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ABSTRACT 

When a disaster occurs, remotely sensed imagery is critical for emergency 

responders. Aircraft collect digital images of damaged areas to assist with 

damage assessment and response planning. Such airborne imagery can be 

transmitted directly from the plane to ground antennae and internet-connected 

dispersal, allowing for faster acquisition of data. However, air-to-ground 

transmission of images requires near-constant visibility between the aircraft 

transmitter and ground station antenna. This research uses GIS-based models to 

identify the ground station locations that can reliably receive data from aircraft, 

using a variety of visibility analysis methods and a comparison of their 

performance. A custom algorithm is demonstrated to perform significantly faster 

than commercially available software tools. 
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CHAPTER 1 

INTRODUCTION 

Rapid emergency response is critical after a disaster occurs. Remotely sensed 

imagery can be a great asset in such situations. Quick action is facilitated by 

having imagery to help assess impacted areas. Once the extent of the damage is 

known, the appropriate preparations can be made to ensure that the right kind of 

aid is sent to where it is most needed. 

There are multiple remote sensing technology options available for 

disaster response imagery. Satellites provide useful coverage, particularly in 

remote regions, but they also have limitations. Their orbital planes are fixed, and 

thus imagery can only be captured at predetermined overpasses (for example. 

every three days in the late morning). Weather conditions or time of day may 

obscure sensors. In contrast, aircraft can be positioned wherever needed, fly 

below heavy cloud cover, fly at all hours of the day, and capture oblique 

imagery. Programs such as the Civil Air Patrol, with over 450 planes, provide 

federally-directed coverage to capture imagery of areas affected by disasters, 

facilitating rapid impact assessment. 
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Image delivery time can be improved even more by transmitting airborne 

imagery directly from a plane to a ground antenna. Rather than waiting for the 

flight to land, image analysis can begin almost immediately, and response 

actions can be implemented more quickly as a result. Microwave transmission of 

imagery data for disaster response from the air is a relatively new application, 

and is still being explored. 

Successful air-to-ground transmission of data has some basic 

requirements. The ground antenna needs to have power and a hard-wired 

internet connection. Most importantly, since the transmission is via microwave, 

there must be near-constant visibility between the aircraft and the antenna to 

reliably receive all the data. Therefore, the choice of location for the ground 

antenna should be considered beforehand to ensure visibility of the entire flight 

path. 

The REmote Sensing Planning Tool (RESPT) is a set of web-based decision 

support tools that provide guidance on acquiring and analyzing remotely sensed 

imagery for diverse applications. One component of RESPT is the Ground 

Station Siting Model (GSSM), a tool that allows an emergency response team to 

find optimal locations to position a ground receiving antenna for image 

downlinks. It requires three inputs: candidate ground antenna sites, the flight 
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path of a remote sensing aircraft, and an elevation surface model of the region. 

From this data, the GSSM can provide a ranking of candidate site suitability. 

There are two basic phases of evaluating ground station sites: screening 

and visibility analysis. During the planning phase of the emergency response 

cycle, before any disaster has actually occurred, screening of potential locations 

can take place to determine if they meet basic suitability criteria. Emergency 

responders will need to gain access to the antenna site in the event of a disaster. 

Suitable locations should be owned by a government agency, or usage 

agreements must be established in advance to ensure that responders will be 

allowed into a building to set up a ground antenna. The site needs to have a 

reliable supply of electricity; power outages (a common side effect of disasters) 

should be planned for and may be circumvented by providing an on-site 

generator. Finally, the antenna needs to have a hard-wired internet connection – 

a wireless (Wi-Fi) connection is not adequate. 

In addition, the antenna needs to be able to “see” the majority of the 

airplane flight path. For an initial rough estimate, it can be assumed that 

locations at higher elevations are probably able to see a larger proportion of the 

surrounding sky than sites that are at lower elevations. Also, sites surrounded by 

vegetation and other buildings would have reduced sky visibility. However, the 

question of visibility cannot be fully answered until a flight path has actually 
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been selected. The visibility analysis is run on locations which meet the 

preliminary screening criteria and enables the final selection of the most 

appropriate antenna site. 

The primary goal of this research was to develop a GIS model that could 

measure visibility between candidate ground antenna sites and a moving 

aircraft. No known ground station modeling solution existed for determining 

appropriate ground station locations for receiving airborne transmissions. 

Therefore, this research has explored variety of modeling approaches that can 

identify ground station locations capable of reliably receiving data from aircraft. 

A visibility analysis can be addressed through a variety of modeling 

approaches. Three metrics -- efficiency, sensitivity, and accuracy -- were used to 

compare candidate algorithms. A visibility analysis could be conducted either 

prior to an actual emergency during planning stages, or after an event has 

occurred. The GSSM tool was assumed to be an emergency response tool, and 

therefore determining the best location for a ground antenna must be done in a 

short period of time. 

This research will be useful within the context of disaster response efforts. 

More broadly, it can also be applied to any new visibility modeling problems 

that involve an airborne target. Air-to-ground visibility has not been researched 

in the GIScience literature except for fixed-orbit satellites or solar planes. 
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In time-sensitive disaster response events, response time is critical and the 

processing time of visibility analysis algorithms is the most significant factor as 

to whether a model is suitable. Many modeling approaches may be accurate 

enough to answer the question. In order to facilitate rapid disaster response, a 

threshold of one hour was assumed to be the maximum acceptable processing 

time. If a visibility analysis consistently takes longer than sixty minutes to select 

the best ground antenna site, then it may not provide any time savings over 

driving to the local airport to physically retrieve the imagery data and is 

therefore not a suitable approach. 

This thesis compares the performance of three alternative visibility 

analysis methods within an embedded GIS environment and a loosely-coupled 

GIS environment. The potential solutions each underwent validation and 

sensitivity analyses, providing information about the efficiency and accuracy of 

alternative approaches. Simultaneously, some innovative work was done with 

visibility modeling. Typical assumptions about viewshed models have been 

inverted to work as a ground-to-air visibility measurement rather than 

ground-to-ground. Also, a new open-source algorithm for rapid line-of-sight has 

been written. 
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CHAPTER 2 

LITERATURE REVIEW 

Visibility analysis has a wide range of possible applications, and GIS has been 

used to answer visibility questions for decades. One fundamental requirement 

that is shared by all methods of visibility analysis is knowledge of local natural 

or man-made terrain features. Visibility is analyzed along straight “lines of sight” 

by evaluating whether they are blocked by terrain features (see Figure 2.1). 

Intervisibility is always assumed: if the observer can see a target object, then the 

target object is able to see the observer. 

 

Figure 2.1: A schematic diagram of the visibility analysis process. Point A is 

visible to the observer, while Point B is not. 
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Predicting visibility was one of the oldest motivations for research into 

terrain mapping. Military planning requires visibility analyses when considering 

such activities as moving troops, performing reconnaissance, or assaulting a 

target. Depending on the situation, the goal may be either to see as much enemy 

activity or territory as possible, or be seen as little as possible by the enemy 

(Bruzese 1989). The military’s need for accurate intelligence provided the 

impetus for the development of many geographic and spatial analysis techniques 

that are now widely used in civilian research and planning. Terrain mapping and 

analysis were critically important, and contributed to a wide range of modern 

GIS procedures (O’Sullivan 1983). 

In addition to the military, the United States Department of Agriculture’s 

Forest Service contributed significantly to the development of early visibility 

research. Viewshed analyses were used both to delineate scenic views from given 

vantage points (with the goal of protecting the surrounding landscapes), and to 

find optimal sites for fire towers that could observe as much of the surrounding 

forest as possible from a single vantage point. The Forest Service worked with 

visibility analyses long before computer analyses were possible (Show et al. 

1937), and their expertise and interest led to some of the earliest computer 

algorithms for visibility analysis and terrain modeling (Amidon and Elsner 1968; 

Travis et al. 1975; Mees 1976). 
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As GIS became increasingly available, the number of disciplines using 

visibility algorithms significantly increased. Archaeologists used visibility 

analyses to understand historical landscapes, exploring intervisibility of sites of 

interest (Wheatley 1995) or determining visibility of a megalithic site from 

surrounding population centers (Ruggles, Medyckyj-Scott, and Gruffydd 1993). 

Wildlife population counts have used visibility analyses to calculate visible area, 

improving the accuracy of estimates of the spatial area in which given species 

were seen and counted (Maichak and Schuler 2004). Land developers and urban 

planners regularly consider view and visibility as part of the overall experience 

of a place, using the visibility of surrounding features to evaluate the nearby 

landscape and its aesthetic experience (Lynch 1976). The growing interest in 

preventing terrorism and crime means that interest in visibility is moving into 

fields such as surveillance monitoring, where it is used to optimize video camera 

coverage (Murray et al. 2007; Kim, Murray, and Xiao 2008) or estimate possible 

sniper positions (VanHorn and Mosurinjohn 2010).  

A derived visibility surface can be used as an input to other GIS analyses 

as well. The military application of minimizing visibility evolved into a “least 

visible path” (LVP) analysis, which is essentially a least-cost path (LCP) based on 

terrain visibility analysis. LCP analysis requires a “friction surface” or “cost 

surface,” which is a raster that describes the cost to move through each cell in 
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terms of movement difficulty, speed limits, dollar costs, or other measured 

constraints on travel. An LVP approach uses visibility as the cost factor and finds 

the path over the surface which has the least visual exposure (Lu et al. 2008). In 

addition to military uses, LVP can be used for civilian activities such as routing 

power lines to minimize their visibility (Bagli, Geneletti, and Orsi 2011). The LVP 

can be inverted to instead find the most visible path, also called a “scenic path” 

analysis. This can be used, for example, to plan a hiking trail that provides 

maximum visibility of the surrounding landscape (Lee and Stucky 1998). 

The sample of studies described in the preceding paragraphs is not 

intended to be comprehensive. Rather, it provides a picture of the scope of 

research questions and the number of researchers using well-established 

methods of visibility analysis in new applications. Even as uses for visibility 

analysis increase, they can still be broadly categorized into three basic analysis 

types: sky view, isovist, and viewshed. The best choice for a visibility analysis 

question depends on many factors, including the relative positions of observer 

and target objects, the complexity of nearby terrain or surface elevation, and the 

scope of analysis or area of interest. 
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2.1 CATEGORIES OF VISIBILITY ANALYSIS 

2.1.1 SKY VIEW 

A sky view, also known as a sky visibility viewshed, is “the angular 

distribution of sky visibility versus obstruction” (Fu and Rich 2000). Simply 

stated, a sky view describes the visible portion of the hemisphere of the sky. It is 

derived by first calculating the horizon angles from the observer’s vantage point 

(usually at sixteen evenly-spaced points around the horizon to simplify 

calculation). The angles are then converted into a hemispherical coordinate 

system, and are then used to derive which parts of the sky are visible and which 

are obstructed (see Figure 2.2).  

