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Abstract

Reliability and survival data are widely encountered across many common settings.

Subjects under investigation often include machines, bioassays, patients, etc.; their

reliability or survival distribution, and its association with covariate processes, are

commonly of interest. Within this dissertation, the first two chapters focus on reli-

ability data where repairable systems fail and get interventions, e.g. repairs in the

event process. It begins with a nonparametric test for the commonly assumed “good

as old” assumption for minimal repair models and then a semi-parametric regression

model is introduced for reliability data using Kijima’s effective age. The third chapter

focuses on survival data observed with potential spatial correlation. We first develop

a Bayesian semi-parametric approach to the extended hazard model and then extend

this framework to allow for spatial correlation among survival times. In contrast to

widely used frailty models, our approach preserves marginal interpretations. Flex-

ible modeling approaches in the Bayesian context are used for baseline failure rate

or hazard and Markov chain Monte Carlo techniques to obtain the posterior infer-

ences. The proposed tests and models are examined in several simulation studies and

applications.
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Chapter 1

Introduction

Life-time event modeling is widely applied in epidemiology, clinical trials, engineering,

economics and many other fields. Let T be the time to some specified event for an

experimental unit, e.g. death of cancer, failure of a machine, development of a disease,

etc. Let F (t) be the cumulative distribution function for T . The survival function

associated with F is then

S(t) = Pr(T > t) = 1− F (t). (1.1)

The hazard function quantifies the probability of an individual of age t experiencing

an event in next instant which is formally defined as

h(t) = lim
4t→0+

Pr{t ≤ T ≤ t+4t|T ≥ t}
4t

. (1.2)

Event times are often subject to censoring. A commonly observed censoring type is

right-censoring. Denote C as a random censoring time. If C < T , then the failure

time T is right-censored at time C. Define the censoring indicator δ = 1 if T < C

and δ = 0 if T > C. The smaller of these two X = min{T,C} is observed, along

with δ. I assume C is independent of T in this dissertation. Other commonly seen

censoring types include left-censoring and interval-censoring.

Subjects in a study may experience a single event or multiple events. When the

multiple events are a number of repeated events of the same type for the subjects, the

events are often referred as recurrent events. Recurrent events data, arising as mul-

tivariate data, involve an underlying stochastic process generating the stochastically

dependent event times. For both single event and recurrent event data modeling, the
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event times in the population of interest are typically assumed to be independent.

However, many lifetime modeling techniques also take into account the correlations

among the subjects. One important area of work deals with geographically clustered

subjects where the spatial correlation receives careful consideration in modeling.

Common objectives of the analysis include estimating the failure rate or survival

probability for each individual, describing the effects of covariates, and quantifying

the variations among heterogeneous sub-populations or dependences among stochastic

events. This chapter is organized as follows: section 1.1 introduces some models for

recurrent event data, section 1.2 presents a review for spatially correlated survival

data, and section 1.3 gives a brief introduction to B-splines.

Recurrent event models

Let 0 ≤ T1 < T2 < · · · be a vector of random recurrent event failure times. Let

Xj = Tj − Tj−1 be the gap time between the successive events. The associated

counting process {N(t), t ≥ 0} records the cumulative number of failures over time,

i.e. the number of {Ti} less than t. Let H(t) = {N(s) : 0 ≤ s < t} describe the

history of the process at time t. Models for recurrent events can be specified through

the probability distribution for the number of events in short intervals [t, t+4t], given

the history of event occurrence before time t. Suppose events occur in continuous

time and two events can not occur simultaneously. Then the intensity function gives

the instantaneous probability of an event occurring at t, conditional on the process

history. The intensity function is defined as

φ(t|H(t)) = lim
4t→0+

Pr{N(t+4t)−N(t) = 1|H(t)}
4t

. (1.3)

Depending on intensity function assumptions, processes for describing the recur-

rent events {T1, T2, . . . , } can be divided into categories. Commonly seen processes

include the Poisson process, the renewal process, multi-state processes, effective age
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processes, and so on. The following sections include some details of the above men-

tioned processes.

Assume that event occurrences are recorded over [0, τ ] for a specific subject. The

time τ is the termination time of the study. The termination event may be related

or not related to the event process; the former usually involves another type of event

that ends the main event process and the latter often occurs when the termination

of observation is due to a study or follow-up ending. Assume τ to be fixed. For an

individual with n events at times 0 ≤ t1 < t2 < · · · < tn ≤ τ , the likelihood is

L =
n∏
j=1

φ(tj|H(tj)) · exp{−
∫ τ

0
φ(u|H(u))du}. (1.4)

When an intervention (repair) is performed (independent of the failure process) with-

out a corresponding failure, then the system failure time is right-censored. One can

obtain the resulting likelihood after small modifications of the above formula.

Poisson process

The Poisson process is one of the most important random processes because of its

wide applications in time and space. The intensity function of a Poisson process is

assumed to be of form

φ(t|H(t)) = h(t), t > 0 (1.5)

An equivalent definition based on the counting process {N(t) : t ≥ 0} needs to satisfy

that (i) N(0) = 0; (ii) For each t > 0, N(t) has a Poisson distribution with mean

m(t) =
∫ t

0 h(s)ds; (iii) For each 0 ≤ t1 ≤ t2 . . . ,≤ tm, N(t1), N(t2) − N(t1),. . . ,

N(tm) − N(tm−1) are independent random variables. That is, the Poisson process

describes situations where events occur randomly such that numbers of events in

non-overlapping time intervals are statistically independent. The process is called

homogeneous if h(t) = ρ and non-homogeneous if h(t) changes over time. When the

process is homogeneous, the gap times are independently and identically distributed

as Exp(ρ).
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Example 1: consider a system placed in service. Once it fails, it is restored to

the “good as old” state and the process is repeated. Assume that the repair time is

immediate. Then the times for the failures are the Poisson events.

Example 2: consider the the arrival times of guests to a fast food restaurant. The

arrival rate to a fast food restaurant varies with the time of day and increases to a

local maximum during meal times. Then the number of customers can be viewed as

a nonhomogenous Poisson process.

A covariate process w(t) can be incorporated into the intensity function propor-

tionally

φ(t|H(t)) = h0(t)exp(β′w(t)), t > 0. (1.6)

When h0(·) is assumed to be a parametric function, indexed by parameter α,

inferences for α and regression parameters β can be obtained by the maximum like-

lihood method. A more flexible method assumes h0(·) to be piece-wise constant over

prespecified intervals. In particular, let a1 < a2, . . . , < aK be K cut-points such as

a1 > 0 and aK = τ . The baseline hazard function h0(t; α) = αk for ak−1 ≤ t ≤ ak.

Cook and Lawless (2007) recommend three to ten pieces with cut-points evenly dis-

tributed over the event times. Maximum likelihood method can again be used to ob-

tain inferences. There are many other alternatives to the piece-wise constant method,

including Gamma process and Beta process priors on the cumulative hazard function,

and Dirichlet process and Polya tree priors on the cumulative distribution function.

Ibrahim et al. (2001) gives a comprehensive review of flexible methods for model-

ing h0(·). Methods that do not make a parametric assumption about the baseline

hazard are appealing. In addition to the methods of assuming flexible model for

h0(·), a semiparametric method which is based on the score function considers h0(·)

as an arbitrary positive-valued function (Andersen and Gill 1982) and can use profile

likelihood approach to make inferences.

Random effects are also often incorporated into the model to accommodate het-
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erogeneity across individuals. For example, assume the conditional “subject-specific”

intensity function for subject i to be in the form

φi(t|Hi(t), ui) = uih0(t)exp(β′w(t)), t > 0, (1.7)

where the uis are nonnegative independent random variables and are often assumed

to be independent of the covariates. A commonly used distribution for ui is the

Gamma distribution. The EM algorithm offers a convenient approach in fitting the

random effect model.

There are also robust semi-parametric methods assessing the effects of the co-

variates on the mean function m(t) and a marginal method of analyzing multivari-

ate failure time data, see Cook and Lawless (2007) for more details. Typical tests

for Poisson processes are for trend, proportionality assumptions of specific covari-

ates, extra-Poisson variation, and comparisons among two or more groups. However,

there are few methods for testing whether the event process is Poisson, for example,

whether repairs are “good as old”. Martingale residuals might indicate associations

in the successive event counts, suggesting violation of the Poisson assumption. I con-

sider a Bayesian nonparametric test for the Poisson assumption which is presented in

Chapter 2.

Renewal process

Renewal processes are commonly used if an individual is “renewed” after each event

occurrence. Renewal processes assume that the gap times (X1, X2, . . . ) are inde-

pendent and identically distributed. Equivalently, the intensity function is assumed

as

φ(t|H(t)) = h(t− TN(t−)), t > 0, (1.8)

where h(·) is the hazard function (failure rate) of Xi and TN(t−) is the time of last

event occurrence.
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Example 1: consider customers arriving at a service station, assuming that cus-

tomers come randomly. Then the arrivals of the customers are renewal events.

Example 2: consider a device placed in service that eventually fails. It is replaced

by a device of the same type and the process is repeated. Assume that the replacement

is immediate. Then the times for the failures are the renewal events.

Renewal processes have a very rich and interesting mathematical structure and

can be used as a foundation for building more realistic models. The modulated

renewal models (Cox 1972b, Lawless 2003a) assume that the intensity function given

a covariate process w(t) and baseline hazard function h0(·) is of the form

φ(t|H(t)) = h0(t− TN(t−))exp(β′w(t)). (1.9)

The covariate process can include fixed effects and components of prior event his-

tory such as gap times and number of events. In that case, the gap times are not

identically distributed. Standard methods for the Cox survival model can be used to

obtain inferences. A more general framework is formulated through the sequence of

conditional distributions for the gap times

Fj(x|x(j−1),wj) = Pr(Xj < x|x(j−1)) (1.10)

where x(j−1) = (x1, . . . , xj−1)′ and wj is the vector of covariates associated with the

jth gap time. The general framework allows Xj, j = 1, 2, . . . to depend on previous

gap times. The marginal distributions of the gap times, conditional on covariates but

not on previous gap times are often of interest to analysts.

Multi-state process and effective age process

In absence of covariates, direct extensions of renewal process and Poisson process

include the multi-state processes. The multi-state extension of a renewal process

assumes

φ(t|H(t)) = hk(t− TN(t−)), t > 0, N(t−) = k. (1.11)
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The distributions of the gap times are hence non-identical. Similarly, the multi-state

extension of a Poisson process assumes

φ(t|H(t)) = hk(t), t > 0, N(t−) = k (1.12)

where the intensity function depends on the state occupied and the time since the

start of the process.

For repairable systems, a renewal process implies that all repairs bring the system

to a “good as new” state (system’s effective age is reset to zero) and a Poisson process

assumes that all repairs bring the system to a “good as old” state (system’s effective

age is set to the time right before the repair/failure). Both processes introduce the

notion of “effective age” of the system after each repair. Let ε(t) be the effective age

of an event process and assume that the intensity function is directly related to the

effective age through φ(t|H(t)) = h(ε(t)). Therefore, ε(t) = t − TN(t−) (backward

occurrence time) for renewal processes and ε(t) = t for Poisson processes. More

general effective age processes have been studied by Kijima (1989), Dorado, Hollander,

and Sethuraman (1997), Peña et al. (2007), and others.

Kijima models define a class of effective age processes by assuming ε(t) = ε(TN(t−))+

t− TN(t−) where ε(ti) = ε(ti−1) + (ti− ti−1)q (Kijima type I) or ε(ti) = (ε(ti−1) + ti−

ti−1)q (Kijima type II). Here q is a positive scalar describing the effectivenesses of the

repairs. When q equals zero, both types imply renewal processes; when q equals one,

both types imply Poisson processes. The effective age characterizes a spectrum of

effectivenesses of the interventions and hence is very flexible in modeling the depen-

dences among the events. In Chapter 3, I propose a Bayesian semi-parametric model

for recurrent events data by modeling q as a function of some covariates.
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Mean cumulative function

A useful tool to examine the rate of occurrence of events is the mean cumulative

function (MCF) for N(t):

M(t) = E{N(t)}. (1.13)

A nonparametric estimator for M(t) is proposed by Nelson (1995) and examined by

many others.

Let I(A) be indicator function which takes 1 if A is true and 0 otherwise. Define

Y (t) = I(process is observed at time t). When a subject is observed within time

period [τ0, τ ], then Y (t) = I(τ0 ≤ t ≤ τ). Supposem subjects are under investigation.

Let dN̄·(s) = ∑m
i=1 Yi(s)dNi(s) be the total number of events observed over [s, s+ ds]

and Y·(s) = ∑m
i=1 Yi(s) be the total number of subjects at risk over [s, s+ds]. Assume k

systems are mutually independent and the termination times have random censoring,

independent of the event processes. Further we assume that mean cumulative function

M(t) exists and is continuous. An unbiased estimator, proposed by Nelson (1995) is

M̂(t) =
∑

h:t(h)≤t

dN̄·(t(h))
Y·(t(h))

. (1.14)

Spatial survival analysis

Environmental and epidemiological life-time data often involve spatially correlated

subjects, since geographically close subjects tend to be exposed to similar environ-

mental and social conditions. The spatial dependence needs to be taken into account

into the analysis since it may affect inferences on other model parameters, see Cressie

(1993). The spatial correlation pattern itself may also be of interest, in addition

to inferential tasks on describing the relationship between the survivorship and the

covariates (demographic information, treatments, disease stage and etc.) and esti-

mating the survival/hazard function.
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Example 1 (East Boston asthma data, Li and Lin 2006): a questionnaire data

for subjects enrolled at community health clinics where age at onset of childhood

asthma (response), low respiratory index, maternal asthma status, and maternal

cotinine levels were recorded. Since asthma is believed to be strongly associated with

environmental triggers and children living adjacent locations might be exposed to

similar physical and social environments, their ages at onset of childhood asthma are

likely to have spatial dependence.

Example 2 (South Carolina prostate cancer registration data): a registration data

for prostate cancer patients where time of death since diagnoses with prostate can-

cer (response), age, race, marital status, grade of tumor, SEER summary stage were

recorded. Since cancer patients’ survival is affected by treatment conditions (hospi-

tal), income levels, and some other environmental and social factors, their survival

times are likely to be subject to spatial dependence.

The relationships between an individual’s survival and observed risk factors are

quantified through basic survival models. The spatial dependence is typically incor-

porated into the model through spatial frailties (Li and Ryan 2002, Hennerfeind et

al. 2006). More recently, Li and Lin (2006) proposed a marginal approach through

normally transformed survival functions. The following sections will briefly present

the aforementioned models.

Basic survival models

Commonly seen survival models include the proportional hazards model (PH) (Cox,

1972) and the accelerated failure time (AFT) (Kalbfleisch and Prentice 2002). There

is also increasing attention given to the accelerated hazards model (AH) (Chen and

Wang 2000) and the extended hazard model (EH) (Etezadi-Amoli and Ciampi, 1987;

Chen and Jewell, 2001).
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Denote the covariate vector as w. The PH model assumes

h(t|w) = h0(t)exp(β′w), (1.15)

where β describes the covariates’ effects. The PH model parameterizes the treat-

ment’s effect as a constant of proportionality between the hazard functions. The

model parameter β can be estimated by maximizing the partial likelihood and asymp-

totic properties of the estimators have been developed (Anderson and Gill 1982). The

model can also be fitted using Bayesian semiparametric methods. For example, as-

suming the baseline hazard h0(·) to be piecewise constant, or the cumulative hazard

function to be a gamma process, or the density corresponding to h0(·) to be placed

with a Dirichlet process prior. Bayesian inferences for both β and h0(·) can be easily

obtained through MCMC iterations. Ibrahim et al. (2001) gives a comprehensive

review for the aforementioned Bayesian semiparametric models.

The AFT model provides an direct extension of classic linear models. Denote

Y = log(T ). The AFT model assumes a linear relationship between Y and covariate

vector w,

Y = µ+ β′w + σε, (1.16)

where ε is an error term and σ is a scalar. In terms of the hazard function of T , this

can be expressed as

h(t|w) = h0(teβ′w)exp(β′w). (1.17)

Tsiatis (1990) proposed a class of linear rank estimates for estimating β. Jin et al.

(2003) provided simple and reliable methods for implementing the aforementioned

rank estimators. Christensen and Johnson (1988) gave a semi-Bayesian analysis of

the model where the error term is assigned a Dirichlet process prior (Ferguson 1973).

Walker and Mallick (1999) proposed a Bayesian semiparametric approach for fitting

the AFT model where the error distribution is assigned a Polya tree prior (Lavine

1992). More recently, Zeng and Lin (2007) proposed an approximate nonparametric
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maximum likelihood method by by maximizing a kernel-smoothed profile likelihood

function. When the covariates are time-dependent and possibly with measurement

errors, Tseng et al. (2005) proposed a joint modeling approach.

Both the PH model and the AFT model assume differing hazard functions at time

zero for different covariates. Instead, the AH model quantifies the relative hazard

through time progression in the form of

h(t|w) = h0(teβ′w). (1.18)

A general class of models which include the above three models as subclasses is the

EH model where the relationship between individual hazard and baseline hazard is

specified as

h(t|w) = h0(teβ′w)exp(γ ′w). (1.19)

The parameter β describes the relative hazard progressions and γ characterizes the

relative hazard after adjusting for the different progressions. The EH model can be

used to compare the three subclasses of models. Chapter 4 gives a extensive review

of methods in literature for fitting the EH model and also presents my method in a

Bayesian semi-parametric framework.

Spatial correlation

Spatial data records the location for each subject. Depending on how the locations are

documented, the spatial data can be divided into categories and different categories

may have quite distinguished methodologies or similar methods but with some modi-

fications. Two main types of data are geostatistical (point-referenced) data, where the

locations vary continuously over a subset of a Euclidean space, and areal data, where

the locations are finite number of areal units with well-defined boundaries. Suppose

s is either a spatial index for m areal units, i.e. s ∈ {1, . . . ,m}, or an exact spatial

coordinate si = (xi, yi), for example, longitude and latitude. Let D be the set of areal
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units or the finite array of sites. Assume {Y (s), s ∈ D} to be a spatial stochastic

process. Commonly used processes include stationary Gaussian random field (GRF),

Markov random fields (MRF), and more recently proposed two dimensional tensor

product P-spline priors (Lang and Brezger 2004, Hennerfeind et al. 2006). GRF and

two dimensional P-spline priors are for geostatistical data. MRF, e.g.the conditional

autoregressive prior (CAR), is widely used for areal data.

MRF priors assume the spatial effect of an area is based on its “neighbors”. Con-

sider the spatial process Y = (Y1, . . . , Ym) defined on the lattice D = {1, . . . ,m}. In

general, Y is characterized by its joint distribution. Define N(s) to be the collection

of all other areal units such that

p(Ys|Y−s) = p(Ys|YN(s)), s = 1, . . . ,m

where p(Ys|·) denotes a conditional distribution for Ys, YN(s) = {Yj, j ∈ N(s)}, and

Y−s = (Y1, . . . , Ys−1, Ys+1, . . . , Ym). When the conditional probablities define the joint

probablity of Y, the process Y is called a Markov random field. An illustration of

an MRF is the Conditional autoregressive model (CAR) model for continuous data.

The CAR model assumes the conditional distributions p(Ys|Y−s) are Gaussian with

mean and variance

E(Ys|Y−s) = 1
ds

∑
j∈N(s)

Yj,

Var(Ys|Y−s) = τ 2/ds,

where ds is the number of neighbors of area unit s and τ 2 is the variance parameter

which controls the amount of spatial smoothness. The Markov-type property in space

is defined in terms of the neighborhood N(s).

A GRF assumes Y (s) to have mean µ and variance τ 2, and use a isotropic covari-

ance function where cov(Y (s), Y (s′)) = C(||s − s′||) with || · || being the Euclidean

distance. For a finite array Y = (Y (s1), . . . , Y (sn)), the prior for Y can be expressed
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as

p(Y) ∝ exp{−Y′KY/2}

with K = C−1 where Cij = C(||si−sj||). A typical choice in practice for the function

C(·) is the Matèrn family of covariance functions, which is given by

C(h) =


σ2

2ν−1Γ(ν)(2ζ
√
vh)vKv(2ζ

√
νh), if h > 0,

0, otherwise,

where ζ, ν, σ2 are parameters, Γ(·) is the conventional Gamma function, and Kv(·)

is the modified Bessel function of oder ν. Here ν is the parameter controlling the

smoothness of the realized random field, ζ is a spatial scale parameter controlling how

fast the covariances die out, and σ2 is the variance of Y (s). When ν = 3/2, C(h) =

σ2(1 + ζh)exp(−ζh). Note that the dimension of the penalty matrix K corresponds

to the number of distinct locations. When the number of locations is large, the

computation is very heavily burdened. To reduce this computational burden, a “low-

rank” kriging approximation using a representive subset of knots obtained from a

space-filling algorithm have been given by Kammann and Wand (2003) and applied

for spatial survival models in Kneib and Fahrmeir (2006).

