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Abstract

We give a brief introduction to cluster analysis and then propose and discuss a few

methods for clustering mixed data. In particular, a model-based clustering method

for mixed data based on Everitt’s (1988) work is described, and we use a simulated

annealing method to estimate the parameters for Everitt’s model. A penalized log

likelihood with the simulated annealing method is proposed as a remedy for the

parameter estimates being drawn to extremes. Everitt’s approach and the proposed

method are compared based on their performance in clustering simulated data. We

then use the penalized log likelihood method on a heart disease data set, in which

our clustering result was compared to an expert’s diagnosis using the Rand Index.

We also describe an extension to Gower’s (1971) coefficient, based on Kaufman and

Rousseeuw’s (1990) definition, which allows for other types of variables to be used

in the coefficient. A clustering algorithm based on the extended Gower coefficient is

used to to find a clustering solution for a buoy data set to see how well this method

classified a variety of sites into their “true” regions. To display how the method based

on the extended Gower coefficient performed in clustering data having a variety of

structures, we show the results of a simulation study.
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Chapter 1

Introduction

As most real data contain different types of variables, an important area in cluster

analysis deals with clustering mixed data. Mixed data sets arise when the variables

observed consist of several types, e.g., continuous, categorical, functional, directional,

etc. As will be mentioned in the literature review, there are several options for

clustering mixed data, and each comes with its own problems. We will examine

model-based clustering and an extension to the Gower coefficient for mixed data.

When implementing model-based clustering for mixed data, the main problem is

estimating the parameters for the model, especially with a large number of variables.

Many methods of clustering objects rely explicitly or implicitly on the dissimilarities

between pairs of objects, which we discuss in Chapter 2. To motivate our discussion

of the extended Gower coefficient, there is a need for dissimilarities to be defined

for other types of variables, besides those that have already been discussed in the

literature.

We estimated the parameters for a model-based clustering approach for mixed

data (following the model proposed by Everitt (1988)) using a simulated annealing

approach. Our parameter estimates using this approach alone were drawn to extreme

values for each parameter, which is when we decided that using a penalized log-

likelihood within the simulated annealing would deter the parameters from being

drawn to those extremes. This approach worked well our simulated data. We also

applied our approach to a heart disease data set to investigate how accurate the

clustering solution using our approach was to an expert’s diagnosis.
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Another approach we investigate for clustering mixed data was based on an exten-

sion of the Gower (1971) coefficient. For this, we follow the definition of the Gower

dissimilarity of Kaufman and Rousseeuw (1990) and extend the dissimilarity measure

they described to create a generalization of the Gower coefficient. While they only

describe dissimilarities for binary (or nominal) and continuous variables, we extend

the Gower coefficient, defining dissimilarities for directional and functional variables

as well. For the functional data, we describe several different options to calculate the

dissimilarity between two curves.

In this dissertation, the second chapter contains a literature review, which intro-

duces cluster analysis and then summarizes the literature for clustering mixed data.

Chapter 3 describes our stochastic search method based on the simulated annealing,

and compares our results with those of Everitt’s (1988). In this chapter, we also

describe a penalized log-likelihood approach. In Chapter 4, we describe an exten-

sion of the Gower coefficient that can be used for mixed data. We include a real

data example, as well as a simulation study we undertook using the extended Gower

coefficient.
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Chapter 2

Literature Review

2.1 Background on Cluster Analysis

Cluster analysis involves examining multivariate data and grouping objects into clus-

ters. These clusters are constructed in such a way that the items within a cluster are

homogeneous, or highly similar, and items in separate clusters are highly dissimilar.

Some commonly used clustering procedures include agglomerative hierarchical meth-

ods, k-means type methods and classification maximum likelihood methods, which

include model-based clustering.

Agglomerative hierarchical methods involve several steps, producing solutions

ranging from partitions of n clusters each containing one individual to one cluster

containing all individuals (Everitt et al. 2011). The dissimilarities between objects

are often measured by distances, of which the Euclidean distance is the most widely

used measure; the formula for the Euclidean distance for two p-dimensional observa-

tions x and y is as follows:

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xp − yp)2.

To see how this is done we will look at an example data set. The data are from

Kaufman and Rousseeuw (1990, p. 200). The dissimilarity matrix D for the data in

Table 2.1 was computed using Euclidean distance.

3



Table 2.1: Data from Kaufman and Rousseeuw
(1990)

Object Variable 1 Variable 2
1 2 2
2 5.5 4
3 5 5
4 1.5 2.5
5 1 1
6 7 5
7 5.75 6.5

D =



0 4.03 4.24 0.71 1.41 5.83 5.86

4.03 0 1.12 4.27 5.41 1.80 2.51

4.24 1.12 0 4.30 5.66 2.00 1.68

0.71 4.27 4.30 0 1.58 6.04 5.84

1.41 5.41 5.66 1.58 0 7.21 7.27

5.83 1.80 2.00 6.04 7.21 0 1.95

5.86 2.51 1.68 5.84 7.27 1.95 0


As an example of how the dissimilarities are computed, consider the calculation

of the dissimilarity between the first two objects,

d(x1,x2) =
√

(2− 5.5)2 + (2− 4)2 = 4.03.

Some other popular measures of distance between items are the Minkowski metric,

d(x,y) =
[∑
|xi − yi|m

] 1
m

,

the Canberra metric,

d(x,y) =
∑ |xi − yi|

(xi + yi)
,

and the Czekanowski coefficient,

d(x,y) = 1− 2∑min(xi, yi)∑(xi + yi)
.

4



These distance measures can be used in single linkage, complete linkage and group

average clustering, which are examples of agglomerative hierarchical clustering pro-

cedures. Single linkage clustering defines the distance between two clusters A and B

to be

d(A,B) = min
i∈A,j∈B

dij.

Complete linkage clustering defines the distance between two clusters, A and B, to

be

d(A,B) = max
i∈A,j∈B

dij;

here, all of the objects in a cluster are guaranteed to be within some maximum

distance of each other. Group average clustering defines the distance between two

clusters, A and B, to be the average of the distances between all item pairs (i, j),

where i belongs to cluster A and j belongs to cluster B, i.e.,

d(A,B) = 1
nAnB

∑
i∈A

∑
j∈B

dij,

where nA is the number of objects in cluster A and nB is the number of objects in

cluster B and the dij values represent distances between objects. In all these methods,

clusters are formed by merging the groups that are the most similar, or that have the

smallest distance from each other (where the distance is defined as above for single

linkage, complete linkage and group average clustering). One of the drawbacks to

agglomerative hierarchical techniques is that once an item is merged into a cluster,

this merge cannot be undone; hence, if a merge decision is not chosen well, it may

lead to low quality clusters.

K-means clustering methods seek to group data into k groups by minimizing

some criterion; the within-group sum of squares over all variables is often used as the

criterion to minimize (Everitt et al. 2011). The k-means method is a partitioning

technique which uses variation about the mean of the cluster to measure objects’ sim-

ilarity. This method begins with an initial partition of the items into the k groups.

5



Then, the items are moved individually from one cluster to another and the criterion

is calculated at each move; the move to be kept is the one that minimizes the crite-

rion. The k-means method proceeds by continuing to move items individually and

to calculate the criterion until no move causes the criterion to be decreased further.

Some of the problems that can arise with k-means clustering methods are as follows:

It can only be applied when the mean of a cluster is defined; one must specify the

number of groups in advance; finally, it is sensitive to outliers.

Model-based clustering offers solutions to some of the problems that arise from

the previously discussed methods, namely the choice of a clustering method, the

estimation of the number of clusters and the lack of formal inference available without

a model. Model-based clustering methods include cluster analyses on finite mixture

densities (Everitt et al. 2011); these methods try to construct a model for the set of

clusters, and find the best fit of the data to the model. Finite mixture densities are

of the form:

f(x; p,θ) =
k∑
j=1

pjgj(x;θ),

where x is a p-dimensional random variable, pj ≥ 0 are the mixing proportions,

where ∑ pj = 1 and gj(·|·), for j = 1, ..., k, are the component densities. As stated by

Everitt et al. (2011), “Finite mixtures provide suitable models for cluster analysis if

we assume that each group of observations in a data set suspected to contain clusters

comes from a population with a different probability distribution.” To define clusters

using finite mixture densities, one would group observations based on the maximum

value of the following cluster membership probability:

P (cluster j|xi) = p̂jgj(xi, θ̂)
f(xi; p̂, θ̂)

,

with this probability being calculated after estimating the parameters of the distribu-

tion. These parameters are often estimated using either the expectation-maximization

algorithm or Bayesian estimation methods.
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Another well-known model-based formulation is the classification maximum like-

lihood procedure, which Banfield and Raftery (1993) and Fraley and Raftery (2002)

extended, and which was originally proposed by Scott and Symons (1971). The pro-

cedure first assumes that there are d subpopulations, each corresponding to a cluster,

with the subpopulation densities denoted by gj(x;θj), where θj is an unknown vec-

tor of parameters. Also, let γ ′ = [γ1, γ2, ..., γn] be a vector of cluster labels, where

γi = j if the ith observation is from the jth population. Then to fit the model, one

finds the γ and the θ = (θ1,θ2, ...,θk) that maximize the likelihood function associ-

ated, namely L(θ,γ) = ∏n
i=1 gγi

(xi;θγi
). Clusters are then merged if they yield the

greatest increase in the classification likelihood. The biggest difference between the

finite mixture densities approach and this one is that for the classification maximum

likelihood, each xi is assumed to be from a single distribution whereas in the finite

mixture approach the xi are assumed to be from mixture distributions.

It can be noted that agglomerative hierarchical and k-means clustering methods

are used more as “exploratory” tools, whereas model-based clustering allows for for-

mal inference, once a model is chosen. Also, some of the concerns and problems

that arise with hierarchical and k-means clustering can be handled with model-based

clustering. This has led to more work being done in the model-based clustering realm.

2.2 Review of Previous Methodology for Clustering Mixed Data

There are several possible approaches when clustering data consisting of variables of

different types, commonly called mixed data. One option is to perform a separate

cluster analysis for each type of variable; one problem with this method is that the

conclusions from these separate analyses may not agree (Kaufman and Rousseeuw,

1990). Another option is to convert all of the variables to a single type of variable and

then perform a cluster analysis on the data. One could transform the data to have

the variables be all interval-scaled or all binary. However, treating binary variables
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as if they were continuous introduces an arbitrary numerical coding to the categories.

Categorizing continuous variables via thresholds raises the question of what threshold

value is appropriate and furthermore sacrifices a great deal of information (Kaufman

and Rousseeuw, 1990).

DISSIMILARITY MEASURES FOR MIXED DATA

Another approach to clustering mixed data is to combine the variables into a single

proximity matrix (Kaufman and Rousseeuw, 1990). In cluster analysis, the focus is

on finding the dissimilarity between two objects, but one could also find the similarity

between objects. Gower (1971) came up with a coefficient to measure the similarity

between two objects based on mixed data. We describe the Gower coefficient further

in Chapter 4.

Gower’s formulation assigned equal weight to either one of the variable types

(continuous or binary) (Chae, Kim, and Yang, 2006). Since this can lead to clusters

that are dominated by one kind of variable type, assigning weights to the variable

types may alleviate this problem (Chae, Kim, and Yang, 2006). The dissimilarity

measure described by Chae, Kim and Yang (2006), is as follows:

d∗ij = τij
c∑
l=1

1
c

( |xil − xjl|
Rl

)
+ (1− τij)

√√√√1− Σr
l=c+1sijl

Σr
l=c+1wijl

,

where τij, 0 ≤ τij ≤ 1, is a balancing weight such that

τij =



1.0− |ρc
ij |

|ρc
ij |+|ρ

d
ij |

if 1.0 < |ρc
ij |
|ρd

ij |
,

1.0− |ρd
ij |

|ρc
ij |+|ρ

d
ij |

if 1.0 > |ρc
ij |
|ρd

ij |

0.5 if |ρcij| = |ρdij|

,

with −1.0 ≤ ρcij being a similarity measure for the quantitative variables, and with

ρdij ≤ 1.0 being a similarity measure for the binary variables, i = 2, 3, . . . , n, j =

1, 2, . . . , n − 1, i > j. Rl is the range of the lth variable, wijl = 1.0 for continuous
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variables, sijl = 1.0 if xi = xj and 0 otherwise, for binary variables, and wijl is either

0 or 1, for binary variables, depending on whether the comparison between the ith

and jth objects is valid for the lth variables. Chae, Kim and Yang (2006) use the

Pearson correlation coefficient for ρcij and the product moment correlation coefficient

for ρdij, which is the Pearson correlation coefficient applied to binary data.

Ichino and Yaguchi (1994) proposed an interesting dissimilarity measure for mixed-

type variables. The approach, called a generalized Minkowski metric, can handle

continuous, discrete, ordinal and nominal variables. It can also deal with “tree-

structured” variables whose values are a finite set of nominal values. The dissimi-

larity itself is based on a Cartesian space model, involving the Cartesian meet and

Cartesian join operations, which have various outcomes depending on the nature of

the variable under consideration (see Ichino and Yaguchi (1994) for details). It can

be shown that the proposed dissimilarity measure is a metric distance. Ichino and

Yaguchi (1994) also suggest alternate versions of the measure may be (1) normalized

to account for the variables’ differing measurement scales or (2) weighted differently

for the different variables. The family of dissimilarity metrics is quite unusual com-

pared to competing measures, but is useful, being general enough to handle a wide

range of variable types, including “trees.”

Friedman and Meulman (2004) describe two algorithms for clustering objects on

subsets of attributes (COSA), based on previously defined distance measures. They

note that the COSA algorithms as they are primarily described focus on clustering ob-

jects based on unspecified similar joint values for the attributes. However, with some

slight modifications, the COSA algorithms can be used to cluster based on certain

values for the attributes, which they refer to as “Single-target clustering”, or based

on two extreme values, which they refer to as “Dual-target clustering” (Friedman and

Meulman, 2004).
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MIXTURE MODEL-BASED APPROACHES TO CLUSTERING MIXED DATA

An important early work on model-based clustering of mixed data was that of Everitt

(1988). Everitt (1988) proposed a clustering model for data sets with both continuous

variables and binary or ordinal variables. For this model, there are several assump-

tions. One is that an observed vector x, which contains p+ q random variables, has

density function

f(x) =
c∑
i=1

piMVN(p+q)(µi,Σ),

where c is the number of clusters, p1, p2, . . . , pc are the mixing proportions such that∑c
i=1 pi = 1 and MVN(·, ·) represents a multivariate normal density. Everitt then

proposed that the binary and ordinal variables come from an underlying continuous

distribution, where the q ordinal or categorical variables are “constructed” by setting

certain threshold values to be cut-off points. The xp+1, xp+2, . . . , xp+q are observed

only through the categorized variables z1, z2, . . . , zq, where the zj’s are constructed in

the following manner:

zj =



1 if −∞ = αij1 < xp+j < αij2,

2 if αij2 < xp+j < αij3,

kj if αijkj
< xp+j < αijkj+1 =∞.

