
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

2014

Comparison of Ground-to-Air Visibility Analysis Methods Comparison of Ground-to-Air Visibility Analysis Methods

Erica Pfister-Altschul
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Geography Commons

Recommended Citation Recommended Citation
Pfister-Altschul, E.(2014). Comparison of Ground-to-Air Visibility Analysis Methods. (Master's thesis).
Retrieved from https://scholarcommons.sc.edu/etd/2753

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/354?utm_source=scholarcommons.sc.edu%2Fetd%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2753?utm_source=scholarcommons.sc.edu%2Fetd%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

COMPARISON OF GROUND-TO-AIR VISIBILITY ANALYSIS METHODS

by

Erica Pfister-Altschul

Bachelor of Science

Massachusetts Institute of Technology, 2000

Master of Engineering

University of South Carolina, 2011

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Geography

College of Arts and Sciences

University of South Carolina

2014

Accepted by:

Michael Hodgson, Director of Thesis

Sarah Battersby, Reader

Chris Emrich, Reader

Lacy Ford, Vice Provost and Dean of Graduate Studies

ii

© Copyright by Erica Pfister-Altschul, 2014

All Rights Reserved.

iii

DEDICATION

For Yingvyn, Bebil, Biyal, and Qinigle, vos gelernt vee tzu zen zich.

iv

ACKNOWLEDGEMENTS

This research was supported in part by the Department of Homeland

Security grant for the RESPT project. More importantly, Dr. Michael Hodgson,

Dr. Sarah Battersby, and Dr. Chris Emrich provided me with thoughtful advice

and insightful comments as my thesis committee.

But most of all, this work would not have been possible without the

support and enthusiasm of my family and friends. Appreciating their

unwavering belief in me was the most valuable part of this process. Brett, Lillian,

Reuven, Benji, and Carol: thanks for helping me learn what I wanted to do when

I grow up.

v

ABSTRACT

When a disaster occurs, remotely sensed imagery is critical for emergency

responders. Aircraft collect digital images of damaged areas to assist with

damage assessment and response planning. Such airborne imagery can be

transmitted directly from the plane to ground antennae and internet-connected

dispersal, allowing for faster acquisition of data. However, air-to-ground

transmission of images requires near-constant visibility between the aircraft

transmitter and ground station antenna. This research uses GIS-based models to

identify the ground station locations that can reliably receive data from aircraft,

using a variety of visibility analysis methods and a comparison of their

performance. A custom algorithm is demonstrated to perform significantly faster

than commercially available software tools.

vi

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER 1 INTRODUCTION ..1

CHAPTER 2 LITERATURE REVIEW ..6

 2.1 CATEGORIES OF VISIBILITY ANALYSIS ...10

 2.2 SOURCES OF INACCURACY ...15

CHAPTER 3 METHODOLOGY ...25

 3.1 VISIBILITY ANALYSIS METHODS ..25

 3.2 STUDY AREAS ...33

 3.3 MODEL COMPARISON ..36

CHAPTER 4 RESULTS ..45

 4.1 EFFICIENCY ...45

 4.2 SENSITIVITY TO INPUTS ..48

 4.3 ACCURACY AND VALIDATION ...53

vii

CHAPTER 5 DISCUSSION ..56

CHAPTER 6 CONCLUSION ..63

REFERENCES ...66

APPENDIX A – GSSM PYTHON ALGORITHM SOURCE CODE ...70

APPENDIX B – SIGHT LINES MODEL METHODOLOGY AND RESULTS78

APPENDIX C – OPTIMIZING THE PYTHON ALGORITHM ...84

 C.1 EFFICIENCY ..84

 C.2 SOURCE CODE ...86

viii

LIST OF TABLES

Table 4.1 Average run time for the Viewshed model ..46

Table 4.2 Average run time for the Python algorithm ...47

Table 4.3 Visibility of points around Bull Street Garage ...55

Table C.1 Comparison of GSSM and GTAV Performance ..85

ix

LIST OF FIGURES

Figure 2.1 Schematic diagram of the visibility analysis process6

Figure 2.2 Example of a sky view analysis ..10

Figure 2.3 Example of an isovist in an urban setting ...13

Figure 2.4 Example of a binary viewshed analysis ..14

Figure 2.5 The Lexington Medical Center in West Columbia, SC in

LiDAR-derived DSMs, at (a) 30 meter, (b) 10 meter, (c) 3 meter, and

(d) 1 meter resolution ...21

Figure 3.1 Diagram of the possible ArcMap Viewshed tool input parameters in

ArcMap 10.1 ...26

Figure 3.2 ModelBuilder diagram of the Viewshed-based visibility model28

Figure 3.3 Trigonometric relations used by the Python algorithm to calculate the

maximum allowable elevation at a given point ...32

Figure 3.4 Available LiDAR data coverage compared to the Richland County

boundary and NED DEM coverage ...35

Figure 3.5 The 3 meter resolution DSM of downtown Columbia, SC, derived

from 2008 LiDAR data ..36

Figure 3.6 Antenna sites and flight paths in the greater Columbia area used for

the efficiency tests ...38

Figure 3.7 The analysis area size, flight path length, and number of observers

were tested on a 3 meter DSM subset ..40

Figure 3.8 The observer distance test was run on a 1 meter DSM subset41

Figure 3.9 Photographs taken from top of Bull Street Garage, with validation

points identified ..43

x

Figure 3.10 Overhead map with identified “visible” and “not visible” target

points labeled ...44

Figure 4.1 Correlation between analysis area size and Viewshed model execution

time ..49

Figure 4.2 Correlation between number of antenna sites and Python algorithm

execution time..50

Figure 4.3 Correlation between antenna position and Python algorithm execution

time ..51

Figure 4.4 Correlation between flight path length and Viewshed model execution

time ..52

Figure 4.5 Correlation between flight path length and Python algorithm

execution time..52

Figure 4.6 Comparison between Viewshed model and Python algorithm

correlations to flight path length ..53

Figure 4.7 Results from Viewshed model test on a flat surface54

Figure B.1 ModelBuilder diagram of the model based on the Line of Sight tool ..79

Figure B.2 Correlation between number of antenna sites and Sight Lines model

execution time..81

Figure B.3 Correlation between flight path length and Sight Lines model

execution time..82

Figure B.4 Two different correlations between antenna position and Sight Lines

model execution time ...83

1

CHAPTER 1

INTRODUCTION

Rapid emergency response is critical after a disaster occurs. Remotely sensed

imagery can be a great asset in such situations. Quick action is facilitated by

having imagery to help assess impacted areas. Once the extent of the damage is

known, the appropriate preparations can be made to ensure that the right kind of

aid is sent to where it is most needed.

There are multiple remote sensing technology options available for

disaster response imagery. Satellites provide useful coverage, particularly in

remote regions, but they also have limitations. Their orbital planes are fixed, and

thus imagery can only be captured at predetermined overpasses (for example.

every three days in the late morning). Weather conditions or time of day may

obscure sensors. In contrast, aircraft can be positioned wherever needed, fly

below heavy cloud cover, fly at all hours of the day, and capture oblique

imagery. Programs such as the Civil Air Patrol, with over 450 planes, provide

federally-directed coverage to capture imagery of areas affected by disasters,

facilitating rapid impact assessment.

2

Image delivery time can be improved even more by transmitting airborne

imagery directly from a plane to a ground antenna. Rather than waiting for the

flight to land, image analysis can begin almost immediately, and response

actions can be implemented more quickly as a result. Microwave transmission of

imagery data for disaster response from the air is a relatively new application,

and is still being explored.

Successful air-to-ground transmission of data has some basic

requirements. The ground antenna needs to have power and a hard-wired

internet connection. Most importantly, since the transmission is via microwave,

there must be near-constant visibility between the aircraft and the antenna to

reliably receive all the data. Therefore, the choice of location for the ground

antenna should be considered beforehand to ensure visibility of the entire flight

path.

The REmote Sensing Planning Tool (RESPT) is a set of web-based decision

support tools that provide guidance on acquiring and analyzing remotely sensed

imagery for diverse applications. One component of RESPT is the Ground

Station Siting Model (GSSM), a tool that allows an emergency response team to

find optimal locations to position a ground receiving antenna for image

downlinks. It requires three inputs: candidate ground antenna sites, the flight

3

path of a remote sensing aircraft, and an elevation surface model of the region.

From this data, the GSSM can provide a ranking of candidate site suitability.

There are two basic phases of evaluating ground station sites: screening

and visibility analysis. During the planning phase of the emergency response

cycle, before any disaster has actually occurred, screening of potential locations

can take place to determine if they meet basic suitability criteria. Emergency

responders will need to gain access to the antenna site in the event of a disaster.

Suitable locations should be owned by a government agency, or usage

agreements must be established in advance to ensure that responders will be

allowed into a building to set up a ground antenna. The site needs to have a

reliable supply of electricity; power outages (a common side effect of disasters)

should be planned for and may be circumvented by providing an on-site

generator. Finally, the antenna needs to have a hard-wired internet connection –

a wireless (Wi-Fi) connection is not adequate.

In addition, the antenna needs to be able to “see” the majority of the

airplane flight path. For an initial rough estimate, it can be assumed that

locations at higher elevations are probably able to see a larger proportion of the

surrounding sky than sites that are at lower elevations. Also, sites surrounded by

vegetation and other buildings would have reduced sky visibility. However, the

question of visibility cannot be fully answered until a flight path has actually

4

been selected. The visibility analysis is run on locations which meet the

preliminary screening criteria and enables the final selection of the most

appropriate antenna site.

The primary goal of this research was to develop a GIS model that could

measure visibility between candidate ground antenna sites and a moving

aircraft. No known ground station modeling solution existed for determining

appropriate ground station locations for receiving airborne transmissions.

Therefore, this research has explored variety of modeling approaches that can

identify ground station locations capable of reliably receiving data from aircraft.

A visibility analysis can be addressed through a variety of modeling

approaches. Three metrics -- efficiency, sensitivity, and accuracy -- were used to

compare candidate algorithms. A visibility analysis could be conducted either

prior to an actual emergency during planning stages, or after an event has

occurred. The GSSM tool was assumed to be an emergency response tool, and

therefore determining the best location for a ground antenna must be done in a

short period of time.

This research will be useful within the context of disaster response efforts.

More broadly, it can also be applied to any new visibility modeling problems

that involve an airborne target. Air-to-ground visibility has not been researched

in the GIScience literature except for fixed-orbit satellites or solar planes.

5

In time-sensitive disaster response events, response time is critical and the

processing time of visibility analysis algorithms is the most significant factor as

to whether a model is suitable. Many modeling approaches may be accurate

enough to answer the question. In order to facilitate rapid disaster response, a

threshold of one hour was assumed to be the maximum acceptable processing

time. If a visibility analysis consistently takes longer than sixty minutes to select

the best ground antenna site, then it may not provide any time savings over

driving to the local airport to physically retrieve the imagery data and is

therefore not a suitable approach.

This thesis compares the performance of three alternative visibility

analysis methods within an embedded GIS environment and a loosely-coupled

GIS environment. The potential solutions each underwent validation and

sensitivity analyses, providing information about the efficiency and accuracy of

alternative approaches. Simultaneously, some innovative work was done with

visibility modeling. Typical assumptions about viewshed models have been

inverted to work as a ground-to-air visibility measurement rather than

ground-to-ground. Also, a new open-source algorithm for rapid line-of-sight has

been written.

6

CHAPTER 2

LITERATURE REVIEW

Visibility analysis has a wide range of possible applications, and GIS has been

used to answer visibility questions for decades. One fundamental requirement

that is shared by all methods of visibility analysis is knowledge of local natural

or man-made terrain features. Visibility is analyzed along straight “lines of sight”

by evaluating whether they are blocked by terrain features (see Figure 2.1).

Intervisibility is always assumed: if the observer can see a target object, then the

target object is able to see the observer.

Figure 2.1: A schematic diagram of the visibility analysis process. Point A is

visible to the observer, while Point B is not.