A two dimensional P-spline modeling approach assumes that the spatial process

Y (s) can be approximated by the tensor product of one-dimensional B-splines, that

is,

Y (s) = Y (xs, ys) =
d1∑

m1=1

d2∑
m2=1

βspatm1m2Bm1(xs)Bm2(ys),

where βspat = (βspat11 , . . . , βspat1d2 , . . . , β
spat
d11 , . . . , β

spat
d1d2) are random B-spline coefficients,

Bm1(·) and Bm2(·) are B-spline basis functions. MRF priors for areal data can be used

to construct priors for βspat. For example, a prior based on four nearest neighbors

can be defined by

βspatm1m2|· ∼ N

(
1
4(βspatm1−1,m2 + βspatm1+1,m2 + βspatm1,m2−1 + βspatm1,m2+1), τ

2

4

)
.
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Two dimensional P-splines give a smooth surface for the spatial effect and MRF

allows rather heterogenic neighbors. A choice between the two depends on the char-

acteristics of the spatial effect.

Assume fspat(si) to be a (structured) spatial effect for individual i. A typical

extension of PH model to the spatial case assume

λi(t) = λ0(t)exp(β′wi + fspat(si)). (1.20)

For geo-statistical data, fspat(si) = fspat(xsi , ysi), and for areal data fspat(si) = βspats

where si = s. Let r1, . . . , rM be the distinct values of {si, i = 1, . . . , n}. Assume that

the censoring time is independent of the failure random variable. The likelihood for

observing {ti,wi, si, δi}ni=1 is

L =
∫ n∏

i=1
[λi(ti|r)]δi Si(ti|r)p(r)dr

where r = (r1, . . . , rM) and Si(·) is the survival function corresponding to λi(·). Since

the integral in evaluating the full likelihood is analytically intractable, simulation

methods are often used, including direct Monte Carlo approximation by sampling r

from p(r) for an equivalent marginal likelihood based on ranks (Li and Ryan 2002),

and likelihood augmentation by updating r through MCMC iterations (Banerjee et

al. 2003, Hennerfeind et al. 2006). Approximation approach has been very limited

for spatial survival data. Laplace approximation for the marginal rank likelihood

was used in Li and Ryan (2002). As the dimension of r gets high, The computation

burden for the simulation based methods is heavy. More recently, Martino et al.

(2011) used approximate Bayesian inference for survival models based on integrated

nested Laplace approximations (INLA).

Very few marginal approaches exist in the literature. Li and Lin (2006) proposed a

class of normal transformation models assuming PH for the marginal survival model.

Compared to frailty approaches, marginal approaches allow population-averaged in-

terpretation for the regression coefficients. Chapter 4 introduces an extension to Li
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and Lin (2006) by allowing the basic model to be the EH model and accounting for

the spatial correlation implied by a large lattice data set.

B-splines

B-splines are widely used for curve-fitting. A B-spline basis function Bj,K(t)is a

piece-wise polynomial function of t and of given degree K. It is defined over a range

tj ≤ t ≤ tj+K+2. The points where t = ti are known as knots, joining the pieces of

polynomial functions together. A B-spline is a continuous function at the knots and

its derivatives are also continuous up to the derivative of order K−1 at distinct knots.

Any spline function of given degree K, can be expressed as a linear combination of

B-splines of that degree, i.e. (t − τ)K−1 = ∑
j=1 bjBj,K(t) where bj, j = 1, . . . , are

B-spline coefficients. Expressions for B-splines can be derived by means of a recursive

formula:

Bj,0(t) =


1 if tj ≤ t < tj+1

0 otherwise

Bi,K(t) = t− ti
ti+K−1 − ti

Bi,K−1(t) + ti+K − t
ti+K − ti+1

Bi+1,K−1(t).

Consider the regression of m data points (xi, yi) assuming E(Y ) = ∑J
j=1 bjBj,K(x).

The least squares of the objective function to minimize is S = ∑m
i=1{yi−

∑J
j=1 bjBj,K(xi)}2.

As the number of knots increases, the fitted curve tends to show more variation than

is justified by the data. It is common to introduce a penalty on the fitted curve.

Eilers and Marx (1996) proposed a penalty method on the B-spline coefficients under

which the objective function is

S =
m∑
i=1
{yi −

J∑
j=1

bjBj,K(xi)}2 + λ
J∑

j=k+1
(4kbj)2

where k is the order of penalty, λ is the smoothing parameter, 4bj = bj − bj−1, and

4kbj = 4k−1bj−4k−1bj−1. It is typical to use first-order and second-order penalties.
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Lang and Brezger (2004) proposed a Bayesian version of the penalized B-spline by

introducing a structured prior distribution for b = (b1, . . . , bJ). Let D1 be a (J−1)×J

matrix and D2 be a (J − 2)× J matrix with entries specified as

D1 =



−1 1

−1 1

· · ·

−1 1


; D2 =



−1 2 −1

−1 2 −1

· · ·

−1 2 −1


.

The prior equivalent to k-order penalty (k = 1, 2) assumes

b|τ 2 ∝ exp
(
− 1

2τ 2 b′(D′kDk)b
)

where τ 2 controls the amount of smoothness. Full Bayesian inference also consider

hyper-priors on τ 2. The joint distribution is improper as the rank of D′kDk is k − 1.

The joint distribution for the first-order penalty also implies bj|b−j ∼ N(1
2(bj−1 +

bj+1), τ2

2 ) where b−j = (b1, . . . , bj−1, bj+1, . . . , bJ).
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Chapter 2

A Bayesian Nonparametric Test for Minimal

Repair

The paper develops a Bayesian nonparametric reliability model for recurrent events

where failure and truncated time-to-failure density shape is regressed on past main-

tenance decisions: perfect repair and minimal repair. By comparing the system

interfailure lifetime distributions after minimal and perfect repair, we are able to test

the minimal repair assumption of “good as old.” Interfailure hazard functions after

perfect and minimal repairs are estimated, shedding light on departures from minimal

repair. The method is illustrated both on simulated data as well as failure time data

from air-conditioning units at the South Texas Nuclear Operating Company near Bay

City, Texas. This article has supplementary material online.

Keywords: Effective age; Repairable system; Tailfree process; Truncated data.

2.1 Introduction

Repairable systems have been widely studied in the reliability literature. Systems

fail and upon each failure, a system gets repaired. The distribution of interfailure

times between system failures is commonly of interest. In general, recurrent event

modeling methods can be divided into categories based on the type of maintenance a

The content in this chapter is a reprint by permission of Taylor & Francis LLC for “ Li Li,
Timothy Hanson, Paul Damien, and Elmira Popova. (2014+). A Bayesian nonparametric test for
minimal repair. Technometrics ”.
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system receives. Renewal processes are commonly used if all the maintenance repairs

bring the system to a “good as new” state (commonly known as perfect repair).

One example of this kind of repair would be a complete overhaul of the system.

Non-homogeneous Poisson processes are used if all repairs bring the system to the

“good as old” state (commonly known as minimal repair), e.g., replacing a failed

sub-component of a system. Some authors have proposed models that allow for a

combination of perfect and minimal repairs, see Block et al. (1985) and Whitaker

and Samaniego (1989). However, the basic assumption of a consistently “minimal”

repair is questionable; usually several types of maintenance, with varying degrees of

repair, are undertaken throughout the lifetime of the system. Kijima (1989), proposes

a general model that includes perfect, minimal, and in-between repairs by introducing

the “effective age” of the system after each repair, essentially measuring how successful

the repair was. Following Kijima (1989), Dorado, Hollander, and Sethuraman (1997),

allow for repairs of varying degree by including so-called “life supplements” – numbers

between zero and one indicating the degree of the repair between perfect and minimal

– and assume the life supplements are known. Recently, Veber et al. (2008) assume

one life supplement that is unknown, i.e. each repair reduces the effective age of

the system by the same fraction q, and propose an EM-algorithm to estimate q and

the unknown failure distribution F . As an extension to a common q, Rigdon and

Pan (2009) allow the repair effectiveness parameter to vary from system to system.

Presnell et al. (1994) proposed a test for the minimal repair assumption in a particular

model that Block et al. (1985) propose; if the null hypothesis where minimal repair

assumption holds is rejected, the question remains as to whether “minimal repair”

brings the system better or worse than minimal; in many application scenarios this

distinction is crucial. If one ignores maintenance decisions, Cooper et al. (2006) point

out that decisions based on the incorrect assumption of minimal repairs can lead to a

so-called “spiral down” effect, where system reliability gets worse than the predicted
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level after repair cycles (i.e. more failures than predicted); this happens because the

assumed minimal repairs are actually often worse than “good as old”.

Consider a brand new system; denote the cumulative distribution function for

the first failure s as F0(s). After a perfect repair at failure time s, which sets the

system clock back to zero, the distribution governing the next failure is F0(t − s),

where t > s. A minimal repair brings the system to the exact state it was in right

before failure; this implies the intensity function, formally defined below in (2.1),

does not change after a minimal repair. After successive minimal repairs, if a minimal

repair is newly performed at failure time s (time since new condition), the cumulative

distribution function for the next failure is F0, but truncated to be larger than s,

i.e. [F0(t) − F0(s)]/S0(s), where S0(s) = 1 − F0(s) is the reliability (also termed

survival) function and t > s. We propose to relax this assumption by allowing the

intensity to change after the minimal repair: the distribution for the next failure is

instead [F1(t)−F1(s)]/S1(s). The assumption of a static intensity function is given by

H0 : F0 = F1, providing an intuitive test of the minimal repair assumption. If H0 is

rejected in favor of H1 : F0 6= F1, estimated hazard functions h0(t) = f0(t)/S0(t) and

h1(t) = f1(t)/S1(t) enable us to find when system performs actually worse (or better)

than the expected condition under the minimal repair assumption. Our framework

can be easily generalized to include known life supplements (as in Dorado et al. 1997)

and subsequently test for this assumption.

The hypothesis testing in this paper involves two unknown distributions. A para-

metric approach assumes particular distribution families for F0 and F1, e.g. Weibull

is commonly used for non-homogeneous Poisson or renewal process models. We pro-

pose a Bayesian nonparametric model that generalizes the Weibull assumption on F0

and F1, termed a ‘tailfree prior.’ The tailfree approach we use augments the stan-

dard Weibull family indexed by θ with additional parameters {π(ε)} that change the

shape of the Weibull density in successive layers. These additional parameters add
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flexibility beyond the Weibull shape, much like adding detail to an initially washed

canvas; each new layer or ‘level’ allows more refined detail to be accommodated. The

Bayesian approach simply places a prior on the additional parameters {π(ε)}.

In general, Bayesian nonparametric methods model distributions as random cumu-

lative distribution functions (CDFs) F (s), either directly or indirectly (e.g. through

the hazard). Technically, a random CDF F (s) is a stochastic process indexed by s,

so {F (s) : s > 0} describes a random function from R+ to [0, 1], and for any fixed s,

F (s) is a random variable. These processes include the Dirichlet process (Ferguson

1973), Polya tree priors (Lavine 1992), Dirichlet process mixtures (Escobar and West

1995), and neutral to the right processes (Ferguson and Phadia 1979). Taddy and

Kottas (2012) use Dirichlet process mixtures for the interfailure density in Poisson

process models. Priors on the space of cumulative hazard functions include gamma

processes, weighted gamma processes, beta processes; see Lo (1992), Kuo and Ghosh

(1997) and Ishwaran and James (2004). Often, the random CDF F (s) is centered

at a parametric distribution Gθ in the sense that E{F (s)} = Gθ(s) for all s > 0;

i.e. Gθ is the ‘prior mean’ of F . Our proposed framework uses tailfree priors (Fabius

1964, Ferguson 1974, Jara and Hanson 2011) to model F centered at the Weibull

family, E{F (s)} = 1 − e−(s/γ)α given (α, γ), but allows for substantial data-driven

deviations from Weibull. Our approach naturally tests whether Weibull is adequate,

as well as incorporating maintenances where no failure has actually occurred (i.e.

censored failures). Few existing nonparametric approaches make use of information

from censored system failure times, although in practice, maintenance schedules are

common.

The proposed estimation procedure is applied to historical data from the South

Texas project nuclear operating company located in Bay city, Texas. The system

of interest is the essential chillers which is a group of six 300-ton air conditioners, 3

for each nuclear reactor unit. They provide chilled water for air handling units to

20



provide a suitable environment for personnel and equipment located in the electrical

auxiliary building, mechanical auxiliary building, and fuel handling building. An es-

sential chiller provides chilled water for the cooling coils of various safety related air

handling units during normal, faulted and upset conditions. All three chilled water

system trains are automatically started up if particular emergency situations are de-

tected, such as safety injection signal, loss of offsite power from the switchyard, or

a combination of both, to supply cooling to many essential safety systems. Those

air conditioners are repairable systems. Maintenances to the air conditioners include

replacement of subcomponents (oil pump, vane controller, solenoid valves, etc.) in

response to failures, and overhauls, typically upon inspection, which involve a major

rework on parts, e.g. compressor vane, and renewing soft materials (gaskets, refrig-

erant, lubrication – grease, oil) when excessive wear or other degraded conditions are

noted. In our analysis, overhauls are categorized into perfect repairs while replace-

ment of subcomponents are grouped into minimal repairs. For repairs that are not

in response to a failure, yielding right-censored failure times, we do not differentiate

scheduled repairs and responses to apparent degradation (but not failure), and fur-

ther assume that the times for those repairs are independent of the system failure

processes. The data set is comprised of two groups of observations for the two nu-

clear reactor units with the first group of 1274 events and the second group of 1092

events. All air conditioners are assumed to work independently. Each observation

consists of an event time, associated maintenance decision, and indicator of censoring

for whether a failure occurred at the event time, i.e. (ti, di, δi). Most minimal repairs

were in response to failure and perfect repairs were performed without an accom-

panying failure (Table 2.1). It is assumed in this data analysis that those perfect

repairs bring the system to the “good as new” condition and our main interest is that

whether those minimal repairs bring the system to the “good as old” state.

Section 2 describes the model, introduces tailfree priors, and outlines the Markov
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Table 2.1: Counts of perfect/minimal by response to “failure” / “censored” for the
air conditioners.

Failure Censored
Perfect 86 1175
Minimal 1085 14

chain Monte Carlo (MCMC) algorithm used to fit the model. Section 3 presents sim-

ulation results for testing the minimal repair assumption and accompanying density

estimation. Section 4 applies the method to the South Texas project data. Section 5

concludes the paper with a discussion.

2.2 Model development

Consider a general repairable system framework: up to the present time tmax we

observe a series of repairs and maintenance decisions made at each repair. The times

for repairs are recorded as 0 = t0 < t1 < t2 < · · · < tn = tmax. The corresponding

repair at event time ti is denoted as di with di = 1 if minimal repair was performed

and di = 0 if perfect repair was performed; we assume d0 = 0. Denote the last perfect

repair time prior to decision di as t∗i = max{tj : j < i, dj = 0}. If maintenance

(random or planned) is performed at time ti without an accompanying failure, the

failure time stemming from the previous decision is censored, indicated by δi = 0 and

1 otherwise. For simplicity, we assume that δi is independent of the failure process.

Since repairs must occur after failures, and can also occur without a failure event,

the set of failure times is a subset of {t1, . . . , tn}. Full data are D = {(ti, δi, di)}ni=1.

For data observed over the window [0, tmax], the event time tn = tmax is the time at

which data collection stops and δn = 0. We assume that maintenance decisions are

observable where perfect repairs bring the system to “good as new” state and minimal

repairs otherwise. Furthermore we assume that the time for repair is negligible, i.e.
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there is no “down” time during the repair.

Let the counting process {N(t), t ≥ 0} record the cumulative number of failures

over time and H(t) = {N(s) : 0 ≤ s < t} denote the history of the process at time t.

Then the intensity function is defined as

φ(t|H(t)) = lim
4→0+

Pr{N(t+4)−N(t) = 1|H(t)}
4

. (2.1)

The intensity function describes the instantaneous probability of a failure occurring

at t, conditioning on the process history. Let F0(t) be the probability that the system

lasts less than t time units since a perfect repair and S0(t) = 1−F0(t) be the survival

probability; denote the density as f0(t) and hazard as h0(t). A previous perfect

repair di−1 = 0 brings the system to “good as new” status, i.e. resets the system

clock to zero. A failure ti right after perfect repair di−1 = 0 at ti−1 has likelihood

contribution f0(ti − ti−1). If instead, a minimal repair di−1 = 1 restores the system

to the exact state it was in right before failure at ti−1, then the system has aged

ti− t∗i units since the last perfect repair, truncated at ti−1− t∗i , yielding the likelihood

contribution f0(ti − t∗i )/S0(ti−1 − t∗i ). This above assumption is commonly referred

as “minimal repair assumption” and it implies that the underlying intensity function

for the recurrent events does not change after minimal repairs, φ(t|H(t)) = h0(t− t∗i )

over [t∗i , ti), regardless of the minimal repairs preceding ti. In our framework, we do

not make the minimal repair assumption, and simply allow the intensity function to

change after the first minimal repair on the renewed system. The intensity function is

then φ(t|H(t)) = h1(t−t∗i ), for hazard h1(t) = f1(t)/S1(t) and S1(t) =
∫∞
t f1(s)ds, and

the likelihood contribution is f1(ti− t∗i )/S1(ti−1− t∗i ). Note that subsequent minimal

repairs do not further change the intensity function. The resulting model can be

viewed as a generalization to a two-state Poisson process. Given substantially more

data, a multi-state Poisson process (Cook and Lawless 2007) could be fit, assuming

φ(t|H(t)) = hk(t), N(t−) = k, k ∈ {0, 1, 2, . . . } following each perfect repair.
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Denote H0 : F0 = F1 as the hypothesis assuming the minimal repair assumption

holds and H1 : F0 6= F1 as the hypothesis allowing departure from this assumption.

Under H0 we put one tailfree prior (to be elaborated in Section 2.1) on F0; under H1

we place two conditionally independent priors on F0 and F1. Under H0 the likelihood

is

L(f0) =
n∏
i=1

[
f0(ti − ti−1)δiS0(ti − ti−1)1−δi

]1−di−1
[
f0(ti − t∗i )δiS0(ti − t∗i )1−δi

S0(ti−1 − t∗i )

]di−1

.

(2.2)

Under H1 the likelihood is

L(f0, f1) =
n∏
i=1

[
f0(ti − ti−1)δiS0(ti − ti−1)1−δi

]1−di−1
[
f1(ti − t∗i )δiS1(ti − t∗i )1−δi

S1(ti−1 − t∗i )

]di−1

.

(2.3)

In terms of interfailure hazard functions h0, the likelihood under H1 is

L(h0, h1) =
n∏
i=1

[
h0(ti − ti−1)δiexp

{
−
∫ ti−ti−1

0
h0(s)ds

}]1−di−1

×
[
h1(ti − t∗i )δiexp

{
−
∫ ti

ti−1
h1(s− t∗i )ds

}]di−1

.

It is straightforward to interpret F0 as the failure time distribution of a new system.

Let t∗ be the time at which the last perfect repair was made. Since our alternative

model assumes φ(t|H(t)) = h1(t−t∗) after minimal repairs, an estimate of h1 averages

the intensities over time after the first minimal repair in each renewed cycle. When

the system performs better (or worse) than an expected level at time t under the

minimal repair assumption, then h1(t) will be lower (higher) than h0(t). We perform

a simulation in Section 3 to illustrate this point.

Tailfree process priors on F0 and F1

We place tailfree process priors on F0 and F1. The use of the term ‘tailfree’ dates to

Freedman (1963), who considered conditions for consistency of Bayesian probability

measures on the positive integers; the main condition has to do with the shape of the

24



tail of the density, i.e. the integers stretching off to infinity. Fabius (1964) extended

Freedman’s notion of ‘tailfree’ to continuous measures with densities; however the

requirements for consistency no longer deal with the tails of the distribution. The

construction that follows is a modest reworking of Fabius (1964).

Let Gθ denote the Weibull cumulative distribution function parameterized as

Gθ(t) = 1 − exp{−(t/γ)α} for t ≥ 0, where θ = (log(α), log(γ))′. Let gθ(t) be

the corresponding density. The tailfree prior augments the Weibull family indexed

by θ with additional parameters {π(ε)} (ε is a binary number, described below)

that change the shape of the Weibull density on successive levels; this ‘more flexible

Weibull’ CDF is denoted F (t). Before delving into the definition, we can get the

flavor of the approach through a preliminary look at Figure 2.1. Panel (a) shows a

Weibull density for a particular θ; let T be drawn from this Weibull density. Panel

(b) adjusts the shape of the density by adding one parameter π(0) that changes the

probability of T being less than the median of the Weibull density from 0.5 to 0.45,

but leaves the shape of the density the same – this is the first level. Panels (c) and

(d) add two more parameters, π(00) and π(10) successively, that modify the shape

of the density on smaller sets in the second level, but leave the density shape the

same on these smaller sets. Panels (e), (f), and (g) add four more parameters on the

third level. The Bayesian approach simply places priors on the parameters {π(ε)}, in

addition to θ, yielding a random CDF F and corresponding density f . Let T ∼ F .

The prior is chosen so that, given θ, the probability PF (a < T < b) =
∫ b
a f(s)ds has

expectation
∫ b
a gθ(s)ds; for example E{F (s)} = Gθ(s) for any s > 0. In this sense,

the ‘prior mean’ of F is Gθ.