The αijl, i = 1, . . . , c, j = 1, . . . , q, l = 2, . . . , kj, values are the threshold values

used to construct the ordinal variables, z1, z2, . . . , zq, from the continuous variables,

xp+1, xp+2, . . . , xp+q. The density he proposed is

h(x, z) =
c∑
i=1

piMVN(p)(µ(p)
i ,Σp)

∫ b1

a1
· · ·

∫ bq

aq

MVNq(µ(q|p)
i ,Σq|p)dy1 . . . dyq,

where µ(q|p)
i = Σ′pqΣ−1

p (x−µ(p)
i ) and Σq|p = Σq−Σ′pqΣ−1

p Σpq. These are, respectively,

the mean and covariance matrix for the conditional density of xp+1, . . . , xp+q given

x1, . . . , xp. Σpq is the matrix of covariances between x1, . . . , xp and xp+1, . . . , xp+q; Σp

is the covariance matrix of x1, . . . , xp; Σq is the covariance matrix of xp+1, . . . , xp+q,
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where the diagonal elements are assumed (without loss of generality since xp+1, ..., xp+q

are unobserved) to be 1; and µ(p)
i is the mean vector of x1, . . . , xp for the objects in

cluster i. Now, with a given set of observations, we need to estimate the parameters

for this density in order to calculate the probabilities which are used to identify the

clusters. To estimate the parameters, we maximize the log-likelihood,

logL =
c∑
i=1

log h(xi, zi).

Lawrence and Krzanowski (1996) adopt an approach previously known in discrim-

inant analysis of mixed data (Krzanowski, 1993) and in graphical modeling (Whit-

taker, 1990). The approach replaces the q categorical variables with a single m-cell

multinomial variable, where m is the number of possible sets (patterns) of values that

the q categorical variables could take. Then the conditional Gaussian model assumes

a multivariate normal distribution for the p continuous variables that is conditional

on which of the m cells the individual falls in. So the probability of falling in the

sth cell is ps, and the vector of continuous variables for the jth individual in the sth

cell is xsj ∼ N(µs,Σs). Lawrence and Krzanowski (1996) set all covariance matri-

ces to Σ, and adapted the resulting likelihood to the clustering problem. They use

the EM algorithm analogously to McLachlan and Basford (1988) to estimate parame-

ters, including the mixture subpopulation indicators that serve as cluster-membership

parameters. Notably, in a simulation study, the estimated mean vectors for the con-

tinuous variables revealed a shrinkage property.

This shrinkage was attributed by Willse and Boik (1999) to a non-identifiability in

the conditional Gaussian model. They found that the unrestricted model of Lawrence

and Krzanowski (1996) led to multiple equally good solutions to the likelihood equa-

tions, and thus they suggested a restricted-model version of this approach.

Moustaki and Papageorgiou (2005) extended the work of Moustaki (1996) and de-

veloped a latent class mixture model that handles binary, nominal, ordinal and con-

tinuous variables using Bernoulli, multinomial, cumulative-probability multinomial,
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and normal distributions, respectively. The joint distribution (for the hth object) of

the observed variables xh = (x1h, . . . , xph)
′ is f(xh) = ∑K

j=1 ηjg(xh|j), where g(xh|j)

is a density from the exponential family and h(j|xh) = ηjg(xh|j)/f(xh) is a posterior

probability that object h belongs to class j. The AIC and BIC are suggested for

model selection.

Hunt and Jorgensen (1999) and Jorgensen and Hunt (1996) describe an approach

to mixture model clustering which, as they say, can be thought of as an extension of

some of the earlier approaches. To use the following approach, the observations should

be in the form of an n× p matrix, which come from variables which are thought of as

a random sample from f(x) = ∑
πkfk(x) (Hunt and Jorgensen, 1999). The vector of

variables x = (x1, . . . , xp)′ has been partitioned into (x̄′1, . . . , x̄′L) and, within each of

the K subpopulations, the variables in x̄l are independent of the variables in x̄l′ for

l 6= l′ (Hunt and Jorgensen, 1999). Their MULTIMIX model, for the ith observation,

can be written as

f(xi;φ) =
K∑
k=1

πk
L∏
l=1

fkl(x̄il;θkl),

where θkl contains the parameters of the distribution fkl, and πk are the mixing

proportions (Hunt and Jorgenson, 1999). Hunt and Jorgenson (1999) mention that if

the fkl belong to the exponential family, the model’s parameters can then be estimated

using the EM algorithm of Dempster et al. (1977).

He, Xu, and Deng (2005) describe a cluster ensemble approach to deal with data

that contain both numeric and categorical data. It aims to “combine several runs of

different clustering algorithms to get a common partition of the original dataset, aim-

ing for consolidation of results from a portfolio of individual clustering results” (He,

Xu, and Deng, 2005). Their approach is to first divide the dataset into two datasets,

the categorical dataset and the numeric dataset, then use appropriate, existing clus-

tering algorithms for each. The final step is to combine the clustering results from

the categorical and numeric datasets as a categorical dataset, which is then input
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into a clustering algorithm to achieve the final clustering result (He, Xu, and Deng,

2005). Letting Nc and Nn represent the number of variables that are categorical and

numeric, Nc + Nn = N where N is the total number of variables, in many cases,

Nc 6= Nn; thus, He, Xu, and Deng (2005) assign Nc and Nn as weights. This notion

led to the clustering algorithm He, Xu, and Deng (2005) describe for the categori-

cal dataset and the combined clustering categorical dataset, which is the weighted

Squeezer algorithm.
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Chapter 3

Stochastic Search for Model-Based Clustering

of Mixed Data

In this chapter we consider Everitt’s (1988) approach to model-based clustering of

mixed data, for which the main issue is estimating the parameters for the density

h(·) in order to be able to calculate the probabilities which are used to identify the

clusters. The values that maximize the log likelihood will be our parameter esti-

mates. One approach is to solve this maximization problem using a deterministic,

rather than a stochastic, optimization method. In this case, we do not know what the

likelihood looks like, and there may be several local modes, which for a deterministic

gradient method would be problematic (Robert and Casella, 2004). One drawback of

a stochastic optimization method is that it is slow, in comparison to a deterministic

optimization method (specifically if the likelihood is unimodal). Also, we are trying

to estimate numerous parameters, up to 33 in one example given in Everitt (1988).

As Robert and Casella (2004, pg. 22) explained, “when the statistician needs to study

the details of a likelihood surface or posterior distribution, or needs to simultaneously

estimate several features of these functions, or when the distributions are highly mul-

timodal, it is preferable to use a simulation-based approach.” In Everitt (1988), the

Simplex method of Nelder and Mead (1965) was used to optimize the log-likelihood.

Sections 3.1 - 3.5 include our initial findings. In Section 3.1, we discuss our ap-

proach, the simulated annealing method, for optimizing log h(·). Section 3.2 includes

some initial results using this method with bivariate data, simulated according to the
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settings described by Everitt (1988). Using the simulated annealing approach alone

led our parameter estimates to be drawn to extreme values for each parameter. We

attempted to use a penalized log-likelihood within the simulated annealing to deter

the parameters from being drawn to those extremes; the discussion of this approach

and results for the bivariate data are included in Section 3.3. Section 3.4 details our

results for a multivariate data set described by Everitt (1988). We investigated the

effect that specifying different initial values had on our approach; the results are in

Section 3.5. Section 3.6 describes a way to find an optimal tuning parameter for the

penalized log likelihood. We include a real data analysis in Section 3.7 that uses all

of our most recent findings.

3.1 Simulated Annealing Method

The parameter estimates we want are those that maximize the log likelihood, de-

noted here generically by l(θ), where θ is a (possibly vector-valued) parameter. As

mentioned previously, a stochastic optimization method may be preferable to a deter-

ministic optimization method in this case. The simulated annealing method, a Monte

Carlo optimization method, “defines a sequence πt(θ) of densities whose maximum

arguments are confounded with the arguments of max l and with higher and higher

concentrations around this argument” (Robert and Casella, 1999). The Boltzman-

Gibbs transform of l,

πt(θ) ∝ exp{l(θ)/Tt},

where Tt is a sequence of decreasing temperatures, is the most common choice for

constructing πt. “The general recommendation for the temperature decrease is that

it should be logarithmic, rather than geometric” (Robert and Casella, 1999). As

the temperature decreases toward 0, the simulated values become concentrated in a

smaller neighborhood of the maximum of the function l. Suppose at iteration t the

current parameter vector in the algorithm is θt and we generate a candidate parameter
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vector ξ. The update from θt to θt+1 comes from the Metropolis-Hastings algorithm

and the value θt+1 is generated as

θt+1 =


ξ with probability ρ = min{exp( l(ξ)−l(θt)

Tt
), 1},

θt with probability 1− ρ.

If l(ξ) > l(θt), the new value is accepted and we set θt+1 = ξ. If, however, l(θt) > l(ξ),

the move to the new value ξ may still be accepted, with probability ρ. Note that ρ

will be near 1 if l(ξ) is nearly as large as l(θt). Furthermore, a large temperature Tt

will yield a larger acceptance probability ρ. By allowing these moves to be random,

the objective function h may decrease temporarily during the algorithm which allows

the method to escape local modes.

In applying this method to our problem, we first chose initial values for each of the

parameters such that the log-likelihood was a finite value; these initially served as the

current parameter vector and current log-likelihood. Then at each iteration, a new

parameter vector was made by adding a random number from a symmetric uniform

distribution U(−δ, δ) to the current parameter values. The values of δ varied for the

different parameters, and were as follows: for p1, δ = 0.25; for µ1, µ2, α112, and α212,

δ = 5; for Σpq, δ = 1. A new log-likelihood was calculated using the new parameter

vector. Based upon the criterion explained above, we either accepted or rejected the

new parameter and log-likelihood values and updated the values as needed. At each

iteration, we also had to make sure that the values generated were valid values, such

as 0 ≤ p1 ≤ 1. In the following example from Everitt (1988), since p = 1 and q = 1,

Σp, Σq and Σpq were actually scalar-valued and we had the following,

Σq|p = Σq − ΣT
pqΣ−1

p Σpq = 1− ΣT
pqΣ−1

p Σpq > 0.

For this to hold, we did the following:

1. Choose initial values for Σpq and Σp such that ρ2 = Σ2
pq

Σp
starts at 0.5.
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2. Generate values for Σpq as described above.

3. Generate values for ρ2 by adding a random number from U(−0.25, 0.25).

4. At each iteration, check that 0 ≤ ρ2 ≤ 1.

5. If ρ2 < 0, let ρ2 = |ρ2|. If ρ2 > 1, let ρ2 = 2− ρ2.

6. Solve for Σp, where Σp = Σ2
pq

ρ2 .

3.2 Bivariate Mixed Data Example from Everitt (1988)

Everitt (1988) simulated data with different parameter settings in order to determine

how well the parameters were estimated. For the estimates in Table 3.20, data were

simulated having the following parameter values: n = 50, p = 1, q = 1, c = 2, k1 = 2,

p1 = p2 = 0.5, µ(p)
1 = 0.0, Σpq = 0.0, Σp = 1.0, α112 = 0.0, and α212 = 1.0. With these

data, following Everitt we set different values of µ(p)
2 , letting it equal 1.0, 2.0 and 3.0.

These values are used to compare the results with Everitt’s (1988) results, given in

Table 3.2.

Table 3.1: Simulated Annealing method with 10,000 draws: data set 1

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.98 0.33 −10.66 −0.52 0.98 −27.23 −8.37
2.0 0.99 0.88 36.86 1.15 1.80 −10.76 2.19
3.0 0.995 1.59 33.51 1.60 2.82 −11.12 8.13

Table 3.2: Everitt’s Nelder-Mead Simplex method results (1988): data
set 1

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.83 0.25 2.16 −0.23 0.90 0.29 88.66
2.0 0.36 0.46 1.45 −1.20 1.82 −1.17 22.87
3.0 0.49 0.27 2.87 −0.22 1.49 −0.22 1.50

As can be seen from the Tables 3.1 and 3.2, the simulated annealing did not

estimate the parameters quite as well as the Simplex method did. Everitt used the
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values that generated the data as the initial values in the Simplex method. In the

simulated annealing method, we used initial values that were further from the values

used to generate the data.

For the estimates in Table 3.3, data were simulated based on the parameter values:

n = 50, p = 1, q = 1, c = 2, k1 = 2, p1 = p2 = 0.5, µ(p)
1 = 0.0, µ(p)

2 = 3.0, Σp = 1.0,

α112 = 0.0, and α212 = 1.0. With these data, we tried different values of Σpq, letting

it equal 0.2, 0.5 and 0.8. These values are used to compare the results with those in

Table 3.4 of Everitt (1988).

Table 3.3: Simulated Annealing method with 10,000 draws: data set 2

Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.2 0.99 1.75 −16.60 1.86 3.99 −6.33 33.34
0.5 0.40 3.41 0.36 −0.60 1.10 −4.60 −5.93
0.8 0.56 2.62 0.01 −1.07 1.41 −4.93 −5.32

Table 3.4: Everitt’s Nelder-Mead Simplex method results (1988): data
set 2

Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.2 0.44 0.14 2.78 0.47 1.47 −0.17 1.00
0.5 0.42 0.02 2.75 0.60 1.37 −0.05 0.95
0.8 0.52 0.24 2.89 1.25 1.56 0.13 1.18

In this case, the Simplex method achieved better estimates as well. As the re-

sults from the simulated annealing method do not provide parameter estimates that

are comparable to those achieved using the Simplex method, the next step was to

investigate how the likelihood was behaving with respect to each parameter. Fig-

ures 3.1 through 3.7 show the plots of the log-likelihood versus each parameter as the

parameter values are updated, holding other parameters fixed.

Upon inspection of Figures 3.1 through 3.7, it appeared that some of the param-

eters, namely p1, Σpq, α112, α212, would benefit from either using a Bayesian frame-
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Figure 3.1: Log-likelihood Investigation: p1

work with priors on the parameters listed or using a penalized likelihood approach.

A problem with the Bayesian approach is that it is not obvious how to specify prior

parameter values in a real data setting when the nature of the clusters is unknown a

priori.
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Figure 3.2: Log-likelihood Investigation: µ1

Figure 3.3: Log-likelihood Investigation: Σ1
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Figure 3.4: Log-likelihood Investigation: Σpq

Figure 3.5: Log-likelihood Investigation: α112
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Figure 3.6: Log-likelihood Investigation: µ2

Figure 3.7: Log-likelihood Investigation: α212
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3.3 Penalized Likelihood Approach

Now, consider a penalized likelihood approach. The penalized likelihood approach is

described as follows: “A penalty term is added to the log likelihood of the data, to cir-

cumvent difficulties related to dimensionality” (Green, 1996). In trying to maximize

the log-likelihood, we encountered problems where the parameter estimates diverge

toward extreme values; by using a penalized likelihood approach, we can penalize

updates that yield extreme parameter estimates.

Our penalized likelihood approach was carried out in two stages. The first con-

sisted of running the simulated annealing method with 5,000 draws, after a burn-in

of 500, and calculating the standard deviations of the parameter estimates using all

5,000 values for each parameter. In the second stage, we calculate a scaled parameter

vector, using the standard deviations that were found in the first stage, as follows:

θ(scaled) = ( |p1−0.5|
s1

, µ1
s2
, µ2
s3
, Σp

s4
, Σpq

s5
, α112
s6
, α212
s7

), where s1, . . . , s7 represent the estimated

standard deviations for each parameter estimate based on the initial stage. Then

we continue with our stochastic search, using θcurr to obtain θnew. We evaluate the

penalized log likelihood for both θcurr and θnew, where the penalized log likelihood is

logLpen(θ) = logL(θ)− λ
7∑
i=1
|θ(scaled)
i |.

At this step, we accept or reject θnew based on the probability in the simulated

annealing method. The parameter λ is a tuning parameter that determines the degree

of penalization.