 

Figure 2.2: In a sky view, horizon angles are calculated for each direction (left), 

and the resulting output (right) shows how much of the sky is visible and how 

much is obscured (Fu and Rich 2000). The use of sixteen directions is somewhat 

arbitrary: a sample of the infinite directions available simplifies the analysis. 
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Multiple research questions can use sky view analysis. It is most typically 

used for solar radiation models (Dozier and Frew 1990), tracking the position of 

the sun throughout the day, and using that data (i.e., whether the sun is directly 

visible or not) to calculate direct versus diffuse radiation percentages. Visibility 

of any objects in space, such as GPS satellites (Beesley 2002) can be measured. 

Applications have even been found in archaeology, to analyze what prehistoric 

astronomers would have been able to see at megalithic sites (Ruggles, Medyckyj-

Scott, and Gruffydd 1993).  

2.1.2 ISOVIST 

The definition of the term isovist was first formalized in 1979: “the set of 

all points visible from a given vantage point in space and with respect to an 

environment” (Benedikt 1979). The term is most commonly used in the context of 

theories of perception, space, and visual environments relating to architecture, 

urban planning, landscape design, and other fields concerned with human 

perception and man-made spaces. In addition to evaluating the physical 

measurements of a visible space, an isovist can also include descriptions of the 

visual experience, detailing what objects and spaces would be seen by the 

observer. 

An isovist is a two-dimensional polygon that represents the space visible 

from a given vantage point, derived using a horizontal plane at eye level to 
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identify visual obstacles and thereby delineate visible space around the observer 

(see Figure 2.3). The two-dimensional nature of an isovist is more of an artifact 

than a fundamental requirement. Studies have explored the possibility of 

expanding the concept to three-dimensional analysis (Benedikt 1979; Morello and 

Ratti 2009), which would more accurately represent the actual human experience 

from a given vantage point. The restriction to two dimensions is due to historical 

limitations on computer processing speed and storage, which prevented more 

complex analyses from being generally feasible. 

Isovists can be performed either in an internal space, evaluating visibility 

within a set of rooms, or an external space, evaluating visibility in an urban 

setting. Since the two-dimensional isovist does not account for verticality, instead 

stopping the “visible” boundary at the first eye-level obstacle, it cannot identify 

whether an object further from the observer would be visible or not. For 

example, a small tree would not completely block the view of a large building, 

even though the isovist analysis of that space would indicate the building was 

outside the visible space. 
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Figure 2.3: An example of an isovist in an urban setting. White is flat ground; 

dark grey is buildings; and light grey is the visible area from the vantage point 

(Morello and Ratti 2009). 

2.1.3 VIEWSHED 

The third major category of visibility analysis, viewshed, is arguably the 

most commonly used visibility analysis in geography and many other 

disciplines. Inspired by the term “watershed,” which describes an area of land 

where all the water drains to a given point, “viewshed” describes an area of land 

which can be seen from a given point. Unlike a sky view analysis, a viewshed 

considers objects on (or very near) the ground. The most basic type, known as a 
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binary viewshed, measures the visibility of every point in the surrounding 

terrain and codes it as either “visible” or “not visible” (see Figure 2.4). Unlike an 

isovist, which only considers the immediately adjacent polygon of visibility, a 

viewshed looks all the way to the furthest horizon and can identify 

non-contiguous visible areas. Visibility is not limited to a contiguous spatial area, 

but is evaluated individually for each point (e.g., each cell in a regular 

tessellation) in the entire analysis region. This makes viewshed analysis more 

suitable for hilly or mountainous natural landscapes, since it can explore the full 

visibility of an area of interest. 

 

Figure 2.4: An example of the binary viewshed of an observer point on top of the 

State House in Columbia, SC. 
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Viewsheds also have more flexibility than other visibility analyses. Since 

the visibility of all the surrounding terrain is measured during the analysis, 

viewsheds can simultaneously evaluate visibility of multiple target objects (for 

example, ten potential wind farm sites can be coded as “visible” or “not visible” 

depending on the visibility of the terrain at their proposed locations). Multiple 

binary viewsheds can be added together to create a cumulative viewshed, 

allowing the analysis to consider multiple observers in addition to multiple 

targets (a characteristic that is not found in sky view or isovists). Viewshed 

algorithms also typically account for the height above the ground, or “offset,” of 

the observer and/or the target objects in visibility calculation – although, despite 

relatively early development of such features (Mees 1978), not all viewshed 

analyses included offset options for many years (Fisher 1996). Finally, the 

designation of whether a point is “observer” or “target” is more flexible than in 

sky view or isovist, giving a GIS model more flexibility in its parameters and 

analysis. 

2.2 SOURCES OF INACCURACY 

While viewshed analysis may be the most widely used type of visibility 

analysis, its popularity is not because it is more accurate than alternative 

approaches. In fact, a comparison of field-surveyed and GIS-predicted viewsheds 

found that the average level of agreement was “only slightly higher than 50 
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percent” at best (Maloy and Dean 2001). There are multiple factors that may 

contribute to a lack of accuracy in visibility analysis. 

Three primary sets of challenges were identified in 1990, when viewsheds 

were beginning to increase in popularity and application (Felleman and Griffin 

1990). First, any inaccuracies in the elevation surface will propagate to any 

subsequent analysis (such as a viewshed). Such errors can come from a multitude 

of possible sources, and cannot always be prevented. Second, the “‘black box’ 

nature of … proprietary ‘user friendly’ GIS algorithms” provides no information 

about how the viewshed is calculated. Not only does this make pinpointing 

errors difficult, since the underlying assumptions of the algorithm are invisible, 

but different algorithms can produce different results. Third, an inexperienced 

user may inadvertently introduce error to the analysis by choosing inadequately 

detailed or up-to-date data. User error also occurs in reporting, as many studies 

tend to ignore or underestimate the errors in viewsheds. Therefore, despite the 

widespread availability of viewshed algorithms, results should be treated with 

some caution and their uncertainties acknowledged. 

These challenges have been discussed specifically in the context of 

viewsheds, rather than visibility analyses in general. In part, this is because of the 

popularity of viewsheds, which are much more commonly used than sky views 

or isovists. Relatively few studies specifically discuss the accuracy of 
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non-viewshed visibility. However, the fundamental principles of both sky view 

and isovist analyses rely on an elevation model and lines of sight. We can 

therefore infer that the challenges are not specific to viewsheds. 

2.2.1 THE ELEVATION SURFACE 

All computer-based visibility analyses require a digital model of the 

terrain. There are two terms, somewhat interchangeable, that may be used in this 

context: digital elevation model (DEM), or digital surface model (DSM). Broadly 

speaking, a DSM incorporates surface features such as vegetation or buildings in 

addition to the base terrain data in a DEM. Either can be used in a visibility 

analysis, depending on the required level of accuracy and the goal of the 

analysis. 

A DEM provides the underlying information for the visibility analysis. 

Without knowing the height and location of nearby features, it is impossible to 

determine which might cause obstructions. Any errors in the DEM will 

propagate to modeled products, including a viewshed or other visibility analysis, 

and therefore understanding the DEM error is an important first step in 

controlling error (Fisher 1991). Since DEMs are used in a wide variety of 

geographical modeling, there has been substantial research on sources of error in 

DEMs and how to estimate or ameliorate them. 
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The process of generating an elevation surface involves three basic tasks: 

gathering a sample of height measurements, creating a surface model from the 

data, and correcting errors or artifacts in the resulting digital model (Hengl and 

Evans 2009). Each step involves a number of choices about the most appropriate 

method. For example: when measuring the terrain height, what technology 

should be used and how closely spaced should points be sampled? The decisions 

at each stage in the process will have impacts on the overall accuracy of the 

model. 

Sources of DEM error fall into categories that roughly correspond to the 

phases of DEM creation (Fisher and Tate 2006). Data-based error stems from 

variations in the accuracy or density of measured source data, which are 

dependent on the method of data generation. Method-based errors arise when 

creating the surface model. The processing and interpolation used to turn source 

data into a continuous elevation surface can introduce inaccuracies. Also, the 

characteristics of the terrain surface being modeled and its representation in a 

DEM can affect how well accurately the terrain is approximated. 

The development and increasing use of new technologies for deriving 

DEMs such as radar, light detection and ranging (LiDAR), and digital 

photogrammetry has required some re-evaluation of the impacts of data 

collection and processing (Fisher and Tate 2006). While these active-sensing 
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technologies may reduce data-based error, the amount of processing required 

introduces new method-based considerations. For example, an elevation “point” 

cloud collected with LiDAR must be filtered to find the desired returns, 

determining whether a collected return is from bare ground, vegetation, 

buildings, or other surface constructions. Choices made during processing create 

additional opportunities for error. It is therefore not appropriate to assume that a 

fine-resolution model is more accurate than a coarse-resolution model. Active 

sensors are able to sample points at much higher density than other methods, 

potentially leading to a simple “newer is better” conclusion; however, the high 

resolution DEM may have greater uncertainty if its attribute values are less well 

understood (Wilson 2012). For example, if LiDAR points are provided with no 

metadata about the sensor type, time of flight, or other useful information, the 

post-processing of the point cloud data requires guesswork and can introduce 

new inaccuracies. 

The most important consideration is that errors from source data or 

processing cannot always be eliminated. Therefore, the analysis of a DEM “must 

be cognizant of these errors” and take into account how inaccuracy may affect 

the subsequent analysis and eventual interpretation of the significance of their 

results (Wilson 2012). 
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2.2.2 RESOLUTION 

A related source of error is the spatial resolution of the elevation surface. 

Choosing the “best” DEM resolution for any GIS analysis is a matter of balancing 

the need for accuracy and detail against processing speed and storage 

requirements. The tradeoff is not necessarily direct or predictable: while fine 

resolution DEMs generally represent terrain more accurately, the improvement is 

less significant in a relatively smooth landscape (Hengl 2006). In general, 

however, a reduction in resolution will generalize, mask, or eliminate important 

surface features. For example, building footprints may have significantly 

different shapes, and narrow obstacles such as trees or antenna towers may be 

hidden (see Figure 2.5). Visibility algorithms are left with a relatively inaccurate 

representation of reality, and the output results will reflect this. 

Error resulting from coarser spatial resolution is separate from 

measurement error, since it is introduced after measurements of the surface are 

completed. It may arise either from processing choices when the surface is being 

generated, or from the user’s choice of what available elevation surface to use in 

a visibility analysis. Considering spatial resolution separately from measurement 

recognizes its additional significance in time-sensitive visibility analyses, when 

resolution becomes a concern because of its influence on processing time. 
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Figure 2.5: The Lexington Medical Center in West Columbia, SC in 

LiDAR-derived DSMs, at (a) 30 meter, (b) 10 meter, (c) 3 meter, and (d) 1 meter 

resolution. 

2.2.3 THE ALGORITHM 

Another possible source of error comes from the visibility algorithm itself. 

While there are three basic types of analysis, each one can be accomplished with 

a number of different algorithms. Any approach involves various assumptions 

and simplifications which will affect the results. In the case of algorithms which 

are proprietary parts of commercial software, the cause of inaccuracies must be 

guessed at, making quantification nearly impossible. 

