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ABSTRACT 

This study investigates the behavior and performance of latex modified concrete (LMC) 

as a closure pour material with a U-bar connection detail in longitudinal joints between 

precast deck bulb tee bridge girders with integral concrete decks. The objective was to 

determine if the joint detail was capable of resisting service shear and moment stresses as 

well as eliminate the formation of cracks in the joint during fatigue loading. 

 This study tested two large scale reinforced concrete slab specimens measuring 6 

ft x 6 ft x 8 in joined together by the longitudinal joint detail in fatigue flexure shear 

loading. The fatigue loading consisted of 2,000,000 cycles at 1.5 Hz and varied between 

4.4 and 25 kips. At 500,000 cycle intervals, a service level overload was performed 

where the specimen was loaded to 46.9 kips. During the fatigue and service level testing, 

the joint area was inspected visually to determine whether cracks had formed, and a 

ponding test was initiated after the conclusion of testing to determine whether the joint 

was water tight. 

Vertical through cracking of the longitudinal joint was not detected throughout 

the study. During the ponding test, water was not seen leaking vertically through the 

joint, however a slight discharge could be seen at one joint end. Since the leak was in the 

compressive zone of the joint, it is assumed that this crack developed from drying 

shrinkage, and not from external loading. Based on the performance of the joint, the U-

bar detail with an LMC closure pour is recommended for longitudinal joints in precast 

deck bulb tee bridge systems.  
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

In an effort to further reduce costs and traffic disruption, rapid bridge construction 

techniques are being actively developed and investigated to determine the reliability and 

safety of the structures produced using these methods. Current practice limits this type of 

construction to lightly traveled short span bridges using prestressed hollow core sections. 

However, in some areas of the US such as the Pacific Northwest, longer span bridges are 

being built from prestressed deck bulb tee girders with reinforced decks cast integrally 

with the girder. As with hollow core sections, this eliminates the need for a cast in place 

deck over the girders. This method brings the benefits of rapid construction to roads 

which see heavier traffic and require longer spans. 

  Current use of this type of construction has demonstrated the adequacy of the 

longitudinal joints to resist the dead and live loading. Durability, however, has proven to 

be a concern. Over the service life of the bridge, excessive cracking of the longitudinal 

joint has been encountered, leading to moisture and chloride penetration of the joint, 

resulting in corrosion of the reinforcing steel and increasing the risk of premature failure. 

Recent research has been undertaken to develop new longitudinal connection details as 

well as new closure pour materials in an effort to correct this deficiency. 

 The most common detail currently in use consists of a shear key with an 

embedded steel angle, to which a steel plate is welded at 5 foot centers along the length
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 of the bridge. This detail adequately resists vertical and longitudinal shear, but exhibits 

poor moment resistance. The National Cooperative Highway Research Program project 

10-71 titled “Cast-in-Place Concrete Connections for Precast Deck Systems” (French, et 

al., 2011) resulted in the development of a revised detail, consisting of #5 U-bar 

reinforcing embedded in the deck protruding transversely into the joint with #4 headed 

lacer bars threaded through the linked U-bars. This detail, used with a high performance 

concrete closure pour material, demonstrated improved moment resistance; however 

small cracks formed in the tensile zone of the joint under service loading. 

 The cracks which developed were primarily at the interface between the cast in 

place closure pour and the precast deck. In order to reduce interface cracking, a closure 

pour material would need to have high bond strength with pre-existing concrete. There 

are several products on the market which have this property, however a material that is 

already in widespread use would have the advantages of reduced cost and familiarity on 

the part of contractors and design professionals. Latex modified concrete was used as the 

closure pour material for this study, as it possesses higher bond strength than standard 

concrete, and is already used frequently as a bridge deck overlay. 

1.2 RESEARCH SIGNIFICANCE 

In the program described herein, representative slab specimens were joined using latex 

modified concrete (LMC) for the closure pour material and then tested in flexure-shear at 

the University of South Carolina Structures Laboratory. The joint demonstrated improved 

crack resistance at service level and fatigue loading and remained water tight following 

the testing regimen. Small amounts of water seepage were encountered due to cracks 
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forming from drying shrinkage. These results recommend LMC as a closure pour 

material for longitudinal joints in precast bridge systems. 

1.3 OBJECTIVES 

The primary objective of this study was to determine the performance of LMC as a 

closure pour material using the revised longitudinal connection detail. It was proposed 

that the improved bond and tensile strength of LMC would reduce or eliminate cracking 

at service level loads. The specific objectives can be summarized as follows: 

1. Design and construct representative slab specimens conforming to the 2006 

SCDOT Bridge Design Manual (SCDOT, 2006) 

2. Design LMC mix for use as closure pour material 

3. Subject specimens to a fatigue testing program and compare performance of joint 

with results from NCHRP 10-71 

1.4 LAYOUT OF THESIS 

The Thesis consists of four chapters. In Chapter II, a literature review is presented that 

describes the commonly used and recently developed longitudinal joint details in precast 

deck bulb tee bridges. A summary of some of the studies which are relevant to this case 

study are presented. 

 Chapter III is titled “Investigation of the Behavior of Latex Modified Concrete as 

a Closure Pour Material in Longitudinal Joints between Precast Slabs”, where the 

experimental study conducted in the USC Structures Lab is presented. 

 Chapter IV includes a summary of the Thesis as well as conclusions based on this 

study. Recommendations for further research are also provided in this chapter. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Numerous studies have been conducted in the previous decade on the construction of 

bridges using precast prestressed deck bulb tee girders. These investigations were 

performed to better understand the behavior of bridges built using this construction 

method, and how to improve durability of the longitudinal joint. These studies culminate 

in the revised longitudinal joint detail, however cracking had not yet been fully 

eliminated at service level loading. An overview of the work that was performed in 

developing the revised detail as well as studies of prototype bridges is presented in this 

chapter. 

2.2 HISTORY OF DEVELOPMENT OF REVISED LONGITUDINAL JOINT DETAIL 

Li, Ma, Griffey, and Oesterle (2010), “Improved Longitudinal Joint Details in 

Decked Bulb Tees for Accelerated Bridge Construction: Concept Development” 

Li, Ma, Griffey, and Oesterle [2010] conducted this study to investigate improved 

continuous longitudinal joint details for decked precast concrete girder bridge systems. 

Multiple candidate details were developed, and were then subjected to discussion by 

design engineers and bridge construction contractors, as well as municipal departments of 

transportation. Following this stage, a reduced list of details was investigated further.  

 



 

5 

The proposed new connection details were designed to better control cracking, while 

maintaining rapid constructability. The suggested details were as follows: 

• Hooked bars (U-bar) 

• Headed bars 

• Bars confined by spiral reinforcement 

A survey of bridge professionals was conducted to gauge the potential constructability 

and structural viability of each detail. The results indicated that the spiral reinforcement 

detail was universally considered to have low constructability, while U bars and headed 

bars were seen as superior with the headed bar detail given the most favorable response. 