7

Predicting visibility was one of the oldest motivations for research into

terrain mapping. Military planning requires visibility analyses when considering

such activities as moving troops, performing reconnaissance, or assaulting a

target. Depending on the situation, the goal may be either to see as much enemy

activity or territory as possible, or be seen as little as possible by the enemy

(Bruzese 1989). The military’s need for accurate intelligence provided the

impetus for the development of many geographic and spatial analysis techniques

that are now widely used in civilian research and planning. Terrain mapping and

analysis were critically important, and contributed to a wide range of modern

GIS procedures (O’Sullivan 1983).

In addition to the military, the United States Department of Agriculture’s

Forest Service contributed significantly to the development of early visibility

research. Viewshed analyses were used both to delineate scenic views from given

vantage points (with the goal of protecting the surrounding landscapes), and to

find optimal sites for fire towers that could observe as much of the surrounding

forest as possible from a single vantage point. The Forest Service worked with

visibility analyses long before computer analyses were possible (Show et al.

1937), and their expertise and interest led to some of the earliest computer

algorithms for visibility analysis and terrain modeling (Amidon and Elsner 1968;

Travis et al. 1975; Mees 1976).

8

As GIS became increasingly available, the number of disciplines using

visibility algorithms significantly increased. Archaeologists used visibility

analyses to understand historical landscapes, exploring intervisibility of sites of

interest (Wheatley 1995) or determining visibility of a megalithic site from

surrounding population centers (Ruggles, Medyckyj-Scott, and Gruffydd 1993).

Wildlife population counts have used visibility analyses to calculate visible area,

improving the accuracy of estimates of the spatial area in which given species

were seen and counted (Maichak and Schuler 2004). Land developers and urban

planners regularly consider view and visibility as part of the overall experience

of a place, using the visibility of surrounding features to evaluate the nearby

landscape and its aesthetic experience (Lynch 1976). The growing interest in

preventing terrorism and crime means that interest in visibility is moving into

fields such as surveillance monitoring, where it is used to optimize video camera

coverage (Murray et al. 2007; Kim, Murray, and Xiao 2008) or estimate possible

sniper positions (VanHorn and Mosurinjohn 2010).

A derived visibility surface can be used as an input to other GIS analyses

as well. The military application of minimizing visibility evolved into a “least

visible path” (LVP) analysis, which is essentially a least-cost path (LCP) based on

terrain visibility analysis. LCP analysis requires a “friction surface” or “cost

surface,” which is a raster that describes the cost to move through each cell in

9

terms of movement difficulty, speed limits, dollar costs, or other measured

constraints on travel. An LVP approach uses visibility as the cost factor and finds

the path over the surface which has the least visual exposure (Lu et al. 2008). In

addition to military uses, LVP can be used for civilian activities such as routing

power lines to minimize their visibility (Bagli, Geneletti, and Orsi 2011). The LVP

can be inverted to instead find the most visible path, also called a “scenic path”

analysis. This can be used, for example, to plan a hiking trail that provides

maximum visibility of the surrounding landscape (Lee and Stucky 1998).

The sample of studies described in the preceding paragraphs is not

intended to be comprehensive. Rather, it provides a picture of the scope of

research questions and the number of researchers using well-established

methods of visibility analysis in new applications. Even as uses for visibility

analysis increase, they can still be broadly categorized into three basic analysis

types: sky view, isovist, and viewshed. The best choice for a visibility analysis

question depends on many factors, including the relative positions of observer

and target objects, the complexity of nearby terrain or surface elevation, and the

scope of analysis or area of interest.

10

2.1 CATEGORIES OF VISIBILITY ANALYSIS

2.1.1 SKY VIEW

A sky view, also known as a sky visibility viewshed, is “the angular

distribution of sky visibility versus obstruction” (Fu and Rich 2000). Simply

stated, a sky view describes the visible portion of the hemisphere of the sky. It is

derived by first calculating the horizon angles from the observer’s vantage point

(usually at sixteen evenly-spaced points around the horizon to simplify

calculation). The angles are then converted into a hemispherical coordinate

system, and are then used to derive which parts of the sky are visible and which

are obstructed (see Figure 2.2).

Figure 2.2: In a sky view, horizon angles are calculated for each direction (left),

and the resulting output (right) shows how much of the sky is visible and how

much is obscured (Fu and Rich 2000). The use of sixteen directions is somewhat

arbitrary: a sample of the infinite directions available simplifies the analysis.

11

Multiple research questions can use sky view analysis. It is most typically

used for solar radiation models (Dozier and Frew 1990), tracking the position of

the sun throughout the day, and using that data (i.e., whether the sun is directly

visible or not) to calculate direct versus diffuse radiation percentages. Visibility

of any objects in space, such as GPS satellites (Beesley 2002) can be measured.

Applications have even been found in archaeology, to analyze what prehistoric

astronomers would have been able to see at megalithic sites (Ruggles, Medyckyj-

Scott, and Gruffydd 1993).

2.1.2 ISOVIST

The definition of the term isovist was first formalized in 1979: “the set of

all points visible from a given vantage point in space and with respect to an

environment” (Benedikt 1979). The term is most commonly used in the context of

theories of perception, space, and visual environments relating to architecture,

urban planning, landscape design, and other fields concerned with human

perception and man-made spaces. In addition to evaluating the physical

measurements of a visible space, an isovist can also include descriptions of the

visual experience, detailing what objects and spaces would be seen by the

observer.

An isovist is a two-dimensional polygon that represents the space visible

from a given vantage point, derived using a horizontal plane at eye level to

12

identify visual obstacles and thereby delineate visible space around the observer

(see Figure 2.3). The two-dimensional nature of an isovist is more of an artifact

than a fundamental requirement. Studies have explored the possibility of

expanding the concept to three-dimensional analysis (Benedikt 1979; Morello and

Ratti 2009), which would more accurately represent the actual human experience

from a given vantage point. The restriction to two dimensions is due to historical

limitations on computer processing speed and storage, which prevented more

complex analyses from being generally feasible.

Isovists can be performed either in an internal space, evaluating visibility

within a set of rooms, or an external space, evaluating visibility in an urban

setting. Since the two-dimensional isovist does not account for verticality, instead

stopping the “visible” boundary at the first eye-level obstacle, it cannot identify

whether an object further from the observer would be visible or not. For

example, a small tree would not completely block the view of a large building,

even though the isovist analysis of that space would indicate the building was

outside the visible space.

13

Figure 2.3: An example of an isovist in an urban setting. White is flat ground;

dark grey is buildings; and light grey is the visible area from the vantage point

(Morello and Ratti 2009).

2.1.3 VIEWSHED

The third major category of visibility analysis, viewshed, is arguably the

most commonly used visibility analysis in geography and many other

disciplines. Inspired by the term “watershed,” which describes an area of land

where all the water drains to a given point, “viewshed” describes an area of land

which can be seen from a given point. Unlike a sky view analysis, a viewshed

considers objects on (or very near) the ground. The most basic type, known as a

14

binary viewshed, measures the visibility of every point in the surrounding

terrain and codes it as either “visible” or “not visible” (see Figure 2.4). Unlike an

isovist, which only considers the immediately adjacent polygon of visibility, a

viewshed looks all the way to the furthest horizon and can identify

non-contiguous visible areas. Visibility is not limited to a contiguous spatial area,

but is evaluated individually for each point (e.g., each cell in a regular

tessellation) in the entire analysis region. This makes viewshed analysis more

suitable for hilly or mountainous natural landscapes, since it can explore the full

visibility of an area of interest.

Figure 2.4: An example of the binary viewshed of an observer point on top of the

State House in Columbia, SC.

15

Viewsheds also have more flexibility than other visibility analyses. Since

the visibility of all the surrounding terrain is measured during the analysis,

viewsheds can simultaneously evaluate visibility of multiple target objects (for

example, ten potential wind farm sites can be coded as “visible” or “not visible”

depending on the visibility of the terrain at their proposed locations). Multiple

binary viewsheds can be added together to create a cumulative viewshed,

allowing the analysis to consider multiple observers in addition to multiple

targets (a characteristic that is not found in sky view or isovists). Viewshed

algorithms also typically account for the height above the ground, or “offset,” of

the observer and/or the target objects in visibility calculation – although, despite

relatively early development of such features (Mees 1978), not all viewshed

analyses included offset options for many years (Fisher 1996). Finally, the

designation of whether a point is “observer” or “target” is more flexible than in

sky view or isovist, giving a GIS model more flexibility in its parameters and

analysis.

2.2 SOURCES OF INACCURACY

While viewshed analysis may be the most widely used type of visibility

analysis, its popularity is not because it is more accurate than alternative

approaches. In fact, a comparison of field-surveyed and GIS-predicted viewsheds

found that the average level of agreement was “only slightly higher than 50

16

percent” at best (Maloy and Dean 2001). There are multiple factors that may

contribute to a lack of accuracy in visibility analysis.

Three primary sets of challenges were identified in 1990, when viewsheds

were beginning to increase in popularity and application (Felleman and Griffin

1990). First, any inaccuracies in the elevation surface will propagate to any

subsequent analysis (such as a viewshed). Such errors can come from a multitude

of possible sources, and cannot always be prevented. Second, the “‘black box’

nature of … proprietary ‘user friendly’ GIS algorithms” provides no information

about how the viewshed is calculated. Not only does this make pinpointing

errors difficult, since the underlying assumptions of the algorithm are invisible,

but different algorithms can produce different results. Third, an inexperienced

user may inadvertently introduce error to the analysis by choosing inadequately

detailed or up-to-date data. User error also occurs in reporting, as many studies

tend to ignore or underestimate the errors in viewsheds. Therefore, despite the

widespread availability of viewshed algorithms, results should be treated with

some caution and their uncertainties acknowledged.

These challenges have been discussed specifically in the context of

viewsheds, rather than visibility analyses in general. In part, this is because of the

popularity of viewsheds, which are much more commonly used than sky views

or isovists. Relatively few studies specifically discuss the accuracy of

17

non-viewshed visibility. However, the fundamental principles of both sky view

and isovist analyses rely on an elevation model and lines of sight. We can

therefore infer that the challenges are not specific to viewsheds.

2.2.1 THE ELEVATION SURFACE

All computer-based visibility analyses require a digital model of the

terrain. There are two terms, somewhat interchangeable, that may be used in this

context: digital elevation model (DEM), or digital surface model (DSM). Broadly

speaking, a DSM incorporates surface features such as vegetation or buildings in

addition to the base terrain data in a DEM. Either can be used in a visibility

analysis, depending on the required level of accuracy and the goal of the

analysis.

A DEM provides the underlying information for the visibility analysis.

Without knowing the height and location of nearby features, it is impossible to

determine which might cause obstructions. Any errors in the DEM will

propagate to modeled products, including a viewshed or other visibility analysis,

and therefore understanding the DEM error is an important first step in

controlling error (Fisher 1991). Since DEMs are used in a wide variety of

geographical modeling, there has been substantial research on sources of error in

DEMs and how to estimate or ameliorate them.

18

The process of generating an elevation surface involves three basic tasks:

gathering a sample of height measurements, creating a surface model from the

data, and correcting errors or artifacts in the resulting digital model (Hengl and

Evans 2009). Each step involves a number of choices about the most appropriate

method. For example: when measuring the terrain height, what technology

should be used and how closely spaced should points be sampled? The decisions

at each stage in the process will have impacts on the overall accuracy of the

model.

Sources of DEM error fall into categories that roughly correspond to the

phases of DEM creation (Fisher and Tate 2006). Data-based error stems from

variations in the accuracy or density of measured source data, which are

dependent on the method of data generation. Method-based errors arise when

creating the surface model. The processing and interpolation used to turn source

data into a continuous elevation surface can introduce inaccuracies. Also, the

characteristics of the terrain surface being modeled and its representation in a

DEM can affect how well accurately the terrain is approximated.