A good analogy for the influence of algorithm choices is vector-raster 

conversion. When converting data in a GIS between raster and vector formats, 
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the choice of grid cell size, grid position, or cell classification method can affect 

the shape and size of features (Congalton 1997). A viewshed algorithm is 

working with raster elevation data and vector line-of-sight data to calculate 

visibility, and the processing choices made by the original authors of an 

algorithm will not necessarily be consistent between software packages. 

The effect of different algorithms has been demonstrated empirically by 

running a viewshed analysis on the exact same study area using four different 

software packages (IDRISI, MAPII, PMAP, and ARC-INFO). The resulting visible 

areas varied significantly due to “different, typically undocumented, simplifying 

assumptions” that the programmers of the various algorithms used (Felleman 

and Griffin 1990). Differences were unpredictable: some portions of the study 

area were more likely to have wide variation in visibility boundaries than others. 

Since each algorithm was a proprietary part of commercial software, the 

researchers were unable to further analyze the causes of error. 

2.2.4 FUZZY VIEWSHEDS 

An additional type of inaccuracy can result from only considering 

landscape topography in the calculation of line-of-sight geometry. 

Environmental interference, such as from fog, sunlight glare, or haze, can result 

in reduced visibility even when a target location should be visible according to 

the topography. This measurement of how distinct an observed target location 
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map appear has been termed a “fuzzy viewshed,” and is distinct from an 

“uncertainty viewshed,” which measures probable error in visibility assessment 

calculated from known DEM error (Fisher 1994). Atmospheric conditions that 

scatter or absorb visible light have different effects on electromagnetic energy at 

different wavelengths, however. Interference with the visual path from 

atmospheric haze or solar glare would not cause as significant a problem for 

microwave transmission, and therefore a fuzzy approach is not necessary in this 

context. 

2.2.5 USER ERROR 

The widespread availability of a viewshed tool in both commercial and 

open-source GIS software has led to a great deal of popularity, as can been seen 

from the wide range of research questions which use it. Widespread adoption 

and ease of use does not mean that results are automatically authoritative, but it 

can lead to a misperception of the tool’s accuracy, implying a level of confidence 

that may not be justified. 

In the field of landscape aesthetics, for example, a review of studies found 

that debate over the reliability of visibility analysis focused more on 

environmental psychology questions than on the underlying physical data. 

Planners considered visibility mapping to be a “simple, mechanical, highly 

replicable” process that was standardized and well understood (Felleman 1982). 
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A review of studies that had used visibility mapping in planning and impact 

reports found that fewer than half of the studies even documented their 

methods, and no studies discussed the accuracy of viewshed results (Felleman 

and Griffin 1990). 

While the number of researchers using viewshed or other types of 

visibility analysis has increased in the decades since these studies, the tendency 

to accept viewshed results with little question has not changed much. A user 

who is unfamiliar with the challenges of a visibility analysis is more likely to 

choose whatever data is available rather than considering all possible choices. 

Visibility analyses may be based on elevation values that are out-of-date or at an 

inadequate resolution. Since such choices are one of the most significant 

contributors to error, ill-informed data selection is likely to lead to poor accuracy. 
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CHAPTER 3 

METHODOLOGY 

3.1 VISIBILITY ANALYSIS METHODS 

This research tested three approaches for the ground-to-air visibility modeling 

problem. Two models were made with ArcMap tools using ModelBuilder in 

ESRI’s ArcGIS 10.1, one based on the Viewshed tool (one of the most common 

visibility analysis methods) and one based on the Sight Line tools. The third 

approach was a custom algorithm written in Python, based on sight line analysis 

principles and using trigonometry to check for obstructions. 

3.1.1 VIEWSHED MODEL (ARCMAP) 

The Viewshed tool in ArcMap includes a number of optional parameters 

(see Figure 3.1) which are necessary to accurately model a complex visibility 

scenario. In order to define the elevation of an observer point, the user can define 

an offset value describing the vertical distance of the observer or target features 

above the surface elevation. For example, a ground antenna may have a constant 

offset value of two feet. Since a remote-sensing airplane is flying at a constant 

altitude, while the ground below is constantly changing elevation as its position 
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changes, using a constant offset value for the flight path would inaccurately 

represent the airplane’s vertical location. There are two possible ways to 

circumvent this challenge. The flight path line can be converted to a set of points, 

and the offset value calculated for each point by subtracting the elevation from 

the altitude. Or, the flight path can be assigned a constant “spot” value equal to 

the altitude. The two different solutions produce identical results and have 

negligible difference in model run time, so the offset method was used in the 

model tested in this research. 

 

Figure 3.1: Diagram of the possible ArcMap viewshed tool input parameters in 

ArcMap 10.1 (Esri 2012). 

In order to accurately represent the airplane’s height above ground, the 

airplane’s flight path must be used as the observer feature, rather than the 

proposed antenna sites on the ground. This may seem to be a poor choice: since 
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there are fewer antenna locations than airplane locations, using the ground 

station sites as the observer points would reduce the processing time. However, 

this decision is dictated by the Viewshed tool input parameters. Offset or spot 

values can only be assigned to observer features, not target features. Since the 

airplane’s offset is highly variable and antenna offset is constant, the flight path 

must be used as the observer feature. 

For a single observer point, viewshed output is binary: each cell of the 

output raster is classified as either “visible” (1) or “not visible” (0). The airplane 

flight path is converted to multiple observer points, representing its different 

locations in the air as it flies. Therefore, the viewshed result is a cumulative 

rather than a binary measure. In other words, if ten observer points (i.e., airplane 

locations) are evaluated, each cell of the output raster has values between zero 

and ten depending on how many of the observer points are able to see that cell. 

This result is then inverted to calculate the percentage of the flight path that is 

visible from the ground station. If n observer points can see a given target point 

on the ground, then that target point can see n of the total observer points. The 

last step of the model extracts the values from the cumulative viewshed raster at 

each proposed antenna location, and divides by the total number of flight path 

points. The complete ModelBuilder workflow can be seen in Figure 3.2.
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Figure 3.2: ModelBuilder diagram of the Viewshed-based visibility model. 
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3.1.2 SIGHT LINES MODEL (ARCMAP) 

ArcMap has another tool which is designed to measure visibility along a 

line of sight. The workflow uses a combination of two tools. First, the Construct 

Sight Lines tool creates feature geometry between the observer and target 

features, generating sight lines between two points. Line or polygon target 

features are treated as a collection of points, and multiple sight lines are created. 

Second, the Line of Sight tool performs a visibility analysis along the constructed 

sight lines. The results are similar to the Viewshed tool, measuring surface 

visibility at all points along the sight line. The tool will indicate the location of 

the first obstruction along the visual path if desired. 

Since the Line of Sight tool calculates visibility over a much more limited 

area than the Viewshed tool, it was expected to be a more effective and efficient 

alternative. Unfortunately, the Line of Sight tool does not actually use the 

three-dimensional information in the constructed sight lines in the visibility 

analysis process. Rather than measure visibility of points along these sight lines, 

the tool measures visibility of points directly below the lines, on the elevation 

surface itself rather than in the air. It is still a ground-to-ground process rather 

than ground-to-air. 

Unlike Viewshed, there are no “offset” or “spot” attributes which can be 

included in raise the observer or target points off the ground. An attempted 
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workaround of adding a large offset to the elevation surface itself can “solve” the 

lack of offset by raising the apparent position of the target point. There are 

multiple problems with this modified approach, however. If multiple flight paths 

are present, the artificial elevation ridges are likely to falsely obstruct a number 

of the sight lines. Also, ArcMap raster algebra will always produce a result raster 

that is equal in size to the smaller of two input rasters. If the rectangular extent of 

the flight path is smaller than the original DSM, the modified DSM will shrink. If 

the observer point is outside the extent of the elevation surface, the model will 

not be able to execute at all. 

These problems could not be reasonably overcome as part of this research 

project. Therefore, the Sight Lines model was not included in the testing and 

comparison results to be described later. A complete discussion of the model’s 

construction and performance is included in Appendix B. 

3.1.3 PYTHON ALGORITHM 

The Viewshed model can be used to describe flight path visibility, but it is 

computationally intensive since it analyzes the full surface raster. This is far more 

data than are required for the antennae siting problem described, which only 

needs to know point-to-point visibility along sight lines. A simpler approach was 

a custom visibility algorithm, checking for obstructions only along the lines of 



 

31 

sight between each antenna and airplane point. Points which are not along the 

sight line are not analyzed. 

The process of calculating visibility of an airborne object can be simply 

modeled using basic trigonometry. First, a straight line is drawn from the 

observer (antenna) and target (airplane) to represent the 3D line of sight between 

the two points. It is divided into segments, with section size depending on the 

available data resolution. At each segment along the sight line, the surface 

elevation is compared to the sight line elevation to check for obstructions. 

The sight line elevation is calculated using the trigonometric concept of 

similar triangles (see Figure 3.3). If the elevation at a point exceeds the calculated 

allowed elevation zpoint, then the sight line is blocked. The Python algorithm 

converts the image-based surface elevation raster into a numerical array, with 

each raster cell corresponding to one array element. Calculations are performed 

using the relative local array address rather than a geographic coordinate system. 

The flight path is divided up into points, one per each element it passes, and 

these flight points are used as targets to construct sight lines with the observer 

point. As the calculations described above are performed, the algorithm keeps 

track of the total number of obstructed sight lines, and thereby the total flight 

path visibility for each observer point. 
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Figure 3.3: The Python algorithm uses trigonometric relations to calculate the 

maximum allowable elevation at a given point, and then extracts the actual 

elevation value from the surface raster to compare. 

The algorithm was written in Python 2.7, using functions from the 

NumPy, SciPy, and ArcPy libraries. The complete source code is included in 

Appendix A. The program could be made fully open-source by using GDAL 

functions in the pre- and post-processing portions, eliminating any proprietary 

“black box” operations. As written, however, the algorithm still relies on some 

proprietary operations (namely ArcPy functions) for conversion to and from 

raster format and some additional minor functions to display results graphically. 

This choice was based on the usability needs of the RESPT project’s target 

audience. Since most end-users in the emergency management community were 

likely to have their data in ArcMap, it was expedient to take advantage of that 

processing environment. None of the visibility mathematics use ArcPy 

operations, and the algorithm can therefore still be considered a demonstration 

of an open-source alternative to commercial visibility models. 
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3.2 STUDY AREAS 

Richland County and the city of Columbia, South Carolina were used as 

the general study area. This choice was based on availability of data, and also the 

presence of a large urban area with trees and large buildings to potentially 

obstruct lines of sight. Locations of potential ground antenna sites and flight 

paths depended on the demands of various testing scenarios, and are discussed 

in more detail in Section 3.3. The elevation surface was predicted to have the 

most significant influence on accuracy and efficiency, so multiple resolutions 

were used. Different subsets of elevation data were used for various algorithm 

comparison tests, the specifics of which are discussed in Section 3.3. 