Thus, the experimental program was conducted using this detail as well as interlocking 

welded wire reinforcement for comparison. 

 Each model specimen was 2 feet wide, 10 feet long, and 6 inches deep. Three 

types of specimens were tested: lapped headed bar, WWR, and a control specimen with 

continuous reinforcement throughout the span. The tested variables for the headed bars 

were lap length and the spacing of the reinforcement, while for the WWR the only 

variable was spacing. Lap lengths of 2.5, 4, and 6 inches were used. The control 

specimen was reinforced with continuous #5 bars spaced 6 inches. The headed bar 

connection consisted of staggered, lapped #5 bars, with one longitudinal #5 bar laid in the 

center of the lap of the transverse bars. The eight total specimens were cast 

monolithically with a 28-day design concrete strength of 7,000 psi. Cylinders were taken 

to determine the actual ��
� on the testing day. Strain gauges were placed in the joint zone 

to better describe the behavior of the details under load. Specimens were simply 

supported and loaded with two equal loads spaced at 40 inches about the center of the 
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span with the joint zone experiencing constant moment and no shear.  The measured 

parameters were deflection, curvature, and settlement. 

 Specimens using WWR and headed bar with lap lengths less than 6 inches 

exhibited brittle failure, and were therefore deemed unacceptable. Specimens with headed 

bar reinforcement lapped 6 inches and the control specimen exhibited ductile behavior 

under load, indicating the reinforcement steel was yielding once the nominal moment was 

reached, and that the specimens had adequate anchorage capacity to fully develop the 

reinforcement. The 6 inch lap specimens also exhibited greater cracking control, 

indicated by a 0.004 inch crack developing under assumed service load conditions. 

Moment capacity for the 6 inch lap specimens were 39.4 ft-kips and 25.83 ft-kips for the 

4 inch spacing and 6 inch spacing, respectively.  

 Based on the results of the survey and experimental program, a 6 inch lapped 

headed bar detail is recommended to replace the current welded steel connector. This 

recommendation is based on moment capacity, curvature, cracking control, deflection, 

and steel strain comparison. 

Li, Ma, and Oesterle (2010), “Improved Longitudinal Joint Details in Decked Bulb 

Tees for Accelerated Bridge Construction: Fatigue Evaluation” 

Li, Ma, and Oesterle [2010] conducted this study to investigate the response of the lapped 

headed bar detail to fatigue loading when used in longitudinal joints between decked bulb 

tee bridge girders. Four full scale slabs were fabricated using #5 headed bars lapped 6 

inches for the longitudinal connection. An analytical parametric study was formulated 

based on these specimens to determine the maximum forces generated in the longitudinal 

joint when the slab is subjected to service loads. Subsequently, the slabs were loaded both 
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statically and cyclically using four-point flexural and three-point flexural-shear loading. 

Results were compared between the static and fatigue testing based on flexural capacity, 

curvature, cracking, deflection, and strain in the reinforcing steel. 

 The parametric study consisted of finite-element models of seven bridge 

configurations that varied by girder depth, girder spacing, span, and bridge skew. The 

range of girder depth was 41 to 65 inches, the range of girder spacing was 4 to 8 feet, the 

spans ranged from 82 feet 8 inches to 132 feet, while the bridge width was constant at 40 

feet. The models were loaded based on the AASHTO LRFD Bridge Design 

Specification’s live load HL-93, which consists of a design vehicle load and lane load. 

This loading was adjusted to provide the greatest possible force in the longitudinal joint. 

The parametric study indicated the following findings: 

• The maximum forces in the joint were not sensitive to the length of the lane load 

• In the longitudinal direction, the impact of the location of the vehicle load on the 

maximum forces in the joint was not significant 

• The maximum forces in the joints were not sensitive to the span of the bridge 

• Larger moment and shear forces were produced in DBT girders with larger 

spacing and shallower depth 

• Single lane loading produced larger forces than multilane loading and it 

dominated the loading level 

• The maximum positive moment, negative moment, and shear were 7.922 kips 

ft/ft, -2.152 kips ft/ft, and 6.091 kips/ft, respectively, before cracking. 

• After cracking, the maximum positive moment, negative moment, and shear were 

4.001 kips ft/ft, -1.137 kips ft/ft, and 5.056 kips/ft, respectively. 
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• Under fatigue live loading the maximum positive moment, negative moment, and 

shear were 2.143 kips ft/ft, -0.453 kips ft/ft, and 2.326 kips/ft, respectively.  

In the experimental program, four slabs measuring 72 inches wide, 64 inches 

long, and 6 inches deep were fabricated for the static and fatigue testing. A female to 

female shear key was provided on both lateral edges to allow each slab to be used for two 

tests. The slabs were reinforced with five layers of reinforcement, with the headed bars 

coated with epoxy and projecting out of the slab into the shear keys, as illustrated in 

figure 5. The design 28-day compressive strength of the concrete was 4,000 psi. 

 Following fabrication of the slabs, the shear keys were sandblasted prior to 

constructing the joint. SET 45 HW grout was poured into the gap between the slabs 

around the headed bars to form the connection in accordance with the improved 

longitudinal joint detail. The slab specimens were tested under four different conditions: 

flexure static, flexure-shear static, flexure fatigue, and flexure-shear fatigue. Linear 

voltage displacement transducers and strain gauges were installed to measure the 

deflection, settlement, curvature, and strain. Flexure-only specimens were loaded with 

two symmetric loads equidistant from the longitudinal joint, while flexure-shear 

specimens were loaded with one load located 12 inches from the joint. 

 The fatigue loadings were developed from the results of the parametric study. 

First, a static loading was applied in increments up to 22.7 kips in order to produce the 

maximum positive moment of 7.922 kips ft/ft and to crack the joint. The specimen was 

then subjected to a negative moment of -2.152 kips ft/ft and unloaded to zero. Next, a 

fatigue loading cycle was initiated, where alternating moments of 2.143 kips ft/ft and -

0.453 kips ft/ft were applied for a total of 2 million cycles at a frequency of 4 Hz. 
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Intermittent with the fatigue loading, static loading was applied after completion of 0.5, 

1.0, 1.5, and 2.0 million cycles. Following the fatigue loading the specimen was statically 

loaded until failure. 

 Comparison of the fatigue-loaded girders with the statically loaded girders 

indicated little to no difference in curvature, strain, and overall load capacity. However, 

fatigue did inhibit the development of a plastic hinge in the girder after the reinforcement 

yielded, leading to a significant reduction in ductility. While increased safety factors and 

other precautions should be taken due to the increased probability of brittle failure that 

would be caused by lessening of ductility, on the whole these results recommend the 

improved headed bar longitudinal joint detail as viable for precast decked bulb tee bridge 

girders. 