To compare our results using the penalized log likelihood approach, the log like-

lihoods computed with the true parameter values and with Everitt’s estimates were

penalized (using the same standard deviations computed for the different parameters

from stage 1 in our approach). For the data in Table 3.5 and Table 3.7, the burn-in

was 500, the first stage had a total of 5000 draws, while the second stage had 50000

draws and λ was 20. The true parameter values were p1 = p2 = 0.5, µ(p)
1 = 0.0,
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Σpq = 0.0, Σp = 1.0, α112 = 0.0, α212 = 1.0, and µ(p)
2 was varied to be 1.0, 2.0, and

3.0, respectively.

Table 3.5: Penalized log likelihood approach: data set 1 estimates

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.787 0.383 2.677 0.637 1.048 −30.683 −1.523
2.0 0.342 −71.516 0.978 1.146 1.838 63.161 −19.749
3.0 0.84 2.056 15.44 −1.829 3.400 −4.898 22.606

Table 3.6: Everitt’s Nelder-Mead Simplex method results (1988):
data set 1

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.662 0.908 0.632 −1.359 2.456 −9.502 −8.303
2.0 0.36 0.46 1.45 −1.20 1.82 −1.17 22.87
3.0 0.49 0.27 2.87 −0.22 1.49 −0.22 1.50

Table 3.7: Penalized log likelihood approach: data set 1 penalized
log likelihoods

µ
(p)
2 Our True Everitt’s

Penalized logL Penalized logL Penalized logL
1.0 −130.733 −104.968 −210.363
2.0 −147.5821 −132.1312 −169.9999
3.0 −173.788 −141.357 −159.152

As can be seen from Table 3.7, our parameter estimates produced a better penal-

ized log likelihood than Everitt’s parameter estimates for two out of the three data

sets; the case where µ(p)
2 = 3.0 is where Everitt’s penalized log likelihood is better

than ours.

Figure 3.8 through Figure 3.14 are plots of the parameter values generated by the

simulated annealing method, for the case when µ2 = 1.0. These show how much of

the parameter space is being explored and whether or not we should adjust some of

the values in the simulated annealing algorithm.

As can be seen from Figures 3.8 through 3.14, the parameter spaces for most of

the parameters, aside from p1, look as if they should be explored more completely,
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Figure 3.8: Parameter Space of µ1

Figure 3.9: Parameter Space of Σpq

especially because at each iteration, the values of the parameter estimates change

with each other. To achieve the best parameter estimates, we increased the number

of iterations to let the parameter space be explored more fully, and adjusted both the

temperature T and the tuning parameter λ.
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Figure 3.10: Parameter Space of Σp

Figure 3.11: Parameter Space of α112

Table 3.8 and Table 3.10 were attained by generating data with a burn-in of 500,

250, 000 draws for the first stage, 500, 000 draws for the second stage and λ was 65.
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Figure 3.12: Parameter Space of µ2

Figure 3.13: Parameter Space of α212

The true parameter values were p1 = p2 = 0.5, µ(p)
1 = 0.0, µ(p)

2 = 3.0, Σp = 1.0,

α112 = 0.0, α212 = 1.0, and Σpq was varied to be 0.2, 0.5, and 0.8, respectively.
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Figure 3.14: Parameter Space of p1

Table 3.8: Penalized log likelihood approach: data set 2 estimates

Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.2 0.493 −0.340 −5.307 5.010 25.186 −38.353 −3.911
0.5 0.210 153.010 7.226 −32.357 1909.07 0.763 −75.806
0.8 0.87 −32.31 7.034 −19.31 2264.243−43.06 −106.016

Table 3.9: Everitt’s Nelder-Mead Simplex method results (1988):
data set 2

Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.2 0.44 0.14 2.78 0.47 1.47 −0.17 1.00
0.5 0.42 0.02 2.75 0.60 1.37 −0.05 0.95
0.8 0.52 0.24 2.89 1.25 1.56 0.13 1.18

As can be seen from Table 3.10, Everitt’s penalized log likelihood is better than

ours in all but one case. When Σpq = 0.8, Everitt’s penalized log likelihood is cal-

culated to be not a real number. This may have to do with the randomness of the

generated data or this may be due to rounding, as Everitt gave his values to two

decimal places.
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Table 3.10: Penalized log likelihood approach: data set 2 log likeli-
hoods

Σpq Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.2 −193.613 −150.967 −163.343
0.5 −471.5350 −141.5402 −160.8764
0.8 −303.5461 −148.9736 NaN

Table 3.11 and Table 3.13 were attained by generating data with a burn-in of

500, 250, 000 draws for the first stage, 500, 000 draws for the second stage and λ was

65. The true parameter values were µ(p)
1 = 0.0, µ(p)

2 = 3.0, Σp = 1.0, α112 = 0.0,

α212 = 1.0, and p1 was varied to be 0.6, 0.7, and 0.8, respectively.

Table 3.11: Penalized log likelihood approach: data set 3 estimates

p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.6 0.512 1.885 −28.766 2.600 8.165 −86.944 3.604
0.7 0.554 0.285 −2.765 1.701 4.150 −6.351 25.817
0.8 0.540 0.231 −14.182 11.386 132.457 −29.207 21.486

Table 3.12: Everitt’s Nelder-Mead Simplex method results (1988):
data set 3

p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.6 0.6 0.07 2.86 0.58 1.29 0.06 0.89
0.7 0.79 0.17 3.33 0.44 1.24 0.22 0.35
0.8 0.83 0.11 3.67 0.36 1.17 0.21 0.12

Table 3.13: Penalized log likelihood approach: data set 3 penalized
log likelihoods

p1 Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.6 −268.190 −160.364 −158.631
0.7 −205.649 −201.756 −213.611
0.8 −304.428 −213.000 −213.649

As can be seen from Table 3.13, Everitt’s penalized log likelihood is better than

ours in all but one case. When p1 = 0.7, our penalized log likelihood is better than
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Everitt’s.

For all of the previous comparisons, we compared our penalized likelihood, calcu-

lated with our simulated data, to a penalized likelihood for Everitt that was calcu-

lated by using the likelihood he found from his simulated data. To better compare

our method with Everitt’s, our next step was to use the method he used on our sim-

ulated data to find the parameter estimates. Everitt used the Nelder-Mead method

to estimate the parameters. One can use the optim function in R to implement this

method; however, using the optim function with the Nelder-Mead option does not

allow one to place bounds on the parameter values. Instead, we used the option

“L-BFGS-B” (Byrd et al., 1995) which corresponds to the method that allows appro-

priate bounds for the different parameters. Table 3.14 includes the results for data

set 1 using optim with the “L-BFGS-B” option, when starting at the true values.

The table also lists the results using our method and the results when calculating the

penalized log likelihood with the true parameter values. To obtain these results, we

ran our simulated annealing loop for 500,000 iterations, with step sizes of 1 for µ1,

0.25 for Σpq, 0.15 for α112, α212 and µ2, and 0.1 for p1.

Table 3.14: Comparisons using Everitt’s method: data set 1 penal-
ized log likelihoods

µ
(p)
2 Our True Everitt’s

Penalized logL Penalized logL Penalized logL
1.0 −102.488 −151.481 −95.092
2.0 −170.934 −159.291 −109.306
3.0 −182.115 −182.115 −133.360

Since we had results in which our penalized log likelihood was lower than penalized

log likelihood that was calculated using the true parameter values, we wanted to

employ a measure that would give us a sense of how close our parameter estimates

were to the true parameter values. We first examined the following goodness of fit
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Table 3.15: Comparisons using Everitt’s method: data set 2 penal-
ized log likelihoods

Σpq Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.2 −155.694 −171.008 −137.127
0.5 −206.713 −206.713 −146.998
0.8 −221.452 −221.452 −132.984

Table 3.16: Comparisons using Everitt’s method: data set 3 penal-
ized log likelihoods

p1 Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.6 −149.944 −226.074 −145.602
0.7 −194.597 −252.348 −115.633
0.8 −201.435 −229.926 −110.612

measure for our estimated parameter vector,

G1 = 1
d

d∑
j=1

|θ̂j − θj|
|θ̂Evj − θj|

,

where d is the number of parameters, θj is the true value for parameter j, θ̂j is our

estimate for parameter j, θ̂Evj is the value for parameter j estimated by Everitt’s

approach. With this measure, if G1 < 1 our parameter estimates were closer to the

true parameter values, and if G1 > 1, Everitt’s method produced better estimates.

This goodness of fit measure had the problem in which some θ̂Evj values were in certain

cases equal to their respective θj values, and hence G1 was undefined.

We then decided on the following goodness of fit measures

GSA
2 = 1

d

d∑
j=1

|θ̂j − θj|
s(θ̂j)

,

and

GEv
2 = 1

d

d∑
j=1

|θ̂Evj − θj|
s(θ̂j)

,

where again d is the number of parameters, θj is the true value for parameter j, θ̂j is

our estimate for parameter j, θ̂Evj is the value for parameter j estimated by Everitt’s

31



approach, and s(θ̂j) is the estimated standard deviation for the jth parameter, as

estimated in stage 1. With these goodness of fit measures, the closer GSA
2 or GEv

2 is

to 0, the closer their respective parameter estimates are to the true parameter values,

hence, we have the following: if GSA
2 < GEv

2 , then our parameter estimates were closer

to the true parameter values; if GSA
2 > GEv

2 , then Everitt’s method produced better

parameter estimates.

Table 3.17: Goodness of fit measure: data
set 1

µ
(p)
2 GSA2 GEv2

1.0 0.1112 0.09338
2.0 0.01916 0.08610
3.0 0 0.07693

Table 3.18: Goodness of fit measure: data
set 2

Σpq GSA2 GEv2
0.2 0.4908 0.2702
0.5 0 0.08076
0.8 0 0.07563

Table 3.19: Goodness of fit measure: data
set 3

p1 GSA2 GEv2
0.6 0.1560 0.1278
0.7 0.2413 0.2423
0.8 0.1793 0.2365

One can see from Table 3.17 that our parameter estimates were closer to the true

parameter values when µ2 = 2.0 and when µ2 = 3.0. Since we chose the initial values

to be the true parameter values, in the case when µ2 = 3.0, our method found that

the best estimates were the true values. When µ2 = 1.0, Everitt’s method produced

estimates that were only slightly closer to the true parameter values than ours were.
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From Table 3.18 we see that our estimates were the true parameter values, asGSA
2 = 0,

when Σpq = 0.5 and Σpq = 0.8. When Σpq = 0.2, Everitt’s method provided results

that were considerably closer to the true parameter values than our estimates were. As

can be seen from Table 3.19, our estimates were slightly closer to the true parameter

values than Everitt’s estimates when p1 = 0.8, were minutely closer when p1 = 0.7,

and were not as close as Everitt’s estimates when p1 = 0.6.

3.4 Multivariate Mixed Data Example from Everitt (1988)

The first data set that was investigated by Everitt (1988) required estimating 7 pa-

rameters, a “simple” example. He then presented a more complex example, a data

set that required estimating 33 parameters, his Data Set 4. In this data set, there are

3 continuous variables and 2 categorical variables, with 100 observations each. It is

assumed that there are 3 clusters present in the data. In trying to achieve comparable

results to Everitt’s Data Set 4, data were simulated to have the following parameter

values: n = 100, p = 3, q = 2, c = 3, k1 = 2, k2 = 3, p1 = 0.4, p2 = 0.3, p3 = 0.3,

µ
(p)
1 = (0, 0, 0)T , µ(p)

2 = (3.0, 3.0, 3.0)T , µ(p)
3 = (1.5,−1.5, 4.5)T ,

Σpq =


0.2 0.0

0.5 0.5

0.0 0.4

 ,

Σp = I3,

Σq =

1.0 0.5

0.5 1.0

 ,
α112 = 0.0, α122 = −1.0, α123 = 1.0, α212 = 1.0, α222 = −0.5, α223 = 1.5,

α312 = −1.0, α322 = 0.0, α323 = 0.5.
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As defined previously, c is the number of clusters assumed for the data, p is

the number of observed continuous variables, q is the number of unobserved latent

continuous variables (used to generate the categorical variables) and the αijl values

are the threshold values used to define the categorical, or ordinal, variables based on

the latent variables xp+1, . . . , xp+q. Hence, for the data set described above, we would

have the following: for cluster 1 observations,

z1 =


1 if x4 < 0.0,

2 if x4 ≥ 0.0
,

z2 =



1 if x5 < −1.0,

2 if − 1.0 ≤ x5 < 1.0,

3 if x5 ≥ 1.0

for cluster 2 observations,

z1 =


1 if x4 < 1.0,

2 if x4 ≥ 1.0
,

z2 =



1 if x5 < −0.5,

2 if − 0.5 ≤ x5 < 1.5,

3 if x5 ≥ 1.5

and for cluster 3 observations,

z1 =


1 if x4 < −1.0,

2 if x4 ≥ −1.0

z2 =



1 if x5 < 0.0,

2 if 0.0 ≤ x5 < 0.5.

3 if x5 ≥ 0.5
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In this case, instead of having to estimate seven parameters, as in the bivariate

case, we need to estimate 33 parameters: p1 and p2; the 3 components of µ(p)
1 ; the 3

components of µ(p)
2 ; the 3 components of µ(p)

3 ; all 6 entries in Σpq; the (1, 1), (1, 2),

(1, 3), (2, 2), (2, 3), and (3, 3) entries in Σp; the (1, 2) entry of Σq; and 9 αijl values.

Generating certain parameters in the simulated annealing algorithm was more

complicated in the multivariate case. We defined a matrix

Σ =

Σp Σpq

ΣT
pq Σq

 .
In order to generate initial values for the stochastic search, we needed to generate a

correlation matrix P. Also, we generated a diagonal matrix D containing population

variances for the components with the first three diagonal entries being any value, and

the last two entries being 1. Then Σ = D1/2PD1/2. At this step, we had to ensure

Σ was positive definite, by checking all of the eigenvalues of Σ, making sure they

were all greater than 0.000001, using the R function eigen. Then in the simulated

annealing search, we changed the values of Σ componentwise. At each loop through

the simulated annealing process, we had to check that Σ was positive definite in order

for it to be valid. We also had to make sure that Σq|p was a positive definite matrix.

In case either of these matrices were not positive definite, we generated new values

for the matrices until they were both positive definite.

To generate values for Σ, we started with the function genPositiveDefMat. We

had to alter the function so that the range for the variances could be different for each

variable, specifically that the 4th and 5th variances were restricted to be 1. We used

the method unifcorrmat to generate the positive definite covariance matrix, which

first generates a correlation matrix and then generates variance components within

the ranges specified by the user. These are then combined to create the covariance

matrix.

The generation of (p1, p2, p3) was different. A simple uniform perturbation of the
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current p1 and p2 values in the chain would not ensure the condition that p1+p2+p3 =

1. Instead, at each iteration, we randomly generated values for p1 and p2 using the

rdirichlet function in R. This function ensures that p1 + p2 + p3 = 1. This results

in a more complete exploration of the parameter space (p1, p2, p3), but also a loss

in efficiency, requiring the algorithm to be run for more iterations. Also, with the

parameter space being 33-dimensional, we looked at some initial plots to check if the

parameter space was being thoroughly explored. Based on the plots, we decided to

adjust the temperature so that the rate at which it decreased was slower; we changed

the temperature function from T (i) = 500
log(i) to T (i) = 500

log(log(i)) .