Two possible sources for elevation data were considered for the model 

comparison testing: the National Elevation Dataset (NED) and a LiDAR dataset 

for Richland County, South Carolina. NED data were downloaded at 30 meter 

and 10 meter resolution. However, the NED data are not well suited to the GSSM 

question, since it does not incorporate vegetation or structure elevations which 

could block sight lines. In addition, the derived data for the NED coverage varied 

widely in source age, ranging from as recently as December 2013 for next-door 

Lexington County to as old as 1923-1959 for southeastern sections of Richland 

County (United States Geological Survey 2013).  
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A DSM with recent elevation data was a more appropriate solution for a 

visibility analysis. The City of Columbia GIS Department provided LiDAR data 

and building footprints for the city. The LiDAR was flown between January and 

March 2008 (Clifton 2013) over all of Richland County, although the available 

data covers less area than the NED DEMs (see Figure 3.4). However, since a DSM 

incorporates vegetation and structure information, it is a more appropriate raster 

to use for visibility analysis. 

The LiDAR point cloud was converted into a surface elevation model 

(DSM) at 1 meter, 3 meter, 10 meter, and 30 meter resolutions using the ArcMap 

LAS Datatset to Raster tool. First returns were used to capture as many 

obstructions as possible. The maximum value in a particular cell was chosen as 

the elevation value instead of an average or interpolated value, and a linear void 

fill method (triangulating across cells with no LiDAR points) eliminated data 

gaps. In the resulting DSMs, surface features such as buildings and vegetation 

were clearly visible in addition to the base terrain elevation (see Figure 3.5) 
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Figure 3.4: Available LiDAR data coverage (yellow grid) compared to the 

Richland County boundary (green outline) and NED DEM coverage. 
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Figure 3.5: The 3 meter resolution DSM of downtown Columbia, SC, derived 

from 2008 LiDAR data. Building footprints are outlined in light blue. The South 

Carolina State House grounds are clearly identifiable as the domed building in 

the center surrounded by numerous trees and other government buildings. 

3.3 MODEL COMPARISON 

The Viewshed model and Python algorithm were evaluated using three 

performance metrics: speed, sensitivity to inputs, and accuracy. The results of the 

performance tests were used to describe basic characteristics of the three 

different methods, and to compare their relative performance and judge which 

would be the most suitable for a time-sensitive application in disaster response. 

Each test was performed on a laptop computer with 4 GB of RAM and a dual-

core 2.2 GHz processor. The Python algorithm was run in 32-bit mode. 
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3.3.1 EFFICIENCY 

The most important characteristic of this research question was efficiency. 

If a visibility analysis takes longer than sixty minutes to run, then there is no 

significant time advantage over waiting for an imagery flight to land. Thus, if an 

analysis cannot be completed on a desktop computer in under an hour, the 

method will probably not be suitable for emergency response purposes. The time 

limit was established by estimating round-trip travel time from the South 

Carolina Emergency Management headquarters to the second-nearest 

metropolitan airport, Owens Field (approximately half an hour), and doubling it 

to allow for major road closures that might result from a natural disaster. 

A variety of hypothetical scenarios were created. Five candidate antenna 

placements were chosen that could be considered as reasonably accessible during 

disaster response (see Figure 3.6). The South Carolina Emergency Management 

Division headquarters would have been an ideal antenna site since it would 

plausibly be a primary processor and distributor of received data; unfortunately, 

it is too far from Richland County and was outside the DSM coverage. Hospitals 

are likely to have power in the event of a disaster, and so Lexington Medical 

Center (1), Palmetto Health Richland Hospital (2), and Palmetto Health 

Baptist (3) buildings were chosen as potential sites. A state government building 

that is reasonably tall with a flat, accessible roof is the Hampton Building (4) on 
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the South Carolina State House grounds. The BB&T building (5) was also chosen 

as an observer location simply because it is the tallest building in the city.  

 

Figure 3.6: Antenna sites and flight paths in the greater Columbia area used for 

the efficiency tests. 

Each antenna site was located on the roof of the building by using a 

combination of the 1-meter DSM and aerial photographs to find a flat area that 

was not occupied by fans, HVAC equipment, antennae, or other impediments. 

The rooftop also needed to be obviously accessible – the highest level of the 

Palmetto Health Richland Hospital building, for example, had no obvious access 

point, and the next highest rooftop (20 meters lower) in the hospital campus was 

chosen instead. Two arbitrary flight paths were drawn over a hypothetical 
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impacted area, and combinations of observer points, flight lines, and DSMs at 

different resolutions were used to run a series of efficiency tests. 

3.3.2 SENSITIVITY TO INPUTS 

In addition to testing efficiency of a hypothetical emergency response 

situation, a sensitivity analysis was performed on each model. The size of the 

analysis area, length of flight path, and quantity and position of candidate 

ground antenna sites were varied independently of one another. These criteria 

established whether the models would continue to perform adequately in a 

variety of situations, depending on the scope of the disaster response. The 

models were tested multiple times, and the execution time correlated to the input 

variables. 

Analysis area size, measured in raster cells, is dependent on the elevation 

surface resolution and the geographical area. Testing for this input parameter 

was done on the 30-meter resolution NED DEM, with a single antenna site and a 

1500-meter flight path (see Figure 3.7), and different analysis areas were created 

by modifying the processing extent in the geoprocessing environment settings. 

Total analysis area size ranged from 572,951 cells to 2,118,904 cells. 

Flight path length measures the number of flight path points used as targets 

for the respective visibility analyses. The number of points depends on the 

number of flight paths, the length of each one, and the elevation surface 
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resolution. This parameter was tested using the 10-meter resolution LiDAR DSM, 

with a single antenna site (see Figure 3.7). To avoid influence from the observer 

distance, the total flight path length was increased by duplicating one feature in 

the same location – in other words, a 9,000 meter flight path consisted of six 

copies of the 1,500 meter path, and so on. The total flight path lengths tested 

ranged from 1,500 to 30,000 meters, or 150 to 3,000 flight path points. 

 

Figure 3.7: The analysis area size, flight path length, and number of observers 

were tested on a 3-meter DSM subset. In tests with multiple observers, all were 

co-located on the same point. 

The number of antenna sites was treated as a distinct input parameter from 

the distance between antenna and flight path, since these are independent 

characteristics of the feature class used as an analysis input. To avoid influence 

from the observer location, up to 20 observers were co-located on the same point 

(see Figure 3.7). The distance from antenna to flight path affects the length of 

derived lines of sight, which may influence the execution time. Observer distance 
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from the flight path ranged from 500 to 5,000 meters, on a 1-meter resolution 

LiDAR DSM and looking at a 750 meter flight path (see Figure 3.8). 

 

Figure 3.8: The observer distance test was run on a 1-meter DSM subset. 

3.3.3 ACCURACY AND VALIDATION 

Measuring the accuracy of visibility analyses is not a straightforward task 

due to the difficulty of establishing a "ground truth" against which to compare. It 

was not feasible to contract an imagery flight to track its visibility from a set of 

potential antenna sites. Two alternative approaches were therefore devised to 

test accuracy. 

In the first test, a fictional elevation surface was created to establish a 

small, predictable study area. On a constant raster of zero elevation, all observer 

points would be able to see 100% of an overhead flight path. This artificial DSM 

provided a mathematically predictable area, and a way to establish a baseline 

accuracy performance for the different methods. 
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In the second test, ground-to-ground verification of visible and not-visible 

points was used to validate the ground-to-air visibility methods tested. Typical 

operation of a visibility algorithm would use a complex elevation surface 

describing real-world terrain validation. In order to validate performance in such 

situations, photographs were taken from an established reference point on top of 

the Bull Street parking garage on the USC campus (see Figure 3.9). 

Identifiable points in the photograph that were visually clear were 

mapped as target points on a 1-meter resolution LiDAR-based DSM (see 

Figure 3.10), the most accurate elevation surface that was available. Points that 

could not be seen from the reference point were also included on the map to test 

not-visible measurement. (Any points obstructed by trees were not chosen as 

not-visible validation data, since the six-year time lapse between the 2008 LiDAR 

data and the photograph could allow significant vegetation growth.) The results 

of the various visibility analysis methods were compared to the visual 

confirmation as validation of accuracy. 
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Figure 3.9: Photographs taken from top of Bull Street Garage, with validation 

points identified. 
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Figure 3.10: Overhead map with identified "visible" and "not visible" target 

points labeled. 
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CHAPTER 4 

RESULTS 

4.1 EFFICIENCY 

The comparison for the Viewshed model and Python algorithm shows that the 

Python algorithm is faster for all study areas, especially at finer raster 

resolutions. The Viewshed model is two orders of magnitude slower at coarse 

resolution (10 meter), and three orders of magnitude slower on a fine resolution 

(3 meter) DSM. Once each method exceeded the sixty minute threshold, further 

efficiency testing was not necessary. 

The Viewshed model (see Table 4.1) reached the time limit on the shortest 

flight path on the 10m × 10m DSM. Changes in the number of observer points did 

not affect the Viewshed model, and so that parameter was not changed during its 

efficiency tests. 

The Python algorithm (see Table 4.2) completed the visibility analysis 

more quickly, and was therefore tested on a larger assortment of scenarios and at 

a higher resolution. Including different numbers of observer points affected the 

performance, and so this parameter was varied as well as the flight path length. 
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This emulates real-world usage. If the end user has done pre-screening on the 

candidate antenna points and knows that some of them are not accessible (for 

example, the power cannot be restored in the BB&T building), there is no need to 

measure its visibility. Leaving out such points can both improve the run time and 

generate more relevant results. 

Table 4.1: Average run time for the Viewshed model on a 321 km2 analysis area. 

Raster 

Resolution 

Flight Path 

Length (m) 

Average Run 

Time (minutes) 

30m × 30m 

6,000 4.27 

10,000 7.39 

16,000 10.31 

10m × 10m 6,000 83.12 

 

Interestingly, the Python algorithm began to encounter an unexpected 

computational threshold in addition to the established processing time 

requirement. There is a limit on the amount of memory which can be allocated to 

hold a NumPy array, which the algorithm uses as an alternative to raster data for 

fast reference and calculations. When the analysis area size (measured in cells) 

exceeds the permitted dimensions for an array, the algorithm throws a memory 

warning and stops running. This capacity problem was first noticed on the full 

3m × 3m DSM, which needed to be clipped to the analysis area to fit into array 
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memory. The 1m × 1m DSM could not be analyzed at all (although its run time 

would have exceeded the allowed limit anyway). 

Table 4.2: Average run time for the Python algorithm in various scenarios. 

Raster 

Resolution 

Flight Path 

Length (m) 

Observers 

Included 

Average Run 

Time (minutes) 

30m × 30m 

6,000 5 0.73 

10,000 5 2.20 

16,000 5 2.89 

10m × 10m 

6,000 

3 4.19 

4 5.09 

5 6.02 

10,000 

3 12.51 

4 15.89 

5 19.30 

16,000 

3 16.55 

4 20.78 

5 25.17 

3m × 3m 

6,000 

3 45.09 

4 55.14 

5 65.47 

10,000 

3 138.22 

4 175.85 

5 214.36 

16,000 

3 187.44 

4 239.06 

5 279.61 
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One additional test of efficiency was performed during the artificial 

surface accuracy test. The Viewshed model finished the analysis of a 100 × 100 

cell raster in approximately one minute. The Python algorithm was then tested 

with an equivalent number of observer points (10,000) to compare its accuracy 

performance. The Python algorithm took 2 hours to finish, two orders of 

magnitude longer than the Viewshed model. While interesting, this result is not 

particularly informative for the evaluation of performance during normal 

operation with far fewer observer sites. 