The development and increasing use of new technologies for deriving

DEMs such as radar, light detection and ranging (LiDAR), and digital

photogrammetry has required some re-evaluation of the impacts of data

collection and processing (Fisher and Tate 2006). While these active-sensing

19

technologies may reduce data-based error, the amount of processing required

introduces new method-based considerations. For example, an elevation “point”

cloud collected with LiDAR must be filtered to find the desired returns,

determining whether a collected return is from bare ground, vegetation,

buildings, or other surface constructions. Choices made during processing create

additional opportunities for error. It is therefore not appropriate to assume that a

fine-resolution model is more accurate than a coarse-resolution model. Active

sensors are able to sample points at much higher density than other methods,

potentially leading to a simple “newer is better” conclusion; however, the high

resolution DEM may have greater uncertainty if its attribute values are less well

understood (Wilson 2012). For example, if LiDAR points are provided with no

metadata about the sensor type, time of flight, or other useful information, the

post-processing of the point cloud data requires guesswork and can introduce

new inaccuracies.

The most important consideration is that errors from source data or

processing cannot always be eliminated. Therefore, the analysis of a DEM “must

be cognizant of these errors” and take into account how inaccuracy may affect

the subsequent analysis and eventual interpretation of the significance of their

results (Wilson 2012).

20

2.2.2 RESOLUTION

A related source of error is the spatial resolution of the elevation surface.

Choosing the “best” DEM resolution for any GIS analysis is a matter of balancing

the need for accuracy and detail against processing speed and storage

requirements. The tradeoff is not necessarily direct or predictable: while fine

resolution DEMs generally represent terrain more accurately, the improvement is

less significant in a relatively smooth landscape (Hengl 2006). In general,

however, a reduction in resolution will generalize, mask, or eliminate important

surface features. For example, building footprints may have significantly

different shapes, and narrow obstacles such as trees or antenna towers may be

hidden (see Figure 2.5). Visibility algorithms are left with a relatively inaccurate

representation of reality, and the output results will reflect this.

Error resulting from coarser spatial resolution is separate from

measurement error, since it is introduced after measurements of the surface are

completed. It may arise either from processing choices when the surface is being

generated, or from the user’s choice of what available elevation surface to use in

a visibility analysis. Considering spatial resolution separately from measurement

recognizes its additional significance in time-sensitive visibility analyses, when

resolution becomes a concern because of its influence on processing time.

21

Figure 2.5: The Lexington Medical Center in West Columbia, SC in

LiDAR-derived DSMs, at (a) 30 meter, (b) 10 meter, (c) 3 meter, and (d) 1 meter

resolution.

2.2.3 THE ALGORITHM

Another possible source of error comes from the visibility algorithm itself.

While there are three basic types of analysis, each one can be accomplished with

a number of different algorithms. Any approach involves various assumptions

and simplifications which will affect the results. In the case of algorithms which

are proprietary parts of commercial software, the cause of inaccuracies must be

guessed at, making quantification nearly impossible.

A good analogy for the influence of algorithm choices is vector-raster

conversion. When converting data in a GIS between raster and vector formats,

22

the choice of grid cell size, grid position, or cell classification method can affect

the shape and size of features (Congalton 1997). A viewshed algorithm is

working with raster elevation data and vector line-of-sight data to calculate

visibility, and the processing choices made by the original authors of an

algorithm will not necessarily be consistent between software packages.

The effect of different algorithms has been demonstrated empirically by

running a viewshed analysis on the exact same study area using four different

software packages (IDRISI, MAPII, PMAP, and ARC-INFO). The resulting visible

areas varied significantly due to “different, typically undocumented, simplifying

assumptions” that the programmers of the various algorithms used (Felleman

and Griffin 1990). Differences were unpredictable: some portions of the study

area were more likely to have wide variation in visibility boundaries than others.

Since each algorithm was a proprietary part of commercial software, the

researchers were unable to further analyze the causes of error.

2.2.4 FUZZY VIEWSHEDS

An additional type of inaccuracy can result from only considering

landscape topography in the calculation of line-of-sight geometry.

Environmental interference, such as from fog, sunlight glare, or haze, can result

in reduced visibility even when a target location should be visible according to

the topography. This measurement of how distinct an observed target location

23

map appear has been termed a “fuzzy viewshed,” and is distinct from an

“uncertainty viewshed,” which measures probable error in visibility assessment

calculated from known DEM error (Fisher 1994). Atmospheric conditions that

scatter or absorb visible light have different effects on electromagnetic energy at

different wavelengths, however. Interference with the visual path from

atmospheric haze or solar glare would not cause as significant a problem for

microwave transmission, and therefore a fuzzy approach is not necessary in this

context.

2.2.5 USER ERROR

The widespread availability of a viewshed tool in both commercial and

open-source GIS software has led to a great deal of popularity, as can been seen

from the wide range of research questions which use it. Widespread adoption

and ease of use does not mean that results are automatically authoritative, but it

can lead to a misperception of the tool’s accuracy, implying a level of confidence

that may not be justified.

In the field of landscape aesthetics, for example, a review of studies found

that debate over the reliability of visibility analysis focused more on

environmental psychology questions than on the underlying physical data.

Planners considered visibility mapping to be a “simple, mechanical, highly

replicable” process that was standardized and well understood (Felleman 1982).

24

A review of studies that had used visibility mapping in planning and impact

reports found that fewer than half of the studies even documented their

methods, and no studies discussed the accuracy of viewshed results (Felleman

and Griffin 1990).

While the number of researchers using viewshed or other types of

visibility analysis has increased in the decades since these studies, the tendency

to accept viewshed results with little question has not changed much. A user

who is unfamiliar with the challenges of a visibility analysis is more likely to

choose whatever data is available rather than considering all possible choices.

Visibility analyses may be based on elevation values that are out-of-date or at an

inadequate resolution. Since such choices are one of the most significant

contributors to error, ill-informed data selection is likely to lead to poor accuracy.

25

CHAPTER 3

METHODOLOGY

3.1 VISIBILITY ANALYSIS METHODS

This research tested three approaches for the ground-to-air visibility modeling

problem. Two models were made with ArcMap tools using ModelBuilder in

ESRI’s ArcGIS 10.1, one based on the Viewshed tool (one of the most common

visibility analysis methods) and one based on the Sight Line tools. The third

approach was a custom algorithm written in Python, based on sight line analysis

principles and using trigonometry to check for obstructions.

3.1.1 VIEWSHED MODEL (ARCMAP)

The Viewshed tool in ArcMap includes a number of optional parameters

(see Figure 3.1) which are necessary to accurately model a complex visibility

scenario. In order to define the elevation of an observer point, the user can define

an offset value describing the vertical distance of the observer or target features

above the surface elevation. For example, a ground antenna may have a constant

offset value of two feet. Since a remote-sensing airplane is flying at a constant

altitude, while the ground below is constantly changing elevation as its position

26

changes, using a constant offset value for the flight path would inaccurately

represent the airplane’s vertical location. There are two possible ways to

circumvent this challenge. The flight path line can be converted to a set of points,

and the offset value calculated for each point by subtracting the elevation from

the altitude. Or, the flight path can be assigned a constant “spot” value equal to

the altitude. The two different solutions produce identical results and have

negligible difference in model run time, so the offset method was used in the

model tested in this research.

Figure 3.1: Diagram of the possible ArcMap viewshed tool input parameters in

ArcMap 10.1 (Esri 2012).

In order to accurately represent the airplane’s height above ground, the

airplane’s flight path must be used as the observer feature, rather than the

proposed antenna sites on the ground. This may seem to be a poor choice: since

27

there are fewer antenna locations than airplane locations, using the ground

station sites as the observer points would reduce the processing time. However,

this decision is dictated by the Viewshed tool input parameters. Offset or spot

values can only be assigned to observer features, not target features. Since the

airplane’s offset is highly variable and antenna offset is constant, the flight path

must be used as the observer feature.

For a single observer point, viewshed output is binary: each cell of the

output raster is classified as either “visible” (1) or “not visible” (0). The airplane

flight path is converted to multiple observer points, representing its different

locations in the air as it flies. Therefore, the viewshed result is a cumulative

rather than a binary measure. In other words, if ten observer points (i.e., airplane

locations) are evaluated, each cell of the output raster has values between zero

and ten depending on how many of the observer points are able to see that cell.

This result is then inverted to calculate the percentage of the flight path that is

visible from the ground station. If n observer points can see a given target point

on the ground, then that target point can see n of the total observer points. The

last step of the model extracts the values from the cumulative viewshed raster at

each proposed antenna location, and divides by the total number of flight path

points. The complete ModelBuilder workflow can be seen in Figure 3.2.

28

Figure 3.2: ModelBuilder diagram of the Viewshed-based visibility model.

29

3.1.2 SIGHT LINES MODEL (ARCMAP)

ArcMap has another tool which is designed to measure visibility along a

line of sight. The workflow uses a combination of two tools. First, the Construct

Sight Lines tool creates feature geometry between the observer and target

features, generating sight lines between two points. Line or polygon target

features are treated as a collection of points, and multiple sight lines are created.

Second, the Line of Sight tool performs a visibility analysis along the constructed

sight lines. The results are similar to the Viewshed tool, measuring surface

visibility at all points along the sight line. The tool will indicate the location of

the first obstruction along the visual path if desired.

Since the Line of Sight tool calculates visibility over a much more limited

area than the Viewshed tool, it was expected to be a more effective and efficient

alternative. Unfortunately, the Line of Sight tool does not actually use the

three-dimensional information in the constructed sight lines in the visibility

analysis process. Rather than measure visibility of points along these sight lines,

the tool measures visibility of points directly below the lines, on the elevation

surface itself rather than in the air. It is still a ground-to-ground process rather

than ground-to-air.

Unlike Viewshed, there are no “offset” or “spot” attributes which can be

included in raise the observer or target points off the ground. An attempted

30

workaround of adding a large offset to the elevation surface itself can “solve” the

lack of offset by raising the apparent position of the target point. There are

multiple problems with this modified approach, however. If multiple flight paths

are present, the artificial elevation ridges are likely to falsely obstruct a number

of the sight lines. Also, ArcMap raster algebra will always produce a result raster

that is equal in size to the smaller of two input rasters. If the rectangular extent of

the flight path is smaller than the original DSM, the modified DSM will shrink. If

the observer point is outside the extent of the elevation surface, the model will

not be able to execute at all.

These problems could not be reasonably overcome as part of this research

project. Therefore, the Sight Lines model was not included in the testing and

comparison results to be described later. A complete discussion of the model’s

construction and performance is included in Appendix B.

3.1.3 PYTHON ALGORITHM

The Viewshed model can be used to describe flight path visibility, but it is

computationally intensive since it analyzes the full surface raster. This is far more

data than are required for the antennae siting problem described, which only

needs to know point-to-point visibility along sight lines. A simpler approach was

a custom visibility algorithm, checking for obstructions only along the lines of

31

sight between each antenna and airplane point. Points which are not along the

sight line are not analyzed.

The process of calculating visibility of an airborne object can be simply

modeled using basic trigonometry. First, a straight line is drawn from the

observer (antenna) and target (airplane) to represent the 3D line of sight between

the two points. It is divided into segments, with section size depending on the

available data resolution. At each segment along the sight line, the surface

elevation is compared to the sight line elevation to check for obstructions.

The sight line elevation is calculated using the trigonometric concept of

similar triangles (see Figure 3.3). If the elevation at a point exceeds the calculated

allowed elevation zpoint, then the sight line is blocked. The Python algorithm

converts the image-based surface elevation raster into a numerical array, with

each raster cell corresponding to one array element. Calculations are performed

using the relative local array address rather than a geographic coordinate system.

The flight path is divided up into points, one per each element it passes, and

these flight points are used as targets to construct sight lines with the observer

point. As the calculations described above are performed, the algorithm keeps

track of the total number of obstructed sight lines, and thereby the total flight

path visibility for each observer point.

32

Figure 3.3: The Python algorithm uses trigonometric relations to calculate the

maximum allowable elevation at a given point, and then extracts the actual

elevation value from the surface raster to compare.

The algorithm was written in Python 2.7, using functions from the

NumPy, SciPy, and ArcPy libraries. The complete source code is included in

Appendix A. The program could be made fully open-source by using GDAL

functions in the pre- and post-processing portions, eliminating any proprietary

“black box” operations. As written, however, the algorithm still relies on some

proprietary operations (namely ArcPy functions) for conversion to and from

raster format and some additional minor functions to display results graphically.