Zhu and Ma (2010), “Selection of Durable Closure Pour Materials for Accelerated 

Bridge Construction” 

Zhu and Ma [2010] conducted this study to develop reliable criteria for selection of 

closure pour material for joining precast bridge girders used in accelerated bridge 

construction. A wide variety of materials are currently available, each with unique 

advantages and disadvantages depending on construction type, environmental setting, and 

load requirements. This study divides the candidate materials into two categories: 

overnight cure and 7-day cure. A literature review was conducted to assemble a list of 

commonly used products and establish preliminary criteria, followed by testing for 

compressive strength and workability to reduce the list to 2 candidates in each category.  

Final performance criteria are then developed based on durability tests of the selected 
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candidate materials. Durability tests include freezing-and-thawing, shrinkage, bond, and 

permeability. 

 An extensive literature review was first conducted to develop preliminary 

performance criteria. The materials were divided into three grades, each with differing 

requirements. Based on the headed bar detail recommended by Li et al. (2009), it was 

found that the minimum compressive strength necessary to develop the headed bars 

would be 6.0 ksi. For cracking, the Colorado Department of Transportation Specifications 

Committee (2005) specified that Class H concrete used for bare concrete bridge decks 

must not exhibit a crack at or before 14 days in the cracking tendency test (AASHTO PP 

34-39). For chloride penetration, a percent chloride of 0.2% by mass of concrete must not 

be present beyond 38mm deep after 90 day ponding. The criterion for bond strength was 

developed based on the Li et al. (2009) parametric study that suggested the maximum 

shear stress in longitudinal joints due to live loads is 84 psi. Therefore, a minimum limit 

of 200 psi was proposed. For freezing and thawing durability, the relative dynamic 

modulus of elasticity must be greater than 70%, 80%, and 90% in Grades 1, 2, and 3 

respectively after 300 cycles. This result was based on Russell and Ozyildirim (2006). 

Additionally, mixes containing aggregates must prevent alkali-silica reactivity and 

delayed ettringite formation. The former can be accomplished by establishing an upper 

limit on 14-day expansion at 0.10%, and Folliard et al. (2006) suggested requiring that 

internal concrete temperatures not exceed 158⁰F to prevent the latter. 

 Published performance data for the different materials were used in assembling a 

preliminary list. The overnight cure grouts were then tested for compressive strength and 

workability, with EUCO-SPEED MP and Set 45 HW performing better than the other 
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options. 7-day cure grouts were tested for compressive strength at 7 days, shrinkage, 

chloride penetration, and freezing-and-thawing durability. HPC Mix 1 and RSLP Mix 2 

were selected based on their superior responses to the four criteria. 

 The four selected materials were then subjected to long term tests, including: 

freezing-and-thawing durability (ASTM C666 Procedure A modified), shrinkage 

(AASHTO Designation: PP34-39 modified), bond (ASTM C882 modified), and 

permeability (ASTM C1543 modified). Based on the observed responses, the values 

found in Table 2.1 are recommended. 

 As indicated by the literature review and long term testing, grout or concrete 

meeting the specified values in Table 2.1 would adequately perform as closure pour 

material in longitudinal joints between precast bridge girders. 

Ma, Chaudhury, Millam, and Hulsey (2007), “Field Test and 3D FE Modeling of 

Decked Bulb-Tee Bridges” 

Ma, Chaudhury, Millam, and Hulsey [2007] conducted this study to determine the effect 

of shear connectors and intermediate diaphragms on live-load distribution and connector 

forces in decked, precast, prestressed, bulb tee bridge girders. A 3D finite element model 

was developed and then calibrated using bridge load testing results from an ongoing 

research project at the University of Alaska Fairbanks. Subsequently, a parametric study 

investigating the live load distribution response to varying configurations of shear 

connections and intermediate diaphragms was conducted using the calibrated FEM. 

 The field testing program was comprised of eight separate bridges subjected to 

continuous and static loads at defined transverse locations. Each bridge was equipped 

with strain gauges to measure shear and flexural strain. Strains measured from continuous 
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loading were used to identify maximum strain and maximum live load distribution factors 

(DFs), while strains measured from static loading were used to calibrate the FEM.  

 The finite element model treated the bridge as a 3D system, using 20-node brick 

elements for the deck and girders, 2-node hinge-connector elements for shear connectors, 

and 3D truss elements for the intermediate steel diaphragms. Boundary conditions for the 

FEM are as follows: 

• One end of the bridge is assumed to be roller supported and restrained in the 

vertical and transverse directions, while free in the longitudinal direction 

• The other end of the bridge is assumed as pin connected and restrained in the 

vertical, transverse, and longitudinal directions 

Comparison of the FEM with the experimental results showed general agreement and 

that the FEM could be reliably used for the parametric study. 

 The parametric study calculated strains in the diaphragms and longitudinal shear 

connectors based on the following configurations: 

• Five intermediate steel diaphragms uniformly distributed along the span 

• One diaphragm located at midspan only 

• No diaphragm in the bridge 

• 28 shear connectors evenly spaced 

• 14 shear connectors evenly spaced 

• 7 shear connectors evenly spaced 

Once strains were calculated, the distribution factor for moment was then determined 

using the following equation: 

������	
 =	
�

� + � + � + � + �
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DFs for different connection, diaphragm, and loading configurations were compared, as 

well as forces in the longitudinal connectors. 

 It was found that the live load DF for a single-lane loaded bridge was smaller than 

for a double-lane loaded bridge. This suggests that revision of the relevant articles in the 

AASHTO LRFD Specifications, which use one equation for each scenario, should be 

considered. Also, DFs for bridges without diaphragms is higher than those with 

diaphragms, however the total number of diaphragms has little influence. For the shear 

connectors, increasing connector spacing causes the maximum horizontal shear force to 

increase, while having little effect on vertical and in-plane normal tensile forces. 

Conversely, connectors next to the wheel loads tend to have a higher vertical shear force 

and a higher in-plane normal force. Lastly, summation of the connector forces in each 

direction along the longitudinal joint produces a constant value regardless of the number 

of connectors in the joint. 

Oesterle, Elremaily (2009), “Design and Construction Guidelines for Long-Span 

Decked Precast, Prestressed Concrete Girder Bridges” 

Oesterle, Elremaily [2009] conducted this study to establish recommended design and 

construction specifications for long-span decked, precast, prestressed concrete girder 

bridges. This report incorporates the results from the investigations outlined in the 

previous four studies in this review, as well as gives suggested design and construction 

guidelines based on those results. The objectives for this study are to address common 

concerns with this type of construction, provide guidance to those inexperienced with 

DPPCG, and update the relevant portions of the AASHTO LRFD Bridge Design 

Specifications. 
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 Despite the advantages of using DPPCG, their widespread use has long been 

confined to the Pacific Northwest, where this type of bridge has been used very 

successfully. This is largely due to perceived problems with their structural integrity, 

such as connections between adjacent units, longitudinal joints, longitudinal camber and 

cross slope, live load distribution, continuity for live load, lateral load resistance, skew 

effects, maintenance, and replaceability. To address these issues, the report first 

documented the successful methodologies in use today, determined the most efficient 

girder section, suggested possible methods of deck replacement, and developed and 

tested improved longitudinal connections. 