4.2 SENSITIVITY TO INPUTS 

Through the sensitivity analysis process, the influence of individual input 

parameters on the processing speed could be examined in more detail. There 

were significant differences in which parameters were influential on each 

method, and to what degree. When the same input parameters were used, 

execution times were highly repeatable execution and consistent. This 

predictable behavior is also apparent in the very high coefficients of correlation 

found for each of the relationships. 

4.2.1 ANALYSIS AREA SIZE 

Size of the analysis area has a very strong correlation (R2 = 0.9986) to the 

execution time of the Viewshed model (see Figure 4.1). Depending on the total 

area of interest and the available DSM resolution, this relationship is clearly one 
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of the primary drivers of the long execution times seen in the efficiency tests. 

However, the number of cells in the surface raster had no influence on the 

execution time of the Python algorithm. 

 

Figure 4.1: Correlation between analysis area size (measured in raster cells) and 

Viewshed model execution time. 

4.2.2 NUMBER AND LOCATION OF ANTENNA SITES 

The number and location of observer points had no noticeable effect on 

the Viewshed model. Since the observer points only become relevant to the 

model when extracting the visibility results to the points, the amount of time 

required for each point is negligible compared to the much longer execution time 

of the Viewshed tool within the model. 

In contrast, the number and position of observer points heavily influenced 

the Python algorithm. Under actual operating conditions, the quantity and 
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position would not necessarily be able to be treated as separate variables. When 

treated as separate in a controlled study area, however, there were clearly 

different influences from the two different characteristics. Both the quantity of 

observer points (see Figure 4.2) and the distance from the observer to the flight 

path (see Figure 4.3) were strongly correlated (R2 = 0.9996 and R2 = 0.9997, 

respectively) to execution time for the Python algorithm. 

 

Figure 4.2: Correlation between number of antenna sites and Python algorithm 

execution time. 

Increasing the distance between flight path and antenna position 

appeared to cause the execution time to increase more rapidly than adding 

additional observer points (approximately 160 seconds per kilometer, versus 

10.5 seconds per observer point). However, the number of observers test was 

completed with points that were very close to the flight path, and this must be 
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taken into account when interpreting the results. The possible variations in 

observer location make a universal predictive equation difficult. 

 

Figure 4.3: Correlation between antenna position and Python algorithm 

execution time. 

4.2.3 TOTAL LENGTH OF FLIGHT PATHS 

The length of the flight path and the resolution of the elevation surface 

together determine the number of flight path “target” points that will be 

analyzed. The flight path length had an effect on both methods. The total length 

was the significant factor, not the number of flight paths; in other words, a single 

5,000 meter flight path would take the same amount of time to execute as ten 

500 meter flight paths. The strongest influence was on the Viewshed model (see 

Figure 4.4), adding nearly a tenth of a second for every additional flight path 

point included (strong linear correlation of R2 = 0.9978). Extending the flight path 
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added less time per point to the Python algorithm (see Figure 4.5) execution 

times (strong linear correlation of R2 = 0.9992). 

 

Figure 4.4: Correlation between flight path length and Viewshed model 

execution time. 

 

Figure 4.5: Correlation between flight path length and Python algorithm 

execution time. 
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The difference between the execution time of the Viewshed model and 

Python algorithm is best seen by comparing the two correlations on the same 

graph (see Figure 4.6).  Not only does the Viewshed model take longer to execute 

at all points, but its execution time increases much more per point. 

 

Figure 4.6: Comparison between Viewshed model and Python algorithm 

correlations to flight path length. 

4.3 ACCURACY AND VALIDATION 

One notable oddity in the Viewshed model results in a subset of cells 

which are coded as unable to see one flight path point. In the test on a straight 

north-south flight path, these cells are all directly underneath observer points. 

This may imply either that an observer point is considered unable to see the 

surface directly beneath its location, or the surface cell's visibility is not even 

measured directly beneath an observer point location. However, if a straight 
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east-west flight path is tested instead, cells with reduced visibility are not limited 

to only observer points, but also spread up to the north of the flight path (see 

Figure 4.7). In other words, the orientation of the flight path will have an 

influence on the relative accuracy of the Viewshed model results. This effect has 

no apparent explanation. It is presumably caused by the Visibility tool itself, and 

the proprietary nature of the tool precludes a more definitive answer.  

 

Figure 4.7: Results from Viewshed model test on a flat surface. 

To look for similar behavior from the Python algorithm, it was tested by 

converting the 100 × 100 cell raster to 10,000 corresponding observer points. The 

Python algorithm correctly coded all cells as able to see 100% of the flight path, 

for both the east-west and north-south lines.  
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The visibility results in the validation tests were better (see Table 4.3). 

Both methods correctly identified all of the visibility and not-visible target 

points. Failing to account for the observer height (1.5 meters) caused 

approximately half of the visible target points to be marked as not visible, 

although all the not visible points were still correctly evaluated. This result 

emphasizes the need for accurate offsets and vertical position, and demonstrates 

the inaccuracy that can come from user error and erroneous inputs. 

Table 4.3: Visibility of points around Bull Street Garage.  

Point Actually Visible Viewhsed Model Python Algorithm  

1 Yes Yes Yes 

2 Yes Yes Yes 

3 Yes Yes Yes 

4 Yes Yes Yes 

5 Yes Yes Yes 

6 Yes Yes Yes 

7 No No No 

8 No No No 

9 No No No 

10 No No No 

11 No No No 

12 No No No 
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CHAPTER 5 

DISCUSSION 

Overall, the results of this thesis were not surprising. Knowing the amount of 

extraneous analysis the Viewshed tool performs, it was expected to be much less 

efficient than an algorithm which only measures lines of sight. The process of 

testing the Viewshed model and Python algorithm as an alternative did provide 

a number of useful insights into attempts to measure ground-to-air visibility. 

The Viewshed model was sensitive to raster resolution and total flight 

path length, with no significant impact from the number of observer points. In 

contrast, the Python algorithm was sensitive to changes in the number of 

observer points and total flight path length. Understanding these different input 

sensitivities is central to a comprehensive understanding of the relative efficiency 

of the visibility analysis methods. It also provides guidance for end users, 

helping them choose appropriate data to constrain execution time to a desired 

limit. 

For most disaster response analyses, the Viewshed model would simply 

be too slow. At all but the coarsest resolution, it far exceeded the sixty minute 
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threshold. Even though a 30-meter DSM would allow it to perform quickly 

enough, such a coarse resolution drastically oversimplifies surface features and 

contributes a high level of uncertainty to the model’s results. It is unlikely that 

most disasters will be constrained to small impact areas close to candidate 

antenna sites, so the appropriate model must be able to deal with large analysis 

areas rapidly. The Viewshed model cannot. 

One important outcome of the accuracy testing was that algorithm results 

were consistent for multiple evaluations of the same input parameters. This does 

not indicate that there is not any error at all from the algorithms themselves, but 

does mean the error is non-random. Any error attributed due to the algorithm is 

therefore due to a bias, rather than stochastic influences. 

The accuracy of the visibility analyses in a real-world validation (Section 

4.3) shows that neither method was completely accurate. However, this is not a 

serious enough problem to rule out either method. Both models underestimated 

visibility, and had no false positives. This is not ideal, of course, since too many 

false negative results can eliminate candidate antenna sites which should be 

suitable. But, such behavior is preferable to an analysis that overestimates 

visibility, which could lead to deployment of resources to a site which cannot see 

enough of a flight path, wasting time and money. 
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The Viewshed model’s inaccuracy on a fictional surface demonstrates 

clearly that the underlying visibility algorithm may cause unknown and 

unpredictable errors. It is possible that similar inaccuracy exists in the Python 

script, because any mathematical model relies on simplifications and 

assumptions about the physical world that can result in errors. The disadvantage 

the Viewshed model has in this case is that its algorithm is proprietary. The end 

user is forced to guess at the cause and scope of algorithm errors. 

This leads to the discussion of an additional factor to consider when 

selecting a visibility analysis method: usability. The ArcGIS ModelBuilder 

environment can simplify the process of scripting tools, and it is part of a familiar 

software package for a majority of GIS users. Either a ModelBuilder or Python 

script can be integrated easily into an ArcMap workflow, but the proprietary 

Viewshed tool cannot be exported to open-source alternatives such as GRASS or 

QGIS, Using the Viewshed tool limits the end user’s software options.  

In contrast, the Python algorithm can be adapted to a fully open-source set 

of libraries without affecting performance, providing flexibility for users and 

basic code for future visibility algorithm development. The open-source 

approach also provides transparency for users and researchers interested in the 

algorithm’s methods and limitations. Knowing how a tool performs its analysis 
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and models reality will provide insight into the reliability and accuracy of its 

results. 

One question of visibility that was not adequately addressed in these 

models was directionality. This would not be an issue for mobile antenna 

deployment, which is set up on demand and can therefore be pointed toward the 

flight path. However, a permanent, more rigid antenna mount might be built, 

such as on the roof of an emergency management agency, in expectation of its 

eventual use as a ground station site in disaster response. In such a case, there 

may be a mechanical restriction on what direction the antenna can face and 

therefore what area would be visible. Neither the Viewshed model nor the 

Python algorithm is able to account for directional restrictions. Results would 

have to be manually checked for accuracy. 

An interesting potential expansion of this research is the application of 

visibility analysis in the planning phases of the disaster response cycle. The work 

in this thesis was focused on the need to perform a visibility analysis under 

post-disaster time constraints. With some adaptation, however, the visibility 

principles and methods described in this work could be used to create data to 

describe what area of sky is visible from a proposed antenna site. This predictive 

analysis takes longer to run, but if performed during disaster planning instead of 

disaster response, there is little concern about algorithm execution time. 
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One possible disaster planning approach is to use the existing GSSM with  

flight paths over areas which are at high risk for damage in a disaster. Examples 

might include a riverbank or shoreline communities that are susceptible to 

flooding, the area surrounding a power plant, or indeed any disaster scenario 

which an emergency management team plans for. Running an analysis with the 

hypothetical data can narrow down the choice of candidate antenna sites for each 

potential hazard, creating a short list that can be quickly accessed by a disaster 

manager when an event occurs. 

This planning stage use enables significant GIS processing and analysis to 

be done when time is not a concern, so site selection and resource deployment 

can happen much more quickly. This does have the advantage of being able to 

use an existing tool and workflow plan. The disadvantage is that it only works 

for expected or predictable scenarios, of course; the burden is on the user to come 

up with sufficient hypothetical disaster impacts to build a useful list of coverage. 