We now present a technical specification of the nonparametric prior. Let ε1 · · · εj

be a j-digit binary number where εi ∈ {0, 1} for i = 1, 2, . . . , j. Each ε = ε1 · · · εj

indexes a set Bθ(ε) ⊂ [0,∞). Following Lavine (1992), these sets are intervals

with endpoints that are quantiles of the centering family: if m is the base-10 rep-
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resentation of the binary number ε = ε1 · · · εj ∈ {0, 1}j, then Bθ(ε) is the in-

terval (G−1
θ (m/2j), G−1

θ ((m + 1)/2j)]. Note then that at each level j, the class

{Bθ(ε) : ε ∈ {0, 1}j} forms a partition of the positive reals and furthermore Bθ(ε) =

Bθ(ε0) ∪ Bθ(ε1). Figure 2.1(a) shows the first three partitions for a Weibull(4,4)

centering distribution, e.g. θ = (log(4), log(4)). Note that [0,∞) = Bθ(0) ∪ Bθ(1),

[0,∞) = Bθ(00)∪Bθ(01)∪Bθ(10)∪Bθ(11), etc. For a specific ε0, the parameter π(ε0)

approximately follows a beta(cj2, cj2) density where j is the number of digits in ε0;

more details are presented below. Walker et al. (1999) suggest thinking of a “...parti-

cle cascading through these partitions.” The particle, say T ∼ F , initially moves into

Bθ(0) with probability π(0) or into Bθ(1) with probability π(1) = 1 − π(0). From

then on, at any level j with index ε = ε1 · · · εj, if the particle is in Bθ(ε), it moves

into Bθ(ε0) with probability π(ε0) or into Bθ(ε1) with probability π(ε1) = 1−π(ε0).

When the particle finally makes its way into a set Bθ(ε1 · · · εJ) in the finest partition

at level J , it simply follows the base CDF Gθ restricted to Bθ(ε1 · · · εJ) – this does

not depend on the {π(ε)}. That is, for an interval (a, b) ⊂ Bθ(ε1 · · · εJ) and T ∼ F ,

P{a < T < b|T ∈ Bθ(ε1 · · · εJ)} =
∫ b
a gθ(s)ds∫

Bθ(ε1···εJ ) gθ(s)ds. (2.4)

The definition of a tailfree prior uses a binary partitioning tree. Although most

authors have used binary splits, other partitioning schemes could be implemented,

e.g. Mauldin, Sudderth, and Williams (1992).

If all of the conditional probabilities are equal to one-half, i.e. π(ε) = 0.5 for

all ε, then the density f(s) is simply gθ(s), the corresponding Weibull density. The

tailfree prior simply takes the expectation of these conditional probabilities to be one-

half, E{π(ε)} = 0.5 for all ε; then E{f(s)} = gθ(s). For a given set of conditional

probabilities {π(ε)} this construction builds a density f(s) that has jumps at the

quantiles of Gθ, G−1
θ (m/2J), and the values of {π(ε)} determine the jump size. Figure

2.1(a) takes all π(ε) = 0.5. Figure 2.1(b) then sets π(0) = 0.45. Figure 2.1(c)

further sets π(00) = 0.7, then Figure 2.1(d) sets π(10) = 0.6. Panels (e), (f), and
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(g) successively set π(000) = 0.8, π(010) = 0.7, and π(100) = 0.4 & π(110) = 0.55.

Already with only three levels, we obtain quite interesting possibilities. Typically, the

number of levels is higher, usually 5 ≤ J ≤ 8, allowing for more refined shapes. The

original Fabius (1964) construction deals with J = ∞. Figure (h) averages tailfree

densities which have these conditional probabilities over the prior α, γ ind.∼ N(4, 0.052),

yielding a smooth mixture of tailfree densities.

Tailfree prior densities are essentially a weighted average between a parametric

density and a histogram, with bin locations coming from the parametric density.

The histogram takes the shape of the parametric density over bin intervals, and

there are jumps at the bin endpoints as usual. By taking θ to be random, as in

Figure 2.1(h), the bin locations are ‘jittered’ or shifted, and the resulting density

is smoothed, and is in fact differentiable (Prop. 1; Hanson, 2006). The resulting

density model is similar to the ‘averaged shifted histogram’ of Scott (1985). However,

Scott’s approach does not make use of a parametric family. The tailfree density has

a pronounced nonparametric flavor where data are plentiful and unlike a Weibull

density (e.g. multimodal), but retains the shape of the centering Weibull density

where data are sparse and/or data approximately follow a Weibull distribution.

Define p = (p(1), . . . , p(2J))′ to be the vector of random probabilities of the 2J sets

in the finest partition at level J . Pairs of conditional probabilities {(π(ε0), π(ε1))}

are assumed to be mutually independent, implying

p(l + 1) = P{T ∈ Bθ(ε1 · · · εJ)} =
J∏
i=1

π(ε1 · · · εi), (2.5)

where ε1 · · · εJ is the base-2 representation of l, l = 0, . . . , 2J − 1. For example, say

J = 3. Then to obtain P{T ∈ Bθ(110)} one computes

P{T ∈ Bθ(110)} = P{T ∈ Bθ(110)|T ∈ Bθ(11)}P{T ∈ Bθ(11)|T ∈ Bθ(1)}

× P{T ∈ Bθ(1)}

= π(110)π(11)π(1).
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We require the survival function S(t) = 1 − F (t). Let T ∼ F . For a given t > 0

let tl and tr be the left and right endpoints of the partition interval at level J that

contains t. That is, tl < t < tr where tl = G−1
θ (m/2J), tr = G−1

θ ((m + 1)/2J), and

m is such that G−1
θ (m/2J) < t < G−1

θ ((m + 1)/2J). Then P (T > t) = P (t < T ≤

tr) + P (T > tr). Using (2.4) and (2.5), P (t < T ≤ tr) = pm
∫ tr
t gθ(s)ds/

∫ tr
tl
gθ(s)ds =

pm[Gθ(tr)−Gθ(t)]/2−J and P (T > tr) = ∑2J
j=sθ(t)+1 p(j) where sθ(t) = m = d2JGθ(t)e

and d·e is the ceiling function. These results imply that the survival function with

respect to F is

S(t) = 1− F (t) = p{sθ(t)}
{
sθ(t)− 2JGθ(t)

}
+

2J∑
l=sθ(t)+1

p(l), (2.6)

where p(l) is given by (2.5). By differentiating (2.6), the density with respect to F is

given by

f(t) =
2J∑
l=1

2Jp(l)gθ(t)IBθ{εJ (l−1)}(t) = 2Jp{sθ(t)}gθ(t), (2.7)

where εJ(i) is the binary representation ε1 · · · εJ of the integer i. Recall that Figure

2.1(b–g) plots the density (2.7) centered at Gθ =Weibull(4,4), J = 3, for different

sets of {π(ε)}.

Now introduce the subscript k to make clear we are defining two tailfree processes

Fk where k = 0, 1 for perfect and minimal repair, respectively. Let the random

variable λk(ε0) be the logit transformation of πk(ε0), i.e.

λk(ε0) = logit{πk(ε0)}. (2.8)

The priors on {(λ0(ε0), λ1(ε0))} are given by

λ0(ε0), λ1(ε0) ind.∼ N

(
0, 2
cρ(j)

)
, (2.9)

where j is the number of digits in ε0. The N(0, 2/cρ(j)) prior on λk(ε0) mimics a

beta(cρ(j), cρ(j)) prior for Polya tree conditional probabilities {πk(ε0)} (Jara and

Hanson, 2011). A common choice which we adopt is ρ(j) = j2. The parameter c
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(a)
1 6000 111001 110010 101011 100

00 1101 10

0 1

(b)
1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.5 0.50.5 0.5

0.45 0.55

(c)
1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.50.3 0.5

0.45 0.55

(d)
1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

(e)
1 60.8 0.50.2 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

(f)
1 60.8 0.50.2 0.50.7 0.50.3 0.5

0.7 0.40.3 0.6

0.45 0.55

(g)
1 60.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

(h)
1 60.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

Figure 2.1: (a) Weibull (α, γ) with α = 4 and γ = 4; (b–g) tailfree densities, centered
at (a) with conditional probabilities specified up to J = 3; (h) mixture of tailfree
processes assuming α, γ ind.∼ N(4, 0.052).

acts much like the precision in a Dirichlet process (Ferguson, 1973). As c → 0+,

E{Fk(·)} tends to the empirical CDF of the data (Hanson and Johnson 2002); as

c → ∞, all conditional probabilities πk(ε) go to 0.5 and hence Fk(t) → Gθk(t) with

probability one for all t > 0. We assign c a gamma prior c ∼ Γ(a, b); typically a = 10

or 5 and b = 1; motivation for these priors are provided in Hanson, Kottas, and

Branscum (2008) using the prior L1 distance between Fk and Gθk . For c ∼ Γ(5, 1)

the median L1 distance of the random tailfree density from the centering distribution

is 0.28 with 95% probability interval (0.11,0.76); for c ∼ Γ(10, 1) these values are
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0.19 and (0.08,0.51). So Γ(5, 1) typically allows about 30% more mass to be moved

than Γ(10, 1), as we would expect. The model under the alternative hypothesis H1 is

summarized in terms of interfailure times as

ti − ti−1|di−1 = 0 ind.∼ F0(·),

ti − t∗i |di−1 = 1 ind.∼ F1(·)
S1(ti−1 − t∗i )

,

F0|θ0, c ∼ TF J(c, ρ,Gθ0),

F1|θ1, c ∼ TF J(c, ρ,Gθ1),

where TF J(c, ρ,Gθk) is shorthand for the random tailfree Fk given through (2.6),

(2.7), (2.8) and (2.9) up to level J . The model under null hypothesis H0 simply

replaces F1 by F0 and θ1 by θ0 above. The two models are referred as M1 and M0

with respect to H1 and H0.

The model with a common Weibull centering distribution θ0 = θ1 is a linear

dependent tailfree process (Jara and Hanson, 2011) regressed on a binary predictor

(maintenance decisions), albeit with a likelihood involving truncated observations,

e.g. F1(·)/S1(ti−1 − t∗i ) for di−1 = 1 under H1. This model generalizes the Polya

tree in the same spirit as De Iorio et al. (2004) generalize the celebrated Dirichlet

process through an ANOVA-type structure. Under this model the eλ1(ε)−λ0(ε) are

interpreted as how the odds of failing in the time interval Bθ(ε) change from minimal

to perfect repair; this information can be useful for finding time intervals Bθ(ε) where

minimal repair fixes the problem in a manner substantially worse than F0 would

allow. Under the model where θ0 = θ1, if each pair of λ0(ε0), λ1(ε0) are assigned

identical and independent priors, then E{F0(t)} = E{F1(t)} = Gθ(t) for all t > 0

and hence the null model M0 is formally nested in the alternative model M1. From

many simulations (beyond what is included in this paper), allowing distinct θ0 and

θ1 increases discriminatory ability, but also inflates type I error.
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Testing H0 versus H1

As stated in the introduction, the test for the assumption of “minimal repair” is of

interest, and so it is important to choose a measure to compare the models. As

H0 is formally nested in H1, a likelihood-ratio type test could be considered, or a

Bayes factor (the Bayesian equivalent). However, computing the Bayes factor with

the truncated data likelihoods (2.2) and (2.3) is challenging and existing methods

are unstable (Hanson, 2006). Instead we consider an alternative measure, termed

the log pseudo-marginal likelihood (LPML) (Geisser and Eddy, 1979), a measure of

a model’s predictive ability. The LPML is easy to compute based on MCMC output

(Gelfand and Dey, 1994). By definition,

LPML =
n∑
i=1

log{fi(ti|t−i)}.

Here, fi(ti|t−i) is the predictive density for ti based on the remaining data t−i = {tj :

j 6= i}, fi(·|t−i), evaluated at ti. This is called the ith conditional predictive ordinate

(CPO) statistic, and measures how well ti is predicted from the remaining t−i through

the model. In our context, we compute the predictive density (δi = 1) or survival

(δi = 0) at ti based on the failure times, repair times and repair decisions during

[0; ti−1] and [ti+1, tmax], plus partial information during (ti−1, ti+1) that a certain type

of repair was performed at ti. The LPML simply aggregates the log of these. The

difference in LPML measures between H1 and H0 can be exponentiated giving the

pseudo Bayes factor BF10 for the two models. Common interpretations for Bayes

factors apply, e.g. 3 < BF10 < 20 indicates “positive” evidence toward H1; 20 <

BF10 < 150 indicates“strong” evidence and BF10 > 150 indicates “very strong”

evidence (Kass and Raftery, 1995). Under mild conditions the LPML converges to

the posterior score and so the pseudo Bayes factor is related to Aitkin’s posterior

Bayes factor (Aitkin, 1991) as well. In simulations we find the LPML to work well in

differentiating H1 from H0.

31



The LPML is approximated by

LPML = −
n∑
i=1

log
{

1
s

s∑
k=1

1
pi(ti|D, τ k)

}
, (2.10)

where pi is the likelihood contribution of event at time ti, D is the observed data and

(2.2) and (2.3) define the model under H0 and H1 respectively; {τ k, k = 1, 2, · · · , s}

are iterates fromMCMC outputs of all the parameters, i.e {λk
0,λ

k
1, c

k, k = 1, 2, · · · , s}

under H1.

Model fitting

Following the discussion at the end of Section 2.1, for the purposes of testing H0 :

F0 = F1 we suggest that F0 and F1 have the same prior mean Weibull distribution

in fitting M1; e.g. θ0 = θ1 = θ. In simulations, we fix θ0 = θ1 = θ̂, where θ̂ is the

maximum likelihood estimate assuming minimal repair holds and Weibull reliability,

i.e. F0(t) = F1(t) = Gθ(t) (the Weibull is obtained under the tailfree prior when

c → ∞). A similar practice is recommended by Berger and Guglielmi (2001) and

Hanson, Branscum, and Gardner (2008) in simpler situations.

Upon rejecting H0, we suggest refitting M1, allowing distinct θ0 and θ1. It is

known in the literature that fixing θ0 and θ1 results in “jumpy” densities as each of

f0 and f1 have discontinuities at each partition interval endpoint, as Figure 2.1 shows.

For the purposes of estimating the interfailure hazard functions ĥ0(t) and ĥ1(t) we

suggest an empirical Bayes approach: place normal priors on θ0 and θ1 derived from

their large sample asymptotic distributions under the underlying Weibull assumption

(c→∞):

θk
ind.∼ N2(θ̂k,Σk), (2.11)

where Σk is the large-sample covariance matrix under a frequentist Weibull fit (θ̂k and

Σk are easily obtained using optimization procedures in R or SAS); noninformative

priors (p(θk) ∝ 1) for θk can also be used. Placing priors on θ0 and θ1 smooths out
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the estimated density and hazard curves, yielding a mixture of tailfree processes for

F0 and F1.

MCMC computing requires full specification of the likelihoods and priors. The

likelihoods (2.2) and (2.3) under H0 and H1, are functions of f0 and (f0, f1) respec-

tively. Let E = {ε = ε1 · · · εj, j = 1, · · · , J − 1}. Conditioning on {πk(ε0)} for ε ∈ E ,

the densities (f0 and f1) and reliability functions (S0 and S1) are given by (2.7) and

(2.6) in terms of probability vectors pk, functions of πk(ε0) defined in (2.5). Note

that πk(ε0) is a function of λk through (2.8). The posterior under H1 is proportional

to

p(λ,θ0,θ1, c|D) ∝ L(f0, f1)p(θ0,θ1)Γ(c|a, b)
1∏

k=0

∏
ε∈E

N

(
λk(ε0)|0, 2

cj2

)
,

where λ = {λ0(ε0),λ1(ε0)}, L(f0, f1) is defined in equation (2.3) and p(θ0,θ1) are

product of independent priors for θ0 and θ1. The posterior under H0 is similar.

Parameters {λ,θ0,θ1} are updated using random-walk Metropolis–Hastings up-

dates (Tierney, 1994). Gaussian random-walk proposals are used for each element of

{λk(ε0) : k = 0, 1; ε ∈ E},

λk(ε0)∗ ∼ N(λk(ε0), vk(ε0)),

where λk(ε0)∗ is the latest accepted value for λk(ε0) and vk(ε0) is tuned to get accep-

tance rates in the 20% to 50% range. Similarly, θk ∼ N2(θ∗k, Vk) where Vk needs to be

tuned. We have found automatic tuning of vk(ε) and Vk to proceed quickly (Haario,

Saksman, and Tamminen, 2005). Specifically, let the sequence λ1
k(ε0), λ2

k(ε0), · · · be

the states of the Markov chain for λk(ε0). When deciding the t-th state λtk(ε0), we

sample λk(ε0)∗ ∼ N(λt−1
k (ε0), vtk(ε0)) with

vtk(ε0) =


v0(ε0), t < t0

sVar
{
λ1
k(ε0), · · · , λt−1

k (ε0)
}

+ s0, t > t0

where s is recommended to be 2.4, s0 is a small constant and v0
k(ε0) is an initial

variance of the proposal distribution. A similar automatic procedure applies to θk
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with V t
k being the empirical covariance matrix after t0. The parameter c is updated

through posterior

p(c|λ,θ,D) ∼ Γ

(a+ 2J − 1), b+
∑

ε1ε2···εj∈E

1∑
k=0

λk(ε1ε2 · · · εj)2j2/4

 .
FORTRAN 90 code for fitting the data analysis in Section 4 is included in the

on-line supplementary material for this paper.

2.3 Simulations

We conducted four simulations to see how well the pseudo Bayes factor can dis-

criminate between H0 and H1 and one simulation to illustrate the estimation of the

reliability functions. Simulation I involves a sequence of increasing departures of f1

from f0 according to our alternative model M1. Simulation II considers a sequence of

departures from H0 using the effective age models; details are presented in simulation

II. Simulation III investigates type I error. Simulation IV examines how the prior on c

affects the test. Simulation V estimates reliability functions F0 and F1. Sample sizes

for simulated data are the total number of interfailure times after perfect or minimal

repair. Each dataset is comprised of one third interfailure times after perfect repair

and two thirds interfailure times after minimal repair truncated from the accumulated

age since the most recent perfect repair. For simplicity, all repairs occur in response

to failures. For the hypothesis tests, the unknown distributions are assigned finite

tailfree priors with the following specifications. We fix θ = θ̂ for F0 under M0 and

θ0 = θ1 = θ̂ for F0, F1 under M1 where θ̂ is an estimate for θ under the Weibull null

model; θ0 and θ1 each contain the log of the Weibull shape and scale parameters;

the level of the partition tree is fixed at J = 5, and c is considered with prior Γ(5, 1)

for simulations I-III and priors Γ(5, 1) and Γ(10, 1) for simulation IV. Based on our

simulation experience, J = 5 is sufficient for the sample sizes in our simulations and

increasing J changes the LPML negligibly. For each dataset, we run 4000 MCMC
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iterations and use the last 3000 MCMC samples for inferences. We reject H0 in favor

of H1 if the LPML for H1 is greater than that for H0 by 3.5, otherwise we choose

H0. For estimating the reliability functions in simulation V, we place the empirical

Bayes priors as detailed in Section 2.3 on θ0 and θ1, and assume c ∼ Γ(10, 1). After

a burn-in of 10,000 iterates, 400,000 iterates were thinned to a sample of 4,000 for

inference.
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Figure 2.2: Left panel plots the hazard h0 (solid and thick line) and 8 choice for h1
(dashed and thin lines) versus time t for simulation I; right panel plots the intensity
of the system versus time t when failures occur at {3, 6, 9} for all q from 1 (solid and
thick line) and 0.2− 0.9 (dashed and thin lines) for simulation II.

Simulation I: Let W (w, α1, γ1, α2, γ2) be a mixture of two Weibull distributions

with weights w and 1−w, shape parameters α1, α2 and scale parameters γ1, γ2. Table

2.2 reports the results of simulation I testing H0 versus increasing departures H1

according to our alternative model; f0 = W (0.5, 2, 3, 2, 6), f1 = W (0.5, 2, 3, 2, γ2) with

nine densities corresponding to γ2 = {6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2}. The simulation

involves two sample sizes n = 200 or n = 500. For each condition, 200 datasets are

simulated. The hazard functions for f0 (solid thick line) and f1 (dashed thin lines)

are plotted in the left panel of Figure 2.2; Table 2.2 values are proportions rejecting

H0. The power is reasonably good in detecting this sequence of departures.
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Table 2.2: Type I error and power for testing H0 vs. H1 for simulation I; 6.0−2.0 are
nine values of γ2 in defining f1; tabled values are the proportion out of 200 replications
where H0 is rejected.

γ2 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0
Sample event
n = 200 0.00 0.01 0.04 0.14 0.39 0.58 0.85 0.94 0.96
n = 500 0.04 0.05 0.14 0.50 0.93 1.00 1.00 1.00 1.00

Simulation II: We use the notion of imperfect repairs and effective age to in-

troduce increasing departures from the minimal repair assumption but using our

proposed models M0 and M1 for hypothesis testing. Effective age modeling in relia-

bility has received a lot of attention since introduced by Kijima (1989). A spectrum

of imperfect repairs can be modeled through effective ages, generating event pro-

cesses which include renewal processes and Poisson processes as special cases. Fol-

lowing the notation introduced in Section 2.1, the times for repairs are recorded as

0 = t0 < t1 < t2 < · · · < tn = tmax. The repair at ti is denoted as di with di = 0

if perfect repair was performed and di = 1 otherwise. Define z(t) as the effective

age of the system at time t. We still assume perfect repairs reset the effective age to

zero but now repairs recorded as di = 1 multiply the effective age right before the

repair by a fraction q (known as Kijima type II model). That is, z(ti) = 0 if di = 0,

z(ti) = {z(ti−1) + ti − ti−1} q if di = 1 and z(t) = z(ti) + t− ti for ti < t < ti+1. This

is only one departure from the null model M0 that is different from our alternative

model M1 (Presnell et al. 1994). Note that q = 1 implies that the minimal repair as-

sumption holds and q < 1 indicates repairs being better than “good as old”. Suppose

F0 defines the cumulative distribution function of the first failure time for a system;

after repair at ti, the distribution for the time to next failure is F0(z(ti) + t)/S(z(ti)),

t > 0. In the following simulation, we examine the power of the proposed test for a

sequence of q using two sample sizes n = 200 or n = 500. For each condition, 200
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datasets are simulated.