The following results are Everitt’s parameter estimates for the data that was

simulated as described above: p̂1 = 0.36, p̂2 = 0.25,

µ̂
(p)
1 = (0.14, 0.20,−0.06)T , µ̂(p)

2 = (2.81, 2.80,−3.12)T , µ̂(p)
3 = (1.56,−1.49, 4.66)T ,

Σ̂pq =


0.38 −0.11

0.39 0.65

0.00 0.19

 ,

Σ̂p =


1.13 0.13 0.04

0.13 0.95 0.06

0.04 0.06 0.78

 ,

Σ̂q =

 1.0 0.04

0.04 1.0

 ,
α̂112 = −0.29, α̂122 = −1.71, α̂123 = 1.0, α̂212 = 0.69, α̂222 = −0.36, α̂223 = 1.16,

α̂312 = −0.78, α̂322 = 0.01, and α̂323 = 0.51.

Table 3.20 contains our initial results, with λ = 17, and with 5, 000 iterations and

T (i) = 500
log i in the first stage, and 100, 000 iterations and T (i) = 500

log(log i) in the second

stage. Table 3.20 also contains the true values and Everitt’s parameter estimates. As
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can be seen from Table 3.20, our estimates for p1, p2, were the only parameters that

our method estimated better than Everitt’s; however, our penalized log likelihood was

lower than Everitt’s, but it was also lower than the penalized log likelihood calculated

using the true parameter values, as can be seen in Table 3.21.

Table 3.20: Penalized likelihood approach: data set 4 esti-
mates

Truth Everitt’s
Estimate

Our Estimate

p1 0.4 0.36 0.418
p2 0.3 0.25 0.252

µ
(p)
1

T
(0, 0, 0) (0.14, 0.20,−0.06)(−19.25,−36.03, 18.0)

µ
(p)
2

T
(3.0, 3.0, 3.0) (2.81, 2.80,−3.12)(54.51, 56.20, 18.49)

µ
(p)
3

T
(1.5,−1.5, 4.5) (1.56,−1.49, 4.66)(1.23, 0.14, 0.69)

Σpq

0.2 0.0
0.5 0.5
0.0 0.4


0.38 −0.11

0.39 0.65
0.00 0.19


0.674 0.022

0.585 −0.083
0.398 −0.094


Σp I3

1.13 0.13 0.04
0.13 0.95 0.06
0.04 0.06 0.78


2.675 2.693 0.197

2.693 5.142 0.625
0.197 0.625 5.308


Σq

[
1.0 0.5
0.5 1.0

] [
1.0 0.04
0.04 1.0

] [
1 −0.153

−0.153 1

]
α112 0.0 −0.29 19.130
α122 −1.0 −1.71 −27.024
α123 1.0 1.0 −24.342
α212 1.0 0.69 −14.800
α222 −0.5 −0.36 −4.257
α223 1.5 1.16 19.256
α312 −1.0 −0.78 0.629
α322 0.0 0.01 0.748
α323 0.5 0.51 1.278

Table 3.21: Penalized log likelihood approach: data set 4 penalized
log likelihoods

True Everitt’s Our
Penalized logL Penalized logL Penalized logL
−1012.158 −1490.504 −1696.759
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3.5 Investigating Different Initial Values for Algorithm

As Everitt (1988) started his simplex method at the true values, in this section we

attempt to start our algorithm at both (1) the true values of the parameters and

(2) at Everitt’s estimates. For Everitt’s data set 1, the true parameter values were:

p1 = p2 = 0.5, µ(p)
1 = 0.0, Σpq = 0.0, Σp = 1.0, α112 = 0.0, α212 = 1.0, and µ(p)

2 was

1.0, 2.0 and 3.0, respectively (Everitt, 1988). Everitt’s parameter estimates are given

in Table 3.22.

Table 3.22: Everitt’s Nelder-Mead Simplex method results (1988):
data set 1

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.83 0.25 2.16 −0.23 0.90 0.29 88.66
2.0 0.36 0.46 1.45 −1.20 1.82 −1.17 22.87
3.0 0.49 0.27 2.87 −0.22 1.49 −0.22 1.50

Table 3.23 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 1, when starting our

algorithm at the true parameter values.

Table 3.23: Penalized log likelihood approach (starting algorithm
at the true values): data set 1 estimates

µ
(p)
2 Our True Everitt’s

Penalized logL Penalized logL Penalized logL
1.0 −101.383 −101.383 −335.169
2.0 −140.689 −140.689 −218.164
3.0 −139.344 −142.576 −161.235

As can be seen in Table 3.23, when starting our algorithm at the true values, our

best penalized logL is achieved with those true values for the cases when µ(p)
2 = 1.0

and µ(p)
2 = 2.0. When µ(p)

2 = 3.0, however, our best penalized logL is lower than the

true penalized logL. Table 3.24 contains our parameter estimates and the true values

for the case when µ(p)
2 = 3.0. As our estimates lie fairly close to the true values, our

result may be due to the randomness of the simulated data.
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Table 3.24: Penalized log likelihood approach: comparing our esti-
mates and the true values for data set 1

Our True
Estimates Values

p̂1 0.501 0.5
µ̂

(p)
1 −0.134 0.0
µ̂

(p)
2 2.328 3.0

Σ̂pq 0.214 0.0
Σ̂p 1.031 1.0
α̂112 −0.609 0.0
α̂212 0.945 1.0

Table 3.25 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 1, when starting our

algorithm at Everitt’s parameter estimates.

Table 3.25: Penalized log likelihood approach (starting at Everitt’s
estimates (1988)): data set 1 penalized log likelihoods

µ
(p)
2 Our True Everitt’s

Penalized logL Penalized logL Penalized logL
1.0 −289.193 −120.921 −377.074
2.0 −161.844 −126.167 −230.494
3.0 −117.383 −131.772 −146.181

For this set of simulated data, when starting our algorithm at Everitt’s estimates,

our penalized logL was better than Everitt’s penalized logL in all three cases, and

for the case when µ(p)
2 = 3.0, our penalized logL was better than the true penalized

logL. Our best parameter estimates for this set of simulated data, when starting our

algorithm at Everitt’s estimates, are given in Table 3.26.

Table 3.26: Penalized log likelihood approach (starting at Everitt’s
estimates (1988)): data set 1 estimates

µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

1.0 0.516 0.768 1.901 −0.623 0.707 −1.740 89.307
2.0 0.499 13.787 0.559 −1.233 1.833 12.831 −2.928
3.0 0.465 1.169 3.097 1.413 2.092 −2.171 −1.994
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For Everitt’s data set 2, the true parameter values were: p1 = p2 = 0.5, µ(p)
1 = 0.0,

µ
(p)
2 = 3.0, Σp = 1.0, α112 = 0.0, α212 = 1.0, and Σpq was 0.2, 0.5 and 0.8, respectively.

Everitt’s parameter estimates are given in Table 3.27.

Table 3.27: Everitt’s Nelder-Mead Simplex method results (1988):
data set 2

Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.2 0.44 0.14 2.78 0.47 1.47 −0.17 1.00
0.5 0.42 0.02 2.75 0.60 1.37 −0.05 0.95
0.8 0.52 0.24 2.89 1.25 1.56 0.13 1.18

Table 3.28 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 2, when starting our

algorithm at the true parameter values.

Table 3.28: Penalized log likelihood approach (starting at the true
values): data set 2 penalized log likelihoods

Σpq Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.2 −160.177 −160.177 −168.627
0.5 −128.342 −147.654 −163.218
0.8 −190.824 −239.413 NaN

Table 3.29 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 2, when starting our

algorithm at Everitt’s parameter estimates.

Table 3.29: Penalized log likelihood approach (starting at Everitt’s
estimates (1988)): data set 2 penalized log likelihoods

Σpq Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.2 −135.750 −149.922 −161.177
0.5 −159.471 −143.440 −159.471
0.8 −160.052 −180.659 NaN

As can be seen from Tables 3.28 and 3.29, the penalized log likelihood when using

Everitt’s parameter estimates, for the case when Σpq = 0.8, is not a real number.
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This may have to do with the randomness of the generated data or this may be due

to rounding, as Everitt gave his values to two decimal places.

For Everitt’s data set 3, the true parameter values were: µ(p)
1 = 0.0, µ(p)

2 = 3.0,

Σpq = 0.5, Σp = 1.0, α112 = 0.0, α212 = 1.0, and p1 was 0.6, 0.7 and 0.8. Everitt’s

parameter estimates are given in Table 3.30.

Table 3.30: Everitt’s Nelder-Mead Simplex method results (1988):
data set 3

p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.6 0.6 0.07 2.86 0.58 1.29 0.06 0.89
0.7 0.79 0.17 3.33 0.44 1.24 0.22 0.35
0.8 0.83 0.11 3.67 0.36 1.17 0.21 0.12

Table 3.31 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 3, when starting our

algorithm at the true parameter values.

Table 3.31: Penalized log likelihood approach (starting at the true
values): data set 3 penalized log likelihoods

p1 Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.6 −136.845 −171.938 −166.368
0.7 −118.035 −174.916 −195.018
0.8 −156.622 −176.898 −184.654

Table 3.32: Penalized log likelihood approach (starting at the true
values): data set 3 estimates

p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.6 0.556 0.074 3.843 0.291 0.877 −0.580 −0.500
0.7 0.563 −0.873 2.680 −2.036 4.319 −1.253 −0.601
0.8 0.685 0.599 4.088 0.631 1.292 −0.499 1.510

Table 3.33 compares the penalized log likelihoods for our estimates, the true pa-

rameter values, and for Everitt’s estimates for Everitt’s data set 3, when starting our

algorithm at Everitt’s parameter estimates. As one can see, our penalized logL is
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not only better than Everitt’s penalized logL, in each case, but it is also better than

the true penalized logL, in each case. Again, this is probably due to the fact that

the simulated data are randomly generated and reflect certain random deviation from

the true underlying parameter values.

Table 3.33: Penalized log likelihood approach (starting at Everitt’s
estimates (1988)): data set 3 penalized log likelihoods

p1 Our True Everitt’s
Penalized logL Penalized logL Penalized logL

0.6 −151.356 −167.217 −164.331
0.7 −135.076 −175.894 −193.319
0.8 −142.255 −199.451 −203.341

Table 3.34 contains our parameter estimates when starting at Everitt’s estimates.

Table 3.34: Penalized log likelihood approach (starting at Everitt’s
estimates (1988)): data set 3 estimates

p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

0.6 0.482 −3.904 1.826 4.039 16.654 −12.891 −2.179
0.7 0.558 −1.950 2.968 1.273 4.428 −0.770 −1.669
0.8 0.554 2.996 2.088 −4.242 19.666 −0.563 −1.133

For Everitt’s data set 4, the true parameter values are given in Table 3.35, along

with Everitt’s parameter estimates and our parameter estimates when starting at the

true parameter values.

Table 3.35: Multivariate penalized log likelihood approach: penal-
ized log likelihoods (starting at the true parameter values)

Our True Everitt’s
Penalized logL Penalized logL Penalized logL
−1238.481 −1238.481 −1890.201

Table 3.36 contains our parameter estimates, along with the true parameter values

and Everitt’s parameter estimates, when starting at Everitt’s estimates and Table 3.37

contains the penalized log likelihoods calculated using the true parameter values,

Everitt’s parameter estimates and our parameter estimates.
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Table 3.36: Multivariate penalized log likelihood approach: com-
paring our estimates and Everitt’s estimates (1988) with the true
values

Truth Everitt’s
Estimate

Our Estimate

p1 0.4 0.36 0.511
p2 0.3 0.25 0.149

µ
(p)
1

T
(0, 0, 0) (0.14, 0.20,−0.06)(1.31, 0.42, 0.06)

µ
(p)
2

T
(3.0, 3.0, 3.0) (2.81, 2.80,−3.12)(2.48, 3.18,−4.5)

µ
(p)
3

T
(1.5,−1.5, 4.5) (1.56,−1.49, 4.66)(1.60,−2.0, 4.49)

Σpq

0.2 0.0
0.5 0.5
0.0 0.4


0.38 −0.11

0.39 0.65
0.00 0.19


−0.21 0.6

0.17 0.29
−0.01 −0.15


Σp I3

1.13 0.13 0.04
0.13 0.95 0.06
0.04 0.06 0.78


 1.60 −0.07 0.25
−0.07 1.28 −0.11
0.25 −0.11 1.13


Σq

[
1.0 0.5
0.5 1.0

] [
1.0 0.04
0.04 1.0

] [
1.0 0.5
0.5 1.0

]
α112 0.0 −0.29 0.18
α122 −1.0 −1.71 −2.18
α123 1.0 1.0 0.26
α212 1.0 0.69 2.01
α222 −0.5 −0.36 −0.13
α223 1.5 1.16 2.04
α312 −1.0 −0.78 −1.48
α322 0.0 0.01 0.75
α323 0.5 0.51 1.25

Table 3.37: Multivariate penalized log likelihood approach: penal-
ized log likelihoods (starting at Everitt’s estimates 1988)

Our True Everitt’s
Penalized logL Penalized logL Penalized logL
−1305.512 −996.358 −1478.077

As can be seen from Table 3.37, our parameter estimates provide us with a lower

penalized log likelihood than Everitt’s parameter estimates do.

43



3.6 Optimal Lambda Values

The tuning parameter λ determines the degree of penalization for our penalized like-

lihood. Initially, we selected the value for λ in an ad hoc manner. We found that 65

seemed to work well with the data we were using, but we sought an approach to find an

optimal λ value for any data set. To find the optimal value of λ using the data, we first

formed a grid of λ values, e.g., (1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141).

We then ran the first stage of our simulated annealing method to find the standard

deviations used in the penalty term of the penalized log likelihood. We then used a

method similar to Everitt’s method to find parameter estimates using each λ value

in the grid; we used Everitt’s method as it is computationally faster. After the pa-

rameter estimates were found for each λ value, we calculated GEv
2 for each. The λ

value that minimized GEv
2 was chosen as the optimal value to use.

Tables 3.38, 3.39, 3.40 and 3.41 display the results for data set 1 using the optimal

λ value in each case. Table 3.38 displays the penalized log likelihoods, where Everitt’s

penalized log likelihood was found using the optim function in R. As can be seen, our

penalized log likelihood is greater than Everitt’s penalized log likelihood when µ2 is

1.0 and 2.0 but when looking at the goodness of fit measures in Table 3.39, we see that

our estimates are closer, overall, to the truth only when µ2 = 2.0. Tables 3.40 and

3.41 display our parameter estimates and Everitt’s parameter estimates, respectively.

Table 3.38: Penalized log likelihood approach with optimal λ value:
data set 1 penalized log likelihoods

λ µ
(p)
2 Our True Everitt’s

Penalized
logL

Penalized
logL

Penalized
logL

51 1.0 −115.895 −123.308 −139.372
141 2.0 −190.487 −165.798 −204.445
131 3.0 −296.581 −190.041 −195.194
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Table 3.39: Goodness of fit measure with op-
timal λ value: data set 1

λ µ
(p)
2 GSA2 GEv2

51 1.0 0.139 0.083
141 2.0 0.093 0.142
131 3.0 0.297 0.158

Table 3.40: Penalized log likelihood approach with optimal λ value:
data set 1 estimates

λ µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

51 1.0 0.492 0.011 0.114 0.316 2.131 −1.205 −0.602
141 2.0 0.496 0.555 1.489 −0.555 1.051 −1.258 −1.028
131 3.0 0.520 3.411 −1.053 0.472 1.136 −1.612 −4.397

Table 3.41: Penalized log likelihood approach with optimal λ value:
data set 1 estimates using an approach similar to Everitt’s approach

λ µ
(p)
2 p̂1 µ̂

(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

51 1.0 0.5 0.0 0.0 0.0 17.103 −0.018 −0.802
141 2.0 0.5 −0.395 −0.001 0.0 27.524 −4.794 0.0
131 3.0 0.5 0.028 −0.003 −0.001 26.916 −4.454 −0.022

Tables 3.42, 3.43, 3.44 and 3.45 display the results for data set 2 using the optimal

λ value in each case. Table 3.42 displays the penalized log likelihoods, where Everitt’s

penalized log likelihood was found using the optim function in R. As can be seen, our

penalized log likelihood is greater than Everitt’s penalized log likelihood only when

Σpq = 0.2 but when looking at the goodness of fit measures in Table 3.43, we see that

Everitt’s estimates are closer, overall, to the truth in each case. Tables 3.44 and 3.45

display our parameter estimates and Everitt’s parameter estimates, respectively.