This choice was based on the usability needs of the RESPT project’s target

audience. Since most end-users in the emergency management community were

likely to have their data in ArcMap, it was expedient to take advantage of that

processing environment. None of the visibility mathematics use ArcPy

operations, and the algorithm can therefore still be considered a demonstration

of an open-source alternative to commercial visibility models.

33

3.2 STUDY AREAS

Richland County and the city of Columbia, South Carolina were used as

the general study area. This choice was based on availability of data, and also the

presence of a large urban area with trees and large buildings to potentially

obstruct lines of sight. Locations of potential ground antenna sites and flight

paths depended on the demands of various testing scenarios, and are discussed

in more detail in Section 3.3. The elevation surface was predicted to have the

most significant influence on accuracy and efficiency, so multiple resolutions

were used. Different subsets of elevation data were used for various algorithm

comparison tests, the specifics of which are discussed in Section 3.3.

Two possible sources for elevation data were considered for the model

comparison testing: the National Elevation Dataset (NED) and a LiDAR dataset

for Richland County, South Carolina. NED data were downloaded at 30 meter

and 10 meter resolution. However, the NED data are not well suited to the GSSM

question, since it does not incorporate vegetation or structure elevations which

could block sight lines. In addition, the derived data for the NED coverage varied

widely in source age, ranging from as recently as December 2013 for next-door

Lexington County to as old as 1923-1959 for southeastern sections of Richland

County (United States Geological Survey 2013).

34

A DSM with recent elevation data was a more appropriate solution for a

visibility analysis. The City of Columbia GIS Department provided LiDAR data

and building footprints for the city. The LiDAR was flown between January and

March 2008 (Clifton 2013) over all of Richland County, although the available

data covers less area than the NED DEMs (see Figure 3.4). However, since a DSM

incorporates vegetation and structure information, it is a more appropriate raster

to use for visibility analysis.

The LiDAR point cloud was converted into a surface elevation model

(DSM) at 1 meter, 3 meter, 10 meter, and 30 meter resolutions using the ArcMap

LAS Datatset to Raster tool. First returns were used to capture as many

obstructions as possible. The maximum value in a particular cell was chosen as

the elevation value instead of an average or interpolated value, and a linear void

fill method (triangulating across cells with no LiDAR points) eliminated data

gaps. In the resulting DSMs, surface features such as buildings and vegetation

were clearly visible in addition to the base terrain elevation (see Figure 3.5)

35

Figure 3.4: Available LiDAR data coverage (yellow grid) compared to the

Richland County boundary (green outline) and NED DEM coverage.

36

Figure 3.5: The 3 meter resolution DSM of downtown Columbia, SC, derived

from 2008 LiDAR data. Building footprints are outlined in light blue. The South

Carolina State House grounds are clearly identifiable as the domed building in

the center surrounded by numerous trees and other government buildings.

3.3 MODEL COMPARISON

The Viewshed model and Python algorithm were evaluated using three

performance metrics: speed, sensitivity to inputs, and accuracy. The results of the

performance tests were used to describe basic characteristics of the three

different methods, and to compare their relative performance and judge which

would be the most suitable for a time-sensitive application in disaster response.

Each test was performed on a laptop computer with 4 GB of RAM and a dual-

core 2.2 GHz processor. The Python algorithm was run in 32-bit mode.

37

3.3.1 EFFICIENCY

The most important characteristic of this research question was efficiency.

If a visibility analysis takes longer than sixty minutes to run, then there is no

significant time advantage over waiting for an imagery flight to land. Thus, if an

analysis cannot be completed on a desktop computer in under an hour, the

method will probably not be suitable for emergency response purposes. The time

limit was established by estimating round-trip travel time from the South

Carolina Emergency Management headquarters to the second-nearest

metropolitan airport, Owens Field (approximately half an hour), and doubling it

to allow for major road closures that might result from a natural disaster.

A variety of hypothetical scenarios were created. Five candidate antenna

placements were chosen that could be considered as reasonably accessible during

disaster response (see Figure 3.6). The South Carolina Emergency Management

Division headquarters would have been an ideal antenna site since it would

plausibly be a primary processor and distributor of received data; unfortunately,

it is too far from Richland County and was outside the DSM coverage. Hospitals

are likely to have power in the event of a disaster, and so Lexington Medical

Center (1), Palmetto Health Richland Hospital (2), and Palmetto Health

Baptist (3) buildings were chosen as potential sites. A state government building

that is reasonably tall with a flat, accessible roof is the Hampton Building (4) on

38

the South Carolina State House grounds. The BB&T building (5) was also chosen

as an observer location simply because it is the tallest building in the city.

Figure 3.6: Antenna sites and flight paths in the greater Columbia area used for

the efficiency tests.

Each antenna site was located on the roof of the building by using a

combination of the 1-meter DSM and aerial photographs to find a flat area that

was not occupied by fans, HVAC equipment, antennae, or other impediments.

The rooftop also needed to be obviously accessible – the highest level of the

Palmetto Health Richland Hospital building, for example, had no obvious access

point, and the next highest rooftop (20 meters lower) in the hospital campus was

chosen instead. Two arbitrary flight paths were drawn over a hypothetical

39

impacted area, and combinations of observer points, flight lines, and DSMs at

different resolutions were used to run a series of efficiency tests.

3.3.2 SENSITIVITY TO INPUTS

In addition to testing efficiency of a hypothetical emergency response

situation, a sensitivity analysis was performed on each model. The size of the

analysis area, length of flight path, and quantity and position of candidate

ground antenna sites were varied independently of one another. These criteria

established whether the models would continue to perform adequately in a

variety of situations, depending on the scope of the disaster response. The

models were tested multiple times, and the execution time correlated to the input

variables.

Analysis area size, measured in raster cells, is dependent on the elevation

surface resolution and the geographical area. Testing for this input parameter

was done on the 30-meter resolution NED DEM, with a single antenna site and a

1500-meter flight path (see Figure 3.7), and different analysis areas were created

by modifying the processing extent in the geoprocessing environment settings.

Total analysis area size ranged from 572,951 cells to 2,118,904 cells.

Flight path length measures the number of flight path points used as targets

for the respective visibility analyses. The number of points depends on the

number of flight paths, the length of each one, and the elevation surface

40

resolution. This parameter was tested using the 10-meter resolution LiDAR DSM,

with a single antenna site (see Figure 3.7). To avoid influence from the observer

distance, the total flight path length was increased by duplicating one feature in

the same location – in other words, a 9,000 meter flight path consisted of six

copies of the 1,500 meter path, and so on. The total flight path lengths tested

ranged from 1,500 to 30,000 meters, or 150 to 3,000 flight path points.

Figure 3.7: The analysis area size, flight path length, and number of observers

were tested on a 3-meter DSM subset. In tests with multiple observers, all were

co-located on the same point.

The number of antenna sites was treated as a distinct input parameter from

the distance between antenna and flight path, since these are independent

characteristics of the feature class used as an analysis input. To avoid influence

from the observer location, up to 20 observers were co-located on the same point

(see Figure 3.7). The distance from antenna to flight path affects the length of

derived lines of sight, which may influence the execution time. Observer distance

41

from the flight path ranged from 500 to 5,000 meters, on a 1-meter resolution

LiDAR DSM and looking at a 750 meter flight path (see Figure 3.8).

Figure 3.8: The observer distance test was run on a 1-meter DSM subset.

3.3.3 ACCURACY AND VALIDATION

Measuring the accuracy of visibility analyses is not a straightforward task

due to the difficulty of establishing a "ground truth" against which to compare. It

was not feasible to contract an imagery flight to track its visibility from a set of

potential antenna sites. Two alternative approaches were therefore devised to

test accuracy.

In the first test, a fictional elevation surface was created to establish a

small, predictable study area. On a constant raster of zero elevation, all observer

points would be able to see 100% of an overhead flight path. This artificial DSM

provided a mathematically predictable area, and a way to establish a baseline

accuracy performance for the different methods.

42

In the second test, ground-to-ground verification of visible and not-visible

points was used to validate the ground-to-air visibility methods tested. Typical

operation of a visibility algorithm would use a complex elevation surface

describing real-world terrain validation. In order to validate performance in such

situations, photographs were taken from an established reference point on top of

the Bull Street parking garage on the USC campus (see Figure 3.9).

Identifiable points in the photograph that were visually clear were

mapped as target points on a 1-meter resolution LiDAR-based DSM (see

Figure 3.10), the most accurate elevation surface that was available. Points that

could not be seen from the reference point were also included on the map to test

not-visible measurement. (Any points obstructed by trees were not chosen as

not-visible validation data, since the six-year time lapse between the 2008 LiDAR

data and the photograph could allow significant vegetation growth.) The results

of the various visibility analysis methods were compared to the visual

confirmation as validation of accuracy.

43

Figure 3.9: Photographs taken from top of Bull Street Garage, with validation

points identified.

44

Figure 3.10: Overhead map with identified "visible" and "not visible" target

points labeled.

45

CHAPTER 4

RESULTS

4.1 EFFICIENCY

The comparison for the Viewshed model and Python algorithm shows that the

Python algorithm is faster for all study areas, especially at finer raster

resolutions. The Viewshed model is two orders of magnitude slower at coarse

resolution (10 meter), and three orders of magnitude slower on a fine resolution

(3 meter) DSM. Once each method exceeded the sixty minute threshold, further

efficiency testing was not necessary.

The Viewshed model (see Table 4.1) reached the time limit on the shortest

flight path on the 10m × 10m DSM. Changes in the number of observer points did

not affect the Viewshed model, and so that parameter was not changed during its

efficiency tests.

The Python algorithm (see Table 4.2) completed the visibility analysis

more quickly, and was therefore tested on a larger assortment of scenarios and at

a higher resolution. Including different numbers of observer points affected the

performance, and so this parameter was varied as well as the flight path length.

46

This emulates real-world usage. If the end user has done pre-screening on the

candidate antenna points and knows that some of them are not accessible (for

example, the power cannot be restored in the BB&T building), there is no need to

measure its visibility. Leaving out such points can both improve the run time and

generate more relevant results.

Table 4.1: Average run time for the Viewshed model on a 321 km2 analysis area.

Raster

Resolution

Flight Path

Length (m)

Average Run

Time (minutes)

30m × 30m

6,000 4.27

10,000 7.39

16,000 10.31

10m × 10m 6,000 83.12

Interestingly, the Python algorithm began to encounter an unexpected

computational threshold in addition to the established processing time

requirement. There is a limit on the amount of memory which can be allocated to

hold a NumPy array, which the algorithm uses as an alternative to raster data for

fast reference and calculations. When the analysis area size (measured in cells)

exceeds the permitted dimensions for an array, the algorithm throws a memory

warning and stops running. This capacity problem was first noticed on the full

3m × 3m DSM, which needed to be clipped to the analysis area to fit into array

47

memory. The 1m × 1m DSM could not be analyzed at all (although its run time

would have exceeded the allowed limit anyway).

Table 4.2: Average run time for the Python algorithm in various scenarios.

Raster

Resolution

Flight Path

Length (m)

Observers

Included

Average Run

Time (minutes)

30m × 30m

6,000 5 0.73

10,000 5 2.20

16,000 5 2.89

10m × 10m

6,000

3 4.19

4 5.09

5 6.02

10,000

3 12.51

4 15.89

5 19.30

16,000

3 16.55

4 20.78

5 25.17

3m × 3m

6,000

3 45.09

4 55.14

5 65.47

10,000

3 138.22

4 175.85

5 214.36

16,000

3 187.44

4 239.06

5 279.61

48

One additional test of efficiency was performed during the artificial

surface accuracy test. The Viewshed model finished the analysis of a 100 × 100

cell raster in approximately one minute. The Python algorithm was then tested

with an equivalent number of observer points (10,000) to compare its accuracy

performance. The Python algorithm took 2 hours to finish, two orders of

magnitude longer than the Viewshed model. While interesting, this result is not

particularly informative for the evaluation of performance during normal

operation with far fewer observer sites.