Table 2.3 reports the results of testing H0 versus H1; q takes values from 1 to 0.2

by 0.1; f0 = Weibull(2, 4); the intensities for a system with failures at {3, 6, 9} are

plotted in the right panel of Figure 2.2; the solid thick line corresponds to q = 1 and

dashed lines correspond to q < 1 from 0.9 to 0.2; the tabled values are percentages

of times rejecting H0. Even though the Kijima departure is not in the realm of our

model, our test performs satisfactorily with power increasing to one as q gets small

for n = 500. According to additional simulations, not included here, the power of our

test increases when the slope of the hazard increases in the Kijima models.

Table 2.3: Type I error and power for testing H0 vs. H1 for simulation II; 0.2 − 1.0
represent nine choices of q and 1.0 represents no departure of minimal repair; tabled
values are the proportion out of 200 replications where H0 is rejected.

q 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
Sample event
n = 200 0.01 0.02 0.03 0.04 0.11 0.20 0.29 0.53 0.72
n = 500 0.03 0.04 0.06 0.21 0.53 0.81 0.94 0.99 1.00

Simulation III: We perform a simulation to investigate type I error using three

sample sizes n ∈ {1000, 1500, 2000}, and three choices for f0. Table 2.4 reports the

results of the third simulation based on 200 datasets where data are simulated only

from M0; the three densities are W (0.5, 2, 3, 2, 6), Weibull(2, 4), and Weibull(1, 4);

the tabled values are proportions rejecting H0. The type I errors appear to be stable

and are always less than 0.05 for these distributions and sample sizes. Tables 1 and

2 shows that the LPML cutoff of 3.5 may be conservative for smaller sample sizes.

Simulation IV: We also conduct a simulation to see how the prior on c affects the

test. 100 different data sets for each of three sample sizes n = 200, 500, 1000 (300

data sets total) were generated from model M0 with f0 = W (0.5, 2, 3, 2, 5) where the

minimal repair assumption holds, as well as model M1 where F0 and F1 are different
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Table 2.4: Type I error for testing H0 vs. H1 for simulation III; 1−3 represents three
choices of f0 described in the text.

Density type 1 2 3
Sample event
n = 1000 0.03 0.04 0.04
n = 1500 0.03 0.05 0.03
n = 2000 0.04 0.05 0.04

Table 2.5: Type I error and power for testing H0 vs. H1 with two sets of prior for
c for simulation IV; tabled values are the proportion out of 100 simulated data sets
where H0 is rejected.

Sample H0 : F0 = F1 H1 : F0 6= F1
event c ∼ Γ(5, 1) c ∼ Γ(10, 1) c ∼ Γ(5, 1) c ∼ Γ(10, 1)
n = 200 0.00 0.00 0.75 0.60
n = 500 0.00 0.00 0.81 0.70
n = 1000 0.05 0.02 1.00 1.00

with f0 = W (0.2, 2, 0.7, 2, 5), f1 = W (0.5, 2, 0.7, 2, 3). Now c is considered with two

priors, Γ(5, 1) and Γ(10, 1). Table 2.5 reports the results of testing H0 versus H1; the

tabled values are percentages of times rejecting H0. The Γ(5, 1) prior favors smaller

values of c, yielding more modeling flexibility, and hence increasing differentiability.

This effect is more obvious for smaller sample sizes.

Simulation V: The last simulation illustrates our approach by estimating reliability

functions after perfect and minimal repairs for three simulated data sets. One data

set of 1000 events was simulated from the above setting of M1. Two datasets of 1000

events were simulated from the Kijima type II effective age model with q = 0.2, 0.5 and

f0 = Weibull(2, 4). For the first dataset, the true reliability functions S0 and S1, and

hazards h0 and h1 are displayed in the left panels of Figure 2.3 with F0 plotted using

solid lines and F1 plotted using short-dashed lines. The estimated survival and hazard

(pointwise posterior means) are plotted in the right panels of Figure 2.3, along with
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Figure 2.3: Results of a simulated sample of n = 1000 events under H1; true (left) and
estimated (right) survival and hazard estimates versus time t; solid lines correspond
to F0 and short-dashed lines correspond to F1; long-dashed lines correspond to 95%
credible intervals.

the 95% credible intervals for the estimates (long-dashed lines); we can see that local

features of the distributions are well captured. For the other two datasets, we plot

the estimated hazard functions for h0 (solid black) and h1 (dashed black) in Figure

2.4, overlaid with intensities (dashed gray) of ten systems. We plot each intensity

function over time since the first minimal repair for the corresponding system. For

both datasets, our model’s h1 estimates essentially average the true intensities of the

ten systems. We can see a larger difference between h1 and h0 estimates for q = 0.2
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Figure 2.4: Results of two simulated samples of n = 1000 interfailure times under
Kijima type II model with q = 0.2 (left) and 0.5 (right); hazard estimates of h0 (solid
black) and h1 (dashed black) versus time t; dashed gray lines are intensities of ten
systems.

than that for q = 0.5, indicating better performances of system when q = 0.2.

The computing time for running the above simulations mainly depends on the

number of MCMC iterates, sample size and the level of the partition tree J . For

J = 5, 4000 MCMC iterates and a 3.00 GHz processor, it may take a few seconds for

small sample sizes (e.g. 200, 500) to a couple of minutes for large sample sizes (i.e.

2000). The computing times for longer chains or higher levels of J are longer.

2.4 Data analysis

We studied the data set provided by South Texas Project Electric Generating Station

for the essential chillers system. Details on the chillers and maintenances are pre-

sented in the introduction. The original calendar time was recorded in days and we

divided the time by 30.4 to transform the units to months. Calendar times of main-

tenance events in months are plotted in Figure 2.5 by chillers where vertical bars
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represent censored failure times on the top line and observed failure times on the

bottom line. The size of the vertical bar indicates perfect or minimal repair and the

number of each type of repair per chiller is given in Table 2.6. We firstly investigate

whether the six chillers are identical in new condition. Chillers (AC 4 to 6) in group

2 tend to last longer than Chillers (AC 1 to 3) in group 1 based on the Kaplan-Meier

estimates (Figure 2.6) using the first failures after perfect repairs. Within each group,

there appears no significant difference. The log-rank tests for homogeneity of survival

curves for the first failures give a significant p–value of 0.03 across the two groups,

but non–significant 0.26 for chillers within the first group, and 0.78 for chillers within

the second group. Therefore we pool observations across chillers within each group

and perform separate analyses for the two groups. From now on, the first group is

referred as “group 1" and the second group as “group 2".

Table 2.6: Counts of perfect/minimal by response to “failure” / “censored” for each
chiller.

AC1 AC2 AC3
Failure Censored Failure Censored Failure Censored

Perfect 17 217 18 199 15 202
Minimal 232 4 179 1 184 3

AC4 AC5 AC6
Failure Censored Failure Censored Failure Censored

Perfect 14 189 9 184 13 184
Minimal 160 1 167 2 163 3

It is of interest to test the minimal repair assumption, i.e. whether there is a

significant difference between the reliability distributions for the two types of main-

tenance decisions. We first fit the proposed nonparametric test. For group 1, the

LPML for H0 is −770 and for H1 is −755. For group 2, the LPML for H0 is −713

and for H1 is −695. Exponentiating the LPML differences in the two groups (> 150)

leads to strongly rejecting H0 in both. We also fit parametric tests with Weibull
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Figure 2.5: Calendar times of events for the six chillers (AC); for each chiller, vertical
bars represent observed failures on the top line and censored events on the bottom
line; big (small) vertical bar denotes perfect (minimal) repair at the event time.

family assumption for F0 and F1. For group 1, the LPML for H0 is −770 and for

H1 is −760. For group 2, the LPML for H0 is −714 and for H1 is −694. Note that

the nonparametric method yields greater difference in LPMLs for group 1 than para-

metric method does. For group 2, there is not a significant difference between the

parametric and nonparametric method. For estimating F0 and F1, we refit M1 using

the nonparametric method presented in Section 2.3, place noninformative priors on

θ0 and θ1 (p(θk) ∝ 1) and assume c ∼ Γ(10, 1) for the two groups. After a burn-in

of 50,000 iterates, 4,000 MCMC samples were thinned from a total of 400,000 iter-

ates. The computing time was about 30 seconds for hypotheses testing and a few
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Figure 2.6: Kaplan-Meier estimates for survival functions using first failures after
perfect repairs of the essential chillers system; group 1 and 2 (top left ) ; AC 1 to 3
in group 1 (top right); AC 4 to 6 in group 2 (bottom left); bottom right panel plots
M1 estimates for S0 for group 1 and 2.

minutes for estimation in M1. We plot the estimated point-wise posterior mean sur-

vival functions for F0 (solid lines) and F1 (short-dashed lines) on the left panel of

Figure 2.7. The 95% credible intervals for the survival functions are plotted with

long-dashed lines. The right panel of Figure 2.7 are the estimated point-wise poste-

rior mean hazard functions for F0 (solid lines) and F1 (short-dashed lines) from both

the nonparametric (less smooth) and parametric (smooth) approach. The nonpara-

metric estimates for h0 and h1 for group 1 (top right panel) are close to each other
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in the first one month, but after h1 is larger than h0. This implies that the system

performs “good as old” after minimal repairs at a young cumulative age but worse

at an older cumulative age (the cumulative age is the time since the latest perfect

repair). The posterior mean estimate for h1 is always greater than h0 for group 2

(bottom right panel) indicating the system performs worse than expected after min-

imal repairs. Compared to the estimates of h0 and h1 from the parametric method,

the nonparametric estimates exhibit much more flexibility in the shape during the

first few months where data are more plentiful, but follow a Weibull shape as time

increases and data are scarcer.

2.5 Discussion

We proposed a flexible Bayesian nonparametric framework to model recurrent events

in a repairable system for the purpose of generalizing and testing the common “min-

imal repair” assumption. Upon system failure either a perfect or a minimal repair is

performed. Tailfree priors are assumed for the unknown distributions F0 and F1 cen-

tered at the Weibull distribution. The Weibull serves to anchor inference and guide

density shape where data are scarce, but tailfree probabilities change the Weibull

shape when necessary in locations where data are plentiful. The typical assumption

that a minimal repair brings the system back to the exact state it was in right before

failure is tested by via pseudo Bayes factors. In simulations, the test was found to

have good power, and appropriate Type I error. If the alternative model H1 : F0 6= F1

is preferred, we further compare the estimated hazard functions, shedding light on

how minimal repairs perform relative to perfect repairs at different ages of the system.

This is particularly useful for managers to schedule maintenance. If the null model

is preferred, our model becomes a Bayesian nonparametric generalization of Weibull

for modeling the failure times from non-homogeneous Poisson processes. It is then

typically of interest to obtain smooth estimates for the density, hazard and survival

44



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

S
ur

vi
va

l e
st

im
at

es

Ŝ0
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Figure 2.7: This figure contains estimates of the survivor and hazard functions for
group 1 (top panels) and 2 (bottom panels) essential chillers system when both para-
metric and nonparametric models are fitted for M1. Left panels plot nonparametric
estimates of the survivor functions corresponding to F0 (solid) and F1 (short-dashed)
and their 95% credible intervals (long-dashed). Right panels plot the parametric
(smooth) and nonparametric (less smooth) estimates of the hazard functions corre-
sponding to F0 (solid) and F1 (short-dashed).

function. With slight changes in the likelihood, our method can also be used to test

other repair assumptions, e.g. a known life supplement for a type of repair. We note

that it is straightforward to include time–dependent covariates into the model, such

as operating settings, the identity of the person making repairs, etc.

We stress that perfect repairs are indeed assumed to bring the system to as “good
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as new.” In practice, there may be several types of maintenances pooled together

which are close to “perfect repairs”. If several identical systems are maintained in

the same way, maintenance records may be combined since identical systems have

the same contribution as old systems which have just received an overhaul. How-

ever, combining the records from systems which are very different could result in

confounding between the actual effects of the maintenances and the reliability of the

system.

We also assume that the system after each minimal repair depends on the preced-

ing minimal repairs only through the accumulated age (time since last perfect repair).

The minimal repairs are “good as old” repairs with respect to F1. That is, the hazard

function remains h1(t) over time after the first minimal repair in each cycle. This

simplification facilitates the testing of H0 versus H1 and also allows comparison of

maintenance decisions over time. However, if H1 : F0 6= F1 is concluded, the esti-

mated h1 may not be the dynamic hazard for the system after minimal repairs. The

reason is that when minimal repairs are not “good as old” repairs, the actual effects

of maintenances could aggregate, changing the hazard function after each repair. The

“effective age” modeling of the system (Kijima, 1989) captures a dynamically chang-

ing hazard. However there is difficulty in determining the degree of each repair and

hence the effective age for the system. It is one of our interests to model the dynamic

hazard using Bayesian nonparametric methods.
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Chapter 3

A Bayesian semiparametric regression model

for reliability data using effective age

A new regression model for recurrent events from repairable systems is proposed. The

effectiveness of each repair in Kijima models I and II is regressed on repair-specific

covariates. By modeling effective age in a flexible way, the model allows a spectrum

of heterogeneous repairs besides “good as new” and “good as old” repairs. The

density for the baseline hazard is modeled nonparametrically with a tailfree process

prior which is centered at Weibull and yet allows substantial data-driven deviations

from the centering family. Linearity in the predictors is relaxed using a B-spline

transformation. The method is illustrated using simulations as well as two real data

analyses.

Keywords: Effective age, Repairable system, Tailfree process, Truncated data.

3.1 Introduction

Repairable systems have been widely studied in the literature. Systems fail, get

repaired upon failure, and these recurrent events (failures, repairs) are observed.

The event process generating the repeated events is closely related to the intensity

function, denoted as λ(t|H(t)) and formally defined in Section 2.1, which describes

the probability of an instantaneous new failure, given the history of maintenances

The content in this chapter is a reprint by permission of Elsevier for “ Li, L. and Hanson,
T. (2014). A Bayesian semiparametric regression model for reliability data using effective age.
Computational Statistics and Data Analysis, 73, 177–188”.
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and failures H(t). In general, recurrent event modeling methods can be divided into

categories based on the type of repairs a system receives. Renewal processes are used

if all the repairs bring the system to the “good as new” state and Poisson processes

are used if all the maintenances bring the system to a “good as old” state. Kijima

(1989) introduced two classes of models using the notion of “effective age” (also known

as “virtual age”) of the system to allow for a spectrum of repairs between “good as

old” and “good as new”. Consider a system observed over [0, τ ]. Assume the repair

times for the system are 0 < t1 < t2 < · · · < tn and denote ε(t) as the effective

age of the system at time t. Suppose that the intensity λ(t|H(t)) is related to the

unknown hazard, or failure rate, of a new system r(t) through λ(t|H(t)) = r{ε(t)}.

Poisson models assume ε(t) = t and renewal models assume ε(t) = t − sN(t−) where

sN(t−) is the time at which the last repair occurred. Kijima models introduce an age

reduction factor Di for each repair, occurring at calendar time ti. Define ε(ti) =

ε(ti−1) + [ti− ti−1]Di for the Kijima type I model and ε(ti) = [ε(ti−1) + ti− ti−1]Di for

the Kijima type II model. Assume ε(t) = ε(ti−1) + t− ti−1 for t ∈ (ti−1, ti). Note that

Di = 1 implies a Poisson process in models I and II, and Di = 0 implies a renewal

process in type II.

Lindqvist (2006) provides a review of the modeling of effective age. Dorado, Hol-

lander, and Sethuraman (1997) generalize Kijima’s models that allow for repairs of

varying degree by including known “life supplements" – numbers between zero and

one indicating the degrees of the repairs. There is very limited literature dealing

with unknown effective age processes. Doyen and Gaudoin (2004) studied a class of

Kijima’s models where the repairs reduce the effective ages by one overall effective-

ness scalar q. Recently, Veber et al. (2008) propose an EM-algorithm to estimate

q and use Weibull mixtures for the baseline failure time distribution. Using one

scalar is inappropriate for systems where repairs of varying effectiveness occur. For

example, different maintenance types, or levels of experience in those carrying out
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the repairs, can have drastic differences in repair effectiveness. Very recently, Yuan

and Uday (2012) extend the single scalar parameter q to a time-dependent function,

e.g. q(t) = exp(−et) where e is estimated, and assume the baseline distribution to

be a parametric power-law distribution. In this work, we regress the effectiveness

of each repair on covariates, e.g. materials used or the technician, and relax the

parametric assumption of the baseline distribution using nonparametric priors in a

Bayesian framework. Time trends in the effectiveness of repairs, characteristics of

each repair, and association among repairs within each system can be flexibly coded

into the covariate process. Specifically, the effectiveness measure Di is regressed on a

vector of covariates wi; let Di = exp{β′wi}/{1+exp(β′wi)} or Di = exp(β′wi). The

associations between the covariates and the effective age reduction are characterized

by β. When the hazard of the system is monotone increasing, a repair with covariates

resulting in a smaller age reduction factor Di tends to be more effective than other

repairs performed at the same effective age of the system.

Other generalizations of renewal and Poisson processes allowing for covariates

also assume the effective age process ε(t) is known, including for example, modulated

renewal processes (Cox 1972b), point-process models incorporating renewals and time

trends (Lawless and Thiagarajah 1996), and a general class of semiparametric models

(Peña et al. 2007) which simultaneously accommodates the effects of increasing

numbers of events, covariates, interventions (repairs), and association among the

interevent times within a system. This literature encompasses a rich and widely used

family of reliability models. However, it is difficult to assume that the effective age

process is known. There might even be inter-play among the effective age process

and history-dependent covariates and the baseline hazard function, as noted in Peña

et al. (2007). Moreover, understanding the performance of repairs is often crucial to

decision-making and even predictions.

A parametric analysis of our proposed model can be performed by choosing an
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appropriate distribution family, e.g. Weibull, for r(t). In this work, we seek a more

flexible approach where the entire density, the cumulative hazard function, or the

hazard is assigned a nonparametric prior distribution. Bayesian nonparametric pri-

ors have achieved prominent success due to their flexibility in modeling unknown

distributions; examples include the Dirichlet process (Ferguson 1973), Polya tree pri-

ors (Lavine 1992), Dirichlet process mixtures (Escobar and West 1995), etc. However,

the use of these nonparametric priors in recurrent event models has been quite lim-

ited. Very recently, Taddy and Kottas (2012) used Dirichlet process mixtures for

the interfailure density in Poisson process models. Priors on the cumulative hazard

R(t) =
∫ t
0 r(s)ds include the beta and gamma processes (Lo 1992, Kuo and Ghosh

1997) which are discrete and not readily used in our context. The weighted gamma

process (Ishwaran and James 2004) is centered at one unique baseline intensity and

is also not appropriate for a model that involves a factor in the argument of the in-

tensity. Our proposed framework uses tailfree priors (Freedman 1963, Ferguson 1974,

Jara and Hanson 2011), on the space of densities, centered at the Weibull family, but

allows for substantial data-driven deviations from the centering families. A special

case of the tailfree prior, the Polya tree prior, has been widely used for models that

warp the baseline r; see Hanson(2006), Walker and Mallick (1999), and Hanson and

Yang (2007) for applications involving the accelerated failure time model and the pro-

portional odds model. Like the Dirichlet process, tailfree priors also have desirable

consistency and large support properties (Jara and Hanson 2011). The general frame-

work proposed herein allows model comparisons using the goodness-of-fit measures

LPML and DIC so that comparisons among renewal processes, Poisson processes and

Kijima models are readily made. We develop a full, automated MCMC sampling

scheme to fit our proposed model and illustrate our method using simulations as well

as on real data.

This paper is organized as follows: Section 2 presents a description of our model
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and an introduction to tailfree priors. Section 3 provides the MCMC algorithm and an

approach to relax linearity in the linear predictor, and Section 4 presents simulation

results. Section 5 summarizes the results for two real dataset analyses and in Section

6 we provide some concluding remarks.

3.2 Model development

Likelihood construction

Consider a system starting from new. Suppose the system gets repaired at times

ti, i = 1, . . . , n and 0 < t1 < t2 < · · · < tn < τ where τ is the time when data

collection stops. We assume τ is independent of the failure process. If a repair is

performed without an accompanying failure, the observation of event time is right

censored. Let the indicator δi take the value 1 if the system fails at time ti and

0 otherwise. Further we assume a d−dimensional covariate vector for each repair,

independent of the failure process, i.e. wi = (wi0, wi1, · · · , wi,d−1) for the repair at

time ti. This vector may incorporate information concerning technician skills, repair

type, materials used, time trend, etc. Let the counting process {N(t), t ≥ 0} record

the cumulative number of failures over time and H(t) = {N(s) : 0 ≤ s < t} be the

history of the process at time t. The intensity function for an event process is defined

as

λ(t|H(t)) = lim
4→0

P{N(t+4)−N(t) = 1|H(t)}
4+ . (3.1)

The Kijima models for the event data assume λ(t|H(t)) = r{ε(t)} where ε(t) is the

effective age. A Kijima type I model has ε(ti) = ε(ti−1) + [ti − ti−1]Di and the

type II model has ε(ti) = [ε(ti−1) + ti − ti−1]Di where ti − ti−1 is the time since

last repair. Denote the effective age right before ti as ε(ti−). The ith repair at ti

reduces the effective age right before ti by a fraction of the time since last repair,

that is, (ti − ti−1)(1−Di) in the type I model and a proportion of the effective age,
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i.e. ε(ti−)(1−Di) in the type II model. Note that Di = 0 sets the clock back to the

status right after last repair in the type I model and to a new status in the type II

model.

