)-exo-thiomethoxycamphor thioanisole 

10 11 12 13 

14 15 
16 17 
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a, 

 Amounts of product formed is in agreement with values published previously 

Table 2.3 Amounts of NADH consumed by turnover of P450 CAM with (A) 5-(1R)-exo-

thiomethoxycamphor (14) and (B) thioanisole (16) indicated as nmol NADH consumed 

per nmol of P450 per min compared with the amount of oxidized product formed. 

(A) 5-(1R)-exo-

thiomethoxy- 

camphor (14) 

P450-CAM WT P450-CAM T252A 

NADH consumed 61.4 ± 1.8 61.8 ± 2.7 

Product formed 3.35 ± 0.6 1.79 ± 0.3 

Coupling % 5.6 ± 1 2.9 ± 0.6 

Uncoupling % 94.5 ± 1 97.1 ± 0.6 

 

(B) Thioanisole (16) P450-CAM WT P450-CAM T252A 

NADH consumed 44.8 ± 0.6 12.23 ± 2.8 

Product formed 2.41 ± 0.2 1.65 ± 0.04 

Coupling % 5.4 ± 0.5 13.9 ± 2.6 

Uncoupling % 94.6 ± 0.5 86.0 ± 2.6 

  

Sulfoxidation was exclusively observed for thioanisole (16). Consistent with 

previously reported results, thioanisole was never observed to undergo S-dealkylation of 

the methyl group attached to the sulfur group.
24

 In the sulfoxidation reaction, the T252A 

mutant underwent oxidation at about 70% of the rate observed for that of the WT. It has 

been recently proposed by Shaik and co-workers that the Fe
III

-(H2O2) (9 in Scheme 2.1) 

complex could be a highly efficient oxidant in sulfoxidation reactions.
25

 The reaction has 
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been proposed to occur by a nucleophilic attack from the distal oxygen atom of the Fe
III

-

(H2O2) complex resulting in heterolytic OO bond scission that is coupled to proton 

transfer as shown in Scheme 2.5 

 

. 

 

Scheme 2.5 Proposed mechanism of sulfoxidation by the Fe
III
(H2O2) intermediate.

25
 

It is to be noted that the Fe
III

-(H2O2) complex is formed in the uncoupling pathway 

thereby correlating with the observed high turnover despite low NADH coupling in 

thioanisole sulfoxidation. Although Shaik and co-workers have proposed that Fe
III

-(H2O2) 

intermediate is more efficient than Cpd I in thioether oxidation, the higher rate of 

sulfoxidation by the WT enzyme suggests that Cpd I is still the strongest oxidant at play. 

Oxidation at the sulfur atom was not observed in the thiomethoxy camphor 

substrate (14). The reaction with the camphor analog is presumed to occur in two steps, 

first C-hydroxylation followed by S-demethylation (Scheme 2.6). The hydroxylated 

intermediate is too unstable to be observed and has never been seen as a detectable 

product in our turnover reactions. The T252A mutant is able to oxidize the substrate at a 

rate that is 60% of that seen with WT. For the camphor analogue, a higher coupling is 

observed in the WT enzyme, although the coupling in the mutant enzyme is only reduced 

by half despite forming product at a rate equal to 60% seen with the wild type. 
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Scheme 2.6 P450 catalyzed oxidative demethylation reaction in 5-(1R)-

thiomethoxycamphor. 

Since the first step of this oxidation is C-hydroxylation, if Cpd I was the oxidant of 

choice, oxygen insertion would occur by the hydrogen atom abstraction-hydroxyl radical 

rebound mechanism. Davydov and co-workers have shown that little camphor 

hydroxylation in T252A proceeds via the ferryl intermediate,
26

 thus the higher 

hydroxylation rate in the T252A mutant as seen in our data strongly indicates that 

alternative oxidant(s) may be involved in reactions catalyzed by the mutant. The 

theoretical examination of the bond energies of the 5-(1R)-thiomethoxycamphor structure 

show that the presence of sulfur atom significantly weakens the C-H bond thus making it 

susceptible to attack from weaker oxidants as well (Shengxi Jin, Feng Xu, Vitaly 

Rassolov, John Dawson unpublished data). 

Given the electrophilic nature of these reactions, and the high rate of reaction with 

the T252A mutant which forms little Cpd I, either the ferric-hydroperoxo or Fe
III
(H2O2) 

species are likely to be involved in the oxidation. The Fe
III
(H2O2) species has been 

proposed to perform oxidation faster than it converts to Cpd I, thereby bypassing Cpd I in 

presence of thioether,
25

 although the camphor thioether analog does not undergo 

sulfoxidation. If the Fe
III
(H2O2) species is involved in the oxidative dealkylation and 

were to proceed by O-O cleavage, we hypothesize the hydroxyl insertion mechanism 

shown in Scheme 2.7 below. 
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Scheme 2.7 Putative mechanism for oxidative demethylation of 5-(1R)-

thiomethoxycamphor reaction involving Fe
III
(H2O2) intermediate. 

Similarly, if the ferric-hydroperoxo was the involved in oxidation, the mechanism 

could occur by insertion of the distal oxygen to form protonated alcohol, followed by loss 

of proton to give a thio-hemiketal type intermediate. Loss of methanethiol results in 

formation of ketone product. This mechanism is summarized in Scheme 2.8 below.  

 

 
 

Scheme 2.8 Putative mechanism for oxidative demethylation of 5-(1R)-

thiomethoxycamphor reaction involving ferric-hydroperoxo intermediate. 

Involvement of ferric-hydroperoxo intermediate in hydrocarbon hydroxylation has been 

unconvincing due to lack of compelling evidence. So far in nature, the only evidence for 

direct involvement of ferric-hydroperoxo species in oxidation has been shown in the 
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oxidation of heme to biliverdin by the heme oxygenase (HO) enzyme.
27

 However the lack 

of well-defined catalytic residues in the HO active site have led to the proposal that such 

HO catalyzed oxidations may be an exception in cases where O-O bond scission to yield 

Cpd I is inefficient,
27, 28

 like in threonine to alanine mutations of P450s active sites.  