 Since DPPCG bridges have been used successfully for some time, the study 

focused on the remaining areas of concern barring more widespread use. In an effort to 

reduce girder weight to facilitate easier transportation from fabrication site to the project, 

a parametric study was conducted to determine the most structurally efficient section. 

Girder depths of 41 in, 53 in, or 65 in were considered with four different bottom bulb 

geometries tested for each depth. Normal, tall, wide and NU configurations were tested. 

A 6 in top flange thickness, 8-ft flange width, and 6 in web thickness were assumed. The 

NU bulb configuration was shown to be the most efficient in all cases. 

 Most current applications for DPPCG bridges are in low-traffic scenarios, which 

as a result are not designed to facilitate deck replacement as part of the maintenance 

program. Typically, the high performance concrete used in DPPCGs outlasts the design 

life of the bridge. This, combined with the ease and rapidity of construction, make it more 

economical in some cases to replace the entire superstructure of the bridge as opposed to 

the deck only. For higher traffic situations, the study researched design strategies to allow 
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for efficient deck replacement in DPPCG bridges. NCHRP Report 407 suggested the use 

of a shear key system with a debonded interface between the precast girder and the cast-

in-place deck. It was recommended that this interface be used between the subflange and 

flange in DPPCGs that are cast in two phases to allow for ease of deck removal and 

replacement. 

 The primary concern given by industry experts as part of the initial survey 

conducted in the study is the durability and performance of the longitudinal joint. To 

address this, analytical studies were carried out to determine the maximum forces in the 

joint as a result of differential camber and live load forces. The analytically obtained 

values were then used to experimentally test candidates for improved headed bar details, 

as outlined in Li et al (2010) and Li et al (2011). The headed bar detail was shown to 

have sufficient strength, fatigue characteristics, and crack control for the maximum loads 

determined from the analytical studies and is a viable connection system for DPPCGs. 

 Based on the literature review, analytical results, and experimental results, 

suggested comprehensive design guidelines were laid out for adoption by AASHTO and 

use by groups interested in constructing a prototype bridge for evaluation and testing. The 

guidelines include the improved longitudinal detail, recommended deck replacement 

design, and the optimized family of girder sections. 

French, Shield, Klaseus, Smith, Eriksson, Ma, Zhu, Lewis, and Chapman (2011), 

“Cast-in-Place Concrete Connections for Precast Deck Systems” 

French, Shield, Klaseus, Smith, Eriksson, Ma, Zhu, Lewis, and Chapman [2011] 

conducted this study to determine recommended design and construction specifications 

for cast in place reinforced concrete connections for precast deck systems. This report 
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combines previous work done at the University of Tennessee – Knoxville (cited above), 

as well as work done by researchers at the University of Minnesota – Twin Cities on 

precast composite slab span systems. This review will focus on the results presented for 

the decked bulb tee sections. 

 Possible connection concepts for joining the precast DBT girders were weighed 

using a phone survey of industry professionals. The choices were then narrowed down 

based on performance, cost, and ease of construction.  The three connection details found 

to be superior were lapped headed bar reinforcement, lapped U-bar reinforcement 

fabricated with deformed wire, and lapped U-bar reinforcement fabricated with stainless 

steel. Each detail was tested in both flexure and tension to simulate conditions 

encountered in longitudinal and transverse joints, respectively. The two U-bar details 

were found to have higher capacity and smaller crack widths at service level loading. In 

previous studies, the U-bar detail encountered resistance due to the required bend radius 

being smaller than the ASTM standard due to thin bridge decks. The use of deformed 

wire or highly ductile stainless steel alleviated this concern; however the high cost of the 

stainless steel led to the selection of the deformed wire as the most cost efficient choice. 

Constructability of the U-bar deformed wire detail was also found to be superior to the 

headed bar detail, as it created a less congested joint. Upon consideration of all these 

factors, the U-bar deformed wire detail was selected for further testing, including an 

additional round of six specimens tested for flexure and tension. Based on the results, the 

authors recommended the joint overlap length should not be less than 6 inches and #4 

lacer bars should be provided along the joint to enhance mechanical anchorage, provide 

adequate ductility, and prevent significant loss of strength at ultimate load. 
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 Following selection of the U-bar detail, a parametric study was conducted to 

create a database of maximum forces in the longitudinal joints to determine the forces to 

be used in the large scale static and fatigue testing. Two sections were tested, a decked 

bulb-T girder (DBT65) and a bulb-T girder (BT72). First, a 3D FE model of the bridge 

was developed using ABAQUS, then a HL-93 live load was applied, and the effects of 

loading location, bridge width, truck/lane loading versus tandem/lane loading, girder 

geometry, bridge skew, single-lane versus multi-lane, and cracking of the joints were 

evaluated. The controlling load cases were determined by positioning the transverse joint 

over an interior support. It was conservatively assumed that the bridge deck would resist 

the tension force created by the resulting negative moment. The following forces were 

found: 

• Maximum moments in transverse joints were -3140 kip-ft/beam design, -910 kip-

ft/beam fatigue, 503 kip-ft/beam design, and 196 kip-ft/beam fatigue for DBT65, 

the controlling case 

• Transverse stresses of the U-bar in girder DBT65 were 35.6 ksi and 10.3 ksi under 

negative design load (-3140 kip-ft) and negative fatigue load (-910 kip-ft) 

respectively, based on cracked section analysis 

Performance criteria were then developed for durable closure pour materials for the 

longitudinal and transverse joints. Overnight and 7-day cure materials were tested for 

freezing-and-thawing durability, shrinkage, bond, and permeability tests, with the final 

criteria being as presented in Table 2.1. 

Specimens were then fabricated for a full scale fatigue and static load testing 

program as outlined in Li (2010) above. 
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It was found that fatigue loading had little influence on the behavior of the 

longitudinal joints, with the exception of specimens using the overnight cure closure pour 

material. After 2 million cycles, overnight cure specimens had less load capacity than 

similar specimens subjected to static loading only. For the transverse joints, excessive 

crack widths were found when using 75 ksi steel as opposed to 60 ksi steel. It is 

recommended that 60 ksi steel and larger bars be used if stresses in the reinforcement are 

not limited at service. Overall, the U-bar detail performed well throughout the fatigue and 

static loading program. 

 Comprehensive design and construction specification recommendations for 

decked bulb tee girder longitudinal connections were presented as a result of the study. 