We propose to model Di as a function of wi through the regression coefficient

β. Let Di = exp(β′wi) or Di = logit(β′wi). Let wi0 = 1 be an intercept. When

the link function is the CDF of a logistic distribution, Di ∈ (0, 1) for all repairs, i.e.

all repairs are between “good as new” and “bad as old”. If the link is exponential;

then Di ∈ (0,+∞). An interesting case would be Di > 1 where the system actually

gets worse than “bad as old” after the repair. When the baseline hazard is monotone

nondecreasing or nonincreasing, β can be interpreted directly with respect to effec-

tiveness of repairs, i.e. if the baseline hazard is nondecreasing and βj is positive, one

may conclude that an increase in wj results in less effective repairs overall.

We refer to Lindqvist (2006) in deriving the likelihood of observing a system with

failures at 0 < t1 < t2 < · · · < tn < τ (δi = 1, i = 1, . . . , n):

L =
n∏
i=1

r(ε(ti−1) + xi)exp
{
−

n∑
i=1

∫ xi

0
r(ε(ti−1 + u))du−

∫ τ−tn

0
r(ε(tn + u))du,

}
(3.2)

where xi = ti − ti−1. The likelihood is equivalent to

L =
n∏
i=1

f(ε(ti−1) + xi)
S(ε(ti−1)) · S(ε(tn) + τ − tn)

S(ε(tn)) ,

where S and f are the unique survival and density functions corresponding to r.

Denote F as the cumulative distribution function for r. Now suppose we observe

m identical systems. Denote tij as the event time for the ith repair of system j,

wij as the covariate vector and δij as the censoring indicator. Let τj be the ter-

mination time for observing system j. Conditional on the collection of observables

data = {tij, τj,wij, δij, i = 1, 2, . . . , nj, j = 1, 2, . . . ,m}, the likelihood of observing m

independent event processes is then

L =
m∏
j=1

nj∏
i=1

{f(ε(ti−1,j) + xij)}δij {S(ε(ti−1,j) + xij)}1−δij

S(ε(ti−1,j))
·
m∏
j=1

S(ε(tnj ,j) + τj − tnj)
S(ε(tnj ,j))

,

(3.3)
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where xij = tij − ti−1,j.

Prior specifications

Tailfree process prior on F

We place a tailfree process prior on F , centered at the Weibull family. Denote Gθ as

the cumulative distribution function for Weibull, Gθ(t) = 1− exp(−(t/η)α) for t ≥ 0

and θ = (log(α), log(η))′. Let Πj =
{
Bε1···εj : εi ∈ {0, 1}

}
be a partition of the positive

reals R+ and each set in Πj be split into two sets in Πj+1, e.g {B0, B1} at the first

level; {B00, B01, B10, B11} at the second level, and so on. Following Lavine (1992), the

sets are given by quantiles of the centering family; ifm is the base-10 representation of

the binary number ε1 · · · εj, then Bε1···εj is the interval (G−1
θ (m/2j), G−1

θ ((m+ 1)/2j)].

Let Π = {Πj, j = 1, 2, . . . } be the sequence of partitions. We also refer to Π as the

partition tree and j = 1, 2, . . . as the tree levels.

Define F (A) to be the probability of any set A for distribution F ; note that F (A)

is a random variable. The tailfree prior for F is constructed from the sequence of par-

titions Π and their associated pairwise conditional probabilities (Yε1···εj−10, Yε1···εj−11),

assuming Yε1···εj−10 = 1 − Yε1···εj−11 = F{Bε1···εj−10|Bε1···εj−1}. Let Y = {Yε1...εj−10, j =

1, 2, . . . }. Further, the tailfree prior assumes the random probabilities in Y are mutu-

ally independent, and the random measure F is related to the probabilities through

the relation: F{Bε1···εj} = ∏j
i=1 Yε1···εi . Let λε1···εj−10 be the logit transformation of

Yε1···εj−10. By assuming λε1···εj−10 has the normal prior N (0, 2/[cρ(j)]), Yε1···εj−10 ap-

proximately follows the beta(cρ(j), cρ(j)) distribution (Jara and Hanson 2011). That

is,

logit{Yε1···εj−10} = λε1···εj−10, λε1···εj−10∼N
(

0, 2
cρ(j)

)
. (3.4)

The sequence of partitions Π forms a generator of the Borel σ-field of R+ and hence

for any measurable set A ∈ R+, F (A) is defined.
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The infinite number of levels in the partition tree Π is usually capped off by some

fixed level J , typically 4 ≤ J ≤ 8, which yields partitions up to level J , say ΠJ .

Furthermore, on partition sets Bε1···εJ ∈ ΠJ at level J we assume F follows the base

measure Gθ, i.e. for all measurable A ⊂ Bε1···εJ ,

F{A|Bε1···εJ} = Gθ(A)/Gθ{Bε1···εJ}. (3.5)

We use TF J(c, ρ(·), Gθ) to denote this finite tailfree prior on F with level J . For

F ∼ TF J(c, ρ(·), Gθ), the survival function S(t) = 1− F (t) is given by

S(t) = p{s(t)}
{
s(t)− 2JGθ(t)

}
+

2J∑
j=s(t)+1

p(j), (3.6)

where s(t) = d2JGθ(t)e, d·e is the ceiling function. Here p(j), j = 1, . . . , 2J is defined

as

p(j + 1) = F{Bε1···εJ} =
J∏
i=1

Yε1···εi , (3.7)

where ε1 · · · εJ is the base-2 representation of j. Formula (3.6) can be obtained from

(3.5) and (3.7) and

F (A) = F{Bε1···εJ}Gθ(A)/Gθ{Bε1···εJ}

for A ⊂ B(ε1 · · · εJ). By differentiating (3.6), the density with respect to F is given

by

f(t) = 2Jp{s(t)}gθ(t), (3.8)

where gθ(·) is the density corresponding to Gθ.

A common choice for ρ(j) is j2. The parameter c is a precision parameter; lower

values of c allow mass of F to move easily from the centering distribution Gθ. As

c→ 0+, E{F (·)} tends to the empirical CDF of the data (Hanson and Johnson 2002);

as c→∞, all conditional probabilities π(ε) go to 0.5 and hence F (A)→ Gθ(A) a.s.

for all measurable sets. We assign c a gamma prior c ∼ Γ(ac, bc); typically a = 5 or

10 and b = 1. Alternatively, some authors simply set c as small values, e.g. c = 1.
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It is well known that fixing θ results in “jumpy” densities as f defined in (3.8)

has discontinuities at each partition interval endpoint. Placing a continuous prior on

θ smooths out the posterior density and hazard curves, yielding a mixture of tailfree

processes for F (Jara and Hanson 2011). For the Kijima models, we suggest an

empirical approach: an easily-fit special case of the model, e.g. a renewal process or

a Poisson process, coupled with the underlying parametric Weibull family Gθ is fitted

to obtain the maximum likelihood estimate µθ and the inverse information matrix

Vθ associated with µθ. A Gaussian prior N2(µθ,Vθ) is placed on θ. For example,

in the first data analysis in Section 5, on the reliability of valve seats, many authors

have fit Poisson processes; a Poisson process could be used to center θ. Without

such prior knowledge, the first failures of all systems (i.i.d samples) can be used for

a parametric inference on θ.

Note that there is little difference between choosing the standard Polya tree prior

and the tailfree process prior for the distribution function of the “baseline” hazard.

Since we use adaptive updating of the logit-transformed conditional probabilities, as

presented below in Section 3.1, it is slightly easier to fit the tailfree version rather

than the Polya tree version.

Priors on β

We recommend Zellner’s g-prior (Zellner,1983) on β, a “reference informative prior”.

g-Prior can be used to take into account the correlation among the predictor covariates

and has many advantages, as commonly seen in variable selection and linear or nonlin-

ear regressions (Bové and Held, 2011, Marin and Robert 2007, Fouskakis et al. 2009).

Let Wj = (w′j1, · · · ,w′jnj) and Wm∗×d = (W′
1, · · · ,W′

m)′ where m∗ = ∑m
j=1 nj. g-

prior for β is then

π(β) ∼ Nd

(
0, gm∗(W′W)−1

)
.
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To avoid choosing g, one can assign g−1 a gamma prior Γ(ag, bg). When ag = bg = 1/2,

the prior on β is a multivariate Cauchy distribution (Zellner and Siow 1980).

In our simulations, we use a g-prior for the logistic link and obtained excellent

performance. We found that the g-prior improves the overall mixing of MCMC chain

for both links, but an uninformative prior (π(β) ∝ 1) for the logistic link leads to

extremely poor MCMC mixing in many data sets. For the exponential link function,

We found that uninformative prior shows pretty good and stable performance.

3.3 Posterior inferences

MCMC computing

MCMC is used to obtain posterior inferences. The likelihood L is defined in (3.3)

and the prior on β is discussed in Section 2.2.2. Recall that we propose a mixture

of tailfree processes prior on F with partitions capped off by J . The prior on θ is

defined at the end of Section 2.2.1; the prior on c is Γ(ac, bc), and the prior on g−1

is Γ(ag, bg) . Let E0 = {ε = ε1 · · · εj−10, j = 1, . . . , J}. Each λε is assigned a normal

prior as detailed in (3.4). The posterior is then proportional to

π(β, λε, c, g,θ|data) ∝ L · π(β)Γ(c|ac, bc)Γ(g−1|ag, bg)π(θ)
∏

ε∈E0

N

(
λε|0,

2
cj2

)
. (3.9)

Parameters {β, λ(ε), ε ∈ E0,θ} are updated using random-walk Metropolis-Hastings

updates (Tierney, 1994). We build two blocks to update these parameters. Let b1

be a vector of all {λε, ε ∈ E0} with dimension 2J − 1 and b2 = (β,θ). Gaussian

random-walk proposals are used for the two blocks

b′1 ∼ N(b∗1,V1) and b′2 ∼ N(b∗2,V2),

where b∗1 and b∗2 are the latest accepted values for b1 and b2. We have found au-

tomatic tuning of V1 and V2 to work very well in practice (Haario, Saksman, and

56



Tamminen, 2005)leading to proposal acceptance rates in the 20% to 50% range as typ-

ically desired. Specifically, let the sequence b(1)
1 ,b(2)

1 , . . . be the states of the Markov

chain for b1. When deciding the t-th state b1, we sample b∗1 ∼ N(b(t−1)
1 ,V(t)

1 ) with

V(t)
1 =


V(0)

1 , t < t0

sVar
{
b(1)

1 , · · · ,b(t−1)
1

}
+ s0Ip, t > t0

where p is the dimension of b1, s is recommended to be 2.42/p, s0 is a small constant,

V(0)
1 is the initial covariance of the proposal distribution and Ip is an identity matrix.

A similar automatic tuning procedure applies to b2. The parameter c is updated

through the full conditional distribution

p(c|λ) ∼ Γ

(ac + 2J−1 − 1/2), bc +
∑

ε1ε2···εj∈E0

λ2
ε1ε2···εjj

2/4

 .
The full conditional distribution for g−1 given the remaining parameters is Γ(ag +

1, bg + β′W′Wβ/2m∗+ bg). FORTRAN 90 codes for fitting the models in this paper

are available from the first author, upon request.

Model comparison

We compare models using log pseudo-marginal likelihood (LPML) (Geisser and Eddy,

1979), a measure of a model’s predictive ability and the deviance information criterion

(DIC) (Spiegelhalter et al. 2002), a model selection criterion related to AIC but for

use with Bayesian models. Both are easy to compute based on the MCMC output.

Let Θ = (λ,θ,β) and tnj+1,j = τj. By definition,

LPML =
m∑
j=1

nj+1∑
i=1

log{p(tij|t−ij)},

where p(tij|t−ij) is the predictive density (δij = 1) or survival probability (δij = 0)

for tij based on the remaining data, p(·|t−ij), evaluated at tij. This is called the

ij-th conditional predictive ordinate (CPO) statistic, and measures how well tij is

predicted from the remaining t−ij through the model. For system j that has events
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at 0 < t1j < t2j < · · · < tnj+1,j, we compute the predictive density or survival

at tij based on failure and maintenance history for this system during time periods

(0, ti−1,j] and [ti+1,j, τj], plus partial information during (ti−1,j, ti+1,j) that a certain

repair was performed at tij, plus the information from other systems. That is, to

predict p(tij|t−ij), a repair is still assumed to be done at tij. The LPML simply

aggregates the log of these. For this type of prediction, we are able to share the

same form of computing as recommended by Gelfand and Dey (1994). As stated in

Section 3.1, the likelihood contribution of failure at tij depends on repair times and

their effectivenesses before tij for system i, i.e. tik, Dik, k = 1, . . . , j − 1. Conditional

on Θ, the joint likelihood is ∏m
j=1

∏nj+1
i=1 p(tij|t1:i−1,j,Θ).

Following Gelfand and Dey (1994), we have

p(tij|t−ij) =
∫
p(tij|t−ij,Θ)π(Θ|t−ij)dΘ

=
∫
p(tij|t1:i−1,j,Θ) ·

∏
{l,k}∈A p(tkl|t1:k−1,l,Θ)π(Θ)∫ ∏
{l,k}∈A p(tkl|t1:k−1,l,Θ)π(Θ)dΘdΘ

=
{∫ 1

p(tij|t1:i−1,j,Θ)π(Θ|t)dΘ
}−1

,

where A = {l, k : l 6= j or k 6= i}. The LPML is then estimated from the MCMC

iterates by

LPML = −
m∑
j=1

nj+1∑
i=1

log
{

1
s

s∑
k=1

1
p(tij|t1:i−1,j,Θ(k))

}
, (3.10)

where Θ(k) = {λ(k),θ(k),β(k), k = 1, 2, · · · , s} are iterates from MCMC outputs of

all the parameters.

By definition,

DIC = 2E[D(Θ|y)]−D(Θ̂),

where D(Θ) = −2log[L(Θ)] +C, L(Θ) is the likelihood and C is a constant canceled

in model comparison. Conditional expectation E[D(Θ|y)] is typically estimated by

averages of D(Θ) over posterior samples of Θ; Θ̂ in D(Θ̂) is commonly chosen as

the posterior mean of Θ.
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Relaxing the linearity assumption

In this section, we generalize the linear predictor to a flexible additive structure.

For simplicity, consider three covariates in the regression: an intercept, a discrete

covariate wij1, and a continuous covariate wij2. A generalized additive model with

the exponential link assumes

log(Dij) = β0 + β1wij1 + h(wij2), i = 1, . . . , ni, j = 1, . . . ,m.

We approximate the unknown function h(x) using B-splines, i.e.

h(x) =
M∑
l=1

blBl(x),

where {Bl(·)} are quadratic B-spline basis functions, defined in De Boor (2001), with

support (a, b), the observed range of wij2. Since the space spanned by these functions

includes the constant term, we let one B-spline coefficient be zero (Gray 1992) – we

choose bM = 0 – under which h(x) equals the constant zero if and only if all the

B-spline coefficients are equal to zero. In the following, define b = (b1, . . . , bM−1)′.

Note then h(x) = ∑M−1
l=1 blBl(x). Define β = (β0, b1, . . . , bM−1)′. The g-prior on β is

β ∼ NM(0, ng(X′X)−1) where X is the design matrix. The above extension can be

fit using the algorithm developed in Section 3.

For equally-spaced knots, ∑M−1
l=1 blBl(x) = β1x for some β1 when bl−1 +bl+1−2bl =

0 for l = 2, . . . ,M − 2. Define ∆ = (b1 + b3 − 2b2, b2 + b4 − 2b3, . . . , bM−3 + bM−1 −

2bM−2) = Φb where Φ is a (M − 3)× (M − 1) matrix. Suppose MCMC iterates for

b are b(k), k = 1, . . . , s. To test whether h(x) is linear in x is equivalent to test the

point null H0 : Φb = 0. Bayes factors against the null hypothesis can be computed

using the Savage-Dickey ratio (Verdinelli and Wasserman 1995),

BF ≈ NM−3(0|0, ngΦ(X′X)−1Φ′)
NM−3(0|m,V) ,

where m = s−1∑s
k=1 Φb(k) and V = s−1∑s

k=1(Φb(k)−m)(Φb(k)−m)′. A larger BF

value indicates stronger evidence against the null hypothesis.
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3.4 Simulations

We perform simulations to examine the proposed models and the Bayesian non-

parametric method. Suppose m systems are included in each simulated sample and

each system is maintained up to its 5th failure, yielding a total number of events

m∗ = 5m. The associated event (failure) times are recorded as tij, i = 1, 2, . . . , 5, j =

1, 2, . . . ,m. At each event time, a type of repair is performed with effectiveness ac-

cording to the Kijima type I or type II model. The degree of effectiveness Dij is

logit(β′wij) or exp(β′wij) where wij includes wij0 = 1, wij1 a Bernoulli (0.5) and

wij2 simulated so that Dij follows uniform (0, 1). The true baseline distribution is

0.5Weibull(2, 2) + 0.5Weibull(2, 4) for simulations in Table 3.1 and 3.3 and has a cor-

responding hazard exp(t2/3+ t/3) for simulations in Table 3.2. Coefficients are set to

β = (−1, 1, 1) or (1,−1, 1) and the sample size is m∗ = 300 or 500. For each setup,

300 datasets are simulated and fitted with the following model and prior specifica-

tions. The baseline distribution F is given the tailfree prior with J = 5, c ∼ Γ(5, 1),

and θ ∼ N(µθ,Vθ) where µθ is the maximum likelihood estimate of θ based on a

parametric Weibull fit of the first failures of all systems and Vθ the inverse informa-

tion matrix associated with µθ. Optimization routines in R or SAS give θ and Vθ.

For the logistic link, regression parameter β is given the g-prior N3 (0, gn(W′W)−1)

with g−1 ∼ Exp(1). For the exponential link, the flat prior π(β) ∝ 1 is used. Follow-

ing algorithms in Section 3.1, we run 30000 iterations for each MCMC chain and thin

the posterior samples by taking every fifth of them after a burn-in of 10000 iterates.

Each chain takes a few minutes with a 3.00 GHz processor.

Simulation results are presented in Tables 1–3 including the average of the pos-

terior means over 300 datasets, the sample standard deviation SSD of the posterior

means, the average of the estimated standard deviations ESE and 95% the coverage

probability CP. Based on the simulation results, the true parameters β are estimated
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with little bias. As the sample size increases, both SSD and SSE decrease. We also

get coverage probabilities close to the nominal level 0.95. For one simulation setup

posterior means for the baseline density and survival functions (gray lines) are plotted

in Figure 3.1, overlaid with the true density or survival functions in black lines.