2.5 Conclusions  

The involvement of multiple oxidants in P450 catalysis stems from the idea of 

‘induced reactivity’ in which the substrate modulates the properties of a reactive 

intermediate.
29

 In this work, we have demonstrated that compared with the WT enzyme, 

the T252A P450-CAM mutant exhibits considerable reactivity toward heteroatom 

containing substrates. It is especially notable that in the case of thioether substrates, the 

relative oxidation rates are close to 50% the rate seen with the wild-type enzyme. Since 

the T252A P450-CAM mutant has almost no hydroxylation activity toward camphor, it is 

presumed to form little if any Cpd I and therefore its ability to carry out substrate 

oxygenations must be attributed to alternate reactive intermediates. In oxidation of the 

benzene derivative substrate, thioanisole, theoretical calculations have shown that the 

Fe
III
(H2O2) species can be an effective oxidant, even better than Cpd I. The involvement 

of other oxidants, possibly ferric-hydroperoxo or Fe
III
(H2O2) is further affirmed in the 

case of the T252A-camphor thioether substrate turnover as it undergoes hydroxylation 

followed by demethylation. Once again, since this mutant does not form significant 

amounts of Cpd I, its ability to carry out the S-demethylation reaction must be due to 

involvement of another reactive intermediate, presumably the ferric-hydroperoxo species. 

While the ferric-hydroperoxo intermediate may not be the oxidant of choice in the most 

challenging oxidation reactions, the reactivity of this intermediate may be sufficient to 
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oxygenate more reactive substrate such as the heteroatom-containing substrates examined 

herein.  
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CHAPTER 3 

HEME IRON COORDINATION STRUCTURAL ANALYSIS USING MAGNETIC 

CIRCULAR DICHROISM SPECTROSCOPY.2 

                                                      
2 Section 3.2 of this chapter was published as a part of MCD analysis in Bastian 

Molitor, Samir El-Mashtoly, Anuja Modi, Marc Staßen, Christoph Laurich, Wolfgang 

Lubitz, John H. Dawson, Michael Rother
 
and Nicole Frankenberg-Dinkel. 2013. J. Biol. 

Chem. 2013 288: 18458-18472. 
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Abstract:  

Magnetic circular dichroism  (MCD) spectroscopy also known as the Faraday 

effect is an excellent fingerprinting tool for various heme systems. It can be used for 

assigning axial ligand identity, coordination numbers as well as spin state determination 

of the heme iron, which can lead to important information about their structures and 

functions. Over the past 30 years, the Dawson laboratory has recorded and maintained a 

library of MCD spectra of numerous heme proteins from various collaborative projects 

and their own studies. Continuing the collaborative work, in this chapter we present 

results from the application of MCD spectroscopy in the axial ligand(s) identification 

analysis of three novel heme proteins, sGAF2, Z-ISO and Phu_R, and in characterization 

of the ferrous dioxygen complex of an engineered P450BM3 protein. 

3.1 Magnetic Circular Dichroism Spectroscopy 

Studies of the coordination structures of heme protein active sites provide 

important information about the mechanism of action of the native heme proteins. 

Particularly, the amino acids coordinating to the heme iron and those surrounding the 

active site along with the oxidation and spin states of the heme iron have been shown to 

play important roles in the structure and function of heme-proteins.
1-3

 Magnetic circular 

dichroism (MCD) has long been used in the Dawson laboratory as a fingerprinting 

technique for various heme systems. The theory of MCD is based on the Faraday effect 

first discovered by Michael Faraday in 1845. Natural circular dichroism (CD) and MCD 

both measure the difference in absorption between left and right circularly polarized 

light. In MCD a magnetic field is applied parallel to the direction of propagation of 

light.
4-8

 CD, however, is observable only in optically active species that exhibit 



 

67 

 

dissymmetry within the structure of the chromophore (chirality) or environment. 

According to the Faraday effect, the application of a magnetic field parallel to the 

direction of light induces optical activity due to Zeeman splitting. Therefore all species 

can exhibit MCD spectra while only the optically active species can exhibit CD spectra.  

Both CD and MCD signals can only be observed in the regions displaying 

electronic band absorption. An MCD spectrum is composed of several bands arising from 

different electronic transitions, and these bands are composed of three separate, ‘A’, ‘B’ 

and ‘C’ terms Fig. 3.1.
9
 ‘A’ terms are temperature independent and have a typical 

derivative-shaped dispersion centered on the electronic absorption spectrum band. ‘A’ 

terms are seen only in those systems that demonstrate degeneracy in excited state that is 

lifted by the applied magnetic field, also known as Zeeman splitting and as such they are 

typically seen in spectra of systems exhibiting a three-fold or higher symmetry axis. ‘B’ 

terms arise from magnetic field-induced ground state and excited state mixing, typically 

seen in systems with less than three fold symmetry. They are Gaussian-shaped and are 

temperature independent similar to the ‘A’ terms. ‘C’ terms are temperature-dependent, 

arising from magnetic field-induced lifting of ground state degeneracies. This causes the 

‘C’ terms to be Gaussian-shaped centered on the electronic absorption band.
10, 11
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Figure 3.1 Diagram illustrating the origin of the A, B, and C terms of a MCD spectrum, 

reprinted with permission from Vickery, L. E. (1978) Spin states of heme proteins by 

magnetic circular dichroism, Methods Enzymol. 54, 284-303. 
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It has been shown that MCD is a powerful probe of the heme iron spin state, 

oxidation state, and the identity of the heme iron axial ligand(s) while being relatively 

insensitive to the surrounding factors other than the axial ligands.
12, 13

 MCD spectra can 

be recorded over a range of temperatures, on dilute samples even in the micromolar range 

(10
-6 

M) and on both diamagnetic and paramagnetic species.
13, 14

 Unlike the traditional 

UV-visible (UV-vis) absorption spectra, which only have positive sign features, MCD 

spectra have both positive and negative sign features, thereby presenting a finer 

electronic structural detail of the system being investigated. This ‘fingerprinting’ capacity 

combined with the intrinsic sensitivity to the electronic (and thus structural) aspects of 

the chromophore being examined and relative insensitivity of environmental factors 

makes MCD an extremely useful tool for coordination structural elucidation. MCD 

spectroscopy’s potential applications include: 

a) To determine ground state magnetic properties such as spin state, g-values, zero 

field splittings and magnetic coupling; 

b) To assign electronic transitions pertaining to the electronic structure of a 

chromophore, including theoretical models; 

c) To resolve individual components of electronic spectra of proteins containing 

several metal centers; and, 

d) To compare novel proteins to model systems or vice-versa to determine the active 

site coordination structure with regards to ligands, spin state, oxidation state, geometry, 

etc. Comparisons of the proteins can be made regardless of the protein conformation 

effects. 
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Having introduced the theory and basic uses of MCD spectroscopy, in this chapter 

we will look at the application of MCD in the determination of axial ligand identity in 

novel heme proteins, sGAF2, Z-ISO and Phu_R, and in the characterization of the 

dioxygen complex of an engineered P450BM3 protein. 