Revisions to the AASHTO LRFD Specifications on topics including minimum bar bend, 

minimum depth and cover, precast deck slabs on girders with longitudinal and transverse 

joints, and decked bulb tee decks were suggested as well. Five example design problems 

were formulated to demonstrate application of the results. This report revised the 

recommendation of earlier studies on the topic, as it recommended the U-bar detail with 

deformed wire over the headed bar detail. 

Gergely, Overcash, Mock, Clark, and Bailey (2007), “Evaluation of Design and 

Construction of HPC Deck Girder Bridge in Stanly County, North Carolina” 

Gergely, Overcash, Mock, Clark, and Bailey [2007] conducted this study to investigate 

the behavior of a highway bridge built with high performance, precast, prestressed, 

decked bulb-tee girders. The study consisted of a preliminary design submitted by the 

NCDOT which was compared to a parametric study performed using Larsa™ 2000 4
th

 

Dimension for Bridges (Larsa™, 2005). An ANSYS™ finite element model of the bridge 
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was then developed to analyze the behavior of the steel plates and steel diaphragms 

connecting the girders as well as the stresses throughout the structure. The values 

produced by the FE model were then compared to laboratory testing of the welded steel 

plate connectors. Finally, the girders were fabricated and the bridge was installed on site, 

where it was subjected to static and dynamic load testing. 

 The bridge was designed to be two lane, with a bearing to bearing span of 106’ 

with no intermediate supports and with integral end bents. The structure consists of five 

107’-4” independent prestressed deck girders connected with welded steel plates at 5’-0” 

on center and steel diaphragms located at quarter and half points. The girder was 

fabricated in two phases, first a standard Type III AASHTO girder was cast, then the 6’6” 

deck section was cast using the same concrete mix as the girder. Once installed on site, 

the diaphragms and welded steel plates were installed, and the shear key was filled with 

non-shrink grout. 

 Following submission of the preliminary design, a parametric study using Larsa™ 

was conducted. The bridge was assumed to be simply supported, and the software 

necessitated treating the longitudinal plate connections as welded on the four corners, 

instead of the fillet weld that was actually used. These factors resulted in a more flexible 

and weaker connection, causing the analytical study to predict higher forces in the 

connecting plates. As a result, this initial study was viewed as qualitative in nature, and 

was used to determine the location of instrumentation on the final bridge. Comparison 

between the NCDOT design calculations and the Larsa™ model indicated highly 

consistent results, validating the reliability of the model for further analysis. Stresses 

were then obtained based on the LRFD Strength I – Truck 3 Loading combination based 
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on a design with and without diaphragms, which demonstrated that the absence of 

diaphragms produced stresses in the connection plates well beyond the estimated pull-out 

capacities. It also showed that the highest stresses in the diaphragms represented only 

18% of the material’s yield stress. 

 A construction economy analysis was conducted by comparing costs of building 

three different bridges of similar span but dissimilar designs. The decked bulb-tee bridge 

was found to have the highest net cost, most likely due to the girder section being a new 

design, with no previous examples in existence. It is likely that as these types of girders 

become more commonly used, the prices will decrease over time. 

 For further analysis, a FE model was developed using ANSYS™ and calibrated 

with the LARSA™ model, the provided NCDOT calculations, and the results of the 

experimental load testing. This model was used to test the effects of plate spacing on the 

stresses produced in the diaphragms and plate connections, to determine the distribution 

factor due to live loading, and find the stress field throughout the structure. The highest 

normal stresses in the top fibers were found to be 902 psi and 712 psi in tension and 

compression, respectively.  

 The welded plate flange connections were experimentally tested in tension and 

longitudinal shear to determine their capacity for load transfer between girders. The 

average failure loads in tension and shear were 12,778 lbs and 24,646 lbs, respectively. 

Comparison of experimental results with calculations using the PCI design handbook 

revealed inconsistent results underscoring the unpredictability of this particular 

connection. It was recommended that when employing connection details not found in 

current guidelines, the details should be evaluated using experimental investigation. 
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 Following design, the girders were fabricated and transported on a convoy of five 

trucks from Savannah, GA to the project site. For transportation, a six axle truck was 

used, and an extended load permit was obtained. Four lane or larger highways were 

predominantly traveled and two escorts were provided to each truck. Following 

construction, a 4” layer of asphalt was added due to the bridge’s location at the bottom of 

a sag curve. It was recommended that when asphalt is not needed, an extra inch of 

concrete should be added to the top of the deck that can be ground down to provide a 

smoother riding surface and adjust for elevation after the girders are installed.  

 Once completed, the bridge underwent load testing prior to opening. Monitoring 

was accomplished with three instruments: displacement transducers, strain transducers, 

and strain gauges, all of which were connected to the Data Acquisition System (DAQ). 

Quasi-static and dynamic loading by two tandem trucks weighing 100,000 lbs total was 

provided based on a SAP2000™ model to achieve a moment that was approximately 

70% of the design moment of 1,632 k-ft. Five different load paths were used to reach 

maximum stress in each girder. Results of the load testing was as expected, stresses in the 

members were dependent on load location, and were not uniformly distributed. The FE 

data and experimental data compared favorably, and indicate the reliability of ANSYS™ 

and Larsa™ as analysis tools for these types of bridges. 

 Overall fabrication and construction of the bridge presented no major problems 

and was completed as designed. Possible improvements include additional tie down 

locations for transport, 1-inch additional deck height if asphalt will not be applied for a 

smooth surface, use of lightweight concrete, and development of formwork to allow for 

one-pour fabrication. Mechanical behavior of the bridge was found to be consistent with 



 

22 

analytical and design results, with the exception of the welded plate longitudinal 

connection, which will require revised design equations or the use of modeling for future 

projects. This decked girder type was demonstrated as a viable alternative in rapid bridge 

construction, and should become more economical as widespread use occurs. 

Holland, Dunbeck, Lee, Kahn, and Kurtis (2011), “Evaluation of a Highway Bridge 

Constructed Using High Strength Lightweight Concrete Bridge Girders” 

Holland, Dunbeck, Lee, Kahn, and Kurtis [2011] conducted this study to investigate the 

behavior of a highway bridge constructed from high strength lightweight concrete 

(HSLW) instead of high strength normal weight concrete. Increasing concrete strength 

has allowed progressively longer bridge spans to the point where the limiting factor is the 

capacity of current infrastructure to tolerate loads imposed by transportation of the 

girders to the project site. Development of new lightweight concrete mixtures is a 

possible solution to this difficulty; however verification of the reliability of current design 

practices to accurately predict behavior of the resulting composite structure is necessary 

prior to broad implementation. 