An alternative, and realistically more robust, approach is to build a new 

tool, based on the theories and methods described in this research. Since the 

Python algorithm was not designed to be predictive, it does not evaluate 

visibility at points other than the antenna sites or flight path. The Viewshed tool 

is designed to analyze a large area all at once, and could be well suited to 

identifying potential antenna sites. (This would be particularly true if a 
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Viewshed algorithm allowed a constant SPOT value to be assigned to target 

points, which would significantly simplify the model and reduce computational 

complexity. Such a change depends on ESRI’s software development team, 

however.) Each method would require some adaptation to be able to deliver 

useful and informative results, however. 

An ideal planning workflow would be to identify polygonal outlines of 

flight locations which can be seen from proposed antenna sites. This would 

establish “zones” of a city or county which could be seen from each vantage 

point. These observation zones would be stored, and could be accessed quickly 

in the event of a disaster, overlaid over regions known to be damaged in order to 

generate optimum flight paths. This enables selection of the best ground station 

site with minimal required processing time and GIS skill level. Such polygons 

would be of great value to a project like RESPT, which provides a platform for 

emergency planners and responders to collaborate. More importantly, it would 

not require speculative scenario planning, but could be used for disasters of any 

type or geographical scope. 

Finally, it is worth noting that the Python algorithm tested in this research 

is not the most efficient solution possible for ground-to-air visibility analysis. The 

script could be further streamlined and optimized in a number of ways. 

Pre-screening the elevation data to ignore points which could not possibly block 



 

62 

lines of sight (e.g., any locations with an elevation less than the antenna site) 

would be a first step, using conditional logic up front to reduce the amount of 

more computationally calculations required later in the algorithm. The 

mathematical evaluation could be performed in a different order (an approach 

which is discussed in more detail in Appendix C). Additionally, application of 

probability and spatial autocorrelation assumptions could further speed up the 

algorithm by reducing the amount of cells that need to be checked. Such changes 

could reasonably be introduced while simultaneously modifying the algorithm 

to be predictive rather than responsive.   
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CHAPTER 6 

CONCLUSION 

The results of this exploration of visibility analysis methods are informative in a 

variety of ways. The model comparison and validation testing established that 

the Python algorithm is a suitable method for the GSSM tool, one of the primary 

research questions behind this thesis. In addition, detailed research into the 

sensitivity of two basic visibility models provides useful data for both end users 

and future researchers. 

It was noted nearly twenty-five years ago that viewshed algorithms were 

not well documented and could produce results that are inconsistent with other 

algorithms (Felleman and Griffin 1990). The data from this thesis indicates that 

the issue has not changed over time: the Viewshed model had some inexplicable 

inaccuracies (see Section 4.3). The ArcMap help files, while providing a thorough 

description of how to operate the tool, do not describe the underlying algorithm 

function. There is clearly an ongoing need for users of any visibility tools to be 

aware of, and document, the possible shortcomings of their analyses. 
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In both the Viewshed model and Python algorithm, the strong correlations 

between input parameters and execution time are related to the number of times 

the basic calculation is performed and how long that calculation takes to 

complete. The basic Viewshed model calculates analyzes visibility of an entire 

raster, while the basic Python algorithm calculates an inverse tangent. Repeated 

iterations of the former process take longer to complete. This concept can be 

extended to other visibility analysis methods: if the basic calculation is simpler, 

the execution time is faster. 

Given the significant influence of DSM accuracy on visibility accuracy, it 

is worth emphasizing the importance of choosing an appropriate elevation 

surface. The DSM used for this research was adequate for the purposes of testing 

typical efficiency and accuracy performance of visibility analyses. However, it 

may not be the best DSM to answer the question of where a ground antenna site 

should be placed in the event of a disaster in Columbia, SC. The City of 

Columbia did not include any metadata with its LiDAR, and even the date that 

the data was captured was only known within a range of months. The data are 

also six years old, a period of time which could allow significant changes in both 

vegetation and human structures in the area. (An interesting exercise that was 

outside the scope of this thesis would be land use change analysis from 2008 to 

2014 to more precisely locate areas of probable development and greatest DSM 
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uncertainty.) Finally, no processing was done to remove artifacts or errors from 

the raw point cloud before it was converted to an elevation raster. The resulting 

DSM is not expected to be as accurate as possible, but it is representative surface 

for the research project and is similar to what may be available for many disaster 

response situations. 

One significant restriction on the visibility analyses tested was the limit to 

only one elevation surface. There are two fundamentally conflicting concerns 

when choosing an appropriate DSM resolution. Fine resolution is needed close to 

the antenna site in order to identify relatively small obstructions that are liable to 

block lines of sight, but which would be generalized at coarse resolutions. 

However, such fine resolution causes significant reductions in efficiency, as a 

much greater number of calculations must be performed. The ability to use two 

elevation surfaces of different resolution – the fine resolution close to antenna 

site, the coarse resolution further away – could improve efficiency without 

sacrificing accuracy. 

.
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APPENDIX A – GSSM PYTHON ALGORITHM SOURCE CODE 

# Ground Station Siting Model [GSSM] 

# Version 1.0.9 [24 July 2013] beta 

# Created for the RESPT project 

 

import numpy as np 

import scipy 

from scipy import spatial 

import arcpy 

from arcpy import * 

import time 

import math 

 

start_time = time.time() 

 

####################################### 

# INPUT VARIABLES FROM MODEL PARAMETERS 

####################################### 

# Location of ESRI files 

ObserverPoint = arcpy.GetParameterAsText(0) 

arcpy.AddMessage("Observer Point: " + ObserverPoint) 

arcpy.AddField_management(ObserverPoint, "PctVisible", 

"FLOAT") 

 

FlightPath = arcpy.GetParameterAsText(1) 

arcpy.AddMessage("Flight Path: " + FlightPath) 

 

rasterDEM = arcpy.GetParameterAsText(2) 

arcpy.AddMessage("DEM Raster: " + rasterDEM) 

 

OutputWorkspace = arcpy.GetParameterAsText(5) 

arcpy.AddMessage("Output Location for Flight Path 

Blocked/Visible Points: " + OutputWorkspace) 

arcpy.env.workspace = OutputWorkspace 

 

# Additional Parameters 

FlightAltitude = arcpy.GetParameterAsText(3) 

zFlight = float(FlightAltitude) * 0.3048 # elevation of 

airplane, in meters 
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arcpy.AddMessage("Flight Altitude (in meters): " + 

str(zFlight)) 

 

mxd = arcpy.mapping.MapDocument("CURRENT") 

df = arcpy.mapping.ListDataFrames(mxd)[0] 

 

# find cell size of raster, assuming it's square 

cellSizeProperty = 

GetRasterProperties_management(rasterDEM, "CELLSIZEX") 

cellSize = int(cellSizeProperty.getOutput(0)) 

arcpy.AddMessage("Raster Cell Size: " + str(cellSize)) 

 

Verbose = "false" 

##arcpy.AddMessage("Verbose? " + Verbose) 

 

outputBlockedPoints = arcpy.GetParameterAsText(4) 

if str(outputBlockedPoints) == "true": 

 arcpy.AddMessage(" Script will generate feature class and 

layer of blocked points.") 

if str(outputBlockedPoints) == "false": 

 arcpy.AddMessage(" Script will only generate percentage 

visibility from observer points.") 

 

######################################################### 

# DEM RASTER PROPERTY ANALYSIS, CONVERSION TO NUMPY ARRAY 

######################################################### 

# array of data converted from ESRI raster to NumPy array 

x, y = np.mgrid[0:25:cellSize, 0:25:cellSize] 

z = arcpy.RasterToNumPyArray(rasterDEM) 

 

offsetXresult = GetRasterProperties_management(rasterDEM, 

"LEFT") 

offsetX = float(offsetXresult.getOutput(0)) 

offsetYresult = GetRasterProperties_management(rasterDEM, 

"BOTTOM") 

offsetY = float(offsetYresult.getOutput(0)) 

# calculate offset to shift geographic coordinates to array 

locations 

arrayRowMax = z.shape[0] - 1 

 

if str(Verbose) == "true": 

 arcpy.AddMessage("X Min: " + str(offsetX)) 

 arcpy.AddMessage("Y Min: " + str(offsetY)) 

 arcpy.AddMessage("Raster Height: " + str(arrayRowMax)) 

 

arcpy.AddMessage("========== script setup complete") 
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################ 

# OBSERVER POINT 

################ 

# Determine location of observer point 

obsvCursor = arcpy.UpdateCursor(ObserverPoint) 

desc = arcpy.Describe(ObserverPoint) 

shapefieldname = desc.ShapeFieldName 

 

# XY location of observer on the ground 

obsvIndex = 0 

for obsv in obsvCursor: 

 obsvFeature = obsv.getValue(shapefieldname) 

 obsvPt = obsvFeature.getPart() 

 # account for offset of geographic coordinate raster 

 obsvX = math.floor((obsvPt.X - float(offsetX))/cellSize) 

 obsvY = math.floor((obsvPt.Y - float(offsetY))/cellSize) 

 if str(Verbose) == "true": 

 arcpy.AddMessage("Value at Observer Location") 

 arcpy.AddMessage(" >> geographic: x " + str(obsvPt.X) + ", 

y " + str(obsvPt.Y)) 

 obsvCol = obsvX 

 obsvRow = arrayRowMax - obsvY 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >> array: row " + str(obsvRow) + ", 

column " + str(obsvCol)) 

 

 # elevation of observer [z] 

 zObserver = z[obsvRow, obsvCol] 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >> elevation: " + str(zObserver) + " 

meters") 

 

 ############################ 

 # ESTABLISH FLIGHT PATH LINE 

 ############################ 

 blockedSightLines = 0 

 totalSightLines = 0 

 obstructionList = [] 

 # Identify the geometry field 

 desc = arcpy.Describe(FlightPath) 

 shapefieldname = desc.ShapeFieldName 

 # Create search cursor 

 flightCursor = arcpy.SearchCursor(FlightPath) 

 # Enter for loop for each feature/row 

 for flightPt in flightCursor: 

 # Create the geometry object 

 feat = flightPt.getValue(shapefieldname) 
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 ## if str(Verbose) == "true": 

 ## # the current line ID 

 ## arcpy.AddMessage("Feature %i: " % 

flightPt.getValue(desc.OIDFieldName)) 

 #Set start point 

 startpt = feat.firstPoint 

 #Set Start coordinates 

 startX = math.floor((startpt.X - float(offsetX))/cellSize) 

 startCol = startX 

 startY = math.floor((startpt.Y - float(offsetY))/cellSize) 

 startRow = arrayRowMax - startY 

 #Set end point 

 endpt = feat.lastPoint 

 #Set End coordinates 

 endX = math.floor((endpt.X - float(offsetX))/cellSize) 

 endCol = endX 

 endY = math.floor((endpt.Y - float(offsetY))/cellSize) 

 endRow = arrayRowMax - endY 

 

 zFP1 = z[startRow, startCol] 

 zFP2 = z[endRow, endCol] 

 if str(Verbose) == "true": 

 arcpy.AddMessage("Value at Flight Start") 

 arcpy.AddMessage(" >> geographic: x " + str(startpt.X) + 

", y " + str(startpt.Y)) 

 arcpy.AddMessage(" >> array: row " + str(startRow) + ", 

column " + str(startCol)) 

 arcpy.AddMessage(" >> " + str(zFP1)) 

 arcpy.AddMessage("Value at Flight End") 

 arcpy.AddMessage(" >> geographic: x " + str(endpt.X) + ", 

y " + str(endpt.Y)) 

 arcpy.AddMessage(" >> array: row " + str(endRow) + ", 

column " + str(endCol)) 

 arcpy.AddMessage(" >> " + str(zFP2)) 