3.2 Part A: Axial Ligand Determination in sGAF2 

The protein MA4561 from the methanogenic archaeon Methanosarcina 

acetivorans was predicted to be a phytochrome-like photoreceptor mainly because of the 

presence of a conserved cysteine residue in the first GAF domain.
15

 However the 

recombinantly produced and purified protein was shown to not bind any known 

phytochrome chromophores, instead UV-vis absorption spectroscopy revealed the 

presence of a heme tetrapyrrole cofactor. The heme is covalently attached via one vinyl 

side chain to cysteine 656 in the second GAF domain. Majority of the heme-based 

sensors have a heme-b type non-covalently attached tetrapyrrole cofactor, but pyridine 

hemochromogen assay revealed that the α-band maximum in MA4561 is at 553 nm. This 

is typically seen in c-type cytochromes due to the saturation of only one heme vinyl 

group, whereas the other stays unsaturated.
16, 17

 Functionally MA4561 has been proposed 

to be a heme-based sensor kinase that is able to autophosphorylate methyl sulfide 

methyltransferase depending on the heme redox state.
18

 In order to get a better 

understanding of the heme co-ordination structure, Prof. Nicole Frankenberg-Dinkel 

(Ruhr-University, Bochum, Germany) collaborated with our laboratory for MCD studies 

of the heme domain containing MA4561 variant, sGAF2. 

3.2.1 Methods: 

Dr. Nicole Frankenberg-Dinkel provided us with the purified protein samples 
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prepared as described in.
18

 MCD spectra were measured on a Jasco J815 

spectropolarimeter fitted with a Jasco MCD-1B magnet at a magnetic field strength of 

1.41 T at 4° C using a 0.2 cm path length quartz cuvette. Jasco software was used for data 

acquisition and manipulation as reported previously.
19

 Because the molar absorptivity of 

the pyridine hemochromogen of the heme in variant sGAF2-His6 (without imidazole 

(Im)) could not be determined, concentrations of the sGAF2 samples were tentatively 

determined based on an estimated value of ε = 115 mM
-1

 cm
-1

 (the value for ferric 

cytochrome b5) for the Soret absorption peak (415 nm) of the Im complex of ferric 

sGAF2 at pH 7.0. UV-vis absorption spectra were recorded on Cary 400 spectrometer, 

before and after each MCD measurement to track sample integrity. sGAF2 protein 

samples were studied in 50 mM sodium phosphate buffer containing 100 mM NaCl 

(NaPi) at pH 7.0 and in 50 mM CAPS buffer at pH 10.0. The Im and tetrahydrothiophene 

(THT) adducts were prepared by adding 2 and 14 mM Im and THT to the ferric protein, 

respectively. The ferrous species of sGAF2 was prepared from ferric protein in the 

presence or absence of exogenous ligands (Im and THT) by flushing a rubber septum-

sealed cuvette with nitrogen gas for about 10-15 min followed by the addition of a small 

amount of solid sodium dithionite. 

3.2.2 Results and Discussion:  

MCD spectra of ferric and ferrous states of sGAF2 are shown in Fig. 3.2, where 

the spectra of analogous states of horse heart myoglobin (Mb), horseradish peroxidase 

(HRP) and cytochrome b5 (cyt b5) are overlaid for comparison. All of these three 

proteins contain His-ligated heme (iron-protoporphyrin IX) prosthetic group. At pH 7.0 

ferric sGAF2 exhibits MCD spectrum (solid line in Fig. 3.2 A) in the visible region (450 
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– 700 nm) that is similar to that of ferric HRP (dashed line) and ferric Mb (dotted line), a 

five-coordinate and water-ligated six-coordinate heme respectively. However, a closer 

comparison of the trough intensities at ~640 nm indicates that the spectrum of ferric 

sGAF2 is more similar to that of HRP than Mb. In the Soret region (350 – 450 nm), an 

asymmetric MCD spectrum of ferric sGAF2 having a prominent peak at ~404 nm 

(intensity ~7.5 M
-1

 cm
-1

 T
-1

) and two troughs at ~370 and ~430 nm (< 5 M
-1

 cm
-1

 T
-1

) 

does not resemble either a weak negative feature (a trough at ~420 nm, ~4 M
-1

 cm
-1

 T
-1

) 

of ferric HRP or a broadly symmetric derivative-shaped spectral feature (+/- ~15 M
-1

 cm
-

1
 T

-1
) of ferric Mb. These comparisons suggest the heme group in ferric sGAF2 at pH 7.0 

is more likely to be five-coordinate rather than six-coordinate. The MCD spectrum of 

ferric sGAF2 at pH 10.0 (gray line) is clearly different from that at pH 7.0 in that one of 

the visible region trough (~550 nm) is shifted to ~575 nm and a Soret region feature 

becomes derivative-shaped with considerably enhanced intensity (+34/-40 M
-1

 cm
-1

 T
-1

). 

The resultant spectral features are indicative of an increased low spin six-coordinate 

species.  

Dithionite-reduced ferrous state sGAF2 (solid line in Fig. 3.2B) has MCD spectral 

features that are broadly similar to those of ferrous Mb (which contains a His-ligated 

five-coordinate heme, dotted line in Fig. 3.2B) including quite intense Soret peaks (~125 

M
-1

 cm
-1

 T
-1

) except for the more enhanced and derivative-like shape in the visible region 

around 555 nm for sGAF2 compared to Mb. At pH 10.0, this derivative-shaped spectral 

line becomes much more intense. Concomitantly, the Soret peak intensity diminishes by 

~50% (gray line in Fig. 3.2B). These MCD spectral changes are indicative of an increase 

in the fraction of a ferrous six-coordinate low-spin heme such as bis-amine (or bis-His)-
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ligated ferrous heme (see below). Fig. 3.3C compares ferric-Im (solid line) and ferric-

THT (a cyclic thioether) adducts (dashed line) of sGAF2 with ferric cyt b5 (dotted line). 