4.2 SENSITIVITY TO INPUTS

Through the sensitivity analysis process, the influence of individual input

parameters on the processing speed could be examined in more detail. There

were significant differences in which parameters were influential on each

method, and to what degree. When the same input parameters were used,

execution times were highly repeatable execution and consistent. This

predictable behavior is also apparent in the very high coefficients of correlation

found for each of the relationships.

4.2.1 ANALYSIS AREA SIZE

Size of the analysis area has a very strong correlation (R2 = 0.9986) to the

execution time of the Viewshed model (see Figure 4.1). Depending on the total

area of interest and the available DSM resolution, this relationship is clearly one

49

of the primary drivers of the long execution times seen in the efficiency tests.

However, the number of cells in the surface raster had no influence on the

execution time of the Python algorithm.

Figure 4.1: Correlation between analysis area size (measured in raster cells) and

Viewshed model execution time.

4.2.2 NUMBER AND LOCATION OF ANTENNA SITES

The number and location of observer points had no noticeable effect on

the Viewshed model. Since the observer points only become relevant to the

model when extracting the visibility results to the points, the amount of time

required for each point is negligible compared to the much longer execution time

of the Viewshed tool within the model.

In contrast, the number and position of observer points heavily influenced

the Python algorithm. Under actual operating conditions, the quantity and

50

position would not necessarily be able to be treated as separate variables. When

treated as separate in a controlled study area, however, there were clearly

different influences from the two different characteristics. Both the quantity of

observer points (see Figure 4.2) and the distance from the observer to the flight

path (see Figure 4.3) were strongly correlated (R2 = 0.9996 and R2 = 0.9997,

respectively) to execution time for the Python algorithm.

Figure 4.2: Correlation between number of antenna sites and Python algorithm

execution time.

Increasing the distance between flight path and antenna position

appeared to cause the execution time to increase more rapidly than adding

additional observer points (approximately 160 seconds per kilometer, versus

10.5 seconds per observer point). However, the number of observers test was

completed with points that were very close to the flight path, and this must be

51

taken into account when interpreting the results. The possible variations in

observer location make a universal predictive equation difficult.

Figure 4.3: Correlation between antenna position and Python algorithm

execution time.

4.2.3 TOTAL LENGTH OF FLIGHT PATHS

The length of the flight path and the resolution of the elevation surface

together determine the number of flight path “target” points that will be

analyzed. The flight path length had an effect on both methods. The total length

was the significant factor, not the number of flight paths; in other words, a single

5,000 meter flight path would take the same amount of time to execute as ten

500 meter flight paths. The strongest influence was on the Viewshed model (see

Figure 4.4), adding nearly a tenth of a second for every additional flight path

point included (strong linear correlation of R2 = 0.9978). Extending the flight path

52

added less time per point to the Python algorithm (see Figure 4.5) execution

times (strong linear correlation of R2 = 0.9992).

Figure 4.4: Correlation between flight path length and Viewshed model

execution time.

Figure 4.5: Correlation between flight path length and Python algorithm

execution time.

53

The difference between the execution time of the Viewshed model and

Python algorithm is best seen by comparing the two correlations on the same

graph (see Figure 4.6). Not only does the Viewshed model take longer to execute

at all points, but its execution time increases much more per point.

Figure 4.6: Comparison between Viewshed model and Python algorithm

correlations to flight path length.

4.3 ACCURACY AND VALIDATION

One notable oddity in the Viewshed model results in a subset of cells

which are coded as unable to see one flight path point. In the test on a straight

north-south flight path, these cells are all directly underneath observer points.

This may imply either that an observer point is considered unable to see the

surface directly beneath its location, or the surface cell's visibility is not even

measured directly beneath an observer point location. However, if a straight

54

east-west flight path is tested instead, cells with reduced visibility are not limited

to only observer points, but also spread up to the north of the flight path (see

Figure 4.7). In other words, the orientation of the flight path will have an

influence on the relative accuracy of the Viewshed model results. This effect has

no apparent explanation. It is presumably caused by the Visibility tool itself, and

the proprietary nature of the tool precludes a more definitive answer.

Figure 4.7: Results from Viewshed model test on a flat surface.

To look for similar behavior from the Python algorithm, it was tested by

converting the 100 × 100 cell raster to 10,000 corresponding observer points. The

Python algorithm correctly coded all cells as able to see 100% of the flight path,

for both the east-west and north-south lines.

55

The visibility results in the validation tests were better (see Table 4.3).

Both methods correctly identified all of the visibility and not-visible target

points. Failing to account for the observer height (1.5 meters) caused

approximately half of the visible target points to be marked as not visible,

although all the not visible points were still correctly evaluated. This result

emphasizes the need for accurate offsets and vertical position, and demonstrates

the inaccuracy that can come from user error and erroneous inputs.

Table 4.3: Visibility of points around Bull Street Garage.

Point Actually Visible Viewhsed Model Python Algorithm

1 Yes Yes Yes

2 Yes Yes Yes

3 Yes Yes Yes

4 Yes Yes Yes

5 Yes Yes Yes

6 Yes Yes Yes

7 No No No

8 No No No

9 No No No

10 No No No

11 No No No

12 No No No

56

CHAPTER 5

DISCUSSION

Overall, the results of this thesis were not surprising. Knowing the amount of

extraneous analysis the Viewshed tool performs, it was expected to be much less

efficient than an algorithm which only measures lines of sight. The process of

testing the Viewshed model and Python algorithm as an alternative did provide

a number of useful insights into attempts to measure ground-to-air visibility.

The Viewshed model was sensitive to raster resolution and total flight

path length, with no significant impact from the number of observer points. In

contrast, the Python algorithm was sensitive to changes in the number of

observer points and total flight path length. Understanding these different input

sensitivities is central to a comprehensive understanding of the relative efficiency

of the visibility analysis methods. It also provides guidance for end users,

helping them choose appropriate data to constrain execution time to a desired

limit.

For most disaster response analyses, the Viewshed model would simply

be too slow. At all but the coarsest resolution, it far exceeded the sixty minute

57

threshold. Even though a 30-meter DSM would allow it to perform quickly

enough, such a coarse resolution drastically oversimplifies surface features and

contributes a high level of uncertainty to the model’s results. It is unlikely that

most disasters will be constrained to small impact areas close to candidate

antenna sites, so the appropriate model must be able to deal with large analysis

areas rapidly. The Viewshed model cannot.

One important outcome of the accuracy testing was that algorithm results

were consistent for multiple evaluations of the same input parameters. This does

not indicate that there is not any error at all from the algorithms themselves, but

does mean the error is non-random. Any error attributed due to the algorithm is

therefore due to a bias, rather than stochastic influences.

The accuracy of the visibility analyses in a real-world validation (Section

4.3) shows that neither method was completely accurate. However, this is not a

serious enough problem to rule out either method. Both models underestimated

visibility, and had no false positives. This is not ideal, of course, since too many

false negative results can eliminate candidate antenna sites which should be

suitable. But, such behavior is preferable to an analysis that overestimates

visibility, which could lead to deployment of resources to a site which cannot see

enough of a flight path, wasting time and money.

58

The Viewshed model’s inaccuracy on a fictional surface demonstrates

clearly that the underlying visibility algorithm may cause unknown and

unpredictable errors. It is possible that similar inaccuracy exists in the Python

script, because any mathematical model relies on simplifications and

assumptions about the physical world that can result in errors. The disadvantage

the Viewshed model has in this case is that its algorithm is proprietary. The end

user is forced to guess at the cause and scope of algorithm errors.

This leads to the discussion of an additional factor to consider when

selecting a visibility analysis method: usability. The ArcGIS ModelBuilder

environment can simplify the process of scripting tools, and it is part of a familiar

software package for a majority of GIS users. Either a ModelBuilder or Python

script can be integrated easily into an ArcMap workflow, but the proprietary

Viewshed tool cannot be exported to open-source alternatives such as GRASS or

QGIS, Using the Viewshed tool limits the end user’s software options.

In contrast, the Python algorithm can be adapted to a fully open-source set

of libraries without affecting performance, providing flexibility for users and

basic code for future visibility algorithm development. The open-source

approach also provides transparency for users and researchers interested in the

algorithm’s methods and limitations. Knowing how a tool performs its analysis

59

and models reality will provide insight into the reliability and accuracy of its

results.

One question of visibility that was not adequately addressed in these

models was directionality. This would not be an issue for mobile antenna

deployment, which is set up on demand and can therefore be pointed toward the

flight path. However, a permanent, more rigid antenna mount might be built,

such as on the roof of an emergency management agency, in expectation of its

eventual use as a ground station site in disaster response. In such a case, there

may be a mechanical restriction on what direction the antenna can face and

therefore what area would be visible. Neither the Viewshed model nor the

Python algorithm is able to account for directional restrictions. Results would

have to be manually checked for accuracy.

An interesting potential expansion of this research is the application of

visibility analysis in the planning phases of the disaster response cycle. The work

in this thesis was focused on the need to perform a visibility analysis under

post-disaster time constraints. With some adaptation, however, the visibility

principles and methods described in this work could be used to create data to

describe what area of sky is visible from a proposed antenna site. This predictive

analysis takes longer to run, but if performed during disaster planning instead of

disaster response, there is little concern about algorithm execution time.

60

One possible disaster planning approach is to use the existing GSSM with

flight paths over areas which are at high risk for damage in a disaster. Examples

might include a riverbank or shoreline communities that are susceptible to

flooding, the area surrounding a power plant, or indeed any disaster scenario

which an emergency management team plans for. Running an analysis with the

hypothetical data can narrow down the choice of candidate antenna sites for each

potential hazard, creating a short list that can be quickly accessed by a disaster

manager when an event occurs.

This planning stage use enables significant GIS processing and analysis to

be done when time is not a concern, so site selection and resource deployment

can happen much more quickly. This does have the advantage of being able to

use an existing tool and workflow plan. The disadvantage is that it only works

for expected or predictable scenarios, of course; the burden is on the user to come

up with sufficient hypothetical disaster impacts to build a useful list of coverage.

An alternative, and realistically more robust, approach is to build a new

tool, based on the theories and methods described in this research. Since the

Python algorithm was not designed to be predictive, it does not evaluate

visibility at points other than the antenna sites or flight path. The Viewshed tool

is designed to analyze a large area all at once, and could be well suited to

identifying potential antenna sites. (This would be particularly true if a

61

Viewshed algorithm allowed a constant SPOT value to be assigned to target

points, which would significantly simplify the model and reduce computational

complexity. Such a change depends on ESRI’s software development team,

however.) Each method would require some adaptation to be able to deliver

useful and informative results, however.

An ideal planning workflow would be to identify polygonal outlines of

flight locations which can be seen from proposed antenna sites. This would

establish “zones” of a city or county which could be seen from each vantage

point. These observation zones would be stored, and could be accessed quickly

in the event of a disaster, overlaid over regions known to be damaged in order to

generate optimum flight paths. This enables selection of the best ground station

site with minimal required processing time and GIS skill level. Such polygons

would be of great value to a project like RESPT, which provides a platform for

emergency planners and responders to collaborate. More importantly, it would

not require speculative scenario planning, but could be used for disasters of any

type or geographical scope.

Finally, it is worth noting that the Python algorithm tested in this research

is not the most efficient solution possible for ground-to-air visibility analysis. The

script could be further streamlined and optimized in a number of ways.

Pre-screening the elevation data to ignore points which could not possibly block

62

lines of sight (e.g., any locations with an elevation less than the antenna site)

would be a first step, using conditional logic up front to reduce the amount of

more computationally calculations required later in the algorithm. The

mathematical evaluation could be performed in a different order (an approach

which is discussed in more detail in Appendix C). Additionally, application of

probability and spatial autocorrelation assumptions could further speed up the

algorithm by reducing the amount of cells that need to be checked. Such changes

could reasonably be introduced while simultaneously modifying the algorithm

to be predictive rather than responsive.

63

CHAPTER 6

CONCLUSION

The results of this exploration of visibility analysis methods are informative in a

variety of ways. The model comparison and validation testing established that

the Python algorithm is a suitable method for the GSSM tool, one of the primary

research questions behind this thesis. In addition, detailed research into the

sensitivity of two basic visibility models provides useful data for both end users

and future researchers.