Table 3.1: Summary of simulation studies: f=0.5Weibull(2, 2)+0.5Weibull(2, 4); link
function is logistic.

n=300 n = 500
True Point SSD ESE 95% CP Point SSD ESE 95% CP
Type I
β0 = −1 -0.92 1.10 1.17 0.95 -1.04 0.75 0.82 0.95
β1 = 1 1.05 1.44 1.69 0.95 1.04 1.03 1.19 0.96
β2 = 1 0.97 0.62 0.73 0.95 0.97 0.43 0.52 0.95
β0 = 1 1.06 1.24 1.56 0.95 1.02 1.07 1.22 0.93
β1 = −1 -0.95 1.30 1.72 0.96 -0.96 1.16 1.28 0.94
β2 = −1 -0.94 0.55 0.74 0.98 -1.01 0.51 0.60 0.95
Type II
β0 = −1 -0.98 0.81 0.89 0.94 -1.02 0.60 0.60 0.92
β1 = 1 0.97 1.19 1.26 0.95 1.00 0.89 0.87 0.93
β2 = 1 1.00 0.48 0.56 0.95 1.01 0.39 0.40 0.95
β0 = 1 1.02 1.01 1.14 0.95 0.96 0.85 0.80 0.93
β1 = −1 -1.08 1.11 1.27 0.96 -0.96 0.89 0.85 0.93
β2 = −1 -1.01 0.50 0.58 0.94 -0.99 0.41 0.40 0.94

We also perform simulations to examine the additive model described in Section

3.3. Assume Dij = exp(β0 + β1wij1 − w2
ij2) or logit(β0 + β1wij1 − w2

ij2) where wij1 is

sampled from Bernoulli (0.5) and wij2 from uniform (−1, 1). Data are simulated from

the Kijima type I model with baseline hazard r(t)=exp(t2/3 + t/3). We consider a

sample size m∗ = 1000 and each setup has 300 replications. We take M = 6 equally

spaced quadratic B-splines to model the effect of wij2 and one B-spline coefficient is

set to be zero. Table 3.4 summarizes estimates for coefficients β0, β1 and Figure 3.2

plots the point-wise mean, 2.5% and 97.5% quantiles of the estimates for the true

function h(w) = −w2.
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Table 3.2: Summary of simulation studies: r(t)=exp(t2/3 + t/3); link function is
logistic.

n=300 n = 500
True Point SSD ESE 95% CP Point SSD ESE 95% CP
Type I
β0 = −1 -1.00 0.37 0.37 0.96 -1.01 0.29 0.29 0.94
β1 = 1 1.02 0.50 0.53 0.96 1.04 0.39 0.40 0.94
β2 = 1 1.03 0.27 0.28 0.96 1.02 0.20 0.20 0.95
β0 = 1 1.10 0.51 0.54 0.94 1.05 0.38 0.39 0.96
β1 = −1 -1.04 0.53 0.55 0.93 -1.02 0.38 0.40 0.95
β2 = −1 -1.05 0.26 0.29 0.95 -1.03 0.19 0.21 0.97
Type II
β0 = −1 -1.00 0.36 0.34 0.93 -1.02 0.29 0.27 0.93
β1 = 1 0.99 0.45 0.43 0.94 1.02 0.35 0.33 0.93
β2 = 1 1.01 0.22 0.22 0.95 1.02 0.18 0.17 0.94
β0 = 1 1.04 0.36 0.37 0.93 1.01 0.27 0.27 0.95
β1 = −1 -1.04 0.43 0.44 0.94 -1.03 0.31 0.33 0.96
β2 = −1 -1.03 0.21 0.22 0.96 -1.01 0.17 0.17 0.94

Table 3.3: Summary of simulation studies: f=0.5Weibull(2, 2)+0.5Weibull(2, 4); link
function is exponential.

n=300 n = 500
True Point SSD ESE 95% CP Point SSD ESE 95% CP
Type I
β0 = −1 -1.09 0.51 0.49 0.92 -1.01 0.37 0.34 0.92
β1 = 1 1.02 0.66 0.75 0.96 1.01 0.57 0.52 0.92
β2 = 1 1.09 0.45 0.52 0.96 1.08 0.41 0.38 0.92
β0 = 1 0.94 0.81 0.86 0.95 0.92 0.58 0.62 0.94
β1 = −1 -1.01 0.71 0.73 0.94 -0.99 0.47 0.51 0.96
β2 = −1 -1.07 0.45 0.50 0.96 -1.02 0.34 0.36 0.94
Type II
β0 = −1 -1.10 0.35 0.35 0.93 -1.01 0.28 0.27 0.91
β1 = 1 0.94 0.51 0.56 0.96 0.98 0.43 0.43 0.92
β2 = 1 1.04 0.34 0.40 0.95 1.04 0.30 0.31 0.94
β0 = 1 0.91 0.62 0.69 0.95 1.02 0.55 0.52 0.93
β1 = −1 -1.00 0.55 0.62 0.97 -1.02 0.50 0.46 0.92
β2 = −1 -1.09 0.40 0.43 0.95 -1.07 0.35 0.33 0.93
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Figure 3.1: Density and survival estimates for the simulated data sets with (a)
0.5Weibull(2, 2) + 0.5Weibull(2, 4) and (b) h0(t)=exp(t2/3 + t/3) based on Kijima
type I model; the dark lines are the true density or survival functions and the gray
lines are the point-wise posterior means.

Table 3.4: Summary of simulation studies: r(t)=exp(t2/3 + t/3); h(wij2) =∑5
l=1 blBl3(wij2).

Logistic Exponential
True Point SSD ESE 95% CP Point SSD ESE 95% CP
β0 = −1 -1.09 0.38 0.37 0.93 -1.06 0.23 0.24 0.96
β1 = 1 1.07 0.23 0.21 0.91 -1.07 0.17 0.17 0.92

3.5 Data analysis

We first consider the dataset analyzed in Lawless and Nadeau (1995) that gives the

times of replacing valve seats on 41 diesel engines in a service fleet. A few successive

repairs recorded on the same day are deleted. We assume the end of history-time is

independent of the event process, as concluded in Lawless and Nadeau (1995). On the

left panel of Figure 3.3, a nonparametric estimate for the mean cumulative function
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Figure 3.2: Mean (gray-solid lines), 2.5% and 97.5% quantiles (gray-dashed lines) of
the estimates for h(w) based on the simulated datasets from the type I model with
logistic (left) and exponential (right) links. The black solid lines are the true function
h(w) = −w2.

(MCF) (Nelson 1995) is plotted, where each ‘+’ is a point estimate of MCF at its

corresponding time and ‘×’s are its associated 95% confidence interval. Note that

MCF is defined as E[N(t)]. When the event process is NHPP, MCF equals the mean

function
∫ t

0 r(s)ds. The dataset has been fitted many times in the literature assuming

NHPP. In this work, Kijima type I, Kijima type II, and NHPP models (Dij = 1) are

fitted for the data using the proposed method. The baseline distribution F is given

a tailfree prior: J = 4 or 5; c ∼ Γ(5, 1) or Γ(10, 1); θ ∼ N2(µθ,Vθ) where µθ and

Vθ) are obtained from a fit of the Poisson process assuming Weibull for the baseline

distribution. For the Kijima models, we choose exponential link for the age reduction

factor, i.e. Dij = exp(β0). Two sets of priors are considered for β0: N(0, 22) and

N(0, 32).

64



0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Days

M
C

F

95% Confidence intervals for MCF estimates
MCF estimates
Mean function estimates for NHPP
Kijima type I
Kijima type II

0 200 400 600

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Days

r(t
)

Kijima type I
Kijima type II
NHPP

Figure 3.3: Plots for valve seats maintenance data; left panel is the MCF plot for
data where ‘+’ is the empirical point estimate and ‘×’ is its 95% confidence interval,
overplayed with estimates of the mean function for NHPP (solid line), Kijima type I
(short-dashed line) and Kijima type II (long-dashed line); right panel is the estimated
baseline hazard function for Kijima type I (solid line), Kijima type II (dashed line)
and NHPP (dotted line).

Based on the results in Table 3.5, both Kijima type I and type II models show

high probabilities for Dij being greater than 1, i.e. posterior P (β0 > 0). There is

little difference in both estimation of β0 and goodness-of-fit measures (LPML, DIC)

when increasing the tailfree level J . The prior favoring lower c shows slightly better

values for LPML and DIC and has some effects on estimation of β0 due to a less

weight of the centering Weibull family. The prior on β0 with larger variance results

in wider 95% credible intervals but the point estimate of β0 remains stable. Under

J = 5, c ∼ Γ(5, 1) and π(β0) ∼ N(0, 22), the estimated baseline hazards r̂(t) (right

panel of Figure 3.3) are nondecreasing in general and with slight decreases around 500

days. Interpretation of the age reduction is then related to effectiveness of the repairs,

i.e. the repairs have high probability of being worse than “bad as old”, explaining

to some extent the rapid increase of failures around 600 days. To compare data fits,
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estimates of E(N(t)) for NHPP, Kjima type I and type II models are also plotted

on the left panel in Figure 3.3 where estimates for Kijima types I and II are based

on simulated failure times using the posterior means of β0 and the baseline survival

function (Krivtsov 2000, Veber et al. 2008). The plot shows that MCF estimates

based on all three of NHPP, Kijima type I, and type II interpolate the nonparametric

MCF estimates well, except for slight differences in the tail. Under J = 5, c ∼

Γ(5, 1), the nonparametric fit of the NHPP model has LPML and DIC -336.0 and

666.6 respectively. Little difference can be found in the goodness-of-fit measures,

compared to those in Table 3.5. Nevertheless, our models provide information on

the age reduction factor which is helpful for understanding the repairs and future

modeling. We also fit parametric Kijima type I and II models assuming Weibull

baseline distribution and obtain LPML as -334.6 and -334.7 and DIC as 669.4 and

669.6 respectively. Therefore, the simpler Weibull family would be an adequate choice

for the baseline distribution.
Table 3.5: Summaries of β0 for Kijima type I and type II models for the valve seats
maintenance data.

Kijima Model J π(c) π(β0) β̂0 (95% CI.) P(β0 > 0) LPML DIC
Type I 4 Γ(5, 1) N(0, 32) 1.11(-1.73,3.06) 0.92 -334.0 665.4

5 Γ(5, 1) N(0, 32) 1.07(-1.79,2.98) 0.93 -334.9 665.2
4 Γ(5, 1) N(0, 22) 1.08(-1.47,2.76) 0.93 -334.0 665.0
5 Γ(5, 1) N(0, 22) 1.04(-1.48,2.61) 0.93 -334.1 664.0
5 Γ(10, 1) N(0, 22) 0.96(-1.78,2.85) 0.88 -334.9 668.0

Type II 4 Γ(5, 1) N(0, 32) 0.80(-2.69,2.89) 0.89 -334.7 667.2
5 Γ(5, 1) N(0, 32) 0.79(-2.46,2.66) 0.89 -334.5 666.2
4 Γ(5, 1) N(0, 22) 0.78(-1.36,2.23) 0.90 -334.6 666.3
5 Γ(5, 1) N(0, 22) 0.84(-1.43,2.39) 0.91 -334.5 665.7
5 Γ(10, 1) N(0, 22) 0.64(-1.77,2.27) 0.85 -335.1 669.5

The second dataset includes failures and repairs of 12 syringe-driver pumps (Baker

1991, Singh 2011). Most systems are maintained up until 106 months and we assume

that this censoring time is independent of the failure processes. The pumps receive
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preventive maintenances (pm mode) and corrective maintenances (cm mode) with

48 pms and 94 cms in total. The cost for each cm is also available and we consider

it as a covariate interacting with corrective maintenance mode only. Denote w as

the covariate vector including: w0 = 1 if the maintenance is pm and 0 otherwise,

w1 = 1 if the maintenance is cm and 0 otherwise and w2 is the cost of the cm repair.

Kijima type I and type II models are fitted to the data. The baseline distribution

F is given a tailfree prior: J = 5; c ∼ Γ(10, 1) or Γ(5, 1); θ ∼ N2(µθ,Vθ) where

µθ and Vθ are obtained from a parametric fit of the first events of the 12 pumps.

The coefficient vector β = (β0, β1, β2) is considered with g-prior and other Gaussian

priors. We assume the exponential link for both models.

Table 3.6 shows the point estimates (posterior means) and 95% credible intervals

for β. For the Kijima type I model, the g-prior results in narrower credible intervals

for the intercept β0 and shrinks β1 toward zero. For Kijima type II model, there is

little difference in the estimates and credible intervals by using different priors on β.

The effective age reduction factor due to preventive maintenance in type II models is

significantly less than 1, by exponentiating the estimate of the intercept β0, indicating

that preventive maintenances are better than “bad as old” repairs. Baker (1991)

also observes that the preventive maintenances are very effective in maintaining the

systems. Type I models does not show strong evidence for β0 less than zero. Across

all fitting specifications, the corrective repairs perform significantly worse than the

preventive repairs and the cost of the corrective repairs shows no significant effect.

Table 3.7 presents estimates of Goodness-of-fit measures LPML and DIC. Since larger

LPML or lower DIC indicates a better fit of the data, the results show that type I

models fit the data slightly better than type II models; Γ(5, 1) yields a better fit than

Γ(10, 1).

We also fit the Kijima type I and II models with the underlying Weibull baseline

(c → ∞) and β ∼ N(0, 32I3). The type I model has LPML -314.6 and DIC 628.7.
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The type II model has LPML -319.1 and DIC 636.6. The nonparametric Bayes

method gives slightly better fits to the data than the parametric Weibull models.

The differences are not significant, suggesting adequacy of the Weibull assumption

for the data. Figure 3.4 also shows that the parametric estimates for the baseline

density and hazard functions (smooth lines) stay in the credible intervals (dashed

lines) of the nonparametric estimates.

Table 3.6: Summary of the coefficients for Kijima type I and type II models for
Syringe-driver maintenance data; J = 5, link function is exponential, estimates are
posterior means, and 95% CIs are credible intervals.

Type I Type II
Coefficient π(c) β̂ (95% CI) β̂(95% CI)

Γ(10, 1) β ∼ N(0, gn(W′W)−1); g ∼ Exp(1)
β0(pm) -0.13(-1.96,1.13) -0.36 (-0.65,-0.06)
β1(cm) 1.29 (0.46,2.31) 0.05 (-0.04,0.19)
β2(cost) -0.20 (-0.78,0.25) -0.02 (-0.16,0.11)

Γ(10, 1) β ∼ N(0, 32I3)
β0(pm) 0.04 (-3.47,2.18) -0.36 (-0.66,-0.07)
β1(cm) 2.19 (0.67,4.44) 0.05 (-0.05,0.19)
β2(cost) -0.28 (-1.03,0.31) -0.02 (-0.14,0.11)

Γ(5, 1) β ∼ N(0, 32I3)
β0(pm) -0.06 (-4.4,2.55) -0.34 (-0.63,-0.06)
β1(cm) 2.25 (0.65,5.17) 0.04 (-0.05,0.16)
β2(cost) -0.29 (-1.16,0.29) 0.01 (-0.12,0.13)

Table 3.7: Goodness-of-fit measures for Kijima type I and type II model for Syringe-
driver maintenance data; J = 5, and link function is exponential.

π(c) π(β) Type I Type II
LPML Γ(10, 1) g-prior -313.2 -319.2
LPML Γ(10, 1) N(0, 32I3) -312.2 -319.1
LPML Γ(5, 1) N(0, 32I3) -311.4 -316.8
DIC Γ(10, 1) g-prior 624.2 631.3
DIC Γ(10, 1) N(0, 32I3) 621.8 631.1
DIC Γ(5, 1) N(0, 32I3) 616.4 627.2
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Figure 3.4: Plots for Syringe-driver maintenance data for Kijima type I (left) and
type II (right) model; solid lines are baseline density (hazard) estimates and dashed
lines are 95% credible intervals. Smooth estimates (dotted lines) are fitted from the
parametric Weibull fit.

Finally, we fit the Kijima type I model with h(w2) modeled by a B-spline as

outlined in Section 3.3. Let M = 6 and set one B-spline coefficient as zero for model

identifiability. Now β = (β0, β1, b1, . . . , b5) and let β ∼ N(0, ng(X′X)−1) where X is

the new design matrix and g is fixed at 0.5 or 1. For the tailfree prior, let J = 5
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and c ∼ Γ(10, 1). Based on Table 3.8, point estimates for β0 and β1 are close to

those fitted with linearity assumption for h(w2) but credible intervals are much wider

due to an increased number of parameters. Figure 3.5 plots the point-wise estimates

(solid lines) and 95% credible intervals (dashed lines) for h(w2) showing no significant

nonlinear trend. Bayes factors for the test of linearity of h(w2) are less than one and

hence the linear assumption is preferred.

Table 3.8: Summary of the coefficients for Kijima type I model for Syringe-driver
maintenance data; h(w2) is approximated by a B-spline, estimates are posterior
means, and 95% CI are credible intervals.

g = 0.5 g = 1
Coefficient β̂ (95% CI) β̂ (95% CI)
β0(pm) -0.12 (-1.5,1.17) -0.04 (-2.12,4.63)
β1(cm) 2.02 (-2.02, 8.06) 2.53 (-5.37,9.43)
β2(cost) – –
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Figure 3.5: Estimate (solid) of h(w2) and its 95% credible intervals (dashed) for type
I model with logistic (exponential) link on the left (right) panel; dotted lines are
linear functions, i.e. h(w2) = −0.2w2 on the left panel.
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3.6 Discussion

We proposed a new semiparametric regression model for recurrent events arising

from maintenances of repairable systems where effectiveness of repairs characterized

by covariates are taken into account in the joint modeling. We generalized the Ki-

jima effective age models (Kijima 1989) by regressing the age reduction factors on

covariates. The baseline distribution is flexibly modeled using a tailfree prior, which

generalizes the commonly-used Weibull family allowing for data-driven flexibility. Lo-

gistic and exponential links are proposed for the regression and efficient, adaptive, and

easy-to-implement MCMC is described. The proposed method was illustrated using

simulations and two data analyses. We found useful and interesting interpretations

of regression coefficients when examining the effect of covariates on the effectiveness

of repairs. When the link is the exponential function, the proposed semiparametric

regression model provides an easy test for the common assumption of minimal repair

(“bad as old repair”) which is also appealing to practitioners.

The regression parameters are interpretable since an increase or decrease of effec-

tive age is closely related to intensity of the system. However when the hazard of the

system is not monotone, the interpretation becomes more difficult. Finally, we note

that it is also straightforward to generalize our model to include heterogeneous sys-

tems by including random system effects in the linear predictor or times the intensity

function.
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Chapter 4

Spatial Extended Hazard Model with

Application to Prostate Cancer Survival

This paper develops a Bayesian semiparametric approach to the extended hazard

model, with generalization to high-dimensional spatially-grouped data. County-level

spatial correlation is accommodated marginally through the copula model of Li and

Lin (2006), using a correlation structure implied by an intrinsic conditionally autore-

gressive prior (ICAR). Efficient MCMC algorithms are developed, especially applica-

ble to fitting very large, highly-censored areal survival data sets. Per-variable tests for

proportional hazards, accelerated failure time, and accelerated hazards are efficiently

carried out with and without spatial correlation through Bayes factors. The result-

ing reduced, interpretable spatial models can fit significantly better than a standard

additive Cox model with spatial frailties.

Keywords: Censored data; Copula; Normal transformation model; intrinsic autore-

gressive prior.

4.1 Introduction

The extended hazard (EH) model (Etezadi-Amoli and Ciampi, 1987; Chen and Jewell,

2001) includes the proportional hazards (PH) model (Cox, 1972; Kalbfleisch, 1978),

the accelerated failure time (AFT) model (Buckley and James, 1979; Komarek and

Lessaffre, 2008), and the accelerated hazards (AH) model (Chen and Wang, 2000;

Chen, Hanson, and Zhang, 2014) as special cases. Denote λ0(·) as the baseline hazard
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function and z as a covariate vector. The EH model assumes the individual hazard

function

λ(x|z) = λ0(xeβ′z)eγ′z. (4.1)

The more easily interpretable PH, AFT, and AH models occur as special cases when

β = 0, β = γ, and γ = 0 respectively. Note that the model also allows for per-

variable PH, AFT, or AH effects. For example, say z = (z1, z2) and consider the model

λ(x|z) = λ0(xeβz1)eβz1+γz2 . Holding z1 constant, z2 has PH interpretation; eγ is how

the instantaneous risk of death changes when z2 is increased by one unit. Holding z2

constant, z1 has AFT interpretation; mean or any percentile of lifetime (e.g. median)

changes by a factor of eβ when increasing z1 by a unit. Such reduced semiparametric

models have enhanced interpretability, separating inference into easily interpretable

parametric (regression coefficients) and nonparametric (baseline hazard) portions.

Our goal is to analyze large cancer registry data sets which typically record each

patient’s location up to a district or county due to patient confidentiality. A com-

mon feature of these data data is that the failure times are correlated. Multivariate

survival data can be handled conditionally through the use of frailties, marginally

through modifications of the hazard (e.g. Cai et al., 2007), or marginally through

a transformation model, also called a copula model. Both marginal methods pro-

duce the “population-averaged” covariate effects, however the normal transformation

model allows careful modeling of the spatial correlation. Since we seek to formally test

whether simpler models are adequate relative to the EH model with spatial correla-

tion, frailties complicate such tests, as two complete sets of frailties need be included,

one for each linear predictor. For example, the EH model augmented with frailties is

λ(xi|z) = λ0{xieβ′zi+bci}eγ′zi+gci ,

where, for our data, b1, . . . , b46 and g1, . . . , g46 are county-level frailties for South Car-

olina and ci is the county subject i belongs to. To test that PH is adequate, the
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hypotheses H0 : β = 0, bj = 0, j = 1, . . . , 46 need be considered; the per-variable

tests are even more complex. In contrast, the copula approach is both more easily

implemented and allows ready interpretation. Li and Lin (2006) consider estimation

in the PH model for spatially correlated georeferenced data. Note that the georefer-

enced approach of Li and Lin (2006) does not work for large areal data sets without

significant modification. We generalize the georeferenced normal transformation PH

model of Li and Lin (2006) to EH with a correlation structure suitable for areal data,

and develop two novel MCMC schemes for posterior updating. Since all of these

models are formally nested within the EH model, Bayes factors are quickly computed

using the Savage-Dickey ratio (Verdinelli and Wasserman 1995).

Define Yi = Φ−1
{

1− eΛi(Xi)
}
where Φ(·) is the standard normal cumulative distri-

bution function, Xi the random failure time and Λi(·) the cumulative hazard function

for the ith subject. Let Y = (Y1, . . . , Yn)′. Under the marginal normal transformation

model in Li and Lin (2006), Y follows a joint multivariate normal distribution with

mean zero and covariance Γ. That is,

Y ∼ N(0,Γ). (4.2)

The normal transformation model incorporates covariate effects in λi(·) through (4.1)

and spatial dependence by Γ. We introduce the spatial transformation model (4.9) in

Section 3.3 for county-level data where transformed survival times follow the correla-

tion structure Γ implied by the intrinsic conditionally autoregressive (ICAR) model

(Besag, York, and Mollie, 1991; Banerjee, Carlin, and Gelfand, 2004). The frame-

work developed here allows immediate extension to proper CAR and exchangeable

correlation structures as well.