These three heme adducts display similar MCD spectral patterns, namely relatively 

intense derivative-shaped Soret spectra and mainly positive (450 – 560 nm) and negative 

(560 – 700 nm) features with a prominent trough at 570 – 580 nm. The MCD spectral 

similarity for the ferric-Im complex of sGAF2 and ferric cyt b5, (which contains a bis-

His-ligated heme) suggests identical ligation modes for the two heme proteins. Since bis-

amine- (or bis-His-) and bis-thioether-ligated ferric hemes have been shown to have 

similar MCD spectra 
20

, mono-Im (or His)/mono-thioether-bound ferric heme is expected 

also to share the similarity. In Fig. 3.3D, MCD spectra of ferrous-Im and ferrous-THT 

adduct are compared with the spectrum of ferrous cyt b5. As seen in their ferric state 

(Fig. 3.3C), the MCD spectral patterns of these three ferrous complexes show common 

patterns. In the visible region, extremely intense derivative-shaped features around ~555 

nm are notable. In the Soret region, the MCD spectra of the THT-bound sGAF2 and cyt 

b5 are similar to each other in pattern (except for some intensity difference) while the Im-

complex of sGAF2 shows somewhat different pattern with a noticeably intense trough at 

~425 nm. A possible cause of this difference could be incomplete formation of the Im-

complex
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Figure 3.2 MCD spectra at 4 °C of ferric sGAF2 at pH 7.0 (solid line), ferric sGAF2 at 

pH 10.0 (gray line; reduced by 2.5 times in the 300-440 nm region), ferric horseradish 

peroxidase at pH 7.0 (dashed line), and ferric Mb at pH 7.0 (dotted line) (A) and ferrous 

sGAF2 at pH 7.0 (solid line), ferrous sGAF2 at pH 10.0 (gray line; reduced by 2 times in 

the 460-700 nm region), and ferrous Mb at pH 7.0 (dotted line) (B) are shown. The 

spectra of ferric HRP, ferric Mb, and ferrous Mb are replotted from Ref. 21. Figure 

reprinted with permission from Molitor, B., Stassen, M., Modi, A., El-Mashtoly, S. F., 

Laurich, C., Lubitz, W., Dawson, J. H., Rother, M., and Frankenberg-Dinkel, N. (2013) A 

heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans, J. 

Biol. Chem. 288, 18458-18472. 
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Figure 3.3 MCD spectra at 4
o
C of the ferric Im sGAF2 derivative at pH 7.0 (solid line; 

with 2mM Im), the ferric THT sGAF2 derivative at pH 7.0 (dashed line; with 14 mM 

THT), and 50 mM ferric cyt b5 at pH 7.0 (dotted line) (C) and ferrous Im sGAF2 at pH 

7.0 (solid line; with 2 mM Im), ferrous THT sGAF2 derivative in NaPi buffer at pH 7.0 

(dashed line; with 14 mM THT), and ferrous cyt b5 at pH 7.0 (dotted line) (D). The 

spectra of ferric and ferrous cytochrome b5 are replotted from Ref. 22. See the text for 

the types of buffer used for sGAF2, see Ref. 21 for Mb and HRP, and see Ref. 22 for cyt 

b5. Figure reprinted with permission from Molitor, B., Stassen, M., Modi, A., El-

Mashtoly, S. F., Laurich, C., Lubitz, W., Dawson, J. H., Rother, M., and Frankenberg-

Dinkel, N. (2013) A heme-based redox sensor in the methanogenic archaeon 

Methanosarcina acetivorans, J. Biol. Chem. 288, 18458-18472.. 
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In addition to MCD, the Dinkel group also used resonance Raman (RR) for heme-

co-ordination determination. In the RR measurements, a six coordinate low spin heme 

was observed, whereas MCD data suggests a high-spin state and a five-coordinate 

structure rather than a six-coordinate structure. The conditions used in the RR 

experiments most likely would not allow detection of a five-coordinate high spin heme 

species. Therefore, a clear assignment of the coordination structure cannot be made, 

suggesting a mixture of different coordination states. When the pH of the buffer was 

changed to pH 10.0, a mixture of a high-spin and low-spin components were also 

detectable in MCD spectra, whereas the differences in UV-vis absorption spectra were 

minor. This low-spin component appears to be arising from a bis-His-type coordination 

structure as judged from the similarity to the Fe(III)-Im complex. Upon reduction of 

MA4561 with dithionite, an Fe(II) complex with a broad Soret band at about 432 nm and 

a visible band at about 557 nm with shoulders at about 528 and 574 nm is formed. An 

additional peak was observed at about 625 nm for the sGAF2 variants. These optical 

absorption properties cannot be clearly assigned to one coordination and spin state but 

again, rather appear like a mixture of different states. With RR data, a mixture of two 

different six coordinate low spin states was observed, and the existence of two species 

was confirmed in the MCD measurements. At pH 10.0, one of the two states becomes 

predominant as judged from the MCD data and is similar to the bis-His-ligated Fe(II) 

form of cyt b5 . The addition of Im or THT for the MCD measurements led to typical six 

coordinate low spin hemes for the Fe(III)-(Im and THT) as well as the Fe(II)-(Im and 

THT) forms.
23, 24

 The Im complexes were hardly distinguishable from the THT 

complexes with only minor differences in UV-visible as well as MCD spectra. 
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Similarities of the Im complexes to cyt b5 led to the conclusion that a His/Im or a 

His/THT complex is formed that would resemble a bis-His (cyt b5) or His/Met (many c -

type cytochromes) ligation structure. 

The structural model of sGAF2 generated supports the spectral data with putative 

axial ligands in proximity of the heme cofactor. Specifically, two histidine residues 

(His702 and His704) are located at the proximal side of the heme pocket that might be 

involved in coordinating the heme iron (Fig. 3.4). Initial mutational analyses of these 

residues suggest His702 as the proximal ligand (Nicole Frankenberg-Dinkel, unpublished 

data). In the distal side of the heme two tyrosine (Tyr632 and Tyr665), one methionine 

(Met645), and one histidine (His646) are found. An alternating pair of these groups might 

become axial ligands involved in coordinating to the heme iron depending on the redox 

state. Because ligands like carbon monoxide (CO), THT, and Im are able to bind to the 

heme in MA4561, we envision the distal side of the heme pocket large enough to allow 

THT and Im molecules to enter and coordinate to the heme iron. The above mentioned 

amino acids might also be involved in stabilizing different ligation states of the heme 

without being a direct ligand to the heme iron. Alternatively, they might be exchanged as 

a direct ligand upon binding of external ligands as the above spectroscopic data suggest 

six-coordinate states also in the absence of external ligands. It is interesting to note that a 

cysteine residue (Cys-656) that is speculated to form a covalent bond with the heme is 

located near one of the heme vinyl groups, giving the modeled structure more confidence.
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Figure 3.4 Structural model of the heme-binding pocket of MA4561, in the second GAF 

domain (aa 608–768) modeled using the PHYRE2 server 
25

, and the modeled structure is 

used to predict putative ligands binding to this structure using 3DLigandSite.
26

 The heme 

cofactor is shown in middle in brown and the protein structure is shown as a green ribbon 

(important amino acids are shown as sticks). Figure reprinted with permission from 

Molitor, B., Stassen, M., Modi, A., El-Mashtoly, S. F., Laurich, C., Lubitz, W., Dawson, 

J. H., Rother, M., and Frankenberg-Dinkel, N. (2013) A heme-based redox sensor in the 

methanogenic archaeon Methanosarcina acetivorans, J. Biol. Chem. 288, 18458-18472. 