It was noted nearly twenty-five years ago that viewshed algorithms were

not well documented and could produce results that are inconsistent with other

algorithms (Felleman and Griffin 1990). The data from this thesis indicates that

the issue has not changed over time: the Viewshed model had some inexplicable

inaccuracies (see Section 4.3). The ArcMap help files, while providing a thorough

description of how to operate the tool, do not describe the underlying algorithm

function. There is clearly an ongoing need for users of any visibility tools to be

aware of, and document, the possible shortcomings of their analyses.

64

In both the Viewshed model and Python algorithm, the strong correlations

between input parameters and execution time are related to the number of times

the basic calculation is performed and how long that calculation takes to

complete. The basic Viewshed model calculates analyzes visibility of an entire

raster, while the basic Python algorithm calculates an inverse tangent. Repeated

iterations of the former process take longer to complete. This concept can be

extended to other visibility analysis methods: if the basic calculation is simpler,

the execution time is faster.

Given the significant influence of DSM accuracy on visibility accuracy, it

is worth emphasizing the importance of choosing an appropriate elevation

surface. The DSM used for this research was adequate for the purposes of testing

typical efficiency and accuracy performance of visibility analyses. However, it

may not be the best DSM to answer the question of where a ground antenna site

should be placed in the event of a disaster in Columbia, SC. The City of

Columbia did not include any metadata with its LiDAR, and even the date that

the data was captured was only known within a range of months. The data are

also six years old, a period of time which could allow significant changes in both

vegetation and human structures in the area. (An interesting exercise that was

outside the scope of this thesis would be land use change analysis from 2008 to

2014 to more precisely locate areas of probable development and greatest DSM

65

uncertainty.) Finally, no processing was done to remove artifacts or errors from

the raw point cloud before it was converted to an elevation raster. The resulting

DSM is not expected to be as accurate as possible, but it is representative surface

for the research project and is similar to what may be available for many disaster

response situations.

One significant restriction on the visibility analyses tested was the limit to

only one elevation surface. There are two fundamentally conflicting concerns

when choosing an appropriate DSM resolution. Fine resolution is needed close to

the antenna site in order to identify relatively small obstructions that are liable to

block lines of sight, but which would be generalized at coarse resolutions.

However, such fine resolution causes significant reductions in efficiency, as a

much greater number of calculations must be performed. The ability to use two

elevation surfaces of different resolution – the fine resolution close to antenna

site, the coarse resolution further away – could improve efficiency without

sacrificing accuracy.

.

66

REFERENCES

Amidon, Elliot L., and Gary H. Elsner. 1968. “Delineating Landscape View Areas:

A Computer Approach”. PSW-RN-180. Berkeley, CA: U. S. Department of

Agriculture, Forest Service, Pacific Southwest Forest and Range

Experiment Station.

Bagli, Stefano, Davide Geneletti, and Francesco Orsi. 2011. “Routeing of Power

Lines through Least-Cost Path Analysis and Multicriteria Evaluation to

Minimise Environmental Impacts.” Environmental Impact Assessment

Review 31 (3): 234–39.

Beesley, Bridget Joan. 2002. “Sky Viewshed Modeling for GPS Use in the Urban

Environment”. M. S., University of South Carolina.

Benedikt, Michael L. 1979. “To Take Hold of Space: Isovists and Isovist Fields.”

Environment and Planning B: Planning and Design 6 (1): 47–65.

Bruzese, Victoria M. 1989. “Terrain Analysis and Geographic Information

Systems”. Master of Science, Corvallis, OR: Oregon State University.

Clifton, Christopher D. 2013. “Personal Communication”, March 6.

Congalton, Russell G. 1997. “Exploring and Evaluating the Consequences of

Vector-to-Raster and Raster-to-Vector Conversion.” Photogrammetric

Engineering and Remote Sensing 63 (4): 425–34.

Dozier, Jeff, and James Frew. 1990. “Rapid Calculation of Terrain Parameters for

Radiation Modeling from Digital Elevation Data.” IEEE Transactions on

Geoscience and Remote Sensing 28 (5): 963–69.

Esri. 2012. “ArcGIS Help 10.1 - Using Viewshed and Observer Points for

Visibility Analysis.” ArcGIS Resources. November 8.

Felleman, John P. 1982. “Visibility Mapping in New York’s Coastal Zone: A Case

Study of Alternative Methods.” Coastal Zone Management Journal 9 (3/4):

249–70.

67

Felleman, John P., and Carol Griffin. 1990. “The Role of Error in GIS-Based

Viewshed Determination: A Problem Analysis”. Technical Report EIPP-

90-2. Institute for Environmental Policy and Planning, SUNY College of

Environmental Science and Forestry.

Fisher, Peter F. 1991. “First Experiments in Viewshed Uncertainty: The Accuracy

of the Viewshed Area.” Photogrammetric Engineering & Remote Sensing 57

(10): 1321–27.

———. 1996. “Extending the Applicability of Viewsheds in Landscape

Planning.” Photogrammetric Engineering & Remote Sensing 62 (11): 1297–

1302.

Fisher, Peter F., and Nicholas J. Tate. 2006. “Causes and Consequences of Error in

Digital Elevation Models.” Progress in Physical Geography 30 (4): 467–89.

Fu, Pinde, and Paul M. Rich. 2000. “The Solar Anlayst User Manual”. Helios

Environmental Modeling Institute.

Hengl, Tomislav. 2006. “Finding the Right Pixel Size.” Computers & Geosciences 32

(9): 1283–98.

Hengl, Tomislav, and Ian S. Evans. 2009. “Mathematical and Digital Models of

the Land Surface.” In Geomorphometry: Concepts, Software, Applications,

edited by Tomislav Hengl and Hannes I. Reuter, 31–63. Amsterdam:

Elsevier.

Kim, Kamyoung, Alan T. Murray, and Ningchuan Xiao. 2008. “A Multiobjective

Evolutionary Algorithm for Surveillance Sensor Placement.” Environment

and Planning B: Planning and Design 35: 935–48.

Lee, Jay, and Dan Stucky. 1998. “On Applying Viewshed Analysis for

Determining Least-Cost Paths on Digital Elevation Models.” International

Journal of Geographical Information Science 12 (8).

Lu, Min, Jinfang Zhang, Pin Lv, and Zhihua Fan. 2008. “Least Visible Path

Analysis in Raster Terrain.” International Journal of Geographical Information

Science 22 (6): 645–56.

Lynch, Kevin. 1976. Managing the Sense of a Region. Cambridge: MIT Press.

68

Maichak, Eric J., and Krysten L. Schuler. 2004. “Applicability of Viewshed

Analysis to Wildlife Population Estimation.” American Midland Naturalist

152 (2): 277–85.

Maloy, Mark A., and Denis J. Dean. 2001. “An Accuracy Assessment of Various

GIS-Based Viewshed Delineation Techniques.” Photogrammetric

Engineering and Remote Sensing 67 (11): 1293–98.

Mees, Romain M. 1976. “Computer Evaluation of Existing and Proposed Fire

Lookouts”. General PSW-19. Pacific Southwest Forest and Range

Experiment Station, Berkeley, CA: US Forest Service.

———. 1978. “Seen Areas and the Distribution of Fires about a Lookout”.

General Technical Report PSW-26. Pacific Southwest Forest and Range

Experiment Station, Berkeley, CA: US Forest Service.

Morello, Eugenio, and Carlo Ratti. 2009. “A Digital Image of the City: 3D Isovists

in Lynch’s Urban Analysis.” Environment and Planning B: Planning and

Design 36 (5): 837–53.

Murray, Alan T., Kamyoung Kim, James W. Davis, Raghu Machiraju, and

Richard Parent. 2007. “Coverage Optimization to Support Security

Monitoring.” Computers, Environment and Urban Systems 31: 133–47.

O’Sullivan, Patrick Edmund. 1983. The Geography of Warfare. New York: St.

Martin’s Press.

Ruggles, Clive L. N., David J. Medyckyj-Scott, and Alun Gruffydd. 1993.

“Multiple Viewshed Analysis Using GIS and Its Archaeological

Application: A Case Study in Northern Mull.” In Computing the Past,

edited by Andresen, Madsen, and Scollar, 125–32. Aarhus: Aarhus

University Press.

Show, Stuart B., Edward I. Kotok, George M. Gowen, John R. Curry, and Arthur

A. Brown. 1937. Planning, Constructing, and Operating Forest-Fire Lookout

Systems in California. Circular No. 449. Washington, D.C.: U.S. Dept. of

Agriculture.

Travis, Michael R., Gary H. Elsner, Wayne D. Iverson, and Christine G. Johnson.

1975. “VIEWIT: Computation of Seen Areas, Slope, and Aspect for Land-

Use Planning”. General Technical Report PSW-11. Pacific Southwest

Forest and Range Experiment Station, Berkeley, CA: US Forest Service.

69

United States Geological Survey. 2013. “National Elevation Dataset”.

Washington, D.C.: US Geological Survey.

http://ned.usgs.gov/downloads.asp.

VanHorn, Jason E., and Nathan A. Mosurinjohn. 2010. “Urban 3D GIS Modeling

of Terrorism Sniper Hazards.” Social Science Computer Review 28 (4): 482–

96.

Wheatley, David. 1995. “Cumulative Viewshed Analysis: A GIS-Based Method

for Investigating Intervisbility, and Its Archaeological Application.” In

Archaeology and Geographical Information Systems: A European Perspective,

edited by Gary R. Lock and Zoran Stančič, 171–85. London: Taylor &

Francis.

Wilson, John P. 2012. “Digital Terrain Modeling.” Geomorphology 137 (1): 107–21.

70

APPENDIX A – GSSM PYTHON ALGORITHM SOURCE CODE

Ground Station Siting Model [GSSM]

Version 1.0.9 [24 July 2013] beta

Created for the RESPT project

import numpy as np

import scipy

from scipy import spatial

import arcpy

from arcpy import *

import time

import math

start_time = time.time()

#######################################

INPUT VARIABLES FROM MODEL PARAMETERS

#######################################

Location of ESRI files

ObserverPoint = arcpy.GetParameterAsText(0)

arcpy.AddMessage("Observer Point: " + ObserverPoint)

arcpy.AddField_management(ObserverPoint, "PctVisible",

"FLOAT")

FlightPath = arcpy.GetParameterAsText(1)

arcpy.AddMessage("Flight Path: " + FlightPath)

rasterDEM = arcpy.GetParameterAsText(2)

arcpy.AddMessage("DEM Raster: " + rasterDEM)

OutputWorkspace = arcpy.GetParameterAsText(5)

arcpy.AddMessage("Output Location for Flight Path

Blocked/Visible Points: " + OutputWorkspace)

arcpy.env.workspace = OutputWorkspace

Additional Parameters

FlightAltitude = arcpy.GetParameterAsText(3)

zFlight = float(FlightAltitude) * 0.3048 # elevation of

airplane, in meters

71

arcpy.AddMessage("Flight Altitude (in meters): " +

str(zFlight))

mxd = arcpy.mapping.MapDocument("CURRENT")

df = arcpy.mapping.ListDataFrames(mxd)[0]

find cell size of raster, assuming it's square

cellSizeProperty =

GetRasterProperties_management(rasterDEM, "CELLSIZEX")

cellSize = int(cellSizeProperty.getOutput(0))

arcpy.AddMessage("Raster Cell Size: " + str(cellSize))

Verbose = "false"

##arcpy.AddMessage("Verbose? " + Verbose)

outputBlockedPoints = arcpy.GetParameterAsText(4)

if str(outputBlockedPoints) == "true":

 arcpy.AddMessage(" Script will generate feature class and

layer of blocked points.")

if str(outputBlockedPoints) == "false":

 arcpy.AddMessage(" Script will only generate percentage

visibility from observer points.")