 

 # flight path begins at 

 fpX0, fpY0 = startRow, startCol 

 # flight path ends at 

 fpX1, fpY1 = endRow, endCol 

 

 arrayFlightPath = [[fpX0, fpY0], [fpX1, fpY1]] 

 flightLength = 

scipy.spatial.distance.pdist(arrayFlightPath, 'euclidean') 

 numFPts = int(flightLength) / int(cellSize) 

 

 # Make a line with "num" points distributed along it 
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 fpX, fpY = np.linspace(fpX0, fpX1, numFPts), 

np.linspace(fpY0, fpY1, numFPts) 

 ##fpLine = [np.linspace(fpX0, fpX1, numFPts), 

np.linspace(fpY0, fpY1, numFPts)] 

 

 arcpy.AddMessage("Flight path from " + str(fpX0) + ", " + 

str(fpY0) + " to " + str(fpX1) + ", " + str(fpY1) + " at 

altitude " + str(zFlight)) 

 arcpy.AddMessage(" >> length: " + str(flightLength) + " 

meters") 

 arcpy.AddMessage(" >> points: " + str(numFPts)) 

 

 ########################################################## 

 # CONNECT EACH FLIGHT POINT TO THE OBSERVER POINT, ANALYZE 

 ########################################################## 

 dzMax = zFlight - zObserver # difference between flight 

altitude and observer 

 for indexFP, point in np.ndenumerate(fpX): 

 if str(Verbose) == "true": 

 arcpy.AddMessage("flight point row/col: " + 

str(fpX[indexFP]) + ", " + str(fpY[indexFP])) 

 ##arcpy.AddMessage("observer point row/col: " + 

str(obsvRow) + ", " + str(obsvCol)) 

 flightX = fpX[indexFP] 

 flightY = fpY[indexFP] 

 arraySightLine = [[obsvRow, obsvCol], [flightX, flightY]] 

 sightLength = scipy.spatial.distance.pdist(arraySightLine, 

'euclidean') 

 numSPts = int(sightLength) 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >>> length: " + str(sightLength) + ", 

number of points: " + str(numSPts)) 

 

 slX, slY = np.linspace(obsvRow, flightX, numSPts), 

np.linspace(obsvCol, flightY, numSPts) 

 # drop 1st values, since observer point doesn't need to be 

evaluated 

 slX = slX[1:] 

 slY = slY[1:] 

 ## arcpy.AddMessage(" >>> X Values along Sight Line: " + 

slX) 

 

 dMax = sightLength 

 ratio = dzMax / dMax # tangent of observer sight line 

vertical angle 

 if str(Verbose) == "true": 
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 arcpy.AddMessage(" >>> dMax: " + str(dMax) + ", dzMax: " + 

str(dzMax) + ", Ratio: " + str(ratio)) 

 

 zActual = z[slX.astype(np.int), slY.astype(np.int)] 

 

 blockedPoints = 0 

 for indexSL, pointSL in np.ndenumerate(slX): 

 sightX = slX[indexSL] 

 sightY = slY[indexSL] 

 arrayTempLine = [[obsvRow, obsvCol], [sightX, sightY]] 

 dPoint = scipy.spatial.distance.pdist(arrayTempLine, 

'euclidean') 

 zAllowed = zObserver + (dPoint * ratio) 

 zPoint = zActual[indexSL] 

 if str(Verbose) == "true": 

 arcpy.AddMessage("slX " + "%.2f" % slX[indexSL] + ", slY " 

+ "%.2f" % slY[indexSL] + " // dist " + "%.2f" % dPoint + 

", zAllowed " + "%.2f" % zAllowed + ", zPoint " + 

str(zPoint)) 

 if zPoint > zAllowed: 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >> OBSTRUCTION <<") 

 blockedPoints += 1 

 if str(outputBlockedPoints) == "true": 

 BlockRow = flightX 

 BlockCol = flightY 

 BlockPtX = (BlockCol * cellSize) + float(offsetX) 

 BlockPtY = ((arrayRowMax - BlockRow) * cellSize) + 

float(offsetY) 

 CurrentPoint = [BlockPtX, BlockPtY] 

 obstructionList.append(CurrentPoint) 

 if blockedPoints > 0: 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >> 1 Sight Line with " + 

str(blockedPoints) + " Blocked Points") 

 blockedSightLines += 1 

 totalSightLines += 1 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" ========= =========") 

  

 # time result 

 arcpy.AddMessage(" >> analyzed in " + str(time.time() - 

start_time) + " seconds") 

 obsvIndex = obsvIndex + 1 

 

 ######################### 

 # SHARE RESULTS WITH USER 



 

76 

 ######################### 

 percentVisible = 1. - (float(blockedSightLines) / 

float(totalSightLines)) 

 arcpy.AddMessage("========== observer point " + 

str(obsvIndex) + " analysis finished") 

 arcpy.AddMessage(" >> Sight Lines Analyzed: " + 

str(totalSightLines)) 

 arcpy.AddMessage(" >> Sight Lines Blocked: " + 

str(blockedSightLines)) 

 arcpy.AddMessage("FINAL RESULT: flight path is %" + 

str(100 * percentVisible) + " visible.") 

 

 obsv.PctVisible = percentVisible 

 obsvCursor.updateRow(obsv) 

 arcpy.AddMessage(" >> Observer Point Attribute Table 

Updated") 

 

 if str(Verbose) == "true": 

 arcpy.AddMessage("Points causing obstruction: ") 

 obstructionPt = arcpy.Point() 

 obstructionGeom = [] 

 for Point in obstructionList: 

 if str(Verbose) == "true": 

 arcpy.AddMessage(" >> x: " + "%.2f" % Point[0] + ", y: " + 

"%.2f" % Point[1]) 

 obstructionPt.X = Point[0] 

 obstructionPt.Y = Point[1] 

 obstructionGeom.append(arcpy.PointGeometry(obstructionPt)) 

 

 if str(outputBlockedPoints) == "true" and percentVisible < 

1: 

 ################################################## 

 # PUSH LIST OF BLOCKING POINTS INTO A UNIQUE LAYER 

 ################################################## 

 CurrentDateTime = 

datetime.datetime.now().strftime("%Y%m%d%H%M") 

 FlightPathPoints = "FlightPath" + CurrentDateTime + 

str(obsvIndex) 

 

 arcpy.CopyFeatures_management(obstructionGeom, 

FlightPathPoints) 

 

 arcpy.env.overwriteOutput = True 

 lyrName = "BlockedFlightPoints_Obsv" + str(obsvIndex) 

 arcpy.MakeFeatureLayer_management(FlightPathPoints, 

lyrName) 

 arcpy.AddMessage(" >> FlightPathPoints layer created") 
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 lyrFile = arcpy.mapping.Layer(lyrName) 

 arcpy.mapping.AddLayer(df, lyrFile) 

 arcpy.RefreshActiveView() 

 arcpy.AddMessage(" >> FlightPathPoints added to map") 

 

 arcpy.AddMessage("========== ========= ========= 

=========") 

 

del obsv 

del obsvCursor 

del flightPt 

del flightCursor 

 

obsvLayer = arcpy.mapping.ListLayers(mxd, ObserverPoint)[0] 

#Indexing list for 1st layer 

if obsvLayer.supports("LABELCLASSES"): 

 for lblClass in obsvLayer.labelClasses: 

 lblClass.showClassLabels = True 

 lblClass.className = "PctVisible" 

obsvLayer.showLabels = True 

arcpy.AddMessage(" >> Observer Point Visibility Attribute 

Label Added") 

 

# time result 

arcpy.AddMessage("========== ========= ========= 

=========") 

arcpy.AddMessage(" time elapsed: " + str(time.time() - 

start_time) + " seconds") 
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APPENDIX B – SIGHT LINES METHODOLOGY AND RESULTS 

A number of efficiency tests were completed on the Sight Lines model before it 

was determined to be incapable of modeling ground-to-air visibility. The model 

and its behavior are therefore included in this appendix. In large part, the results 

support the conclusion that researchers should treat visibility analysis results 

with skepticism and caution. 

The Sight Lines tools require a more complex model than the Viewshed 

tool. The desired output – a single ratio value to describe target visibility – 

requires that the visibility of the target point along each individual sight line be 

summarized, and the data then appended back to the original observer dataset. 

The Sight Lines model has to iterate through once for each observer feature in 

order to keep the data organized. The model is consequently more complex and 

runs through many more operations than the Viewshed model (see Figure B.1), 

although the additional tools are largely organizational and therefore not 

computationally intensive. 



 

 

79 

 

Figure B.1: ModelBuilder diagram of the model based on the Line of Sight tool. 
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The Sight Lines model was approximately as efficient as the Python 

algorithm, in general. There was one notable exception. When a large number of 

observer points were tested, the Python algorithm finished in approximately two 

hours. The Sight Lines model crashed after analyzing 263 points in 4.25 hours. At 

that rate, it would have taken nearly a week to finish its analysis. This indicates a 

much less efficient use of memory and computational resources than the Python 

algorithm. It was, however, capable of operating on a fine-resolution DSM 

(1m × 1m) without memory errors, as long as the number of observer points was 

small. 

Sensitivity analysis results indicated that the Python algorithm and Sight 

Lines model were affected by the same input parameters, although in moderately 

different ways. The number of cells in the surface raster had no influence on the 

execution time of the Sight Lines model. The quantity of observer points was 

strongly correlated (R2 = 0.9993) to the Sight Lines model performance (see Figure 

B.2). The influence was much stronger on the Sight Lines model than the Python 

algorithm, with the execution time increasing at nearly twice the rate of the 

Python algorithm. 
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Figure B.2: Correlation between number of antenna sites and Sight Lines model 

execution time. 

As with the Viewshed model and Python algorithm, the flight path length 

was strongly correlated (R2 = 0.9904) to the execution time. Extending the flight 

path added less time per point to the Sight Lines model (see Figure B.3). 

 

Figure B.3: Correlation between flight path length and Sight Lines model 

execution time. 
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The distance from the observer to the flight path was also strongly 

correlated to execution time in the Sight Lines model (see Figure B.4). This 

relationship was particularly interesting for the Sight Lines model. For observer 

distances of 2,000 cells or less (linear correlation of R2 = 0.9891), the execution 

time did not increase as rapidly as for distances greater than 2,000 cells (linear 

correlation of R2 = 0.9995). There were two very distinct correlations for the two 

subsets of data.  