 

79 

 

3.3 Part B: Axial Ligand Determination in Z-ISO 

Vitamin A deficiency is a global phenomenon especially in children, causing 

blindness, increased susceptibility to disease, and increased mortality.
27-29

 A sustainable 

approach is to provide provitamin A carotenoids in plant food staples to maintain healthy 

serum levels of vitamin A, a process currently impeded by the lack of detailed 

understanding of the carotegenesis pathway. Dr. Eli Wurtzel’s group (City University of 

New York, NY, USA) discovered the 15-cis-ζ-carotene isomerase (Z-ISO), a novel C=C 

double bond cis-to-trans isomerase.
30

 Z-ISO is essential for provitamin A carotenoid 

biofortification and for plant adaptation to environmental variation, a significant stress 

which affects plant yield. Without Z-ISO, the biosynthetic pathway is blocked.
30

 In-silico 

analysis of this membrane protein led to experimental proof that Z-ISO contains a 

nonheme iron and at least one heme-b. It is hypothesized that isomerization in Z-ISO is 

regulated by oxidation state of the heme b iron with redox-dependent ligand switching 

and a nonheme iron cofactor is indirectly involved. MCD spectroscopy was employed to 

test this working hypothesis. 

3.3.1 Methods: 

Dr. Eli Wurtzel’s group provided us with purified protein samples. MCD spectra 

were measured on a Jasco J815 spectropolarimeter fitted with a Jasco MCD-1B magnet at 

a magnetic field strength of 1.41 T at 4 °C using a 0.5 cm pathlength quartz cuvette. 

Jasco software was used for data acquisition and manipulation as reported previously.
19

 

Concentrations of the heme in Z-ISO samples were determined based on the pyridine 

hemechromogen assay method using ε555 = 34.4 mM
-1

 cm
-1

.
31

 Using this method, a value 

of ε = 110 mM
-1

 cm
-1

 was calculated for the Soret absorption peak (415 nm) of ferric Z-
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ISO at pH 7.4. UV-visible absorption spectra were recorded on a Cary 400 spectrometer, 

before and after each MCD measurement to track sample integrity. Z-ISO protein 

samples were studied in 20 mM Tris buffer containing 20 mM NaCl, 0.2% n-dodecyl-β-

D-maltoside (DDM), 0.1 mM tris(2-carboxyethyl)phosphine (TCEP) and 5% glycerol at 

pH 7.4. The ferrous species of Z-ISO was prepared from ferric protein by flushing a 

rubber septum-sealed cuvette with nitrogen gas for about 10-15 min followed by the 

addition of a small amount of solid sodium dithionite. The CO adducts of the ferrous 

protein were prepared by bubbling the CO gas in to the reduced protein. 

3.3.2 Results and Discussion: 

MCD and UV-vis absorption spectra of ferric state of Z-ISO are shown in Fig. 

3.5, overlaid for comparison with that of a simulated spectra consisting of 50% ferric cyt 

b5 and 50% imidazole (Im)-bound P450-CAM. The spectra (MCD and UV-Vis) of the 

ferric Z-ISO (solid red line in Fig. 3.5) overlaps very well with the simulated spectra 

(dashed blue line in Fig. 3.5) of ferric cyt b5 (bis-His axial ligands) and Im-bound P450-

CAM (His-Cys axial ligand pair). This indicates that the heme(s) in ferric Z-ISO appear 

to have two sets of ligand pairs (His-His and His-Cys) in a ~1:1 ratio, either as a single 

species (with a common His) or as two separate heme centers.  

MCD and UV-vis absorption spectra of the ferrous state of Z-ISO are shown in 

Fig. 3.6, with analogous states of mono imidazole [H93G mono(Im)-Mb] and bis 

imidazole [H93G bis(Im)-Mb] bound H93G-myoglobin mutant are overlaid for 

comparison. The MCD spectral pattern of dithionite-reduced Z-ISO (red solid line in Fig. 

3.6) is similar to that of ferrous H93G bis(Im)-Mb (blue dashed line in Fig. 3.6) which 

has a (His-His) coordination, indicating a ligand switch from a His-His or His-Cys 
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coordination in oxidized state to a single His-His coordination in the reduced state. MCD 

and UV-vis absoprtion spectra of the CO-bound ferrous state of Z-ISO are shown in Fig. 

3.7, (calculated for 100% CO saturation, red solid line in Fig 3.7) with those of 

cyclohexylamine-bound H93G myoglobin (H93G-(CHA) Mb) (blue dashed line in Fig 

3.7) and wild type sperm whale myoglobin (Mb) (black dotted line in Fig 3.7) overlaid 

for comparison. The formation of the ferrous-CO complex did not appear to be complete 

even after extensive CO bubbling, judging from the double MCD troughs at ~555 and 

~565 nm. Thus, we have tried to obtain spectra of the CO-saturated form by calculation 

assuming that the observed MCD spectrum was for incompletely CO-saturated ferrous Z-

ISO. The best estimate for CO saturation was 70% CO-bound form in CO-bubbled Z-

ISO. The MCD line shapes and spectral intensities (for main peaks and troughs) are 

roughly similar for the three proteins. MCD spectra of ferric Z-ISO show that the heme 

has two ligand pairs (His-His and His-Cys). This was determined by comparing the Z-

ISO spectrum with that of a simulated mixture of Cyt b5 (bis-His heme coordination) and 

imidazole (Im)-bound P450-CAM (His-Cys heme coordination) (Fig. 3.5). Thus, there 

appear to be two ligand coordination modes in low spin ferric Z-ISO in ~ 1:1 ratio. It 

appears that if there is only one heme center in the protein, His and Cys might occupy the 

distal side of the heme as alternative endogenous ligands while the proximal side is 

ligated by a common His. However if two heme centers exist, there should be two 

separate proximal histidines.  

To help distinguish among the alternate hypotheses, we probed the MCD 

spectrum of the dithionite-reduced Z-ISO. We found that there is a single heme species in 

the reduced Z-ISO which shows only the bis-His species (Fig. 3.6). The data suggest that 
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the heme may be undergoing ligand switching when the protein is reduced. A small 

fraction of high-spin heme b that is His-ligated and five coordinate was also detected, 

which may represent an intermediate. The MCD spectra of CO-bound Fe(II) Z-ISO also 

showed only about 70% CO saturation (Fig. 3.7), suggesting that while the distal His 

ligand is weak, it is not completely replaced by exogenous ligand. 