There has been renewed, recent interest in stably estimating the EH model. Both

Tseng and Shu (2011) and Tong et al. (2013) consider a kernel-smoothed profile

likelihood (KSPL) approach to fitting the EH model, and also propose tests to choose

among EH, AFT, or PH. The KSPL approach uses a piecewise-constant baseline
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hazard function λ0, with a fixed number of hazard jumps at fixed locations. It is

difficult to generalize their optimization procedure for fitting the EH to the spatial

case as the likelihood becomes much more complicated and hence cause problems for

kernel-smoothing. Moreover, for big datasets, a large amount of hazard jumps needed

to be used in that it is not known a priori what the effective support of λ0 is and the

factor eβ′z by which time accelerates or decelerates in the argument of the hazard,

survival, and density functions. For this reason, the baseline hazard should also have

a scale factor to appropriately stretch or shrink λ0(·) as necessary, depending on

the effective support of the baseline survival. Several parametric families commonly

used in survival analysis, generically Fθ, have such scale parameters, e.g. log-logistic

and gamma. We generalize these families via a penalized B-spline model that is

centered at the parametric hazard in the sense that E{λ0(t)} approximates λθ(t)

over the positive support of the B-spline. The resulting model behaves like a blend

of B-splines and a smoothed gamma process that is able to capture a wide variety of

density/hazard shapes, yet remain anchored at a parametric family. Moreover, this

penalized B-spline model easily accommodates the spatial generalization and greatly

facilitates the MCMC computation for big data. More investigation of the baseline

hazard modeling is included in Section 2.1 and Section 5.

We analyze prostate cancer data from the South Carolina Central Cancer Reg-

istry (SCCCR) for the period 1996–2004; the SCCCR data are described in Hurley et

al. (2009). The SCCCR is a population-based cancer incidence registry covering the

entire state of South Carolina that consistently receives the highest gold rating from

the North American Association of Central Cancer Registries, indicating data com-

pleteness in excess of 97.5%. Specifically, we investigate racial disparities in prostate

cancer mortality accounting for county-level spatial dependence among subjects using

interpretable refinements of an extended hazard model.

This paper is organized as follows. Section 2 presents the proposed method for
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fitting the extended hazards model where the baseline hazard is flexibly modeled via a

novel penalized B-spline centered at a given parametric family. Section 3 generalizes

the EH model to incorporate spatial dependence on a lattice without the introduction

of frailties. Section 4 proposes Bayes factors for testing whether PH, AFT, or AH

holds globally, as well as per-variable tests. Simulation results are summarized in

Section 5. An analysis of the SCCCR prostrate cancer data using the proposed

model is presented in Section 6. We conclude the paper in Section 7.

4.2 Extended hazard model

In the EH model (4.1), β characterizes the acceleration or deceleration of the hazard

progression and γ characterizes the change in the relative hazards after adjusting the

different hazard progressions. Let X and C be random failure and censoring time

respectively. Conditioning on a p-dimensional covariate vector z, we assume X and C

are independent. Consider n subjects in the study; each subject is observed with an

event time ti = min{ci, xi} and a censoring indicator δi = I(xi < ci). The likelihood

based on data D = {(ti, δi, zi)}ni=1 under model (4.1) is

L(β,γ, λ0(·)) =
n∏
i=1

{
eγ′ziλ0(eβ′ziti)

}δi

exp
{
−eγ′zi

∫ ti
0
λ0(teβ′zi)dt

}
.(4.3)

Proper priors are required to compute Bayes factors; the most common choice are

g-priors. For β and γ, i.e.

π(β) ∼ Nd

(
0, g1(Z′Z)−1

)
; π(γ) ∼ Nd

(
0, g2(Z′Z)−1

)
; g1, g2 ∼ Gamma(ag, bg),(4.4)

where Z = (z1, · · · , zn)′. Recently, the g-prior has been advocated for nonlinear

regression models (e.g., Rathbun and Fei, 2006; Bové and Held, 2011). We have

found inference to be robust to the prior specification on (g1, g2).
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Baseline hazard

B-splines are now a standard tool in the modeling of hazard functions, and in fact

generalize the piecewise constant (first order B-spline) hazards extensively used in

Bayesian survival analysis in the 1990’s (see, e.g. Ibrahim, Chen, and Sinha, 2001).

Existing approaches to modeling hazard functions using B-splines (e.g. Gray, 1992;

Hennerfeind et al., 2006; Sharef et al., 2010) choose either equispaced knots over the

spread of the observed data or knots at the empirical quantiles of the observed event

times. Since we intend to fit the EH model accounting for lattice spatial correlation

marginally through a copula, we develop a simpler, yet highly flexible approach to

knot selection that borrows from Bayesian nonparametrics.

Assume the baseline hazard function to take the form

λ0(t) =
J∑
j=1

bjBkj(t), (4.5)

where Bkj(·), . . . , BkJ(·) are kth order B-spline basis functions expanded over a knot

sequence s = (s1−k, . . . , sJ) (De Boor 2001) and b1, . . . , bJ are the positive B-spline

coefficients. Set the boundary knots s(1−k):0 = 0, and s(J−k+1):J = smax. Let Fθ(·)

be the cumulative distribution function for λθ(·). Let p1, . . . , pJ−k+1 be probabilities

between 0 and 1 in an increasing order. Our default choice is pj = jpmax/(J − k+ 1)

where pmax is a constant set to close to one. Set sj = F−1
θ (pj), j = 1, . . . , J−k+1. The

proposed method automatically allocates more knots in regions of higher mass under

the parametric family, and works very well in simulations and in our data analysis.

To ensure a positive hazard over (0,∞), we assume λ0(t) = λ0(smax) for t > smax,

implying a flat hazard past where the bulk of the data lie under the parametric model.

Define s̃j = ∑j+k
l=j+1 sl/(k − 1). By Schoenberg’s approximation theorem (Marsden

1972), λ0(t) = λθ(s̃j)Bkj(t) approximates λθ(t) over t ∈ (0, smax) with uniformly

bounded error, i.e. max0≤t≤smax||λ0(t) − λθ(t)|| ≤ 2max{|λθ(x) − λθ(y)| : |x − y| ≤

min{smax/
√

2k − 2,maxj{sj+1 − sj}
√
k/12}}.
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To center λ0(t) at λθ in our Bayesian framework, we take the prior mean E(bj) =

λθ(s̃j), specifically bj ∼ Gamma (cλθ(s̃j), c) where the prior variance is λθ(s̃j)/c. The

scalar c controls the how stochastically ‘close’ λ0 is to λθ under the prior and is

assigned a prior Γ(ac, bc). The distribution family Fθ anchors the prior shape of λ0.

A data-driven prior for θ is assumed by first obtaining maximum likelihood estimates

under the underlying parametric EH model θ̂, and its associated inverse information

matrix Vθ; θ is then assigned Gaussian prior N(θ̂, aθVθ) where aθ > 1 is a scalar.

The number of B-spline basis function J is a typically chosen between 20 to 40; see

Ruppert (2002) for a detailed discussion on selection of J .

In summary,

bj
ind.∼ Gamma (cλθ(s̃j), c) , j = 1, . . . , J ; c ∼ Gamma(ac, bc); θ ∼ N2(θ̂, aθVθ). (4.6)

Sharef et al. (2010) state that “Unfortunately, it is not easy to define an in-

formative prior on the spline parameters that induces shrinkage towards a specified

parametric target” and thus posit a hazard model that is a weighted sum of a para-

metric hazard and a penalized B-spline. In contrast, the prior we suggest directly

shrinks the B-spline toward a parametric target. The parametric target both centers

inference and also guides knot locations.

MCMC sampling

The joint posterior of {β,γ,b,θ, c} following likelihood (4.3) and priors (4.6) and

(4.4) is

p(β,γ,b,θ, c|D) ∝ L(β,γ,b,θ)π(β)π(γ)π(θ)p(c)
J∏
j=1

p(bj), (4.7)

where b = (b1, · · · , bJ). Denote S and Sc as the sets of observed and censored subjects

respectively. For notational simplicity, we omit k in Bkj. To facilitate the sampling

of λ0, we follow Lin and Wang (2011), and introduce latent variables uij, j = 1, . . . , J

constrained such that ∑J
j=1 uij = 1 for i ∈ Sc. The MCMC sampling steps follow.
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Step 1: Update the blocks {β,γ}, θ, c separately using adaptive Metropolis-

Hastings algorithms (Haario, Saksman, and Tamminen 2005).

Step 2: Sample g−1
1 from Gamma(ag + 1, bg + β′Z′Zβ/2n + bg) and g−1

2 from

Gamma(ag + 1, bg + γ ′Z′Zβ/2n+ bg).

Step 3: Sample the latent random vectors ui from

ui|β,γ,b,θ,u−i ∼ Multinomial
(

b1B1(eβ′ziti)∑n
j=1 bjBj(eβ′ziti)

, · · · , bJBJ(eβ′ziti)∑n
j=1 bjB

∗
j (eβ′ziti)

)
.

Step 4: B-spline coefficients are updated by

bj|β,γ,b−j,θ, {ui}i∈Sc ∼ Gamma
(∑
i∈S

uij + cλθ(s̃j), c+
n∑
i=1

eγ′zi
∫ ti

0
Bj(teβ′zi)dt

)
.

Updating the baseline hazard using the augmented {uij} and adaptive Metropolis,

coupled with a data-driven prior on θ has given very efficient McMC chains. More

details on computation time are presented in Section 5.

4.3 Spatial correlation

The normal transformation model of Li and Lin (2006) is extended to areal data.

Relevant papers include Li and Rahman (2011) and Smith (2013). Both approaches

use a multivariate normal for the transformed responses coupled with latent data;

for them a latent continuous variable underlies a discrete response, for us a latent

censored survival time.

Likelihood of the normal transformation model

Under the the normal transformation model (4.2), Li and Lin’s (2006) likelihood

simplifies to

Ls(β,γ,b,θ,Γ) =
∫ [∏

i∈S

fi(ti)
φ(yi)

] [∏
i∈Sc

fi(xi)
φ(yi)

I(xi > ti)
]
φ(y; 0,Γ)

∏
i∈Sc

dxi (4.8)
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where

yi =


Φ−1(Fi(ti)), i ∈ S

Φ−1(Fi(xi)), i ∈ Sc
,

and Γ is a positive definite matrix with diagonal elements being one. It is difficult to

integrate out {xi, i ∈ Sc} both theoretically and numerically.

In the next section, we design Γ for areal data based on the commonly used CAR

and ICAR model.

CAR and ICAR correlation structures

Suppose subjects come from m areal units where some areal units share bound-

aries and some do not. Assume W = (wij) where wij = 1 if areal unit i is adja-

cent to areal unit j, and wij = 0 if they are not adjacent. Customarily, wii = 0

for i = 1, . . . ,m. Let di be the total number of adjacent units for unit i, i.e.

di = ∑m
j=1wij. Denote D = diag(d1, . . . , dm) and assume Y is the vector of trans-

formed failure times {Yi = Φ−1(Fi(Xi)), i = 1, . . . , n} arranged by areal units. Let

Ỹij be a normal random variable for the jth individual in unit i. Denote Ỹ =

(Ỹ11, . . . , Ỹ1n1 , . . . , Ỹm1, . . . , Ỹmnm) = (Ỹ′1, . . . , Ỹ′m) where ni is the number of obser-

vations in unit i. Assume Γ = cov(Y) = corr(Ỹ).

To induce marginal ICAR correlation on Ỹ, first consider the random effects

model:

Ỹij = αi + εij; α = (α1, · · · , αm)′ ∼ N(0,Ω); εij iid∼ N(0, σ2). (4.9)

where αi, i = 1, · · · ,m are the random effects with a covariance matrix Ω = (ωij)

and εij is the error term with variance σ2 for the jth subject in the unit i. The

covariance structure of α characterizes the spatial dependence among areal units.

Popular models for α include independent normals (i.e. exchangeable), conditional

autoregressive (CAR) models, ICAR, simultaneous autoregressive models (SAR), and

many others. Under the proper CAR model, α|ϕ, r ∼ Nm(0, ϕ−1(D − rW)−1)
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where r and ϕ are scalars . That is, Ω = ϕ−1(D − rW)−1 implying αj|α−j, ϕ ∼

N(r∑n
j=1wijαj/wj+, 1/(ϕwj+)). When r = 0, Ỹi is independent of Ỹj if j 6= i. It is

difficult to estimate r and ϕ simultaneously, as noticed by many authors. One way is

to fix r. Allowing r → 1 leads to the ICAR model. However, the implied covariance

matrix of α under ICAR model is improper as p(α) ∝ exp(−ϕα′(D−W)α/2) and

D−W is singular. A common strategy to restore the propriety is to impose the con-

straint ∑m
j=1 αj = 0 during Gibbs sampling. In Appendix A, we derive the implied

covariance matrix under this constraint and yield cov(α) = ϕ−1Ω∗ where Ω∗ = (ω∗ij)

is a matrix only depending on the neighboring matrix W. The resulting correlation

matrix Γ under the ICAR model only involves one unknown quantity ϕσ2. Denote

ϕ∗ = ϕσ2. A smaller value of ϕ∗ corresponds to stronger spatial dependence within

county and across counties.

Latent survival times approach

As mentioned in Section 3.1, it is difficult to evaluate the likelihood function (4.8).

In this section, we introduce a latent failure time Xi for each i ∈ Sc. The augmented

likelihood for the spatial model is

LAs (β,γ,b,θ,Γ, {xi, i ∈ Sc}) =
[∏
i∈S

fi(ti)
φ(yi)

] [∏
i∈Sc

fi(xi)
φ(yi)

I(xi > ti)
]
φ(y; 0,Γ) (4.10)

The conditional posterior of Xi given the other parameters is

p(xi|β,γ,b,θ,Γ, {xj, j 6= i}) ∝ fi(xi)
φ(Φ−1(Fi(xi)))

φ(Φ−1(Fi(xi))|y−i,Γ)I(xi > ti), i ∈ Sc.

Although this looks horrendous, the xi are easily sampled. Firstly yi is sampled from

a truncated normal distribution N(yi|y−i,Γ)I(yi > Φ−1(Fi(ti))) (e.g. Geweke, 1991)

then xi = F−1
i (Φ(yi)) can be obtained through bisection or the Newton-Raphson

algorithm. In addition to the imputation of censored failure times, we need to evaluate

Γ−1 in an efficient way. For high-dimensional lattice data, we obtain a closed-form of
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Γ−1 for the Γ induced from the random effects model (4.9), with details presented in

Appendix B.

Based on the augmented likelihood (4.10) and the priors (4.6) and (4.4), MCMC

sampling steps 1 to 3 are similar as those in Section 2.2. Sampling {b, ϕ∗} are

accomplished as follows.

Step 4: Propose bnewj from

Gamma
(∑
i∈Sc

uij + cλθ(s̃j), c+
n∑
i=1

eγ′zi
∫ ti

0
Bj(teβ′zi)dt

)

and accept it with probability

min
{

1,
∏n
i=1 φ(yi)e−ynew ′Γ−1ynew/2∏n
i=1 φ(ynewi )e−y′Γ−1y/2

}

where ynew is new transformed failure time vector corresponding to bnewj . Evaluation

of y′Γ−1y is efficiently carried out in Appendix B.

Step 5: Sample Yi ∼ N(yi|y−i,Γ)I(yi > Φ−1(Fi(ti))) then set xi = F−1
i (Φ(yi)).

Step 6: Update ϕ∗ using adaptive Metropolis-Hastings method.

The latent survival approach is computationally straightforward and can accom-

modate large datasets. However, the imputation of latent failure becomes inefficient

as the number of censored failure times increases. In next section, we propose an

alternative approach.

Random-effect approach for lattice data

Based on model (4.9), consider the following random effects model

Ỹij = α∗i + ε∗ij; α∗i = αi/
√
ωii + σ2; ε∗ij = εij/

√
ωii + σ2. (4.11)

Note that the correlation structure under model (4.9) and (4.11) are equal. We refer

α∗i as random effect.

Let X̃ij be the failure time for the jth observation in county i and t̃ij be the

observed failure time associated with X̃ij. Conditional on the county effect, the
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likelihood contribution for a censored observation is

Sij(t̃ij|α∗i ) = P (X̃ij > t̃ij|α∗i ) = 1− Φ
Φ−1(Fij(t̃ij))− α∗i√

(σ2/(ωii + σ2))

 ,
and for an observed observation is fij(t̃ij|α∗i ) = −∂Sij(t̃ij|α∗i )/∂t̃ij. Under the ICAR

prior, σ2/(ωii+σ2) = ϕ∗/(ω∗ii+ϕ∗). Survival probability Sij increases as α∗i increases,

holding ϕ∗ constant. With the addition of α∗, the augmented joint likelihood (4.8)

is written as

L =
∫ ∏

(i,j)∈S
fij(t̃ij|α∗i )

∏
(i,j)∈Sc

Sij(t̃ij|α∗i )P (α∗1, . . . , α∗m)dα∗1 . . . dα∗m. (4.12)

The dimension of integration in (4.12) is typically much lower than that in (4.9)

for highly censored data. The sampling steps for b and α∗1, . . . , α
∗
m are carried out

through adaptive Metropolis-Hasting steps.

4.4 Hypothesis tests using Bayes factors

Tests on null hypotheses H0 : β = 0, H0 : γ = 0, and H0 : β = γ lead to global

comparisons of EH to PH, AH and AFT model respectively. Let M1 denotes the

model under the null hypothesis, i.e. PH, AH, and AFT and M2 denotes EH under

the alternative. The Bayes factor for comparing models M1 and M2 is

BF12 =
∫
f(D|Υ,M1)π0(Υ)dΥ∫
f(D|Υ̃,M2)π(Υ̃)dΥ̃

,

where f(D|·) is the likelihood of the data D, Υ and Υ̃ are the parameters of model

M1 and M2 respectively, and π0(Υ) and π(Υ̃) are the prior densities. Our M1 models

are restricted versions of M2, e.g. when M1 is PH, Υ̃ = (β,Υ) and f(D|Υ,M1) =

f(D|β = 0,Υ,M2). If π(Υ|β = 0) = π0(Υ), the Bayes factor BF12 for comparing

PH to EH is reduced to a Savage-Dicky ratio (Verdinelli and Wasserman 1995),

BF12 = π(β = 0|D)
π(β = 0) ,
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where π(β) and π(β|D) are the prior and posterior distributions of β under M2.

When the assumption does not hold, Verdinelli and Wasserman(1995) provided the

correct version: BF12 = π(β = 0|D)/π(β = 0)E[π0(γ)/π(γ|β = 0)] assuming that

the expectation is finite, where the expectation is with respect to π(γ|β = 0,D).

Raftery (1994) noted that often only a crude approximation to the Bayes factor

is needed. Suggested by Verdinelli and Wasserman(1995), the posterior distribution

can be approximated by a normal distribution using MCMC iterates. Bayes factors

per variable can also be computed, which provide further guidance on choosing sub-

models, as illustrated in our data analysis.

4.5 Simulations

Simulation I examines the proposed method described in Section 2 for fitting the

EH model. Simulation II illustrates the MCMC procedure presented in Section 3 for

fitting the spatial model.

Simulation I: Data of size n = 300 are repeatedly simulated from the (1) AFT, (2)

AH, (3) PH, and (4) EH models; 300 replicates are simulated for each scenario. The

baseline distribution is 0.5lognormal(1, 0.2)+0.5lognormal(2, 0.2). The first covariate

Z1 is generated from Bernoulli(0.5) and the second Z2 is generated from N(0, 0.52).

A uniform distribution U(0, a) is used to induce 30% and 0% right-censored obser-

vations. We set the number of B-spline basis functions J = 20 and knots to be

F−1
θ (pj) where pjs are equally spaced over [0, pmax = 0.995] and Fθ is a log-normal

distribution. The centering hazard family θ follows N(θ̂, aθVθ) where θ̂ and Vθ are

obtained through a fit of parametric AFT, AH, PH, or EH. Set hyper-parameters

ag = bg = 0.1 and aθ = 10. For each simulated dataset, it takes approximately ten

seconds to run a chain of 30,000 iterates using Fortran. We diagnosed the iterates

using tests and trace plots provided in the CODA package in R and found that the

chain converged quickly after a few hundreds steps.

84



Summaries of regression coefficients from fitting EH model are presented in Table

4.1. Bias, SSD, ESE, and 95% are the averaged bias of the posterior means, standard

error of the posterior means, average of sample standard errors and coverage proba-

bility of the 95% credible intervals respectively. The coefficients are estimated with

low bias. SSD and ESE are close across all simulation setups. Coverage probabilities

get higher when the censoring rate decreases.

Based on the posterior mean estimates of survival, density, and hazard functions

for the 300 data sets with 0% censoring in scenario (1), Figure 4.1 plots the means,

2.5%, and 97.5% quantiles of the estimates on the left panels. The true functions

are captured well. To investigate the effect of baseline choice, we refit the data sets

choosing Fθ to be log-logistic distribution. The estimates are plotted on the right

panels of Figure 4.1; there is essentially no difference over the observed range of the

data.

Based on the posterior samples for datasets with 30% censoring, we compute

Bayes factors for comparing the simpler models to EH. When the data are generated

according to AFT, BF > 1 for AFT vs. EH 100% of the time; BF < 1 for PH and

AH 100%. When the data are generated according to PH, BF > 1 100% of the time

for PH vs. EH; BF < 1 100% for AH vs. EH and 39% and for AFT vs. EH. When

data are truly AH, BF > 1 97% of the time for AH vs. EH; BF < 1 100% of the

time for AFT vs. EH and PH vs. EH. Finally, when data are truly EH, BF < 1

100% of the time for AH and PH vs. EH, but BF < 1 65% of the time for AFT vs.

EH.