Tables 3.46, 3.47, 3.48 and 3.49 display the results for data set 2 using the optimal

λ value in each case. Table 3.46 displays the penalized log likelihoods, where Everitt’s

penalized log likelihood was found using the optim function in R. As can be seen,

Everitt’s penalized log likelihood is greater than our penalized log likelihood in each

case; for this data set, the goodness of fit measures in Table 3.47 reflect a similar
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Table 3.42: Penalized log likelihood approach with optimal λ value:
data set 2 log likelihoods

λ Σpq Our True Everitt’s
Penalized

logL
Penalized

logL
Penalized

logL
141 0.2 −211.308 −199.242 −212.494
121 0.5 −272.699 −202.876 −152.730
131 0.8 −226.896 −235.312 −171.19

Table 3.43: Goodness of fit measure with op-
timal λ value: data set 2

λ Σpq GSA2 GEv2
141 0.2 0.192 0.180
121 0.5 0.188 0.116
131 0.8 0.203 0.157

Table 3.44: Penalized log likelihood approach with optimal λ value:
data set 2 estimates

λ Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

141 0.2 0.489 −0.023 −0.066 1.388 13.873 −1.991 −1.348
121 0.5 0.485 3.955 −0.007 −1.725 4.391 0.505 1.518
131 0.8 0.503 −0.562 0.713 −0.668 4.965 −5.017 −0.624

result, in that Everitt’s estimates are closer to the true parameter values, overall. Ta-

bles 3.48 and 3.49 display our parameter estimates and Everitt’s parameter estimates,

respectively.

For the multivariate data set, we ran the second simulated annealing loop for

200, 000 iterations; the results are included in Tables 3.50 to 3.52. As one can see

from Table 3.50, our penalized log likelihood is quite a bit greater than the penalized

log likelihood found using an approach similar to that of Everitt’s (1988), and the

true log likelihood. We can then turn our attention to the goodness of fit measures

in Table 3.51 to see how our parameter estimates compare to the true parameter

values, and how the parameter estimates found using the approach similar to Everitt’s

compare to the true parameter values. In this case, our parameter estimates were

46



Table 3.45: Penalized log likelihood approach with optimal λ value:
data set 2 estimates using an approach similar to Everitt’s approach

λ Σpq p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

141 0.2 0.5 −0.058 0.0 −0.01 27.356 −5.429 −0.001
121 0.5 0.5 0.0 0.0 0.0 25.362 −0.602 −0.260
131 0.8 0.5 −0.231 0.0 0.0 27.663 −0.853 −1.455

Table 3.46: Penalized log likelihood approach with optimal λ value:
data set 3 log likelihoods

λ p1 Our True Everitt’s
Penalized

logL
Penalized

logL
Penalized

logL
111 0.6 −231.401 −227.741 −176.260
141 0.7 −299.085 −246.284 −153.729
141 0.8 −212.326 −256.063 −159.757

Table 3.47: Goodness of fit measure with op-
timal λ value: data set 3

λ p1 GSA2 GEv2
111 0.6 0.286 0.215
141 0.7 0.384 0.219
141 0.8 0.306 0.290

closer to the true parameter values than Everitt’s parameter estimates were, as GSA
2 <

GEv
2 . The goodness of fit measures provide a quick way to determine which parameter

estimates were closer to the true parameter values but we include Table 3.52 for

further inspection of the differences between the true value and the estimated value

for each parameter.
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Table 3.48: Penalized log likelihood approach with optimal λ value:
data set 3 estimates

λ p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

111 0.6 0.499 −0.117 0.242 −2.309 6.954 −5.455 0.023
141 0.7 0.488 −1.064 0.472 −1.949 8.056 −1.794 −4.625
141 0.8 0.508 −0.156 0.983 1.051 2.367 −1.635 −2.268

Table 3.49: Penalized log likelihood approach with optimal λ value:
data set 3 estimates using an approach similar to Everitt’s approach

λ p1 p̂1 µ̂
(p)
1 µ̂

(p)
2 Σ̂pq Σ̂p α̂112 α̂212

111 0.6 0.5 2.779 0.0 0.0 25.341 −1.540 −0.084
141 0.7 0.5 −0.059 0.0 0.0 28.242 −0.023 −0.001
141 0.8 0.5 0.008 0.001 0.002 29.200 −1.745 0.001

Table 3.50: Multivariate penalized log likelihood approach with
optimal λ = 1: penalized log likelihoods (starting at Everitt’s esti-
mates 1988)

Our True Everitt’s
Penalized logL Penalized logL Penalized logL
−1274.205 −4274.408 −3664.513

Table 3.51: Goodness of fit measure with op-
timal λ value: multivariate data set

λ GSA2 GEv2
1 1.956 2.842
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Table 3.52: Multivariate penalized log likelihood approach with optimal
λ = 1: comparing our estimates and the estimates found using Everitt’s
method with the true values

Truth Everitt’s
Estimate

Our Estimate

p1 0.4 0.50 0.16
p2 0.3 0.22 0.09
µ

(p)
1 (0, 0, 0)T (−3.0, 0.1,−7.1)T (−2.6,−1.3,−7.2)T

µ
(p)
2 (3.0, 3.0, 3.0)T (3.4,−2.2,−6.1)T (2.2,−3.7,−4.4)T

µ
(p)
3 (1.5,−1.5, 4.5)T (2.9,−1.9, 2.5)T (3.0,−0.1, 3.8)T

Σpq

0.2 0.0
0.5 0.5
0.0 0.4


 0.46 0.14
−0.4 −0.11
−0.01 0.69


0.75 −0.64

0.26 0.08
0.54 −0.84


Σp I3

 1.3 0.2 −0.3
0.2 0.7 0.02
−0.3 0.02 1.3


2.0 0.7 0.9

0.7 1.2 0.2
0.9 0.2 1.8


Σq

[
1.0 0.5
0.5 1.0

] [
1.0 −0.05
−0.05 1.0

] [
1.0 0.14
0.14 1.0

]
α112 0.0 2.48 3.13
α122 −1.0 −7.43 −5.17
α123 1.0 4.04 0.63
α212 1.0 −5.05 −5.80
α222 −0.5 −5.13 −6.14
α223 1.5 2.00 0.80
α312 −1.0 −0.52 −0.56
α322 0.0 0.53 0.79
α323 0.5 3.44 3.10
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3.7 Analysis of Heart Disease Data

The data we used for the real data analysis is the processed Cleveland heart disease

data set, archived in the UCI Machine Learning Repository (http://archive.ics.uci.edu/

ml/index.html). This data set consists of 14 variables, measured on 297 patients.

Each patient was diagnosed by experts to have one of five types of heart disease;

we use this variable to identify the true clustering structure for the data. There

are three binary variables that were measured: whether or not the patient’s fasting

blood sugar exceeded 120 mg/dl; whether or not the patient was male; whether or

not the patient suffered from exercise-induced angina. There are five ordinal vari-

ables: chest pain type (1: typical angina, 2: atypical angina, 3: non-anginal pain, 4:

asymptomatic); resting electrocardiographic results (0: normal, 1: having ST-T wave

abnormality, 2: showing probable or definite left ventricular hypertrophy by Estes’

criteria); slope of the peak exercise ST segment (1: upsloping, 2: flat, 3: downslop-

ing); number of major vessels (0-3) colored by fluoroscopy; and a defect category,

with levels (normal, fixed defect, reversable defect). Lastly, there are five continuous

variables: resting blood pressure in mmHg; maximum heart rate achieved; ST de-

pression induced by exercise relative to rest; serum cholesterol in mg/dl; age in years.

The description of these variables were taken from the UCI Repository data page,

(http://archive.ics.uci.edu/ml/datasets/Heart+Disease).

To illustrate our method, we clustered a subset of the data that consisted of one

continuous and one ordinal variable from the heart disease data (maximum heart

rate achieved and chest pain type, respectively). We then clustered a larger subset

consisting of three continuous variables and two ordinal variables:

• maximum heart rate achieved,

• resting blood pressure in mmHg,

• serum cholesterol in mg/dl,
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• whether or not the patient’s fasting blood sugar exceeded 120 mg/dl,

• resting electrocardiographic results (0: normal, 1: having ST-T wave abnor-

mality, 2: showing probable or definite left ventricular hypertrophy by Estes’

criteria).

Table 3.53 displays the results from clustering the bivariate mixed data using our

simulated annealing method, with the second loop having a total of 50, 000 iterations.

Table 3.53 displays the probabilities for the observations belonging to each cluster;

the cluster with the highest probability for that observation is the one to which that

observation is assigned. To illustrate how the probabilities are found, we’ll look at

how the probabilities were found for observation 2 from Table 3.53. As given in

Chapter 2, the cluster membership probability is found using the following forumula:

P (cluster j|xi) = p̂jgj(xi, θ̂)
f(xi; p̂, θ̂)

.

For this data, our estimates for p̂j are p̂1 = 0.06, p̂2 = 0.25, p̂3 = 0.51, p̂4 = 0.16, and

p̂5 = 0.02. Thus, for observation 2, we have the following:

P (Cl1) = 0.06 ∗ 0.02
0.06 ∗ 0.02 + 0.25 ∗ 0.004 + 0.51 ∗ 0.004 + 0.16 ∗ 0.009 + 0.02 ∗ 0.03 = 0.22,

P (Cl2) = 0.25 ∗ 0.004
0.06 ∗ 0.02 + 0.25 ∗ 0.004 + 0.51 ∗ 0.004 + 0.16 ∗ 0.009 + 0.02 ∗ 0.03 = 0.15,

P (Cl3) = 0.51 ∗ 0.004
0.06 ∗ 0.02 + 0.25 ∗ 0.004 + 0.51 ∗ 0.004 + 0.16 ∗ 0.009 + 0.02 ∗ 0.03 = 0.31,

P (Cl4) = 0.16 ∗ 0.009
0.06 ∗ 0.02 + 0.25 ∗ 0.004 + 0.51 ∗ 0.004 + 0.16 ∗ 0.009 + 0.02 ∗ 0.03 = 0.24,

and

P (Cl5) = 0.02 ∗ 0.03
0.06 ∗ 0.02 + 0.25 ∗ 0.004 + 0.51 ∗ 0.004 + 0.16 ∗ 0.009 + 0.02 ∗ 0.03 = 0.08.

Thus, observation 2 would be included in cluster 3, as this is the largest clustering

membership probability.
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Table 3.53: Heart Disease bivariate data cluster probabilities and cluster
assignment

Obs. P(Cl. 1) P(Cl. 2) P(Cl. 3) P(Cl. 4) P(Cl. 5) Cluster
Assign.

1 1.0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1
2 0.22 0.15 0.31 0.24 0.08 3
3 0.08 0.20 0.42 0.25 0.05 3
4 ≈ 0 0.27 0.55 0.17 0.01 3
5 0.01 0.26 0.53 0.19 0.01 3
· · · · · · ·
· · · · · · ·
· · · · · · ·

295 0.04 0.22 0.46 0.24 0.03 3
296 0.16 0.17 0.35 0.25 0.07 3
297 0.01 0.26 0.53 0.19 0.01 3

Our clustering solution grouped the data into 2 clusters. Two measures of the

goodness of a clustering solution, relative to a gold standard structure, are the Rand

and Adjusted Rand indices. The higher the value of each index, the better the

solution reflects the gold-standard structure. These indices are formally defined in

Section 4.1. The Adjusted Rand Index for the clustering result when compared to

the expert diagnosis for each patient was -0.001 and the Rand Index was 0.41. As

the expert’s diagnosis had a total of 5 categories, our clustering solution could shed

new perspective on the nature of the clustering structure. We now look at using our

algorithm with a multivariate subset of the data.

The results in Table 3.54 are those from the clustering of the multivariate mixed

data. This table displays the probabilities for the observations belonging to each

cluster; the cluster with the highest probability for that observation is the one in

which that observation is assigned to. For these results, we ran the second loop

in the simulated annealing method a total of 50, 000 iterations. The Adjusted Rand

Index for the clustering result when compared to the expert diagnosis for each patient

was -0.03 and the Rand Index was 0.49.

For the multivariate mixed data clustering solution, the patients were separated
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Table 3.54: Heart Disease multivariate data cluster probabilities and
cluster assignment

Obs. P(Cl. 1) P(Cl. 2) P(Cl. 3) P(Cl. 4) P(Cl. 5) Cluster
Assign.

1 ≈ 0 0.70 ≈ 0 0.30 ≈ 0 2
2 ≈ 0 0.87 ≈ 0 0.13 ≈ 0 2
3 ≈ 0 0.80 ≈ 0 0.20 ≈ 0 2
4 0.02 0.16 0.64 0.06 0.12 3
5 ≈ 0 0.74 ≈ 0 0.26 ≈ 0 2
· · · · · · ·
· · · · · · ·
· · · · · · ·

295 0.19 0.01 0.45 0.01 0.34 3
296 0.01 0.50 0.28 0.14 0.07 3
297 ≈ 0 0.74 ≈ 0 0.26 ≈ 0 2

into 4 clusters. Figure 3.15 is a scatterplot matrix of the continuous variables from

the multivariate mixed data subset from the Heart Disease data, with the clusters

distinguished. As this plot only displays the continuous variables, it does not depict

the entire framework behind the clustering structure of the data but it allows us to

make some conclusions. As one can see from Figure 3.15, patients that had higher

maximum heart rate achieved values and lower resting blood pressure were clustered

together with our algorithm, as represented in the plot by squares; these patients also

had lower values of serum cholesterol. Patients with mid-level values of serum choles-

terol and mid- to high-level values of maximum heart rate achieved were clustered

together with our algorithm, as represented in the plot by triangles; these patients

also had mid- to high-level values for resting blood pressure. The largest cluster in-

cluded a wide range of values for the maximum heart rate achieved, a wide range of

values for resting blood pressure, and a wide range of values for serum cholesterol,

as represented in the plot by circles. There was one patient that was placed into a

cluster by his/herself with our algorithm, as represented by an upside down triangle;

this patient had a relatively high value for resting blood pressure, a low- to mid- level

value for maximum heart rate achieved and a mid-level value for serum cholesterol.
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Figure 3.15: Plot of the continuous variables from the multivariate mixed data
subset from the Heart Disease data (clusters distinguished)
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Chapter 4

Extended Gower Coefficient

Gower (1971) described a measure of similarity that can be used for mixed data,

namely, data that contain continuous, categorical and nominal variables. Kaufman

and Rousseeuw (1990) describe a dissimilarity measure that is a generalization of the

Gower coefficient; to find the similarity between two objects using the dissimilarity

measure described below, one simply takes 1− d(i, j). The dissimilarity between two

objects, i and j, is defined as follows

d(i, j) =
∑
f δ

(f)
ij d

(f)
ij∑

f δ
(f)
ij

,

where δ(f)
ij is 1 if both measurements xif and xjf for the fth variable are nonmissing,

and is 0 otherwise; δ(f)
ij is also 0 if f is an asymmetric binary attribute and objects i

and j give a 0 − 0 match (Kaufman & Rousseeuw, 1990). If variable f is binary or

nominal, then

d
(f)
ij =


1 if xif 6= xjf ,

0 if xif = xjf

If all variables are nominal or symmetric binary variables, then d(i, j) becomes

the simple matching coefficient (the number of matches over the total number of

number of available pairs); if the variables are asymmetric binary variables then

d(i, j) becomes the Jaccard coefficient (Kaufman & Rousseeuw, 1990). If variable f

is interval-scaled, then

d
(f)
ij = |xif − xjf |

maxh(xhf )−minh(xhf )
.
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To create an extension of the Gower coefficient, we would like to be able to include

other types of variables, such as directional and functional. In order to include those

types of variables, we need to have a reasonable measure for the dissimilarity between

two objects. Ackermann (1997) described a dissimilarity measure if the variables are

directional; in this case,

d
(f)
ij = π − |π − |θi − θj||,

where θi is the angle measured on object i.