Based on these data, a working hypothesis is proposed that an inactive Z-ISO 

carries an oxidized heme Fe(III), where cysteine blocks substrate access to the iron in the 

active site. Reduction of the heme switches coordination of the heme to bis-His, thus 

exposing the active site for substrate access to the heme Fe(II). A schematic 

representation of the heme ligand switching is summarized in below Scheme 3.1. 

 
 

Scheme 3.1 Schematic representation of the heme ligand switching in Z-ISO. 
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Figure 3.5 MCD and UV-vis absorption spectra at 4 °C of ferric Z-ISO at pH 7.0 (solid 

red line), overlaid with simulated spectra consisting of 50% ferric cyt b5 and 50% ferric 

Im-bound P450-CAM (blue dashed line). The simulated spectra are replotted from 

individual spectra in Refs. 22 and 32 respectively 
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Figure 3.6 MCD and UV-vis absorption spectra at 4 °C of ferrous Z-ISO at pH 7.0 (solid 

red line), with H93G mono(Im)-Mb (green solid line) and H93G bis(Im)-Mb (blue 

dashed line). The spectra of ferrous mono- and bis- Im H93G-Mb are replotted from Ref. 

33
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Figure 3.7 MCD and UV-vis absorption spectra at 4 °C of CO-bound ferrous Z-ISO 

calculated for 100% saturation at pH 7.0 (solid red line), with H93G-(cyclohexylamine) 

Mb (blue dashed line) and wild type (WT) Mb (black dotted line). The spectra of ferrous-

CO H93G-(cyclohexylamine) Mb (UV-Vis data: Dawson, J. H., Kadkhodayan, S., 

Zhuang, C., Sono, M., unpublished data), and WT Mb spectra are replotted from Refs. 33 

and 34 respectively 
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3.4 Part C: Demonstration of Oxy-ferrous Heme Adduct Formation in 

Ruthenium-diimine Photosensitizer Modified P450-BM3 

Cytochrome P450 enzymes are capable of hydroxylating unactivated C-H bonds 

with the help of molecular dioxygen and reducing equivalents at ambient temperature and 

physiological pH with a high catalytic efficiency. This synthetic ability makes them 

particularly attractive for biotechnological applications; however complete dependence of 

the reactions on NAD(P)H and the reductase domain for electron transfer impedes their 

use as bio-catalysts. Amongst the numerous attempts to circumvent this issue, Dr. Lionel 

Cheruzel’s lab (San Jose State University, San Jose, CA) has developed a series of hybrid 

enzymes using P450-BM3 (CYP102) and photosensitizer that could be activated using 

light. These hybrid enzymes consists of Ru(II)-diimine photosensitizer, covalently 

attached to non-native single cysteine residue close to the P450 BM3 heme domain.
35

 

Photoactivation converts the Ru(II) into a highly reductive Ru(I) species which provides 

the two necessary electrons to the heme domain in successive one-electron transfer 

steps.
36

 Introduction of these mutations and/or covalent attachment of the Ru(II) 

photosensitizer does not significantly alter the binding of lauric or palmitic acid. 

Particularly the Ru(bpy)2phenA (bpy= bipyridine and phenA= 5-acetamido-1,10 

phenanthroline) modified L407C mutant of P450-BM3 was found to have a high turnover 

number in the hydroxylation of lauric acid. In order to ascertain the ability of the hybrid 

enzyme to form the oxy-ferrous intermediate, Dr. Cheruzel’s lab collaborated with our 

lab to use MCD spectroscopy to examine the integrity of the oxyferrous intermediate. 

3.4.1 Methods: 

Dr. Lionel Cheruzel provided us with purified protein samples of wild type (WT) 



 

87 

 

and L407C-Ru-diimine hybrid sample prepared as described in 
37

. MCD spectra were 

measured on a Jasco J815 spectropolarimeter fitted with a Jasco MCD-1B magnet at a 

magnetic field strength of 1.41 T at 4 °C and -50 °C in a mixed solvent (see below) using 

a 0.5-cm-path length quartz cuvette. Jasco software was used for data acquisition and 

manipulation as reported previously.
19

 Concentrations of the P450-BM3 L407C-Ru-

diimine hybrid sample were determined based on a value of ε = 104mM
-1

 cm
-1 

for the 

ferric protein. UV-vis absorption spectra were recorded on a Cary 400 spectrometer, 

before and after each MCD measurement to track sample integrity. Sample preparation 

and data collection was done as previously described in Ref. 
38

, and in complete detail in 

39
. The L407C-Ru-diimine hybrid sample was analyzed in a buffer comprising of 0.3 M 

Tris at pH 8.0 and glycerol in a starting ratio of 30/70 (v/v), with the final concentration 

of glycerol in the protein sample being ~60% (after some dilution with dithionite aqueous 

solution). Before adding sodium dithionite, the sample was degassed over 3 h on ice with 

a slow stream of nitrogen gas in a rubber septum-sealed cuvette to ensure complete and 

highly anaerobic condition.  

3.4.2 Results and Discussion: 

We examined the oxy complex of P450-BM3 L407C-Ru-diimine hybrid sample 

in cryo-solvent in both the presence and absence of substrates. The oxy complex of the 

Ru-diimine labeled protein was made by bubbling O2 in the reduced protein (dissolved in 

~65% glycerol solution) at -50
o 

C.
 
The P450-BM3 L407C-Ru-diimine hybrid (solid red 

line in Fig. 3.8) forms a stable oxy-complex at -50
o 

C whose MCD and UV-Vis 

absorption spectra are very similar to the O2 adduct of wild-type P450 BM3 (blue dashed 

line in Fig. 3.8) as well as bacterial wild type P450-CAM (black dotted line in Fig. 3.8). 
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The O2-bound Ru-diimine labeled as well as WT P450-BM3 may be stable even at 

slightly higher temperatures (such as -30
o 

C), but we have not examined the temperature 

dependence of its stability in this work. MCD and UV-vis absorption spectra of lauric 

acid (LA) and palmitic acid (PA)-bound P450-BM3 L407C-Ru-diimine hybrid (pink 

solid line and green solid line in Fig. 3.9) show that they form a stable oxy-complex just 

like the Ru-diimine labeled protein (red dotted line in Fig. 3.9) at -50
o
C. Their MCD and 

UV-Vis absorption spectra are very similar to those of the O2 adduct of the substrate-free 

enzyme, as seen in Fig. 3.9. With LA and PA substrates, we did not observe a marked 

conversion from low-spin species to high-spin species on substrate addition in the ferric 

protein in 60-70% glycerol buffer as is seen in aqueous buffer. We initially thought this 

was resulting from incomplete binding of the substrate although similar results have been 

reported earlier by Dawson and co-workers.
38

 Thus we set out to test another substrate N-

palmitoylglycine (NPG) that has been shown to bind P450-BM3 with a low Kd value.
40

 

We observed that conversion to a high-spin form spectrum upon substrate binding to 

ferric enzyme (low spin) is not pronounced in the 70:30 Glycerol/Tris buffer (pH 8). 