DEM RASTER PROPERTY ANALYSIS, CONVERSION TO NUMPY ARRAY

array of data converted from ESRI raster to NumPy array

x, y = np.mgrid[0:25:cellSize, 0:25:cellSize]

z = arcpy.RasterToNumPyArray(rasterDEM)

offsetXresult = GetRasterProperties_management(rasterDEM,

"LEFT")

offsetX = float(offsetXresult.getOutput(0))

offsetYresult = GetRasterProperties_management(rasterDEM,

"BOTTOM")

offsetY = float(offsetYresult.getOutput(0))

calculate offset to shift geographic coordinates to array

locations

arrayRowMax = z.shape[0] - 1

if str(Verbose) == "true":

 arcpy.AddMessage("X Min: " + str(offsetX))

 arcpy.AddMessage("Y Min: " + str(offsetY))

 arcpy.AddMessage("Raster Height: " + str(arrayRowMax))

arcpy.AddMessage("========== script setup complete")

72

################

OBSERVER POINT

################

Determine location of observer point

obsvCursor = arcpy.UpdateCursor(ObserverPoint)

desc = arcpy.Describe(ObserverPoint)

shapefieldname = desc.ShapeFieldName

XY location of observer on the ground

obsvIndex = 0

for obsv in obsvCursor:

 obsvFeature = obsv.getValue(shapefieldname)

 obsvPt = obsvFeature.getPart()

 # account for offset of geographic coordinate raster

 obsvX = math.floor((obsvPt.X - float(offsetX))/cellSize)

 obsvY = math.floor((obsvPt.Y - float(offsetY))/cellSize)

 if str(Verbose) == "true":

 arcpy.AddMessage("Value at Observer Location")

 arcpy.AddMessage(" >> geographic: x " + str(obsvPt.X) + ",

y " + str(obsvPt.Y))

 obsvCol = obsvX

 obsvRow = arrayRowMax - obsvY

 if str(Verbose) == "true":

 arcpy.AddMessage(" >> array: row " + str(obsvRow) + ",

column " + str(obsvCol))

 # elevation of observer [z]

 zObserver = z[obsvRow, obsvCol]

 if str(Verbose) == "true":

 arcpy.AddMessage(" >> elevation: " + str(zObserver) + "

meters")

 ############################

 # ESTABLISH FLIGHT PATH LINE

 ############################

 blockedSightLines = 0

 totalSightLines = 0

 obstructionList = []

 # Identify the geometry field

 desc = arcpy.Describe(FlightPath)

 shapefieldname = desc.ShapeFieldName

 # Create search cursor

 flightCursor = arcpy.SearchCursor(FlightPath)

 # Enter for loop for each feature/row

 for flightPt in flightCursor:

 # Create the geometry object

 feat = flightPt.getValue(shapefieldname)

73

 ## if str(Verbose) == "true":

 ## # the current line ID

 ## arcpy.AddMessage("Feature %i: " %

flightPt.getValue(desc.OIDFieldName))

 #Set start point

 startpt = feat.firstPoint

 #Set Start coordinates

 startX = math.floor((startpt.X - float(offsetX))/cellSize)

 startCol = startX

 startY = math.floor((startpt.Y - float(offsetY))/cellSize)

 startRow = arrayRowMax - startY

 #Set end point

 endpt = feat.lastPoint

 #Set End coordinates

 endX = math.floor((endpt.X - float(offsetX))/cellSize)

 endCol = endX

 endY = math.floor((endpt.Y - float(offsetY))/cellSize)

 endRow = arrayRowMax - endY

 zFP1 = z[startRow, startCol]

 zFP2 = z[endRow, endCol]

 if str(Verbose) == "true":

 arcpy.AddMessage("Value at Flight Start")

 arcpy.AddMessage(" >> geographic: x " + str(startpt.X) +

", y " + str(startpt.Y))

 arcpy.AddMessage(" >> array: row " + str(startRow) + ",

column " + str(startCol))

 arcpy.AddMessage(" >> " + str(zFP1))

 arcpy.AddMessage("Value at Flight End")

 arcpy.AddMessage(" >> geographic: x " + str(endpt.X) + ",

y " + str(endpt.Y))

 arcpy.AddMessage(" >> array: row " + str(endRow) + ",

column " + str(endCol))

 arcpy.AddMessage(" >> " + str(zFP2))

 # flight path begins at

 fpX0, fpY0 = startRow, startCol

 # flight path ends at

 fpX1, fpY1 = endRow, endCol

 arrayFlightPath = [[fpX0, fpY0], [fpX1, fpY1]]

 flightLength =

scipy.spatial.distance.pdist(arrayFlightPath, 'euclidean')

 numFPts = int(flightLength) / int(cellSize)

 # Make a line with "num" points distributed along it

74

 fpX, fpY = np.linspace(fpX0, fpX1, numFPts),

np.linspace(fpY0, fpY1, numFPts)

 ##fpLine = [np.linspace(fpX0, fpX1, numFPts),

np.linspace(fpY0, fpY1, numFPts)]

 arcpy.AddMessage("Flight path from " + str(fpX0) + ", " +

str(fpY0) + " to " + str(fpX1) + ", " + str(fpY1) + " at

altitude " + str(zFlight))

 arcpy.AddMessage(" >> length: " + str(flightLength) + "

meters")

 arcpy.AddMessage(" >> points: " + str(numFPts))

 ##

 # CONNECT EACH FLIGHT POINT TO THE OBSERVER POINT, ANALYZE

 ##

 dzMax = zFlight - zObserver # difference between flight

altitude and observer

 for indexFP, point in np.ndenumerate(fpX):

 if str(Verbose) == "true":

 arcpy.AddMessage("flight point row/col: " +

str(fpX[indexFP]) + ", " + str(fpY[indexFP]))

 ##arcpy.AddMessage("observer point row/col: " +

str(obsvRow) + ", " + str(obsvCol))

 flightX = fpX[indexFP]

 flightY = fpY[indexFP]

 arraySightLine = [[obsvRow, obsvCol], [flightX, flightY]]

 sightLength = scipy.spatial.distance.pdist(arraySightLine,

'euclidean')

 numSPts = int(sightLength)

 if str(Verbose) == "true":

 arcpy.AddMessage(" >>> length: " + str(sightLength) + ",

number of points: " + str(numSPts))

 slX, slY = np.linspace(obsvRow, flightX, numSPts),

np.linspace(obsvCol, flightY, numSPts)

 # drop 1st values, since observer point doesn't need to be

evaluated

 slX = slX[1:]

 slY = slY[1:]

 ## arcpy.AddMessage(" >>> X Values along Sight Line: " +

slX)

 dMax = sightLength

 ratio = dzMax / dMax # tangent of observer sight line

vertical angle

 if str(Verbose) == "true":

75

 arcpy.AddMessage(" >>> dMax: " + str(dMax) + ", dzMax: " +

str(dzMax) + ", Ratio: " + str(ratio))

 zActual = z[slX.astype(np.int), slY.astype(np.int)]

 blockedPoints = 0

 for indexSL, pointSL in np.ndenumerate(slX):

 sightX = slX[indexSL]

 sightY = slY[indexSL]

 arrayTempLine = [[obsvRow, obsvCol], [sightX, sightY]]

 dPoint = scipy.spatial.distance.pdist(arrayTempLine,

'euclidean')

 zAllowed = zObserver + (dPoint * ratio)

 zPoint = zActual[indexSL]

 if str(Verbose) == "true":

 arcpy.AddMessage("slX " + "%.2f" % slX[indexSL] + ", slY "

+ "%.2f" % slY[indexSL] + " // dist " + "%.2f" % dPoint +

", zAllowed " + "%.2f" % zAllowed + ", zPoint " +

str(zPoint))

 if zPoint > zAllowed:

 if str(Verbose) == "true":

 arcpy.AddMessage(" >> OBSTRUCTION <<")

 blockedPoints += 1

 if str(outputBlockedPoints) == "true":

 BlockRow = flightX

 BlockCol = flightY

 BlockPtX = (BlockCol * cellSize) + float(offsetX)

 BlockPtY = ((arrayRowMax - BlockRow) * cellSize) +

float(offsetY)

 CurrentPoint = [BlockPtX, BlockPtY]

 obstructionList.append(CurrentPoint)

 if blockedPoints > 0:

 if str(Verbose) == "true":

 arcpy.AddMessage(" >> 1 Sight Line with " +

str(blockedPoints) + " Blocked Points")

 blockedSightLines += 1

 totalSightLines += 1

 if str(Verbose) == "true":

 arcpy.AddMessage(" ========= =========")

 # time result

 arcpy.AddMessage(" >> analyzed in " + str(time.time() -

start_time) + " seconds")

 obsvIndex = obsvIndex + 1

 #########################

 # SHARE RESULTS WITH USER

76

 #########################

 percentVisible = 1. - (float(blockedSightLines) /

float(totalSightLines))

 arcpy.AddMessage("========== observer point " +

str(obsvIndex) + " analysis finished")

 arcpy.AddMessage(" >> Sight Lines Analyzed: " +

str(totalSightLines))

 arcpy.AddMessage(" >> Sight Lines Blocked: " +

str(blockedSightLines))

 arcpy.AddMessage("FINAL RESULT: flight path is %" +

str(100 * percentVisible) + " visible.")

 obsv.PctVisible = percentVisible

 obsvCursor.updateRow(obsv)

 arcpy.AddMessage(" >> Observer Point Attribute Table

Updated")

 if str(Verbose) == "true":

 arcpy.AddMessage("Points causing obstruction: ")

 obstructionPt = arcpy.Point()

 obstructionGeom = []

 for Point in obstructionList:

 if str(Verbose) == "true":

 arcpy.AddMessage(" >> x: " + "%.2f" % Point[0] + ", y: " +

"%.2f" % Point[1])

 obstructionPt.X = Point[0]

 obstructionPt.Y = Point[1]

 obstructionGeom.append(arcpy.PointGeometry(obstructionPt))

 if str(outputBlockedPoints) == "true" and percentVisible <

1:

 ##

 # PUSH LIST OF BLOCKING POINTS INTO A UNIQUE LAYER

 ##

 CurrentDateTime =

datetime.datetime.now().strftime("%Y%m%d%H%M")

 FlightPathPoints = "FlightPath" + CurrentDateTime +

str(obsvIndex)

 arcpy.CopyFeatures_management(obstructionGeom,

FlightPathPoints)

 arcpy.env.overwriteOutput = True

 lyrName = "BlockedFlightPoints_Obsv" + str(obsvIndex)

 arcpy.MakeFeatureLayer_management(FlightPathPoints,

lyrName)

 arcpy.AddMessage(" >> FlightPathPoints layer created")

77

 lyrFile = arcpy.mapping.Layer(lyrName)

 arcpy.mapping.AddLayer(df, lyrFile)

 arcpy.RefreshActiveView()

 arcpy.AddMessage(" >> FlightPathPoints added to map")

 arcpy.AddMessage("========== ========= =========

=========")

del obsv

del obsvCursor

del flightPt

del flightCursor

obsvLayer = arcpy.mapping.ListLayers(mxd, ObserverPoint)[0]

#Indexing list for 1st layer

if obsvLayer.supports("LABELCLASSES"):

 for lblClass in obsvLayer.labelClasses:

 lblClass.showClassLabels = True

 lblClass.className = "PctVisible"

obsvLayer.showLabels = True

arcpy.AddMessage(" >> Observer Point Visibility Attribute

Label Added")

time result

arcpy.AddMessage("========== ========= =========

=========")

arcpy.AddMessage(" time elapsed: " + str(time.time() -

start_time) + " seconds")

78

APPENDIX B – SIGHT LINES METHODOLOGY AND RESULTS

A number of efficiency tests were completed on the Sight Lines model before it

was determined to be incapable of modeling ground-to-air visibility. The model

and its behavior are therefore included in this appendix. In large part, the results

support the conclusion that researchers should treat visibility analysis results

with skepticism and caution.

The Sight Lines tools require a more complex model than the Viewshed

tool. The desired output – a single ratio value to describe target visibility –

requires that the visibility of the target point along each individual sight line be

summarized, and the data then appended back to the original observer dataset.

The Sight Lines model has to iterate through once for each observer feature in

order to keep the data organized. The model is consequently more complex and

runs through many more operations than the Viewshed model (see Figure B.1),

although the additional tools are largely organizational and therefore not

computationally intensive.

79

Figure B.1: ModelBuilder diagram of the model based on the Line of Sight tool.