 

Figure B.4: Two different correlations between antenna position and Sight Lines 

model execution time. 

The cause of this unusual shift in behavior is unclear, but is presumably 

due to a difference in the Sight Lines tool calculation method between “close” 

and “far” observers. Since the underlying algorithm is proprietary, the causes 

cannot be more clearly explained. Additionally, the relationship between 
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distance and time was the same for the Python algorithm and the “far” distances 

subset of the Sight Lines model, implying that the two methods use similar (or 

identical) basic calculations. The potential for unknown factors in algorithm 

design to influence results is clearly demonstrated in this shift in behavior. It can 

be assumed that there is a different calculation being performed for the two 

different regimes. If this influences the execution time, it also has the potential to 

influence the accuracy of results. Without understanding the underlying 

modeling process, it is impossible for researchers to adequately explore the 

causes and estimate the risk of increased error. 
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APPENDIX C – OPTIMIZING THE PYTHON ALGORITHM 

C.1 BACKGROUND AND PERFORMANCE 

A Ground-to-Air Visibility (GTAV) Python algorithm has also been written that 

seems to be both more efficient and more accurate than the GSSM Python 

algorithm described and tested in the main body of this thesis. These results are 

preliminary, but show exciting potential for further refinement of ground-to-air 

visibility modeling using sight lines. 

 Instead of calculating the tangent ratio at each point along the sight line, 

this algorithm takes advantage of arrays to calculate all the values in one step. 

The sight line analysis is then simpler, since it only needs to collect the existing 

ratios and compare the maximum ratio per each sight line to the tangent ratio of 

the target. If any the maximum tangent ratio of a point along the sight line 

exceeds the tangent ratio of the target, then the target is not visible. The general 

mathematical principles are the same as the original GSSM algorithm, but are 

calculated and manipulated in a more efficient fashion. Preliminary exploration 

indicates this algorithm performs faster than the GSSM, as seen in Table C.1. The 

sensitivity to inputs of the GTAV algorithm is similar to the GSSM algorithm, 

with increased execution time from increased observer points, length of flight 
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paths, and distance between observers and flight paths. However, the execution 

time does not increase as rapidly from each of the variations, and the GTAV 

algorithm is still well under the one hour threshold even in the most complex 

scenario. 

Table C.1: Comparison of GSSM and GTAV performance. 

Raster 
Resolution 

Flight Path 
Length (m) 

Observers 
Included 

GSSM Run Time 
(minutes) 

GTAV Run Time 
(minutes) 

30m × 30m 

6,000 5 0.73 1.08 

10,000 5 2.20 1.15 

16,000 5 2.89 1.17 

10m × 10m 

6,000 
3 4.19 2.46 

5 6.02 3.96 

10,000 
3 12.53 2.96 

5 19.30 4.92 

16,000 
3 16.55 3.28 

5 25.17 5.21 

3m × 3m 

6,000 
3 45.09 4.19 

5 65.47 6.04 

10,000 
3 138.22 9.81 

5 214.36 15.27 

16,000 
3 187.44 12.49 

5 279.61 19.49 

 

The accuracy of the GTAV algorithm was not tested in this research, but it 

is approximately equivalent. It uses a GIS function (and therefore geographic 

coordinates) to calculate distance from the observer point. Since the GSSM 
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algorithm translates the elevation raster into a local array coordinate system 

before calculating distance between points, this introduced a potential for 

distortion, particularly as the observer and target point separation passes the 

point where Euclidean distance calculations begin to poorly represent actual 

distance. It is possible that the GTAV algorithm output is a better representation 

of real-world visibility as a result, although much more extensive testing is 

needed to support that conclusion. 

The GTAV algorithm still encounters the same problems with memory 

usage noted in the GSSM testing, and can only be used with raster DSM data up 

to a certain size. A further reconsideration of the data storage and access 

methods is warranted. Much like the Viewshed model, which analyzed a full 

visibility surface to capture only a few points of data, these Python algorithms 

are still analyzing a full raster surface to explore a much more spatially limited 

set of data. 

C.2 SOURCE CODE 

# Ground-to-Air Visibility Algorithm 

 

import numpy as np 

import scipy 

from scipy import spatial 

import arcpy 

from arcpy import * 

from arcpy.sa import * 

import time 

import math 
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start_time = time.time() 

 

# Location of data 

ObserverPoint = arcpy.GetParameterAsText(0) 

arcpy.AddField_management(ObserverPoint, 'PctVisible', 

'FLOAT') 

 

FlightPath = arcpy.GetParameterAsText(1) 

rasterDEM = arcpy.GetParameterAsText(2) 

 

# Additional Parameters 

FlightAltitude = arcpy.GetParameterAsText(3) 

zFlight = float(FlightAltitude) * 0.3048 # elevation of 

airplane, in meters 

 

mxd = arcpy.mapping.MapDocument('CURRENT') 

df = arcpy.mapping.ListDataFrames(mxd)[0] 

 

# find cell size of raster, assuming it's square 

cellSizeProperty = 

GetRasterProperties_management(rasterDEM, 'CELLSIZEX') 

cellSize = float(cellSizeProperty.getOutput(0)) 

 

# Determine location of observer point 

obsvCursor = arcpy.UpdateCursor(ObserverPoint) 

desc = arcpy.Describe(ObserverPoint) 

shapefieldname = desc.ShapeFieldName 

 

# XY location of observer on the ground 

obsvIndex = 0 

for obsv in obsvCursor: 

    obsvFeature = obsv.getValue(shapefieldname) 

    obsvPt = obsvFeature.getPart() 

 

    # ArcPy euclidean distance tool 

    rasterDistance = EucDistance(obsvFeature, "", cellSize) 

 

    # array of data converted from raster to NumPy array 

    x, y = np.mgrid[0:25:cellSize, 0:25:cellSize] 

 

    arrayZ = arcpy.RasterToNumPyArray(rasterDEM) 

 

    offsetXresult = 

GetRasterProperties_management(rasterDEM, 'LEFT') 

    offsetX = float(offsetXresult.getOutput(0)) 

    offsetYresult = 

GetRasterProperties_management(rasterDEM, 'BOTTOM') 
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    offsetY = float(offsetYresult.getOutput(0)) 

    # calculate offset to shift geographic coordinates to 

array locations 

    arrayRowMax = arrayZ.shape[0] - 1 

 

    # account for offset of geographic coordinate raster 

    obsvX = math.floor((obsvPt.X - 

float(offsetX))/cellSize) 

    obsvY = math.floor((obsvPt.Y - 

float(offsetY))/cellSize) 

    obsvCol = obsvX 

    obsvRow = arrayRowMax - obsvY 

 

    # elevation of observer [z] 

    zObserver = arrayZ[obsvRow, obsvCol] 

 

    # Raster calculator, angle = arctan (z / d) 

    arrayDistance = 

arcpy.RasterToNumPyArray(rasterDistance) 

    arrayCellDistance = arrayDistance / cellSize 

    arrayCorrectedZ = arrayZ - zObserver 

    arrayTangent = arrayCorrectedZ / arrayCellDistance 

 

    blockedSightLines = 0 

    totalSightLines = 0 

    obstructionList = [] 

    # Identify the geometry field 

    desc = arcpy.Describe(FlightPath) 

    shapefieldname = desc.ShapeFieldName 

    # Create search cursor 

    flightCursor = arcpy.SearchCursor(FlightPath) 

    # Enter for loop for each feature/row 

    for flightPt in flightCursor: 

        # Create the geometry object 

        feat = flightPt.getValue(shapefieldname) 

        #Set start point 

        startpt = feat.firstPoint 

        #Set Start coordinates 

        startX = math.floor((startpt.X - 

float(offsetX))/cellSize) 

        startCol = startX 

        startY = math.floor((startpt.Y - 

float(offsetY))/cellSize) 

        startRow = arrayRowMax - startY 

        #Set end point 

        endpt = feat.lastPoint 

        #Set End coordinates 
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        endX = math.floor((endpt.X - 

float(offsetX))/cellSize) 

        endCol = endX 

        endY = math.floor((endpt.Y - 

float(offsetY))/cellSize) 

        endRow = arrayRowMax - endY 

 

        zFP1 = arrayZ[startRow, startCol] 

        zFP2 = arrayZ[endRow, endCol] 

 

        # flight path begins at 

        fpX0, fpY0 = startRow, startCol 

        # flight path ends at 

        fpX1, fpY1 = endRow, endCol 

 

        arrayFlightPath = [[fpX0, fpY0], [fpX1, fpY1]] 

        flightLength = 

scipy.spatial.distance.pdist(arrayFlightPath, 'euclidean') 

        numFPts = int(flightLength)# / int(cellSize) 

 

        # Make a line with 'num' points distributed along 

it 

        fpX, fpY = np.linspace(fpX0, fpX1, numFPts), 

np.linspace(fpY0, fpY1, numFPts) 

 

        dzMax = zFlight - zObserver # difference between 

flight altitude and observer 

        for indexFP, point in np.ndenumerate(fpX): 

            flightX = fpX[indexFP] 

            flightY = fpY[indexFP] 

            arraySightLine = [[obsvRow, obsvCol], [flightX, 

flightY]] 

            sightLength = 

scipy.spatial.distance.pdist(arraySightLine, 'euclidean') 

            numSPts = int(sightLength) 

 

            slX, slY = np.linspace(obsvRow, flightX, 

numSPts), np.linspace(obsvCol, flightY, numSPts) 

            # drop first values so observer point will not 

be evaluated 

            slX = slX[1:] 

            slY = slY[1:] 

 

            dMax = sightLength 

            tangentFlightPoint = dzMax / dMax # tangent of 

observer sight line vertical angle 
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            tangentActual = 

arrayTangent[slX.astype(np.int), slY.astype(np.int)] 

 

            listAngles = [] 

            blockedPoints = 0 

            for indexSL, pointSL in np.ndenumerate(slX): 

                sightX = slX[indexSL] 

                sightY = slY[indexSL] 

                arrayTempLine = [[obsvRow, obsvCol], 

[sightX, sightY]] 

                tangentPoint = tangentActual[indexSL] 

                listAngles.append(tangentPoint) 

            if max(listAngles) > tangentFlightPoint: 

                blockedSightLines += 1 

            totalSightLines += 1 

         

        # time result 

        arcpy.AddMessage(' >> analyzed in ' + 

str(time.time() - start_time) + ' seconds') 

    obsvIndex = obsvIndex + 1 

 

    percentVisible = 1. - (float(blockedSightLines) / 

float(totalSightLines)) 

    arcpy.AddMessage('========== observer point ' + 

str(obsvIndex) + ' analysis finished') 

    arcpy.AddMessage('FINAL RESULT: flight path is %' + 

str(100 * percentVisible) + ' visible.') 

 

    obsv.PctVisible = percentVisible 

    obsvCursor.updateRow(obsv) 

 

del obsv, obsvCursor, flightPt, flightCursor 

 

# time result 

arcpy.AddMessage(' time elapsed: {} 

seconds'.format(str(time.time() - start_time))) 
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