 This study presents the findings of an ongoing performance evaluation of the I-85 

Ramp “B” Bridge crossing SR-34 in Coweta County, Georgia. The girders are AASHTO 

BT-54 cross-sections with a 107 foot 11 ½ inch length cast with a 10,000 psi design 

strength HSLW mix with a unit weight of 120 lb/ft
3
. The deck was constructed with 

3,500 PSI normal weight concrete. Vibrating wire strain gauges, taut wire system, 

thermocouples and a total station were employed to measure prestressing losses, camber, 

coefficients of thermal expansion, creep, shrinkage, elastic modulus, and stiffness. These 
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experimentally derived parameters were compared against a variety of standard 

predictive methods to determine their validity when HSLW is used. 

 To determine the actual compressive strength of the light weight concrete, over 

240 cylinders were tested at 7, 28, 56, and 180 day intervals. The 56 day compressive 

strength of 10,240 psi was compared against the value obtained by Meyer (2002) for the 

same mix design and was found to be 11.3% lower. It was concluded that this was due to 

the lightweight aggregate not being fully saturated prior to construction. All girders met 

the prescribed design strength by 56 days of age. 

 While able to exhibit high strength, HSLW possesses a significantly lower 

modulus of elasticity than normal weight concrete. Elastic moduli were experimentally 

measured in accordance with ASTM C 469 and were compared with the methods 

suggested by Lopez (2005), AASHTO LRFD (2007), ACI 363 (1997), Meyer (2002), 

Cook and Meyer (2006), and the National Cooperative Highway Research Program 

(2007).  Additionally, a load test was performed at 56 days of age on each bridge girder 

and deflection was measured using a taut wire system, resulting in a calculated modulus 

of elasticity. The apparent elastic modulus in the girders was computed as 4,190 ksi, 

which is 12.5% larger than that determined from cylinder testing according to ASTM C 

469, the data from which was widely scattered. The equations suggested by Meyer (2002) 

were determined to most closely match the experimental data from load testing, 

providing an estimate within 3%. All other methods under-predicted the modulus, except 

AASHTO which overestimated by 6%. 
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 Coefficient of thermal expansion tests were conducted in accordance with CRD-C 

39 (1981). The measured values were lower than normal weight concrete, and were used 

to adjust the raw data for determination of internal strains throughout the project. 

 Creep and shrinkage studies were conducted according to ASTM C 512 (2002) 

and compared with various prediction methods including AASTHO LRFD (2007), ACI 

209 (1992), and Lopez (2005). The HSLW was found to have much lower observed creep 

than estimated by the AASHTO and ACI, while higher than estimated by Lopez, with 

approximately 90% of the observed shrinkage losses occurring in the first 110 days. 

Shrinkage and creep data show that after 200 days of age, no significant increases in 

strain occurred in the HSLW. 

 A load test and finite element model were employed to characterize the composite 

behavior of the bridge system and to compare observed behavior with analytical 

predictors. The bridge was divided into quarter-span (LT1), mid-span (LT2), and three-

quarter-span (LT3) partitions. For the FEM, the contribution of prestressed bars and steel 

reinforcements to the behavior of the bridge were neglected, as the loading did not induce 

cracking in the concrete. Also, concrete material properties were assumed to be linear 

elastic, with the modulus of elasticity of the deck and girder calculated to be 3,995 ksi 

and 4,096 ksi respectively. The measured deformations differed from the predicted values 

by a maximum of 0.09 inches, 0.07 inches, and 0.04 inches in LT1, LT2, and LT3, 

respectively. The predicted values were larger with the exception of girders 1 and 2 in 

LT3. These data indicate that the as-built structure was stiffer than that predicted by the 

FEM, possibly due to variations in the deck properties. Overall, FEA proved to be a 

viable analytical technique in modeling HSLW. 
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 878 days of experimental data were collected from the VWSG’s to compute 

prestress loss. Regression analysis allowed extrapolation to 40 years, and indicated a total 

loss in that time period of 56.1 ksi. These results were compared with six common 

methods of prestress loss prediction: PCI Design Handbook (2004), ACI 209 (1992), 

AASHTO LRFD (2007) lump sum and refined, Tadros (Tadros, et al., 2003), and Lopez 

(2007). All methods with the exception of the PCI Design Handbook were within 4% of 

the measured loss. The AASHTO LRFD Refined method over-estimated losses by 5%, 

and provided the best estimate of total losses from all sources, including creep and 

shrinkage. 

 The Washington State Department of Transportation (Rosa et. Al., 2007) and PCI 

Design Handbook (2004) methods of predicting camber induced by prestressing were 

compared against measured values. Both methods over-predicted the observed value, 

with the WSDOT method having a difference of 0.08 inches and the PCI method 

differing by 2 inches. 

 The performance of the HSLW concrete in this bridge demonstrates its ability to 

allow for long spans while decreasing weight and allowing for more flexibility in 

fabrication and delivery. Further, comparison of standard design and analysis techniques 

with experimental observation of the behavior of the composite structure confirmed the 

validity of those techniques in HSLW bridge design. These results recommend use of 

HSLW in future infrastructure projects as a possible time and cost saving strategy. 
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Table 2.1: Results of closure pour evaluation (Li, Et al., 2010) 

Compressive Strength 

41.4 MPa 

At 8 hours (for overnight cure) 

At 7 days (for 7-day cure) 

Shrinkage No cracks found before 20 days of age 

Bond strength 2.5 MPa 

Chloride Penetration 
Depth of percent chloride of 0.2% by mass of 

cement after 90 day ponding less than 38 mm 
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Figure 2.1: Recommended joint details (Li, Ma, Griffey, & 

Oesterle, 2010) 



 

28 

 

Figure 2.2: Finite element model (Li, et al., 2010) 

 

 

Figure 2.3: Proposed U-bar connection detail 

(French, et al., 2011) 
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Figure 2.4: Large scale specimen dimensions (French, et 

al., 2011) 

 

 

Figure 2.5: Large scale specimens prior to pour (French, et al., 2011) 
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Figure 2.6: Large scale specimens after pour (French, et al., 2011) 

 

 

Figure 2.7: Welded plate detail (Gergely, Overcash, Mock, Clark, & 

Bailey, 2007)
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CHAPTER III 

INVESTIGATION OF LONGITUDINAL JOINTS BETWEEN PRECAST 

PRESTRESSED DECK BULB TEE GIRDERS USING LATEX MODIFIED 

CONCRETE 

3.1 EXPERIMENTAL PROCEDURE 

3.1.1 Selection of Joint Detail 

A joint detail was selected for further testing based on results from the literature review. 

The criteria used for selection of the joint were moment capacity, shear capacity, ease of 

construction, and crack resistance. The welded metal plate connection detail currently in 

widespread use in the Pacific Northwest was eliminated due to concerns of excessive 

cracking at service loads. This connection is known to adequately resist shear, however it 

is poor in moment resistance. Also, typical spacing of the welded plates is five feet on 

center, leading to additional cracking between the connectors as well. 