80

The Sight Lines model was approximately as efficient as the Python

algorithm, in general. There was one notable exception. When a large number of

observer points were tested, the Python algorithm finished in approximately two

hours. The Sight Lines model crashed after analyzing 263 points in 4.25 hours. At

that rate, it would have taken nearly a week to finish its analysis. This indicates a

much less efficient use of memory and computational resources than the Python

algorithm. It was, however, capable of operating on a fine-resolution DSM

(1m × 1m) without memory errors, as long as the number of observer points was

small.

Sensitivity analysis results indicated that the Python algorithm and Sight

Lines model were affected by the same input parameters, although in moderately

different ways. The number of cells in the surface raster had no influence on the

execution time of the Sight Lines model. The quantity of observer points was

strongly correlated (R2 = 0.9993) to the Sight Lines model performance (see Figure

B.2). The influence was much stronger on the Sight Lines model than the Python

algorithm, with the execution time increasing at nearly twice the rate of the

Python algorithm.

81

Figure B.2: Correlation between number of antenna sites and Sight Lines model

execution time.

As with the Viewshed model and Python algorithm, the flight path length

was strongly correlated (R2 = 0.9904) to the execution time. Extending the flight

path added less time per point to the Sight Lines model (see Figure B.3).

Figure B.3: Correlation between flight path length and Sight Lines model

execution time.

82

The distance from the observer to the flight path was also strongly

correlated to execution time in the Sight Lines model (see Figure B.4). This

relationship was particularly interesting for the Sight Lines model. For observer

distances of 2,000 cells or less (linear correlation of R2 = 0.9891), the execution

time did not increase as rapidly as for distances greater than 2,000 cells (linear

correlation of R2 = 0.9995). There were two very distinct correlations for the two

subsets of data.

Figure B.4: Two different correlations between antenna position and Sight Lines

model execution time.

The cause of this unusual shift in behavior is unclear, but is presumably

due to a difference in the Sight Lines tool calculation method between “close”

and “far” observers. Since the underlying algorithm is proprietary, the causes

cannot be more clearly explained. Additionally, the relationship between

83

distance and time was the same for the Python algorithm and the “far” distances

subset of the Sight Lines model, implying that the two methods use similar (or

identical) basic calculations. The potential for unknown factors in algorithm

design to influence results is clearly demonstrated in this shift in behavior. It can

be assumed that there is a different calculation being performed for the two

different regimes. If this influences the execution time, it also has the potential to

influence the accuracy of results. Without understanding the underlying

modeling process, it is impossible for researchers to adequately explore the

causes and estimate the risk of increased error.

84

APPENDIX C – OPTIMIZING THE PYTHON ALGORITHM

C.1 BACKGROUND AND PERFORMANCE

A Ground-to-Air Visibility (GTAV) Python algorithm has also been written that

seems to be both more efficient and more accurate than the GSSM Python

algorithm described and tested in the main body of this thesis. These results are

preliminary, but show exciting potential for further refinement of ground-to-air

visibility modeling using sight lines.

 Instead of calculating the tangent ratio at each point along the sight line,

this algorithm takes advantage of arrays to calculate all the values in one step.

The sight line analysis is then simpler, since it only needs to collect the existing

ratios and compare the maximum ratio per each sight line to the tangent ratio of

the target. If any the maximum tangent ratio of a point along the sight line

exceeds the tangent ratio of the target, then the target is not visible. The general

mathematical principles are the same as the original GSSM algorithm, but are

calculated and manipulated in a more efficient fashion. Preliminary exploration

indicates this algorithm performs faster than the GSSM, as seen in Table C.1. The

sensitivity to inputs of the GTAV algorithm is similar to the GSSM algorithm,

with increased execution time from increased observer points, length of flight

85

paths, and distance between observers and flight paths. However, the execution

time does not increase as rapidly from each of the variations, and the GTAV

algorithm is still well under the one hour threshold even in the most complex

scenario.

Table C.1: Comparison of GSSM and GTAV performance.

Raster
Resolution

Flight Path
Length (m)

Observers
Included

GSSM Run Time
(minutes)

GTAV Run Time
(minutes)

30m × 30m

6,000 5 0.73 1.08

10,000 5 2.20 1.15

16,000 5 2.89 1.17

10m × 10m

6,000
3 4.19 2.46

5 6.02 3.96

10,000
3 12.53 2.96

5 19.30 4.92

16,000
3 16.55 3.28

5 25.17 5.21

3m × 3m

6,000
3 45.09 4.19

5 65.47 6.04

10,000
3 138.22 9.81

5 214.36 15.27

16,000
3 187.44 12.49

5 279.61 19.49

The accuracy of the GTAV algorithm was not tested in this research, but it

is approximately equivalent. It uses a GIS function (and therefore geographic

coordinates) to calculate distance from the observer point. Since the GSSM

86

algorithm translates the elevation raster into a local array coordinate system

before calculating distance between points, this introduced a potential for

distortion, particularly as the observer and target point separation passes the

point where Euclidean distance calculations begin to poorly represent actual

distance. It is possible that the GTAV algorithm output is a better representation

of real-world visibility as a result, although much more extensive testing is

needed to support that conclusion.

The GTAV algorithm still encounters the same problems with memory

usage noted in the GSSM testing, and can only be used with raster DSM data up

to a certain size. A further reconsideration of the data storage and access

methods is warranted. Much like the Viewshed model, which analyzed a full

visibility surface to capture only a few points of data, these Python algorithms

are still analyzing a full raster surface to explore a much more spatially limited

set of data.

C.2 SOURCE CODE

Ground-to-Air Visibility Algorithm

import numpy as np

import scipy

from scipy import spatial

import arcpy

from arcpy import *

from arcpy.sa import *

import time

import math

87

start_time = time.time()

Location of data

ObserverPoint = arcpy.GetParameterAsText(0)

arcpy.AddField_management(ObserverPoint, 'PctVisible',

'FLOAT')

FlightPath = arcpy.GetParameterAsText(1)

rasterDEM = arcpy.GetParameterAsText(2)

Additional Parameters

FlightAltitude = arcpy.GetParameterAsText(3)

zFlight = float(FlightAltitude) * 0.3048 # elevation of

airplane, in meters

mxd = arcpy.mapping.MapDocument('CURRENT')

df = arcpy.mapping.ListDataFrames(mxd)[0]

find cell size of raster, assuming it's square

cellSizeProperty =

GetRasterProperties_management(rasterDEM, 'CELLSIZEX')

cellSize = float(cellSizeProperty.getOutput(0))

Determine location of observer point

obsvCursor = arcpy.UpdateCursor(ObserverPoint)

desc = arcpy.Describe(ObserverPoint)

shapefieldname = desc.ShapeFieldName

XY location of observer on the ground

obsvIndex = 0

for obsv in obsvCursor:

 obsvFeature = obsv.getValue(shapefieldname)

 obsvPt = obsvFeature.getPart()

 # ArcPy euclidean distance tool

 rasterDistance = EucDistance(obsvFeature, "", cellSize)

 # array of data converted from raster to NumPy array

 x, y = np.mgrid[0:25:cellSize, 0:25:cellSize]

 arrayZ = arcpy.RasterToNumPyArray(rasterDEM)

 offsetXresult =

GetRasterProperties_management(rasterDEM, 'LEFT')

 offsetX = float(offsetXresult.getOutput(0))

 offsetYresult =

GetRasterProperties_management(rasterDEM, 'BOTTOM')

88

 offsetY = float(offsetYresult.getOutput(0))

 # calculate offset to shift geographic coordinates to

array locations

 arrayRowMax = arrayZ.shape[0] - 1

 # account for offset of geographic coordinate raster

 obsvX = math.floor((obsvPt.X -

float(offsetX))/cellSize)

 obsvY = math.floor((obsvPt.Y -

float(offsetY))/cellSize)

 obsvCol = obsvX

 obsvRow = arrayRowMax - obsvY

 # elevation of observer [z]

 zObserver = arrayZ[obsvRow, obsvCol]

 # Raster calculator, angle = arctan (z / d)

 arrayDistance =

arcpy.RasterToNumPyArray(rasterDistance)

 arrayCellDistance = arrayDistance / cellSize

 arrayCorrectedZ = arrayZ - zObserver

 arrayTangent = arrayCorrectedZ / arrayCellDistance

 blockedSightLines = 0

 totalSightLines = 0

 obstructionList = []

 # Identify the geometry field

 desc = arcpy.Describe(FlightPath)

 shapefieldname = desc.ShapeFieldName

 # Create search cursor

 flightCursor = arcpy.SearchCursor(FlightPath)

 # Enter for loop for each feature/row

 for flightPt in flightCursor:

 # Create the geometry object

 feat = flightPt.getValue(shapefieldname)

 #Set start point

 startpt = feat.firstPoint

 #Set Start coordinates

 startX = math.floor((startpt.X -

float(offsetX))/cellSize)

 startCol = startX

 startY = math.floor((startpt.Y -

float(offsetY))/cellSize)

 startRow = arrayRowMax - startY

 #Set end point

 endpt = feat.lastPoint

 #Set End coordinates

89

 endX = math.floor((endpt.X -

float(offsetX))/cellSize)

 endCol = endX

 endY = math.floor((endpt.Y -

float(offsetY))/cellSize)

 endRow = arrayRowMax - endY

 zFP1 = arrayZ[startRow, startCol]

 zFP2 = arrayZ[endRow, endCol]

 # flight path begins at

 fpX0, fpY0 = startRow, startCol

 # flight path ends at

 fpX1, fpY1 = endRow, endCol

 arrayFlightPath = [[fpX0, fpY0], [fpX1, fpY1]]

 flightLength =

scipy.spatial.distance.pdist(arrayFlightPath, 'euclidean')

 numFPts = int(flightLength)# / int(cellSize)

 # Make a line with 'num' points distributed along

it

 fpX, fpY = np.linspace(fpX0, fpX1, numFPts),

np.linspace(fpY0, fpY1, numFPts)

 dzMax = zFlight - zObserver # difference between

flight altitude and observer

 for indexFP, point in np.ndenumerate(fpX):

 flightX = fpX[indexFP]

 flightY = fpY[indexFP]

 arraySightLine = [[obsvRow, obsvCol], [flightX,

flightY]]

 sightLength =

scipy.spatial.distance.pdist(arraySightLine, 'euclidean')

 numSPts = int(sightLength)

 slX, slY = np.linspace(obsvRow, flightX,

numSPts), np.linspace(obsvCol, flightY, numSPts)

 # drop first values so observer point will not

be evaluated

 slX = slX[1:]

 slY = slY[1:]

 dMax = sightLength

 tangentFlightPoint = dzMax / dMax # tangent of

observer sight line vertical angle

90

 tangentActual =

arrayTangent[slX.astype(np.int), slY.astype(np.int)]

 listAngles = []

 blockedPoints = 0

 for indexSL, pointSL in np.ndenumerate(slX):

 sightX = slX[indexSL]

 sightY = slY[indexSL]

 arrayTempLine = [[obsvRow, obsvCol],

[sightX, sightY]]

 tangentPoint = tangentActual[indexSL]

 listAngles.append(tangentPoint)

 if max(listAngles) > tangentFlightPoint:

 blockedSightLines += 1

 totalSightLines += 1

 # time result

 arcpy.AddMessage(' >> analyzed in ' +

str(time.time() - start_time) + ' seconds')

 obsvIndex = obsvIndex + 1

 percentVisible = 1. - (float(blockedSightLines) /

float(totalSightLines))

 arcpy.AddMessage('========== observer point ' +

str(obsvIndex) + ' analysis finished')

 arcpy.AddMessage('FINAL RESULT: flight path is %' +

str(100 * percentVisible) + ' visible.')

 obsv.PctVisible = percentVisible

 obsvCursor.updateRow(obsv)

del obsv, obsvCursor, flightPt, flightCursor

time result

arcpy.AddMessage(' time elapsed: {}

seconds'.format(str(time.time() - start_time)))

	Comparison of Ground-to-Air Visibility Analysis Methods
	Recommended Citation

	tmp.1404134244.pdf.8H2BI