However, nearly complete conversion to a high-spin state can be clearly seen in the 50 

mM Tris, pH 7.2 buffer (without glycerol) at room temperature (~22
 o

C) (blue dashed 

line in Fig. 3.10). Analogous P450-CAM spectra with and without the substrate camphor 

are overlaid for comparison in Fig. 3.10. Just like the other substrate containing samples, 

the oxy complex of the Ru-diimine labeled protein was made by bubbling O2 in the 

reduced protein in ~65% glycerol solution (the initial 70/30 Glycerol/0.3M Tris buffer, 

pH 8.0 was slightly diluted by dithionite stock solution added to reduce the ferric 

protein), 
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Figure 3.8 MCD and UV-Vis absorption spectra of the O2 adduct of the P450-BM3 

L407C-Ru hybrid (blue dashed line), wild-type P450 BM3 (blue dashed line) as well as 

bacterial wild-type P450CAM (black dotted line) recorded at -50
o
C in ~60% glycerol 

containing 0.3 M Tris buffer at pH 8.0. The spectra of ferrous di-oxy P450CAM are 

replotted from Ref. 41 
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Figure 3.9 MCD and UV-Vis absorption spectra of the O2 adduct of the substrate-free 

P450-BM3 L407C-Ru hybrid (red dotted line), LA-bound form (pink solid line) as well 

as PA-bound form (green solid line) recorded at -50
o
C in ~60% glycerol containing 0.3 

M Tris buffer at pH 8.0  
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Figure 3.10 MCD and UV-Vis absorption spectra of the ferric substrate-free P450-BM3 

L407C-Ru hybrid (red solid line), ferric NPG-bound form (blue dashed line) as well as 

ferric substrate-free P450-CAM form (black dotted line) and ferric camphor-bound P450-

CAM (pink dashed line) recorded in aqueous buffer. The spectra of ferric substrate-free 

P450-CAM and ferric camphor-bound P450-CAM MCD are replotted from Ref. 42 
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Figure 3.11 MCD and UV-Vis absorption spectra of the O2 adduct of the substrate-free 

P450-BM3 L407C-Ru hybrid (red solid line), NPG-bound form (blue dashed line) as well 

as camphor-bound P450-CAM (black dotted line) recorded at -50
o
C in ~60% glycerol 

containing 0.3 M Tris buffer at pH 8.0. The spectra of oxy-ferrous camphor-bound 

P450CAM spectrum is replotted from Ref. 41. 
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solution at -50 
o
C.

 
 While the NPG-bound protein forms a comparable oxy-complex just 

like the substrate-free Ru-diimine-labeled protein at -50 
o
C, as seen in Fig. 3.11 the oxy-

P450BM3-Ru + NPG complex appeared to be less stable than the oxy-complex without 

substrate or with LA or PA even at –50 
o
C. This was judged from the gradual MCD 

spectral changes (to the ferric state) upon O2 bubbling into the deoxyferrous form at –50 

o
C compared with little spectral changes during the same treatments and time periods for 

substrate-free and LA- or PA-bound P450BM3-Ru-diimine proteins. In fact, the Soret 

MCD peak and trough intensities for the NPG-bound oxy-P450BM3-Ru are somewhat 

higher than the other samples, which is a sign of ferric form contamination. 

3.5 Part D: Heme Axial Ligand Determination in Phu_R 

The Phu_R is a TonB dependent outer membrane receptor that is part of the 

Pseudomonas heme uptake system from Pseudomonas aeruginosa.
43

 Phu_R helps in the 

transport of heme to the periplasm from where a further cascade helps in retrieval of iron 

(an essential micronutrient for survival and virulence of bacterial pathogens) from the 

heme.
44, 45

 Sequence alignments of TonB dependent outer membrane receptors have 

shown that heme is coordinated through two histidine residues, however, a conserved 

histidine observed on the extracellular FRAP loop of other receptors is missing in Phu_R. 

There are other potential ligands present in the vicinity, specifically His-102, Tyr-519, 

Tyr-529 and His-530. To confirm the correct identity of the heme coordinating ligands 

Dr. Angela Wilks (University of Maryland, Baltimore, MD) collaborated with our lab to 

conduct MCD experiments on the WT and mutant enzymes. 

3.5.1 Methods: 

Dr. Angela Wilks provided us with purified samples of WT and mutant Phu_R 
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proteins Y529A, Y529H and H102A (data unpublished). MCD spectra were measured on 

a Jasco J815 spectropolarimeter fitted with a Jasco MCD-1B magnet at a magnetic field 

strength of 1.41 T at 4 °C using a 0.2 cm pathlength quartz cuvette. Jasco software was 

used for data acquisition and manipulation as reported previously.
19

 Concentrations of the 

samples were tentatively determined (based on the pyridine hemochromogen method) for 

the Soret absorption peaks of ferric WT Phu_R (ε405 = 96.9 mM
-1

 cm
-1

), Y529A Phu_R 

(ε404 = 114.0 mM
-1

 cm
-1

) and Y529H Phu_R (temporary value of εSoret = 100 mM
-1

 cm
-1

). 

UV-vis absorption spectra were recorded on a Cary 400 spectrometer, before and after 

each MCD measurement to track sample integrity. Phu_R protein samples were studied 

in 50 mM Tris pH 7.5, 50 mM NaCl, and 0.06% (w/v) lauryldimethylamine-oxide 

(LDAO) at pH 7.5. The imidazole (Im) and cyanide (CN¯) adducts were prepared by 

adding aliquots of Im and KCN stock solutions (1 M or diluted concentrations, pH 

adjusted to ~7) to the protein, respectively, until apparent saturation (no further spectral 

change) was reached. The ferrous species of Phu_R prepared from the ferric protein in 

the presence of exogenous ligands, by flushing a rubber septum-sealed cuvette with 

nitrogen gas for about 10-15 min followed by the addition of a small amount of solid 

sodium dithionite was found to denature the sample. Thus, for the purpose of this study 

we only looked at ferric forms of the protein. 