 Multiple joint details were recommended by the recent studies conducted at UT-

Knoxville as part of NCHRP 10-71 (French, et al., 2011). A survey of contractors and 

designers was first conducted where several potential details were presented. The 

respondents were asked about the constructability, reliability, and durability of each 

detail. The details which were most highly rated were the headed bar and U-bar details. 

When tested in small scale laboratory testing, both of these details demonstrated similar 

capacity in flexure as well as 
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shear, and had superior crack control to the welded plate detail. The U-bar detail was 

chosen for further large scale testing due to its better constructability. When placed in the 

field, the U-bars would form a cage which aided in placement of the longitudinal rebar. 

 This U- bar detail consists of interlaced U-bars which protrude from a shear key 

formed into the edges of each slab specimen. The U-bars are set 6 inches on center, so 

following placement the interlocked U-bars are 3 inches on center. Two #4 headed bars 

are then threaded longitudinally through the meshed U-bars. Schematics of the joint 

detail can be found as Figures 3.1 and 3.2. 

3.1.2 Test Specimens 

Two large scale slab specimens were fabricated for this test. The specimens were 

designed to represent the deck portion of two adjacent deck bulb tee girders which would 

be connected through a longitudinal joint as part of a full-scale bridge. Both slabs were 

identical in size, at 6 feet long, 6 feet wide, and 8 inches thick. The deck thickness was 

chosen to be consistent with typical bridge decks in South Carolina. Specimen 

dimensions and reinforcing details can be seen in Figures 3.3 and 3.4. The reinforcing 

was designed to adhere to the SCDOT Bridge Design Manual and with standard bridge 

design practice in order to better correspond to real world conditions. The slab 

reinforcing which functioned as the longitudinal bridge reinforcing was designed at 12 

inches on center both top and bottom. The reinforcing that functioned as transverse 

reinforcing and also contained the U-bars was laid out at 6 inches on center, top and 

bottom. Shear keys with U-bars were formed on both sides of the slabs, to allow for two 

tests on each specimen if necessary. The U-bars on each side were spliced with straight 

rebars in the center of the slab. All slab reinforcement was A706 Grade 60 #5 bars. Clear 
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cover for the rebars was designed to be 2 inches on top, and 1.5 inches on the bottom. 

This is slightly less than the typical 2.5 inches recommended in the SCDOT Bridge 

Design Manual (SCDOT, 2006), but was necessary to meet the minimum bend diameter 

of the U-bars as given in ACI 318 (ACI, 2011). The design strength of the concrete for 

the slabs was 6,000 psi. The mix design can be found in Table 3.1.  

 The forms were constructed of standard pine lumber and plywood. The shear key 

detail was formed from one inch foam board, with holes cut through the lumber and foam 

board to allow for protrusion of the U-bars. The interior of the forms were then sprayed 

with form release compound, and the slab concrete was poured on July 25, 2013. The 

forms were built in the USC structures laboratory, and a ready-mix concrete truck was 

driven into the lab in order to perform the pour in a climate controlled area. The 

measurements for slump and air content were 5 inches and 2.5%, respectively. 

Compressive strength data can be found in Table 3.2. The concrete was moist cured 

under wet burlap and plastic for 14 days. Following the initial cure, the forms were 

stripped and the slabs were cured for an additional 14 days for a total of 28 days. Figures 

3.5 through 3.10 depict the specimens before and after casting and curing. 

3.1.3 Closure Pour Material 

The closure pour material was selected from several candidates based on bond strength, 

tensile strength, and relative frequency of use in SCDOT applications. Previous studies 

had used various high performance concrete and grout mixtures, each approximately 

10,000 psi in strength. These mixtures displayed good performance in ultimate strength 

and crack control. In order to further enhance crack control, a product with higher bond 

strength and ductility was desired, as well as one which was regularly used by bridge 
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contractors in South Carolina. Latex modified concrete was chosen based on these 

criteria. The latex modifier used was Styron Mod A/NA, which is pre-approved for use 

by the SCDOT, and exhibited the desired properties for this application. Three test LMC 

mixes were then designed to match the slab concrete strength of 6,000 psi. Each test 

batch included Eclipse
®

 4500 shrinkage reducing admixture to reduce cracking due to 

drying shrinkage.  

The initial test mix (CPTM-1) demonstrated a higher than expected slump due to the 

water reducing properties of the latex modifier. The second test mix (CPTM-2) reduced 

the slump slightly however still had excess workability. The third test mix (CPTM-3) 

used Type III cement and had a 5” slump, meeting the targeted value. This mix design 

was then used as the closure pour material. The mix designs can be found in table 3.3. 

Properties of the closure pour batch can be found in table 3.4. 

3.1.4 Joint Construction 

After the 28 day cure period of the slabs, both specimens were lifted into place on 

reaction stands, so that the U-bars interlocked. Two #4 headed lacer bars were threaded 

through the interlocked U-bars longitudinally down the joint. Formwork was then 

constructed and clamped in place on either end and beneath the joint. To prevent sagging 

following concrete placement, cribbage and two jacks were placed beneath the formwork 

for support. Once in place, the joint face was sandblasted to remove carbonation and 

provide fresh concrete to enhance bonding of the LMC. Figures 3.10 through 3.13 depict 

joint construction steps. 

 The latex modified concrete was mixed and placed on September 13, 2013. 

Concrete was mixed using a Stone
®

 95CF mixer, and was vibrated for consolidation 
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around the U-bars. Air content and slump tests were performed, and cylinders were taken 

for compressive strength and elastic modulus testing. Results of these tests can be found 

in Table 3.4. Following placement, the concrete was wet cured in place using water-

soaked burlap for 14 days, following which the forms were stripped and the test frame 

constructed. Figures 3.14 through 3.16 display the joint following the closure pour. 

 Six shrinkage specimens were cast from the closure pour material according to 

ASTM C157 to determine the effectiveness of the shrinkage reducing admixture when 

used in latex modified concrete. Figures 3.17 and 3.18 display the shrinkage specimens 

and results of the testing. 

3.1.5 Experimental Setup and Instrumentation 

The specimens were tested in combined flexure and shear loading in the USC Structures 

Laboratory. The specimens were simply supported with a 72 inch span. A test frame was 

constructed around the specimens where a 110 kip actuator was mounted to apply the 

load. The actuator was attached to a 3 foot spreader beam, which transferred the load to 

two separate load points along the joint equally to apply a strip load parallel to the joint. 

Both load points were positioned 1 foot from the center line of the joint, producing the 

desired shear and moment as discussed in section 3.1.6. The test setup is shown in figure 

3.19, and diagrams of the test frame are presented in figures 3.20 and 3.21. 