To measure the dissimilarity between two curves, or functions, there are several

options, the most common being being the L2 distance. The L2 distance between

functions yi(t) and yj(t) is defined as

d
(f)
ij =

√∫
T

[
yi(t)− yj(t)

]2
dt.

Another option is to use a weighted L2 distance. The weighted L2 distance between

functions yi(t) and yj(t) is defined as

dw
(f)
ij =

√∫
T
w(t)

[
yi(t)− yj(t)

]2
dt.

Chen et al. (2014) considered the following weighting function

w(t) =
1

σ̂2(t)∫
T ( 1

σ̂2(u))du
,

where σ̂2(t) is the sample variance of all yi(t)−yj(t) values within some small interval

around t such that t ε [t − δ, t + δ]. This function w(t) puts more weight on those

regions where the curves are further apart and less weight on the regions where the

curves are closer together (Chen et al. 2014). To prevent the functional variables

from having more or less influence than the other variables, we scale either of the

dissimilarity measures described above as follows:

d
(f)
ij

maxi,j d(f)
ij −mini,j d(f)

ij

.
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To estimate the curves for each functional variable, one option is to use B-splines, a

form of nonparametric regression; in that case, the dissimilarities could be computed

using the B-spline coefficients. Suppose the coefficients for curve i were β̂0i, β̂1i, . . . , β̂ki

and for curve j were β̂0j, β̂1j, . . . , β̂kj. The dissimilarity between the ith and jth curves

would be calculated as follows:

dij =
√(

β̂0i − β̂0j
)2

+
(
β̂1i − β̂1j

)2
+ · · ·+

(
β̂ki − β̂kj

)2
.

4.1 Data Analysis

The data we will be using are from the National Data Buoy Center, given in the

historical section of the National Oceanic and Atmospheric Administration (NOAA)

website, www.ndbc.noaa.gov. The objects to be clustered are a set of stations at

which measurements are taken via weather buoys. The variables of interest to us are

wind direction, wind speed, air temperature, and water temperature, along with the

latitude, longitude and water depth that corresponds to each buoy. Certain buoys

were excluded from the analysis because of excessive missing values. To impute miss-

ing values in variables that were time series, we took the average of the observations

before and after the missing observation. The number of observations and the mea-

surement times for the functional data varied from buoy to buoy. To align the data,

we defined our time index to be the number of minutes since Jan. 1, 2011 at 12:50

AM. The time in the original data sets was given as year, month, day, hour, and

minute. In total, our data set consisted of 26 buoys, with one buoy being included in

two different regions. In addition, we considered the time zone (a nominal variable)

for each buoy. The time zones in our buoy data were Central, Eastern, and Pacific.

In order to use this variable in the Gower coefficient, each time zone was given a

numerical label, ‘Eastern’=1, ‘Central’=2, and ‘Pacific’=3.

As a starting point, we performed k-means clustering on fitted values from apply-

ing a B-spline smoother for each curve, representing each station, separately on each
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functional variable: wind direction, wind speed, air temperature, and water temper-

ature. Since each buoy had differing numbers of measurement points, we specified

a common set of points at which the B-spline smoother would estimate the mean

response. We then did k-means clustering on these fitted values for each curve, based

on that common grid of time points. We also did k-means clustering on water depth

and latitude and longitude, treating these two as bivariate data. Since we are using an

extension of the Gower coefficient, we could instead transform latitude and longitude

to a directional variable. To transform from Cartesian coordinates to polar coordi-

nates, we use the following formulas: x = r cos θ and y = r sin θ, where r =
√
x2 + y2.

Treating x as the longitude and y as the latitude, we can find our direction by solving

for θ. Since latitude and longitude are measured using the intersection of the prime

meridian and the equator as the reference point, we allow for the possibility of chang-

ing our reference point. Since all of the buoys in our data surround North America,

all of them lie in the same general direction if we use 0◦ latitude, 0◦ longitude as

our reference point. Thus, a more general formula for the direction, where we can

change our reference point, is θ = arcsin y−y0√
(x−x0)2+(y−y0)2

, where x is the longitude

and y is the latitude for each buoy and x0 is the longitude and y0 is the latitude at

the reference point. So, for example, buoy 41046 is at 23.838◦ N 68.333◦ W; the value

for θ for this buoy would be 0.335 radians, when using the intersection of the prime

meridian and the equator as the reference point (x0 = 0 and y0 = 0).

To perform k-means clustering in R, we used the function kmeans in the stats

package. In this function, we specified the number of clusters by the centers argu-

ment, and the number of random starts of the algorithm by the nstart argument.

In order to have a stable clustering of the data, we set nstart to be 25. Table 4.1

through Table 4.6 give the results from the k-means clustering under the assumption

of k = 7 clusters, since there are 7 regions in which these buoys are located according

to the National Data Buoy Center. We also present the clustering solution when the
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“true” number of clusters is underspecified (k = 6) or overspecified (k = 8).

Table 4.1: k-means on Wind Direction

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 6 5 2
41047 West Atlantic 2 1 1
41048 West Atlantic 2 6 8
44007 NE USA 5 3 4
44009 NE USA 2 6 8
41004 SE USA 2 6 8
41012 SE USA 2 6 8
44020 SE USA 2 6 8
46012 NW USA 3 4 3
46027 NW USA 6 5 5
46041 NW USA 2 1 1
46042 NW USA 3 4 3
46059 NW USA 4 7 6
46011 SW USA 3 4 3
46025 SW USA 6 5 5
46028 SW USA 3 4 3
46053 SW USA 6 5 5
46054 SW USA 3 4 5
46086 SW USA 6 5 5
42020 FL/Gulf of

Mexico
6 5 2

41012 FL/Gulf of
Mexico

2 6 8

42036 FL/Gulf of
Mexico

2 1 1

42039 FL/Gulf of
Mexico

5 3 4

42040 FL/Gulf of
Mexico

6 5 2

42056 West
Caribbean

2 1 1

42055 West
Caribbean

1 2 7
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Table 4.2: k-means on Wind Speed

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 5 3 3
41047 West Atlantic 3 1 6
41048 West Atlantic 2 6 1
44007 NE USA 2 6 1
44009 NE USA 5 3 3
41004 SE USA 2 6 1
41012 SE USA 2 6 1
44020 SE USA 2 6 1
46012 NW USA 5 3 3
46027 NW USA 1 7 7
46041 NW USA 2 6 1
46042 NW USA 5 3 3
46059 NW USA 4 5 5
46011 SW USA 4 4 8
46025 SW USA 4 4 8
46028 SW USA 5 3 3
46053 SW USA 4 4 8
46054 SW USA 6 5 5
46086 SW USA 4 4 8
42020 FL/Gulf of

Mexico
5 3 3

41012 FL/Gulf of
Mexico

2 6 1

42036 FL/Gulf of
Mexico

2 6 1

42039 FL/Gulf of
Mexico

6 2 2

42040 FL/Gulf of
Mexico

6 2 2

42056 West
Caribbean

1 7 4

42055 West
Caribbean

6 2 7
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Table 4.3: k-means on Air Temperature

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 4 3 5
41047 West Atlantic 4 3 5
41048 West Atlantic 4 6 1
44007 NE USA 1 1 2
44009 NE USA 1 1 8
41004 SE USA 3 4 7
41012 SE USA 3 4 7
44020 SE USA 1 1 2
46012 NW USA 6 5 3
46027 NW USA 6 5 3
46041 NW USA 2 7 4
46042 NW USA 6 5 3
46059 NW USA 2 7 4
46011 SW USA 6 7 3
46025 SW USA 6 7 3
46028 SW USA 6 5 3
46053 SW USA 6 7 3
46054 SW USA 6 7 3
46086 SW USA 6 7 3
42020 FL/Gulf of

Mexico
3 4 7

41012 FL/Gulf of
Mexico

3 4 7

42036 FL/Gulf of
Mexico

3 4 7

42039 FL/Gulf of
Mexico

3 4 7

42040 FL/Gulf of
Mexico

5 2 6

42056 West
Caribbean

4 3 5

42055 West
Caribbean

4 6 1
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Table 4.4: k-means on Water Temperature

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 5 2 6
41047 West Atlantic 4 3 5
41048 West Atlantic 4 3 5
44007 NE USA 1 6 8
44009 NE USA 1 5 1
41004 SE USA 2 7 4
41012 SE USA 2 7 4
44020 SE USA 1 5 1
46012 NW USA 6 4 3
46027 NW USA 6 4 3
46041 NW USA 6 4 2
46042 NW USA 6 4 3
46059 NW USA 3 1 7
46011 SW USA 3 1 7
46025 SW USA 3 1 7
46028 SW USA 6 4 3
46053 SW USA 3 1 7
46054 SW USA 3 1 7
46086 SW USA 3 1 7
42020 FL/Gulf of

Mexico
4 3 5

41012 FL/Gulf of
Mexico

2 7 4

42036 FL/Gulf of
Mexico

2 7 4

42039 FL/Gulf of
Mexico

4 3 5

42040 FL/Gulf of
Mexico

4 3 5

42056 West
Caribbean

5 2 6

42055 West
Caribbean

5 2 6
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Table 4.5: k-means on Water Depth

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 1 3 7
41047 West Atlantic 1 3 7
41048 West Atlantic 1 3 7
44007 NE USA 4 7 5
44009 NE USA 4 7 5
41004 SE USA 4 7 5
41012 SE USA 4 7 5
44020 SE USA 4 7 5
46012 NW USA 4 6 3
46027 NW USA 4 7 5
46041 NW USA 4 7 5
46042 NW USA 5 2 1
46059 NW USA 6 5 6
46011 SW USA 4 6 3
46025 SW USA 2 1 4
46028 SW USA 2 1 4
46053 SW USA 2 6 2
46054 SW USA 2 6 2
46086 SW USA 5 2 1
42020 FL/Gulf of

Mexico
4 7 5

41012 FL/Gulf of
Mexico

4 7 5

42036 FL/Gulf of
Mexico

4 7 5

42039 FL/Gulf of
Mexico

4 6 3

42040 FL/Gulf of
Mexico

4 7 3

42056 West
Caribbean

6 5 6

42055 West
Caribbean

3 4 8
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Table 4.6: k-means on Latitude and Longitude

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 6 7 5
41047 West Atlantic 6 7 5
41048 West Atlantic 6 7 5
44007 NE USA 5 1 2
44009 NE USA 5 1 2
41004 SE USA 2 4 8
41012 SE USA 2 4 8
44020 SE USA 5 1 2
46012 NW USA 3 6 1
46027 NW USA 1 5 6
46041 NW USA 1 5 6
46042 NW USA 3 6 1
46059 NW USA 1 5 3
46011 SW USA 3 6 1
46025 SW USA 3 6 1
46028 SW USA 3 6 1
46053 SW USA 3 6 1
46054 SW USA 3 6 1
46086 SW USA 3 6 1
42020 FL/Gulf of

Mexico
4 3 7

41012 FL/Gulf of
Mexico

2 4 8

42036 FL/Gulf of
Mexico

2 2 4

42039 FL/Gulf of
Mexico

2 2 4

42040 FL/Gulf of
Mexico

2 2 4

42056 West
Caribbean

4 2 4

42055 West
Caribbean

4 3 7
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Rand (1971) introduced a concordance index to compare two clusterings, C1 and

C2, based on pairs of objects, where C1 is one clustering result from the data and C2

is another (different) clustering result for the same data. This index has a range from

0 to 1, with 0 implying the two clusterings have nothing in common and 1 occurring

when the two clusterings are the same (Rand, 1971). The Rand Index is defined as

follows:

R = a+ b

a+ b+ c+ d
,

where a is the number of pairs of objects placed in the same cluster by both clusterings,

b is the number of pairs of objects placed in different clusters by both clusterings, c is

the number of pairs of objects placed in the same cluster by the clustering outcome

C1 but in different clusters by clustering outcome C2, and d is the number of pairs of

objects placed in the same cluster by clustering outcome C2 but in different clusters

by clustering outcome C1. Another measure used to compare two clusterings is the

Adjusted Rand Index (Hubert and Arabie, 1985), which is defined as

ARI =

∑
ij

(
nij

2

)
− [∑

i

(
ai

2

)∑
j

(
bj

2

)
]/
(
N
2

)
1
2 [∑

i

(
ai

2

)
+∑

j

(
bj

2

)
]− [∑

i

(
ai

2

)∑
j

(
bj

2

)
]/
(
N
2

) ,
where nij denotes the number of objects that are common to clusters C1i and C2j,

where C1i is the ith cluster in the first clustering and C2j is the jth cluster in the

second clustering, the ai and bj’s are the marginal sums, ai = ∑
j
nij and bj = ∑

i
nij,

and ∑
ij
nij = N . (Vinh, Epps and Bailey, 2009). If one of the clustering outcomes

(say, C1) represents the “true” partition of the objects, then these indices measure

the closeness of clustering outcome C2 to the “truth” (i.e., the goodness of C2).

We let the partitioning of the stations into their seven regions represent the “true”

clustering, C1, and the clustering result from our k-means clustering specifying 7 clus-

ters be the other clustering, C2. We also clustered the stations based on each func-

tional variable individually using the R package fda.usc (Febrero-Bande, Oviedo de

la Fuente, 2012). Using the R function kmeans.fd, which performs k-means clus-
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tering for functional data, we get the clustering results given in Tables 4.8−4.11.

Then we compared the “truth” to the achieved clustering using the two criteria de-

fined above. Table 4.7 shows the Adjusted Rand Index and the Rand Index for the

clustering based on each variable separately.

Table 4.7: Adjusted Rand Index and Rand Index values

Variable ARI RI
Water Depth 0.1808 0.76
Latitude &
Longitude

0.5359 0.8892

Wind Direction 0.2050 0.8031
Wind Speed 0.0757 0.7292

Air Temperature 0.3981 0.84
Water

Temperature
0.4577 0.8092

An extension of the Gower coefficient will allow for distances based on other types

of variables, specifically functional and directional. In order to cluster the data using

all of the variables jointly, we used the Gower extension. To use the Gower extension

with these data, we calculated the dissimilarities as described previously for each

variable type. In order to calculate a dissimilarity component for interval-scaled, or

continuous, variables, we needed to calculate the L1 distance,

d
(f)
L1 (i, j) = |xif − xjf | ,

between observations xi and xj for the f th variable. Once these dissimilarities were

calculated, we then divided by the range of the dissimilarities for the f th variable.