Simulation II: We sample data from EH model with ICAR spatial dependence

(4.9) across SC counties. Consider a sample size n = 500. The subjects are assigned

to the counties with equal probabilities; each county has at least one subject. The

spatial dependence is characterized by ϕ∗. We consider two values for ϕ∗: 5 and 10.

Assume the true regression parameters β be (0.5, 0.5) and γ be (0.5, 0.5). Also let
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Table 4.1: Summaries for Simulation I: n = 300 and censoring rates are 30% and
0%; baseline distribution is 0.5lognormal(1, 0.2)+0.5lognormal(2, 0.2); SSD: standard
error of the posterior means; ESE: average of sample standard errors.

30% 0%
(1) AFT True Bias SSD ESE 95% Bias SSD ESE 95%

β1 0 0.004 0.042 0.036 0.887 0.000 0.036 0.030 0.913
β2 1 0.003 0.046 0.038 0.903 0.004 0.036 0.030 0.946
γ1 0 -0.017 0.144 0.146 0.970 -0.015 0.118 0.124 0.960
γ2 1 0.012 0.160 0.160 0.927 0.033 0.131 0.129 0.947

(2) AH Bias SSD ESE 95% Bias SSD ESE 95%
β1 0.5 0.005 0.046 0.037 0.870 0.002 0.035 0.030 0.940
β2 0.5 0.005 0.044 0.039 0.896 0.002 0.038 0.032 0.903
γ1 0 -0.015 0.142 0.147 0.953 0.029 0.140 0.138 0.946
γ2 0 -0.024 0.161 0.157 0.953 -0.002 0.152 0.146 0.940

(3) PH Bias SSD ESE 95% Bias SSD ESE 95%
β1 0 0.001 0.047 0.034 0.860 0.004 0.037 0.032 0.918
β2 0 0.000 0.046 0.037 0.900 0.003 0.036 0.033 0.918
γ1 1 0.004 0.164 0.160 0.940 -0.013 0.125 0.126 0.948
γ2 1 0.008 0.181 0.171 0.930 -0.009 0.125 0.130 0.960

(4) EH Bias SSD ESE 95% Bias SSD ESE 95%
β1 0 0.002 0.038 0.032 0.903 -0.001 0.036 0.029 0.900
β2 0.5 -0.004 0.039 0.034 0.933 0.004 0.037 0.030 0.923
γ1 0.5 0.032 0.145 0.145 0.953 0.023 0.126 0.127 0.937
γ2 1 0.027 0.158 0.152 0.960 0.046 0.131 0.130 0.923

the baseline distribution be 0.5lognormal(1, 0.2)+0.5lognormal(2, 0.2); 300 replicates

are simulated for each scenario, each dataset has 30% censored observations. Prior

specifications are the same as in Simulation I. The imputation method of Section 3.3

is used. For each simulated dataset, it takes approximately a few minutes to run a

chain of 30,000 iterates using Fortran. Results are displayed in Table 4.2.

Table 4.2: Summaries for Simulation II: sample size n = 500 with 30% censored
observations; baseline distribution is 0.5lognormal(1, 0.2)+0.5lognormal(2, 0.2); SSD:
standard error of the posterior means; ESE: average of sample standard errors.

True value Bias SSD ESE 95%CP True value Bias SSD ESE 95%CP
β1 0.5 -0.004 0.056 0.048 0.905 0.5 -0.001 0.058 0.049 0.900
β2 0.5 0.005 0.032 0.027 0.915 0.5 0.000 0.032 0.028 0.890
γ1 0.5 0.019 0.204 0.198 0.940 0.5 0.001 0.201 0.198 0.940
γ2 0.5 -0.020 0.123 0.112 0.910 0.5 0.000 0.123 0.113 0.915
ϕ∗ 5 -0.093 4.470 6.060 0.930 10 -1.080 7.450 12.85 0.915
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4.6 Data analysis

We analyze SCCCR prostate cancer data for the period 1996–2004. Covariates include

county of residence at diagnosis, standardized age at diagnosis, race, marital status

at diagnosis, grade of tumor differentiation, and SEER summary stage. Table 4.3

provides summaries for the categorical covariates. There are N = 20599 patients in

the dataset after excluding subjects with missing information; 72.3% of the survival

times are right-censored.

Table 4.3: Summary characteristics of prostate cancer patients in SC from 1996-2004.

Covariate n Sample percentage
Race Black 6483 0.32

White 14116 0.68
Marital status Non-married 4525 0.22

Married 16074 0.78
Grade well or moderately differentiated 15309 0.74

poorly differentiated or undifferentiated 5290 0.26
SEER summary stage Localized or regional 19792 0.96

Distant 807 0.04

The purpose of the study is to quantify racial disparity in prostate cancer survival,

adjusting for the remaining risk factors and accounting for the county the subject lives

in. We expect patients residing in the same county to be positively correlated due

to similarities in access to health care and socioeconomic factors. Mortality rates

(percentages of death) for each county based on the SCCCR prostate cancer data

for the period 1996–2004 are mapped in Figure 4.2 which suggests strong spatial

patterns in the northwestern and eastern parts of South Carolina. Test on the PH

assumption using methods proposed in Grambsch and Therneau (1994) yield a global

p-value less than 0.01. We fit the EH model with the following specifications: Fθ is

the log-logistic distribution, which provides the best fit to a parametric PH, AFT, or

EH model compared to fits using other commonly used parametric hazard families,

θ ∼ N(θ̂, aθΣ̂θ̂) where θ̂ and Σ̂θ̂ are obtained by assuming parametric EH model,

β ∼ N(0, g1n(X′X)−1),γ ∼ N(0, g2n(X′X)−1), ag = bg = 0.1,aθ = 1000, ac = bc =
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0.1, and J = 30. After a burn-in of 2000, we obtain 6000 iterates after thinning every

other five.

Table 4.4: Summary of fitting the extended hazard model EH, the reduced model,
AFT, and PH; ∗ indicates LPML− 21000 and DIC − 42000.

Covariates EH Reduced AFT PH PH+additive age
β = γ β = 0 β = 0

Age β1 0.50(0.48,0.52) 0.48(0.46,0.50) 0.48(0.45,0.51) –
γ1 0.45(0.42,0.49) γ1 = β1 – 0.65(0.62,0.68) –

Race β2 0.18(0.15,0.21) 0.20(0.16,0.21) 0.18(0.15,0.22) – –
γ2 0.18(0.12,0.24) γ2 = β2 – 0.26(0.21,0.32) 0.26(0.20,0.31)

Marital status β3 -0.06(-0.11,-0.02) -0.05(-0.09,-0.00) 0.26(0.21,0.30) – –
γ3 0.35(0.29,0.40) 0.33(0.28,0.40) – 0.33(0.27,0.39) 0.31(0.26,0.37)

Grade β4 0.03(-0.02,0.08) β4 = 0 0.27(0.22,0.32) – –
γ4 0.36(0.29,0.41) 0.37(0.31,0.43) – 0.38(0.32,0.44) 0.37(0.33,0.43)

SEER stage β5 3.19(2.80,3.53) 3.27(2.79,3.57) 1.50(1.41,1.59) – –
γ5 1.02(0.83,1.20) 1.00(0.82,1.19) – 1.56(1.47,1.64) 1.57(1.19,1.65)

LPML∗ -161.0 -162.0 -206.5 -242.5 -231.9
DIC∗ 267.7 270.7 366.0 443.0 412.8

Table 4.5: Bayes factors for comparing EH to PH, AFT, and AH with and without
spatial correlation.

EH Spatial+EH
Covariate PH AFT AH PH AFT AH

Age > 1000 0.08 > 1000 > 1000 0.01 > 1000
Race > 1000 0.01 > 1000 > 1000 < 0.01 > 1000

Marital status 1.79 > 1000 > 1000 1.18 > 1000 > 1000
Grade 0.14 > 1000 > 1000 0.08 > 1000 > 1000

SEER stage > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

The column under EH in Table 4.4 gives the fitted results. The overall Bayes

factors for EH versus PH, AH, and AFT are much greater than 1000, indicating

evidence against those commonly assumed models. Variable-specific Bayes factors in

Table 4.5 under EH indicate evidence favoring a reduced model with AFT components

for age and race, EH components for marital status and SEER stage, and a PH

component for grade. To compare to the general EH model, the reduced model just

described, AFT, and PH models are fitted using the same prior specifications, except

that for PH, knots are fixed and equally spaced–a commonly used way for fitting

PH model. The results are displayed in Table 4.4. The LPML and DIC statistics
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indicate that EH and the reduced model outperform AFT or PH. We carried out a

prior sensitivity analysis for the EH model; there is very little differences in parameter

estimations, LPML, and DIC for the alternative priors g−1
1 ∼ Γ(0.001, 0.001), g−1

2 ∼

Γ(0.001, 0.001). There is also very little difference when increasing J to 50.

We further fit the extended hazards model with spatial dependence (4.2) via the

approach described in Section 3.4, due to a high percentage of censored observations

and a large sample size. The fitted results are presented in Table 4.6. The Bayes

factors after taking into account spatial correlation are presented Table 4.5 under the

column Spatial+EH, implying the same reduced model as that in Table 4.4 under in-

dependence. Taking into account the spatial correlation significantly improves model

fit according to LPML and DIC.

We also fit what might be considered state-of-the-art, a PH model with ICAR

frailties and a B-spline transformation for age, i.e. a partially-linear Cox model with

spatial frailties (e.g. Kneib and Fahrmeir, 2007). The nonlinear transformation of

age improves model fit beyond a linear age effect in PH, and the inclusion of ICAR

frailties improves model fit beyond the assumption of independence according to

LPML and DIC. However, the independent EH and EH-reduced models outperform

the PH model, even augmented with a nonlinear transformation of age and spatial

ICAR frailties. The ICAR-copula model improves model fit of EH and EH-reduced

even further. Our findings agree with Zhao, Hanson, and Carlin (2009) in that the

most important aspect affecting model fit and prediction is the overarching model

tying covariates to survival; of lesser importance is the spatial aspect of the model.

Here, an EH model with linear effects (and a more interpretable EH-reduced model)

vastly outperforms the PH model with a nonlinear effect.

The random-effects in the marginal EH-reduced model introduced in Section 3.4

and the frailties in the PH model are mapped in Figure (4.2). Note that the random-

effects have opposite interpretation from the PH frailties that smaller random effect
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Table 4.6: Summary of spatial models; ∗ indicates LPML−21000 and DIC−42000.

Covariates Marginal EH Marginal reduced PH+ICAR+additive age
β = 0

Age β1 0.50(0.47,0.52) 0.47(0.46,0.49) –
γ1 0.46(0.43,0.49) γ1 = β1 –

Race β2 0.18(0.15,0.21) 0.20(0.17,0.22) –
γ2 0.17(0.11,0.23) γ2 = β2 0.24(0.18,0.30)

Marital status β3 -0.06(-0.10,-0.02) -0.02(-0.05,-0.00) –
γ3 0.34(0.28,0.41) 0.33(0.27,0.39) 0.32(0.25,0.38)

Grade β4 0.03(-0.01,0.07) β4 = 0 –
γ4 0.36(0.30,0.42) 0.38(0.32,0.43) 0.37(0.32,0.44)

SEER stage β5 3.16(2.86,3.34) 2.77(2.72,2.82) –
γ5 1.10(0.94,1.26) 1.21(1.01,1.33) 1.55(1.46,1.64)

ϕ∗ 50.1(19.9,113.7) 54.6(22.7,120.8) 33.08(9.2,100.1)
LPML∗ -142.7 -143.2 -215.7
DIC∗ 192.4 164.0 332.5

indicates poorer survival. Both plots suggest similar spatial patterns to the map of

mortality rates, however, the latter two plots adjust for other factors such as race,

age, and aspects of the diagnosed cancer.

Based on the fitted results of the reduced models with and without spatial de-

pendence, white South Carolina subjects diagnosed with prostrate cancer in live 22%

longer (e0.20 ≈ 1.22) than black patients (95% CI is 18% to 25%), fixing age, stage, and

SEER stage. Note that this interpretation pertains to individuals randomly selected

from any South Carolina county, i.e. is population-averaged. Cox-Snell residual plots

(Cox and Snell 1968) show major lack-of-fit of the PH model (not shown) while EH,

the EH-reduced model, and AFT show no lack of fit. Finally, we plot the estimated

baseline survival and hazard functions for PH, EH, AFT, and the reduced model in

Figure 4.3. To compare the survival probabilities for white and black patients, in

Figure 4.4 we plot the baseline hazard and survival function estimates for each race

while setting age at the sample mean and other discrete covariates at the reference

levels. Survival probabilities for black patients are significantly lower than those for

white patients when other factors are fixed at the same levels. Note that the largest

event time is only 12.2 years.

Since the sample standard deviation of age is 8.47 and e0.47/8.47 ≈ 1.054, decreasing
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age by one year increases survival time by 5.4%. Taking e0.38 ≈ 1.46 indicates that

the hazard of dying increases 46% for poorly or undifferentiated grades vs. well or

moderately differentiated, holding age, race, and SEER stage constant. For SEER

stage, which has general EH effects, e2.77 ≈ 16 (AH) and e1.21 ≈ 3.4 (PH). Those with

distant stage are at least three times worse in one-sixteenth of the time as those with

localized or regional. Finally, in the reduced model marital status essentially has PH

interpretation; single (including widowed or separated) subjects are e0.33 ≈ 1.39 times

more likely to die at any instant than married.
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Figure 4.1: Estimates and 95% credible intervals of the baseline survival, density, and
hazard functions based on scenario (1) in simulation I with 0% censored subjects. Fθ

is log-normal distribution for the left panels and log-logistic distribution for the right
panels. Bold solid lines are the true functions; solid lines are the mean estimates;
dashed lines are the 95% credible intervals; Bold dashed lines on the bottom panels
are the mean functions of λθ.
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Figure 4.2: Map of (a) Mortality rate, (b) ICAR frailties in the PH model and (c)
random effects in the marginal reduced model for SC counties. Larger values of
frailties in (b) corresponds to higher risk of hazard function; larger values of random
effects in (c) are related to higher survival probabilities.
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Figure 4.3: Baseline hazard (left) and survival probabilities (right) estimates.

4.7 Conclusion

A Bayesian semiparametric method for fitting the extended hazard model to data

on South Carolina subjects diagnosed with prostate cancer is developed, and further

generalized to include spatially correlated data through a Gaussian copula. A novel

B-spline prior on the baseline hazard is centered at a parametric scale-family, thus

allowing baseline stretching or shrinking as necessary for the EH, AH, and AFT
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Figure 4.4: Baseline hazard (left) and survival probabilities (right) estimates for black
patients (solid line) and white patients (long-dashed line). Short-dashed lines are 95%
credible intervals.

models. For lattice data, we introduce a marginal correlation matrix based on the

ICAR prior to accommodate spatial correlation and construct two MCMC approaches

for fitting the model. Our findings for the SCCCR data help further quantify racial

differences in prostate cancer survival as well as indicate South Carolina counties

with higher adjusted mortality for further etiologic research, adjusted for other risk

factors.

Cox (1972) is the second most cited statistical paper of all time (Ryan and

Woodall, 2005). However, as seen in the the SCCCR analysis presented here, PH can

fail to fit actual survival data. Cox himself suggested that PH models are overused,

stating “...the physical or substantive basis for...proportional hazards models...is one

of its weaknesses...” and goes on to suggest that “...accelerated failure time models

are in many ways more appealing because of their quite direct physical interpretation”

(Reid, 1994). Echoing this sentiment, the SCCCR analysis showed that the main

covariate of interest, race, is best modeled as an AFT effect.

We propose fitting a large ‘super’ model that encompasses simpler, interpretable

models, and deciding on a reduced model where covariates can have one of many plau-
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sible, interpretable affects on survival. Other super models have also been proposed

in the literature. Scharfstein et al. (1998) propose a special case of transformation

models termed the generalized odds-rate model:

qρ{Sx(t)} = −x′β + qρ{S0(t)}

where qρ(s) = log{ρsρ/(1 − sρ)}. Here, ρ = 1 gives PO and ρ → 0+ gives PH. Yin

and Ibrahim (2005b) propose a Box-Cox transformation of the baseline hazard:

hx(t)ρ − 1
ρ

= h0(t)ρ − 1
ρ

+ β′x(t).

Here, ρ = 1 gives the AH model and ρ→ 0 gives PH. These authors treat ρ as known

when fitting; for these models β loses simple interpretability when ρ 6= 1 and the

estimation of ρ is problematic.

Appendix

Covariance matrix of ICAR model under the constraint

In the following, we derive the covariance matrix of α under the constraint ∑m
j=1 αj =

0. Under the ICAR prior for α, p(α) ∝ exp(−ϕα′(D−W)α/2). Note that

α′(D−W)α =
m∑
j=1

wj+α
2
i −

m∑
j=1

m∑
i=1

wjiαiαj. (13)

Under the constraint ∑m
j=1 αj = 0, let αm = −α1 − α2 − · · · − αm−1 and plug it into

(13), then

α′(D−W)α =
m−1∑
j=1

wj+α
2
i −

m−1∑
j=1

m−1∑
i=1

(wji − wjm − wmi − wm+)αiαj.

Let D∗ = diag(w1+, · · · , w(m−1)+), W∗ = (w∗ij) with w∗ij = wji−wjm−wmi−wm+.

Let α∗ = (α1, · · · , αm−1). Then under the constraint

α′(D−W)α = α∗′(D∗ −W∗)α∗. (14)
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If county m is adjacent to at least one county, D∗−W∗ is positive definite and hence

cov(α∗) = ϕ−1(D∗ −W∗)−1. Let Ξ = (D∗ −W∗)−1 with elements (ξij). Note that

cov(αm, αi) = −ϕ−1∑m−1
j=1 ξij and var(αm) = −ϕ−1∑m−1

j=1
∑m−1
i=1 ξij. Define

Ω∗ =



ξ11 · · · ξ1,m−1 −∑m−1
j=1 ξ1j

... ... . . . ...

ξm−1,1 · · · ξm−1,m−1 −∑m−1
j=1 ξm−1,j∑m−1

j=1 ξj1 · · ·
∑m−1
j=1 ξj,m−1 −

∑m−1
j=1

∑m−1
i=1 ξij


(15)

The covariance matrix of α under the constraint as φ−1Ω∗,

Matrix inversion

In the following, we find the inverse of Σ = cov(Ỹ). Based on the random effects

model (4.9),

cov(Ỹ) = Σ =



Jn1ω11 + In1σ
2 Jn1n2ω12 · · · Jn1nmω1m

Jn2n1ω21 Jn2ω22 + In2σ
2 · · · Jn2nmω2m

... ... . . . ...

Jnmn1ωm1 Jnmn2ωm2 · · · Jnmωmm + Inmσ2


(16)

where ωij = cov(αi, αj), Jni and Jninj are matrix of ones with dimension ni × ni and

ni × nj respectively, and Ini is an identity matrix with dimension ni × ni. Note that

Σ = PΩP′ + σ2In∗ (17)

where P = blockdiag (1n1 , . . . ,1nm) and n∗ = ∑m
j=1 nj. Next we find a singular vector

decomposition of P. Define li1 = ∑i−1
j=1 nj, li2 = ∑m

j=i+1 nj, and ũi = (0′li1 ,
1√
ni

1′ni ,0
′
li2

)′

where 0li1 is a vector of zeros with length li1 and 1ni is a vector of ones with length

ni. Define U = (u1, . . . ,un∗) where ui = ũi for i = 1, . . . ,m and um+1, . . . ,un∗

are the orthonormal expansion of u1, . . . ,um. Define U1 = (u1, . . . ,um), V = Im,

S0 = diag(√n1, · · · ,
√
nm), and S = (S0,0m×n∗)′ where 0m×n∗ is a matrix of zero

with dimension m× n∗. By singular vector decomposition, P = USV′.
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Therefore, Σ = USΩSU′ + σ2In∗ = UKU′ + σ2In∗ where

K =

 K∗ 0

0 0

 and K∗ =



n1ω11
√
n1n2ω12 · · · √n1nmω1m

√
n2n1ω21 n2ω22 · · · √n2nmω2m

... ... . . . ...
√
nmn1ωm1

√
nmn2ωm2 · · · nmωmm


Since U is orthonormal matrix, Σ = U (K + σ2In∗) U′. Therefore,

Σ−1 = U
(
K + σ2In∗

)−1
U′

= U

 (K∗ + σ2Im)−1 0

0 σ−2I(n∗−m)×(n∗−m)

U′

= U

 (K∗ + σ2Im)−1 − σ−2Im 0

0 0

U′ + σ−2In∗

and hence Σ−1 = U1 ((K∗ + σ2Im)−1 − σ−2Im) U′1 + σ−2In∗ . Based on the defini-

tions of K and K∗, the determinant of Σ can be computed simply as |Σ| = |K∗ +

σ2Im|σ2(n∗−m). Since Γ = AΣA where

A = blockdiag
(√

1/(ω11 + σ2)In1, · · · ,
√

1/(ωmm + σ2)Inm
)
,

Γ−1 = A−1U1 ((K∗ + σ2Im)−1 − σ−2Im) U′1A−1 + σ−2A−2. Therefore,

y′Γ−1y = x′
(
(K∗ + σ2Im)−1 − σ−2Im

)
x + σ−2y′A−2y

where xi =
√

(ωii + σ2)/ni
∑li2
j=li1 yj and x = (x1, . . . , xm); for our data m = 46. Note

that y′A−2y is a simple sum because A is diagonal.
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