3.5.2 Results and Discussion: 

We have examined the Phu-R protein (enzyme) along with its mutants, with 

magnetic circular dichroism (MCD) and UV-visible (UV-Vis) absorption spectroscopy in 

its ferric [Fe(III)], ferric + cyanide [Fe(III)-CN] and ferric + imidazole [Fe(III)-Im] bound 

states. The spectra of PhuR are overlaid with those previously reported for the 
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corresponding states of legehemeglobin-A + phenol, cytochrome b5 (bis-His-ligated 

heme protein), mono-4-methylimidazole (4-MeIm)-bound H93G Mb (proximal cavity 

Mb mutant), bis-His bound H93G Mb, and wild type myoglobin (WT-Mb), for 

comparison. The MCD spectral pattern of ferric WT PhuR as seen in Fig 3.12 (red solid 

line) is somewhat similar in both the Soret (350 - 450 nm) and visible regions (450 - 700 

nm) to that of phenol-bound ferric leghemoglobin a (Lb-a) (black dashed line in Fig. 

3.12) which has a proximal His and distal phenol (Tyr equivalent) heme ligation. This 

strongly suggests that ferric WT PhuR has His-Tyr type of heme ligation. Judging from 

the slightly larger MCD trough intensities at ~570 and ~420 nm, Fe(III) WT PhuR 

appears to contain more low-spin component than phenol-bound Lb-a. When the MCD 

and UV-vis absorption spectra of Fe(III) WT PhuR was titrated with cyanide as seen in 

Fig. 3.13, a spectral shift of 6 nm was observed on apparently saturation (Kdapp ~ 39.7 

μM). However, the incomplete conversion of the ferric heme to low-spin (remaining 

absorption peak at ~620 nm and MCD trough at ~630 nm) indicates that the heme is not 

totally converted to a cyanide complex (100% low-spin species).  

The MCD and UV-Vis absorption spectral patterns of ferric Y529A PhuR as seen 

in Fig. 3.14 shows the presence of charge-transfer UV-Vis spectral bands at ~610 and 

~490 nm, an MCD trough at ~630 nm and relatively small MCD peak to trough intensity 

in the Soret region. This indicates that ferric Y529A PhuR protein (red solid line in Fig. 

3.14) heme is high-spin; however, its MCD/UV-Vis absorption spectra do not resemble 

those of meta-aqua Mb (black dotted line in Fig. 3.14) or mono-4-methylimidazole-

bound H93G Mb (blue dashed line in Fig. 3.14) well, although broad similarities may be 

found. 
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Figure 3.12 MCD and UV-vis absorption spectra of ferric WT PhuR (red solid line) 

overlaid for comparison with phenol-bound ferric Lb-A (black dashed line). The Lb-A 

spectra are replotted from Ref. 46 
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Figure 3.13 MCD and UV-vis absorption spectra of ferric WT PhuR (red solid line) 

overlaid for comparison with CN-bound ferric WT Phu_R (blue dashed line). 
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Figure 3.14 MCD and UV-vis absorption spectra of ferric Y529A PhuR protein (red 

solid line) overlaid for comparison with that of meta-aqua Mb (black dotted line) 

replotted from Ref. 21 (UV-Vis data: Dawson, J. H., Kadkhodayan, S., Zhuang, C., Sono, 

M., unpublished data) and mono-4-methylimidazole-bound H93G Mb (blue dashed line) 

replotted from Ref. 47.  
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Figure 3.15 MCD and UV-vis absorption spectra of ferric Y529A Phu_R protein (red 

solid line) overlaid for comparison with and Im- adducts of ferric Y529A Phu_R (black 

dotted line) and (blue solid line), respectively.  
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Figure 3.16 MCD and UV-vis absorption spectra of ferric Y529H PhuR protein (green 

solid line) overlaid for comparison with ferric cyt b5 (red dashed line) replotted from Ref 

22 and bis-imidazole bound H93G Mb (black dotted line) replotted from Ref. 33 
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In addition, a noticeable MCD shoulder at ~380 nm is observed for the Fe(III) 

Y529A PhuR. KCN and Im titrations of ferric PhuR Y529A as seen in Fig. 3.15 resulted 

in formation of the respective ligand complexes of this mutant exhibiting Soret 

absorption peak shifts from 407 nm to 411 nm (Im) and 418 nm (CN-) and appearance of 

low-spin type visible region absorption peaks at ~533 nm (Im) and ~540 nm (CN-). Soret 

MCD peak-to-trough intensities also increase by more than two-fold for both ligands as a 

sign of formation of low-spin complexes. However, similar to the case of WT Fe(III) 

PhuR (Fig. 3.13), the high-spin charge-transfer band at ~610 nm does not disappear 

completely as well as the remaining MCD trough at ~630 nm for the both ligands. Thus, 

ligand complex formation seems to be incomplete, especially for the cyanide adduct that 

should be totally low-spin. 

The MCD spectral pattern of ferric Y529H PhuR as seen in Fig 3.16 (green solid 

line) overlaps essentially perfectly in both the Soret (350 – 450 nm) and visible regions 

(450 – 700 nm) to that of ferric cyt b5 (red dashed line) and bis-imidazole bound H93G 

Mb (black dotted line), both of which have bis-His (Im) heme ligation, clearly suggesting 

that Y529 to H mutation imparts a bis-His ligation to the heme. 

3.6 Conclusion: 

We have analyzed the sGAF2, Z-ISO, P450-BM3 L407C-Ru hybrid sample and 

Phu_R heme proteins with MCD and compared their spectra against data from the heme 

protein spectral library recorded and maintained by our lab. In the case of sGAF2, Z-ISO 

and Phu_R proteins, MCD helped in identification of the heme coordinating ligands, 

whereas in the case of P450-BM3 L407C-Ru-diimine hybrid, MCD was used to 

characterize the ferrous dioxygen complex. Knowledge of the heme ligand identity has 
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been used to hypothesize a working mechanism for the Z-ISO enzyme. For the P450-

BM3 L407C-Ru-diimine hybrid, the MCD characterization of the ferrous dioxygen 

intermediate was used to ascertain that the engineered enzyme was following a normal 

P450 turnover pathway. The fingerprinting ability of MCD coupled with other 

spectroscopic techniques such as resonance Raman and EPR makes it a valuable tool in 

investigating the structure and function of novel heme enzymes. 
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Figures 3.2, 3.3, and 3.4. 
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