To calculate a dissimilarity component for functional variables, we needed to cal-

culate the functional L2 distance,

d
(f)
L2 (i, j) =

[∫
T

[xif − xjf ]2dt
] 1

2 ,

(in order to calculate the dissimilarity measure previously described for functional

variables) using the R function metric.lp in the R package fda.usc. This func-

tion calculates an approximate Lp distance for functional data using Simpson’s rule
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Table 4.8: k-means functional data clustering: Wind Direction

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 2 6 4
41047 West Atlantic 2 3 2
41048 West Atlantic 4 2 7
44007 NE USA 3 3 7
44009 NE USA 4 3 7
41004 SE USA 4 2 7
41012 SE USA 4 3 7
44020 SE USA 4 3 7
46012 NW USA 1 7 1
46027 NW USA 6 7 8
46041 NW USA 6 1 8
46042 NW USA 1 5 6
46059 NW USA 6 2 8
46011 SW USA 1 5 6
46025 SW USA 6 1 8
46028 SW USA 1 5 1
46053 SW USA 6 1 8
46054 SW USA 1 5 1
46086 SW USA 6 1 6
42020 FL/Gulf of

Mexico
2 6 2

41012 FL/Gulf of
Mexico

4 3 7

42036 FL/Gulf of
Mexico

3 2 3

42039 FL/Gulf of
Mexico

3 2 3

42040 FL/Gulf of
Mexico

4 2 3

42056 West
Caribbean

2 6 4

42055 West
Caribbean

5 4 5

(Febrero-Bande and Oviedo de la Fuente, 2012). Since the arguments in the R func-

tion metric.lp require the data to be a functional data object, we converted the

fitted values from fitting the B-splines for each functional variable to a functional

data object using the R function fdata in the R package fda.usc.
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Table 4.9: k-means functional data clustering: Wind Speed

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 1 6 6
41047 West Atlantic 5 6 6
41048 West Atlantic 6 1 7
44007 NE USA 5 2 6
44009 NE USA 5 2 6
41004 SE USA 1 1 6
41012 SE USA 5 2 6
44020 SE USA 1 6 6
46012 NW USA 1 1 1
46027 NW USA 5 1 6
46041 NW USA 5 2 6
46042 NW USA 1 1 1
46059 NW USA 6 1 4
46011 SW USA 3 1 1
46025 SW USA 4 7 8
46028 SW USA 2 4 5
46053 SW USA 3 7 2
46054 SW USA 2 3 5
46086 SW USA 3 7 2
42020 FL/Gulf of

Mexico
1 1 6

41012 FL/Gulf of
Mexico

5 2 6

42036 FL/Gulf of
Mexico

5 5 3

42039 FL/Gulf of
Mexico

5 5 3

42040 FL/Gulf of
Mexico

5 2 6

42056 West
Caribbean

1 1 6

42055 West
Caribbean

1 1 1

To calculate a dissimilarity component for directional variables, we wrote a func-

tion that calculated the Ackerman (1997) distance

d
(f)
ij = π − |π − |θi − θj||,

between each pair of objects. We also wrote a simple function to calculate the dis-
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Table 4.10: k-means functional data clustering: Air Temperature

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 5 6 7
41047 West Atlantic 5 6 7
41048 West Atlantic 1 7 6
44007 NE USA 2 3 3
44009 NE USA 6 5 3
41004 SE USA 1 4 6
41012 SE USA 1 4 4
44020 SE USA 6 5 3
46012 NW USA 3 1 1
46027 NW USA 3 1 1
46041 NW USA 3 1 5
46042 NW USA 3 1 1
46059 NW USA 3 1 2
46011 SW USA 3 1 2
46025 SW USA 3 1 2
46028 SW USA 3 1 2
46053 SW USA 3 1 2
46054 SW USA 3 1 2
46086 SW USA 3 1 2
42020 FL/Gulf of

Mexico
1 4 4

41012 FL/Gulf of
Mexico

1 4 4

42036 FL/Gulf of
Mexico

1 4 4

42039 FL/Gulf of
Mexico

1 4 4

42040 FL/Gulf of
Mexico

1 4 4

42056 West
Caribbean

4 2 8

42055 West
Caribbean

5 6 7

similarity measure

d
(f)
ij =


1 if xif 6= xjf ,

0 if xif = xjf

for nominal variables.
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Table 4.11: k-means functional data clustering: Water Temperature

Station Region Cluster Label Cluster Label Cluster Label
(6 clusters) (7 clusters) (8 clusters)

41046 West Atlantic 5 4 8
41047 West Atlantic 2 6 4
41048 West Atlantic 2 1 3
44007 NE USA 3 7 2
44009 NE USA 6 7 7
41004 SE USA 2 1 3
41012 SE USA 2 1 3
44020 SE USA 3 7 5
46012 NW USA 1 3 1
46027 NW USA 1 2 1
46041 NW USA 1 5 1
46042 NW USA 1 3 1
46059 NW USA 1 3 1
46011 SW USA 1 3 1
46025 SW USA 1 3 1
46028 SW USA 1 3 1
46053 SW USA 1 3 1
46054 SW USA 1 3 1
46086 SW USA 1 3 1
42020 FL/Gulf of

Mexico
2 6 4

41012 FL/Gulf of
Mexico

2 1 3

42036 FL/Gulf of
Mexico

2 1 3

42039 FL/Gulf of
Mexico

2 6 4

42040 FL/Gulf of
Mexico

2 6 4

42056 West
Caribbean

4 4 8

42055 West
Caribbean

5 4 6

Then, the dissimilarity between two objects, i and j, is

d(i, j) =
∑
f δ

(f)
ij d

(f)
ij∑

f δ
(f)
ij

,

where δ(f)
ij is 1 if both measurements xif and xjf for the fth variable are nonmissing,

and is 0 otherwise (Kaufman & Rousseeuw, 1990). Thus, if both measurements
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xif and xjf for the fth variable are nonmissing, the dissimilarity between the ith

and jth objects will simply be the sum (over the number of variables) of all of the

dissimilarities calculated for the ith and jth objects, divided by the sum of the number

of variables.

For our data, we had water depth, a continuous variable, and recall that we treated

latitude and longitude as one bivariate continuous variable in our first clustering. We

also had the functional variables wind direction, wind speed, air temperature, and

water temperature; the nominal variable time zone; and for the second clustering, we

calculated a direction from the latitude and longitude for a directional variable. We

formed a 26 × 26 dissimilarity matrix filled with the extended Gower dissimilarities

calculated as described above. We then used this dissimilarity matrix as an input to

the R package hclust to produce a clustering result. Based upon the dendrogram,

Figure 4.2, and the choice of 7 clusters (to represent the 7 regions), Tables 4.12

and 4.13 show the clusterings of the data, based on all of the variables. The Adjusted

Rand Index is 0.5675 and the Rand Index is 0.8831. Note that the index values for

the clustering based on all variables compare favorably to those for the clusterings

based on each value separately, given in Table 4.7.

As can be seen from Tables 4.12 and 4.13, the 7-cluster solution gets the correct

structure for the Western Atlantic Region, Northeast USA, Southwest USA, and the

Western Caribbean. Some stations the solution misclassified were: Station 44020

(nominally in the Southeast USA region) was included in the Northeast USA cluster;

and Station 46059 (nominally in the Northwest USA region) was the only one in its

own cluster; the other stations in Northwest USA were included in the Southwest

USA cluster. Station 41012 (nominally in the Florida/ Gulf of Mexico region and in

the Southeast USA region) was included in the Southeast USA cluster. A map reveals

where each of those ‘trouble’ stations were located. Station 44020 was the Nantucket

Sound buoy; and Station 46059 was located west of California. Figure 4.1 is a US
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map with the buoy locations illustrated with our clustering solution, as indicated

with different symbols for each cluster. With the locations of these buoys in mind,

the clustering solution classified them into regions relatively close geographically to

their “true” regions and so it seems that the 7-cluster solution does a reasonable job

at putting the stations in their correct regions.

Figure 4.1: US map with buoy locations

Figure 4.2: Dendrogram using the Gower Exten-
sion
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Table 4.12: Clustering solution using the Gower Extension

Station Region Cluster Label, (7
clusters)

41046 Western Atlantic 1
41047 Western Atlantic 1
41048 Western Atlantic 1
44007 Northeast USA 2
44009 Northeast USA 2
41004 Southeast USA 3
41012 Southeast USA 3
44020 Southeast USA 2
46012 Northwest USA 4
46027 Northwest USA 4
46041 Northwest USA 4
46042 Northwest USA 4
46059 Northwest USA 5
46011 Southwest USA 4
46025 Southwest USA 4
46028 Southwest USA 4
46053 Southwest USA 4
46054 Southwest USA 4
46086 Southwest USA 4
42020 Florida/Gulf of

Mexico
6

41012 Florida/Gulf of
Mexico

3

42036 Florida/Gulf of
Mexico

6

42039 Florida/Gulf of
Mexico

6

42040 Florida/Gulf of
Mexico

6

42056 Western Caribbean 7
42055 Western Caribbean 7
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Table 4.13: Clustering solution using the Gower Extension with the
directional variable

Station Region Cluster Label, (7
Clusters)

41046 Western Atlantic 1
41047 Western Atlantic 1
41048 Western Atlantic 1
44007 Northeast USA 2
44009 Northeast USA 2
41004 Southeast USA 3
41012 Southeast USA 3
44020 Southeast USA 2
46012 Northwest USA 4
46027 Northwest USA 4
46041 Northwest USA 4
46042 Northwest USA 4
46059 Northwest USA 5
46011 Southwest USA 4
46025 Southwest USA 4
46028 Southwest USA 4
46053 Southwest USA 4
46054 Southwest USA 4
46086 Southwest USA 4
42020 Florida/Gulf of

Mexico
6

41012 Florida/Gulf of
Mexico

3

42036 Florida/Gulf of
Mexico

6

42039 Florida/Gulf of
Mexico

6

42040 Florida/Gulf of
Mexico

6

42056 Western Caribbean 7
42055 Western Caribbean 7
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4.2 Simulation Study

We conducted a simulation study to determine how the method based on the ex-

tended Gower coefficient performed in clustering data having a variety of structures.

The extended Gower coefficient is a method that allows for continuous, categorical,

directional and functional variables to be used simultaneously to cluster a data set.

To compare how the results from using the extended Gower coefficient differ from

methods that allow only one or two of the variable types to be used in the cluster

analysis, we compared the average Rand Index, for 1000 simulations, for the cluster-

ing results using (1) the extended Gower coefficient, (2) the original Gower coefficient,

(3) the Ackermann distance, and (4) the L2 distance. The purpose of the simulations

was to see whether clustering results would be different and how such a difference

would depend on the underlying cluster structure. With that in mind, we simulated

data similar to the buoy data from the real data analysis.

To simulate a categorical variable (like time zone), we used the R function

sample.int, which allows us to sample from a multinomial distribution. With this

function, we were able to sample with replacement from five categories. Thus, the

multinomial probability function we are using has the following form

N !
x1!x2!x3!x3!x4!x5!p

x1
1 p

x2
2 p

x3
3 p

x4
4 p

x5
5 ,

where N =
5∑
i=1

xi, pi is the corresponding probability for each category for i =

1, 2, 3, 4, 5 and xi is the number of outcomes in each category for i = 1, 2, 3, 4, 5

(Lehmann and Casella, 1998). We were also able to let the cluster sizes differ and

for each cluster we tried different probability vectors, in order to simulate clusters of

data that have different probabilities of coming from each category. The probability

vectors were (0.8, 0.05, 0.05, 0.05, 0.05), which corresponds to one dominant category,

and (0.2, 0.2, 0.2, 0.2, 0.2), which corresponds to equiprobable categories.

To simulate a continuous variable (like water depth), we simulated from a normal
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distribution with mean µ and standard deviation σ, and then took the absolute value

of those values. We considered the following values for µ and σ: for cluster 1, µ = 5000

and σ = 100, for cluster 2, µ = 5000 + kσ and σ = 100, for cluster 3, µ = 5000 + 2kσ

and σ = 100, and for cluster 4, µ = 5000 + 3kσ and σ = 100. We allowed k to vary

from small to moderate to large; for example, k = 5, k = 20, and k = 50. Increasing

k implies allowing a greater separation between clusters.

To simulate a directional variable, θ, we used the von Mises distribution. The von

Mises distribution is a continuous probability distribution with parameters µ and κ;

µ is the mean direction of the distribution, and κ is the concentration parameter of

the distribution (Agostinelli and Lund, 2011). The density function of the von Mises

distribution is as follows

expκ cos(θ − µ)
2πI0(κ) , 0 ≤ θ < 2π,

where 0 ≤ µ < 2π, κ ≥ 0 and I0(κ) is the modified Bessel function given by

I0(κ) = 1
2π

2π∫
0

exp(κ cos θ))dθ =
∞∑
r=0

(
κ

2

)2r ( 1
r!

)2

(Jammalamadaka and Sengupta, 2001). To simulate from this distribution in R, we

used the function rvonmises in the circular package (Agostinelli and Lund, 2011).

To simulate data for 4 different clusters, we considered the following values for µ and

κ: for cluster 1, µ was 0 and κ was 50, so that the data were highly concentrated

around 0, for cluster 2, µ was 0+k and κ was 50, for cluster 3, µ was 0+2k and κ was

50, for cluster 4, µ was 0+3k and κ was 50, where k varied from small to moderate to

large; for example, we used k = 0.5, k = 1.0, and k = 2.5. As an example, Figure 4.3

is a plot for simulated data from all 4 clusters, where the mean for cluster 1 was 0,

the mean for cluster 2 was 2.5 radians (143.2◦), the mean for cluster 3 was 5 (286.5◦)

and the mean for cluster 4 was 7.5 (429.7◦, or 69.7◦).

Ferreira and Hitchcock (2009) provided a template for simulating functional data.

The signal functions we used to simulate our functional data were the first group of
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Figure 4.3: Plot of directional data

signal functions described by Ferreira and Hitchcock (2009), and are the following:

µ1(t) = 1
28t+ exp(−t) + 1

5 sin(t/3) + 0.5, t ∈ [0, 100]

µ2(t) = 1
20t+ exp(−t) + 1

5 sin(t/2), t ∈ [0, 100]

µ3(t) = 1
15t+ exp(−t) + 1

5 sin(t/2)− 1, t ∈ [0, 100]

µ4(t) = 1
18t+ exp(−t) + 1

5 sin(t/2), t ∈ [0, 100];

Figure 4.4 displays a graph of these signal functions.

As Ferreira and Hitchcock (2009) explain, these functions were chosen so that

a good clustering is possible but not trivial. For our simulated data, we generated

30 discretized curves based on the functions given above. Following the framework

laid out by Ferreira and Hitchcock (2009), the data was simulated over 200 points

from t = 0 to t = 100 in increments of 0.5. By adding random error to the signal

functions, we allowed variation among the simulated data within each cluster; in

this case, we used the same process Ferreira and Hitchcock (2009) did, “a discretized

77



Figure 4.4: Plot of the signal functions used to simulate
the functional data

approximation of the stationary Ornstein−Uhlenbeck process.” This Gaussian process

has a mean of zero and the covariance between errors measured at ti and tj is given by

σ2(2β)−1 exp (−β|ti − tj|) (Ferreira and Hitchcock, 2009). We kept the drift variable,

β, at 0.5 and let σ = 1.75 for small distance between the clusters and σ = 1 for large

distance between the clusters.

We did numerous simulations; for some settings we set one (or a few) variable(s)

to have different means for each cluster, and for other simulation settings, all of the

variables had different means for each cluster. In this way, we determined whether the

clustering performance is more affected by differences relative to one type of variable

or another. In certain settings we wanted simulated data in which there was a large

distance between the clusters. In other settings, we wanted the clusters to be closer.

This would give an assessment of how the extended Gower coefficient performed under
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a variety of data structures. The quality of the resulting clustering was judged using

the Rand and Adjusted Rand indices.

Tables 4.14 and 4.15 display the settings we used for each simulation. For all of

our simulations, we chose to have four clusters in the data. For each setting, we let

the cluster sizes change; the cluster sizes were as follows:

• 25 objects in each cluster,

• 33 objects in clusters 1, 2, and 3 and 1 object in cluster 4,

• 10 objects in cluster 1, 20 objects in cluster 2, 30 objects in cluster 3, and 40

objects in cluster 4.

In each simulation, we let our categorical variable have five categories, with the

probability for each category listed in the table. As previously described, for our

two continuous variables we let σ = 100, and the mean for each cluster is given in

Tables 4.14 and 4.15.

For each of the 15 simulation settings, we simulated 1000 data sets for each com-

bination of parameter setting and cluster size allocation, and computed the average

Rand Index and its standard error. Figure 4.5 compares the average Rand Index for

each method we used to cluster the data (note that in the key, the capital letters

indicate large separation between the clusters for that type of variable, whereas the

lowercase letters indicate small separation between the clusters for that type of vari-

able). As can be seen from Figure 4.5, where there is large separation between the

clusters for all variable types, the average Rand Index is the largest when using the

extended Gower coefficient, indicating that it gives the best clustering compared to

the other methods. The cases where the extended Gower coefficient does not produce

the largest average Rand Index are the following:
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Table 4.14: Simulation Study Settings: Settings 1:8

Setting Categorical
Variable
Probs.

Continuous
Variable 1

Mean

Continuous
Variable 2

Mean

Directional
Variable

Mean

Functional
Variable
sigma

1


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1

1.5

 σ = 1

2


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1

3


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1

1.5

 σ = 1

4


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
5500
6000
6500




500
1000
1500
2000




0
0.5
1

1.5

 σ = 1

5


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1

1.5

 σ = 1.75

6


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1

7


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
5500
6000
6500




500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1

8


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1

1.5

 σ = 1.75

• when there is large separation between the clusters for the categorical, continu-

ous and functional variables, with small separation between the clusters for the

directional variable
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Table 4.15: Simulation Study Settings: Settings 9:15

Setting Categorical
Variable
Probs.

Continuous
Variable 1

Mean

Continuous
Variable 2

Mean

Directional
Variable

Mean

Functional
Variable
sigma

9


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1.75

10


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
5500
6000
6500




500
1000
1500
2000




0
0.5
1

1.5

 σ = 1

11


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
5500
6000
6500




500
1000
1500
2000




0
0.5
1

1.5

 σ = 1.75

12


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
5500
6000
6500




500
1000
1500
2000




0
0.5
1

1.5

 σ = 1

13


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
5500
6000
6500




500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1

14


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)




5000
5500
6000
6500




500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1.75

15


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)




5000
5500
6000
6500




500
1000
1500
2000




0
0.5
1

1.5

 σ = 1.75

• when there is large separation between the clusters for the continuous and func-

tional variables, and small separation between the clusters for the categorical

and directional variables

• when there is large separation between the clusters for the categorical, functional

and directional variables, and small separation between the clusters for the

continuous variable
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• when there is large separation between the clusters for the categorical and func-

tional variables, and small separation between the clusters for the continuous

and directional variables

• when there is large separation between the clusters for the functional and direc-

tional variables, and small separation between the clusters for the continuous

and categorical variables

• when there is large separation between the clusters for the directional variable

and small separation between the clusters for the continuous, categorical and

functional variables

• when there is large separation between the clusters for the functional variable

and small separation between the clusters for the continuous, categorical, and

directional variables.

The average Rand Index using the extended Gower coefficient method was only

slightly lower than the average Rand Index using the L2 distance or Ackermann

distance when (1) there is small separation between the clusters for the continuous

variable only, with the difference between the average Rand indices for the extended

Gower coefficient method and the L2 distance being as large as 0.0401 and as small

as 0.0216, (2) there is large separation between the clusters for the categorical, con-

tinuous and functional variables, with small separation between the clusters for the

directional variable, with the difference between the average Rand indices for the ex-

tended Gower coefficient method and the L2 distance being as large as 0.0948 and as

small as 0.0743, (3) there is small separation between the clusters for the continuous,

categorical, and functional variables, the difference between the average Rand indices

for the extended Gower coefficient method and the Ackermann distance being as large

as 0.1016 and as small as 0.0718, and (4) there is large separation between the clusters

for the categorical and functional variables, and small separation between the clusters
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for the continuous and directional variables, with the difference between the average

Rand indices for the extended Gower coefficient method and the L2 distance being

as large as 0.125 and as small as 0.0858. The average Rand Index using the extended

Gower coefficient method was moderately lower when there is large separation be-

tween the clusters for the functional and directional variables, and small separation

between the clusters for the continuous and categorical variables, with the difference

between the average Rand indices for the extended Gower coefficient method and the

L2 distance was at most 0.1533 and at least 0.1251. The average Rand Index using

the extended Gower coefficient method was beaten by a fairly large margin when (1)

there is large separation between the clusters for the continuous and functional vari-

ables, and small separation between the clusters for the categorical and directional

variables, with the difference between the average Rand indices for the extended

Gower coefficient method and the L2 distance being as large as 0.2393 and as small

as 0.211, and (2) there is large separation between the clusters for the functional

variable and small separation between the clusters for the continuous, categorical,

and directional variables, with the difference between the average Rand indices for

the extended Gower coefficient method and the L2 distance being as large as 0.2669

and as small as 0.2328.

As one can see, when there is large separation between the clusters from the func-

tional variable, it tends to dominate the clustering, making the L2 distance clustering

produce a larger average Rand Index value. Also, the average Rand Index for the

extended Gower coefficient is smallest when the cluster sizes are 33, 33, 33 and 1,

with the average Rand Index being higher when the cluster sizes for each cluster

are the same and when the cluster sizes are 10, 20, 30, and 40. In some settings,

the average Rand Index for the extended Gower coefficient with equal cluster sizes is

minutely higher than the average Rand Index for the extended Gower coefficient with

cluster sizes being 10, 20, 30, and 40. In other settings, the average Rand Index for
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the extended Gower coefficient with cluster sizes being 10, 20, 30, and 40 is minutely

higher than the average Rand Index for the extended Gower coefficient with equal

cluster sizes.

Figure 4.5: Comparisons with the Extended Gower coeffi-
cient
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Chapter 5

Discussion/ Future Research

We considered Everitt’s (1988) approach to model-based clustering of mixed data,

for which the main issue is estimating the parameters for the density h(·), in order to

be able to calculate the probabilities which are used to identify the clusters. We first

approached this problem with the simulated annealing method; using this approach

alone led our parameter estimates to be drawn to extreme values for each parameter.

We found that using a penalized log-likelihood within the simulated annealing deters

the parameters from being drawn to those extremes. To see how well our penalized log

likelihood approach estimated the parameters, we initially compared our penalized

logL to a penalized logL using Everitt’s estimates (1988), and then, for a more

fair comparison, compared our penalized logL to a penalized logL obtained using an

estimation approach that mirrored Everitt’s approach (1988). As all of these analyses

were done using simulated data, we next applied our method to a real data set. For

our real data set, we had an idea (albeit one that was far from certain) of the true

clustering, which was informed by the expert diagnosis. This standard was used to

determine how accurately our method performed.

We then presented a method of clustering based on an extended Gower coefficient.

We first used this method on a real data set, the buoy data, and the method seemed

to perform well, as the clustering solution classified the buoys into regions relatively

close geographically to their “true” regions. We performed a simulation study to see

how effective the method using the extended Gower coefficient is, in terms of being

able to correctly assign the objects into the correct clusters, under different settings.
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We wanted to see high values of the extended Gower coefficient between observations

that are in truly separate clusters, and low values between observations that are

in the same cluster. To compare the extended Gower coefficient to methods that

allow only one or two types of variables to determine the clustering, we computed an

average Rand Index for each method. We found that the extended Gower coefficient

performed reasonably well in all of the settings, although the adjusted Rand Index

for other methods was higher in several cases. In particular, when there was a large

separation between the clusters for the functional data, with the L2 distance yielding

the largest adjusted Rand Index, and when there was a large separation between

the clusters for the directional data, with Ackermann’s distance yielding the largest

adjusted Rand Index.

In our current work, we have been using small step sizes (the δ values) in the

simulated annealing loop, with a large number of iterations. In the future, there could

be work done to fine tune the appropriate step size(s) in the simulated annealing

loop. One of the drawbacks in using the simulated annealing method is that it

requires a significant amount of time to run, especially with multivariate data. A

future direction in research would be to develop methods, whether via statistical or

programming techniques, to enable the algorithm to run more efficiently.

Another option for future research is to simulate data having different types of

signal functions. As mentioned by Ferreira and Hitchcock (2009), the signal functions

we used for our simulation study (described in Section 4.2) represented “some form

of periodic data.” Other types of functional data we could look at include strictly

decreasing functions, functions that peak and then decrease, and a mix of signal

functions that had one or more different types of functions being used.
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Appendix A

Average Rand Index along with Standard

Errors

Table A.1: Setting 1: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.986(0.0005) 0.815(0.001) 0.894(0.001) 0.979(0.001)
(33, 33, 33, 1) 0.983(0.0006) 0.782(0.002) 0.855(0.002) 0.963(0.0007)
(10, 20, 30, 40) 0.987(0.0006) 0.802(0.002) 0.879(0.002) 0.970(0.002)

Table A.2: Setting 2: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.883(0.002) 0.810(0.001) 0.618(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.889(0.002) 0.782(0.002) 0.586(0.0009) 0.963(0.0007)
(10, 20, 30, 40) 0.876(0.002) 0.802(0.002) 0.601(0.001) 0.970(0.002)

Table A.3: Setting 3: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.979(0.0009) 0.732(0.001) 0.894(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.971(0.001) 0.618(0.002) 0.855(0.002) 0.963(0.0007)
(10, 20, 30, 40) 0.982(0.001) 0.690(0.001) 0.879(0.002) 0.970(0.002)
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Table A.4: Setting 4: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.938(0.001) 0.799(0.001) 0.894(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.942(0.001) 0.748(0.002) 0.855(0.002) 0.963(0.0007)
(10, 20, 30, 40) 0.937(0.002) 0.791(0.002) 0.879(0.002) 0.970(0.002)

Table A.5: Setting 5: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.974(0.0009) 0.810(0.001) 0.894(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.971(0.0008) 0.782(0.002) 0.855(0.002) 0.620(0.001)
(10, 20, 30, 40) 0.977(0.0009) 0.802(0.002) 0.879(0.002) 0.579(0.001)

Table A.6: Setting 6: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.767(0.0008) 0.732(0.001) 0.619(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.736(0.0007) 0.618(0.002) 0.586(0.0009) 0.963(0.0007)
(10, 20, 30, 40) 0.731(0.0001) 0.690(0.001) 0.601(0.001) 0.970(0.002)

Table A.7: Setting 7: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.863(0.002) 0.799(0.001) 0.619(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.877(0.002) 0.748(0.002) 0.586(0.0009) 0.963(0.0007)
(10, 20, 30, 40) 0.845(0.002) 0.791(0.002) 0.601(0.001) 0.970(0.002)

Table A.8: Setting 8: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.944(0.002) 0.732(0.001) 0.894(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.940(0.002) 0.618(0.002) 0.855(0.002) 0.620(0.001)
(10, 20, 30, 40) 0.944(0.002) 0.689(0.001) 0.879(0.002) 0.579(0.001)
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Table A.9: Setting 9: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.875(0.002) 0.810(0.001) 0.619(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.879(0.002) 0.782(0.002) 0.586(0.0009) 0.620(0.001)
(10, 20, 30, 40) 0.865(0.002) 0.802(0.002) 0.601(0.001) 0.579(0.001)

Table A.10: Setting 10: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.824(0001) 0.620(0.0005) 0.894(0.001) 0.978(0.001)
(33, 33, 33, 1) 0.838(0.002) 0.582(0.0003) 0.855(0.002) 0.963(0.0007)
(10, 20, 30, 40) 0.824(0.002) 0.598(0.0006) 0.879(0.002) 0.970(0.002)

Table A.11: Setting 11: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.920(0.001) 0.799(0.001) 0.894(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.922(0.001) 0.748(0.002) 0.855(0.002) 0.620(0.001)
(10, 20, 30, 40) 0.918(0.002) 0.791(0.002) 0.879(0.002) 0.579(0.001)

Table A.12: Setting 12: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.752(0.0006) 0.620(0.0005) 0.619(0.001) 0.985(0.0009)
(33, 33, 33, 1) 0.730(0.0008) 0.582(0.0003) 0.586(0.0009) 0.963(0.0007)
(10, 20, 30, 40) 0.703(0.0009) 0.598(0.0006) 0.601(0.001) 0.970(0.002)

Table A.13: Setting 13: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.760(0.0007) 0.623(0.0006) 0.619(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.731(0.0008) 0.618(0.002) 0.586(0.0009) 0.620(0.001)
(10, 20, 30, 40) 0.729(0.001) 0.690(0.001) 0.601(0.001) 0.579(0.001)
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Table A.14: Setting 14: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.857(0.002) 0.800(0.001) 0.619(0.001) 0.616(0.001)
(33, 33, 33, 1) 0.850(0.002) 0.749(0.002) 0.586(0.0009) 0.620(0.001)
(10, 20, 30, 40) 0.839(0.002) 0.791(0.002) 0.601(0.001) 0.579(0.001)

Table A.15: Setting 15: Average Rand Index (Standard Error)

Cluster
Allocation

Extended
Gower

Gower Directional Functional

(25, 25, 25, 25) 0.777(0.002) 0.598(0.0006) 0.879(0.002) 0.579(0.001)
(33, 33, 33, 1) 0.783(0.002) 0.582(0.0003) 0.855(0.002) 0.620(0.001)
(10, 20, 30, 40) 0.777(0.002) 0.598(0.0006) 0.879(0.002) 0.579(0.001)
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Appendix B

Further Details about Simulation Study

To simulate a categorical variable (like time zone), we used the R function sample.int.

The arguments for this function are n, which specifies the number of categories to

choose from, size, which specifies the number of items to choose, replace, which

specifies whether sampling is done with or without replacement and prob, which is a

vector of probabilities for obtaining the observations. For our simulations, we set n

at 5 (implying five categories), and we let size differ. For our simulations, replace

was set to TRUE, and for each cluster we tried different probability vectors for prob,

in order to simulate clusters of data that have different probabilities of coming from

each category.

To simulate a directional variable, θ, we used the von Mises distribution. To

simulate from this distribution in R, we used the function rvonmises in the circular

package (Agostinelli and Lund, 2011). The arguments for this function are n, the

total number of observations, mu, mean direction of the distribution, kappa, the

concentration parameter of the distribution, and control.circular, which allows

one to specify whether the units should be degrees or radians (Agostinelli and Lund,

2011). To simulate data for 4 different clusters, we considered the following values for

mu and kappa: for cluster 1, mu was 0 and kappa was 50, so that the data were highly

concentrated around 0, for cluster 2, mu was 0 + k and kappa was 50, for cluster 3,

mu was 0 + 2k and kappa was 50, for cluster 3, mu was 0 + 3k and kappa was 50,

and for cluster 4, mu was 0 + 4k and kappa was 50, where k varied from small to

moderate to large; for example, k = 0.5, k = 1.0, and k = 2.5. We also changed
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kappa in other settings so that the data were not so highly concentrated around their

respective means.
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