 The specimens were equipped with linear displacement gauges at the supports and 

at either end of the joint to detect settlement of the supports and displacement of the joint 

center. A load cell was used to determine the load applied by the actuator to the spreader 

beam. 
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3.1.6 Test Procedure 

Loads for the experimental test were developed after review of the finite element study 

conducted in the NCHRP 10-71 project. The specimen was first subject to a fatigue 

loading program which was divided into four cycles, F1, F2, F3, and F4. Each fatigue 

cycle consisted of 500,000 load cycles for a total of 2,000,000 load cycles. The actuator 

was programmed to cycle between a minimum load of 4.4 kips and a maximum load of 

25 kips. The load cycles were applied at a rate of 1.5 Hz. The minimum and maximum 

loads corresponded to the shear forces resisted by the joint under the fatigue modified 

HL-93 live loading according to the finite element study completed as part of NCHRP 

10-71 (French, et al., 2011). The minimum shear force was due to differential camber 

leveling and was assumed to be constant at 0.5 kips/ft. The maximum shear force was 

due to the HL-93 fatigue load plus the camber leveling force, for a total of 2.84 kips/ft. 

The shear force along the joint was found to vary significantly based on longitudinal 

position of the bearing pad. This led to a shear concentration toward the center of the 

joint in excess of the average shear per unit length of the joint. 

 The fatigue loading was paused at 500,000 cycle intervals and a service level 

overload was performed. A 46.9 kip force was applied by the actuator which 

corresponded with a peak shear of 5.34 kips/ft. This was the shear carried by the joint 

under the unfactored AASHTO HL-93 live load in the finite element model conducted as 

part of NCHRP 10-71 (French, et al., 2011). 

 Upon completion of the fatigue loading program, the influence of cracking on the 

water tightness of the joint was investigated via a ponding test. Prior to commencing 

fatigue loading, a dike was constructed around the joint area using standard 2x4 lumber 



 

37 

and Power Stick
®

 adhesive to form the watertight seal. Water was then poured inside the 

dike to a depth of 2 inches above the concrete, so that the joint area was fully submerged. 

Observations were then made to determine if water was leaking through the joint during 

fatigue testing as a result of crack development. The dike and ponding test is presented in 

figure 3.22. 

3.2 RESULTS AND DISCUSSION 

The main experimental results are introduced and discussed in this section. Results 

related to shrinkage, cracking, and behavior under loading are discussed. 

3.2.1 Shrinkage 

Six shrinkage specimens were cast from the closure pour material and were tested to 

determine the shrinkage behavior of the closure pour material and the effectiveness of the 

shrinkage reducing admixture. Length measurements were taken using a comparator with 

a 10 inch gage length at intervals recommended by ASTM C157. Initial measurements 

were made 24 hours following casting, after which the specimens were placed in a lime 

saturated water bath for 28 days to cure. Following the curing period, another 

measurement was taken, and the specimens were placed on a rack to air dry. 

Measurements were then taken at 7, 14, 21, and 28 days from the initial cure period. 

Length change from 0.02 to 0.025% at 28 days was observed. 

3.2.2 Cracking 

The slab specimen was visually inspected during the fatigue testing phase for the 

presence of cracks. No cracking was detected as a result of the fatigue or service level 

loading during the testing. Figures 3.23 and 3.24 show the joint following the conclusion 

of fatigue testing. 
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 A ponding test was also performed following the fatigue loading phase to confirm 

whether or not there were cracks present which were too small for visual detection. Water 

was allowed to stand on top of the joint for 4 days, during which time no water was 

detected leaking through the joint. Water was seen discharging from one end of the joint, 

indicating crack development at the interface between the existing concrete and the 

closure pour. The location of the crack in the compressive zone of the joint suggests that 

the crack could be a result of inadequate consolidation during placement of the LMC or 

drying shrinkage causing the closure pour to pull away from the existing concrete. 

Ultimately, it is probable that no cracking occurred in the joint as a result of external 

loads applied during the fatigue testing phase. Lack of water discharging through the 

vertical length of the joint also indicates the absence of any through cracks. Figure 3.25 

displays the discharge from the end of the joint. 

3.2.3 Specimen Behavior 

Average deflection under fatigue and service level loading was approximately 0.6 and 2 

mm (0.024 and 0.079 inches) respectively. Throughout the testing regimen, the joint was 

able to resist the applied loads without any signs of distress. 

The specimen underwent permanent deformation over the course of the fatigue 

loading phase. This deformation increased during the first two load cycles, F1 and F2, but 

began decreasing during F3 and F4. Load vs. displacement charts can be seen as figures 

3.26 through 3.31 and permanent deformation can be seen in table 3.5. Based on the data, 

it was shown that at fatigue and service level loads no significant permanent deformation 

occurred in the slab specimen. This result is consistent with the slab behavior reported in 

NCHRP 10-71 (French, et al., 2011), and indicates that the joint is capable of transferring 
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and resisting service and fatigue level loads without sustaining damage over the lifespan 

of the bridge. 

One possible reason for residual slab deformation initially increasing and then 

decreasing during fatigue loading is strengthening of the LMC closure pour concrete as it 

cured, causing increasing stiffness of the joint. Another possible explanation is strain 

redistribution of the reinforcing steel, mobilizing more cross sectional area and thereby 

reducing the effective stresses resisted by the rebar. 

3.3 CONCLUSION 

The absence of longitudinal cracks developing in the tensile zone of the joint indicate the 

capability of LMC to resist crack formation and debonding from existing concrete. This 

result in conjunction with insignificant levels of permanent deformation under cyclic 

loading demonstrates the adequacy of the joint to transfer and resist service level shear 

and moment in precast bridge systems without sustaining permanent damage and loss of 

strength over the life span of the bridge. 
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Table 3.1: Slab specimen concrete mix proportion 

 Slab Concrete 

w/c ratio 0.337 

Coarse Aggregate (lb/yd
3
) 1728.6 

Fine Aggregate (lb/ yd
3
) 1143.4 

Super Plasticizer (fl oz/yd
3
) 45.6 

Retarder (fl oz/yd
3
) 14.9 

Air Entrainer (fl oz/yd
3
) 1.5 

 

 

 

 

Table 3.2: Compressive strength of slab concrete 

 Compressive Strength (psi) Modulus of Elasticity (psi) 

7-day 5680 - 

14-day 6264 - 

21-day 6240 - 

28-day 6466 - 

56-day 7142 4.9x10
6 
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Table 3.3: Mix designs of closure pour test batches 

 CPTM-1 CPTM-2 CPTM-3 CP 

w/c ratio 0.33 0.33 0.28 0.28 

Coarse Aggregate (lb/yd
3
) 1720 1260 1260 1260 

Fine Aggregate (lb/yd
3
) 1048 1505 1596 1596 

Latex Modifier (lb/yd
3
) 208 208 208 208 

Air Entrainer (fl oz/yd
3
) 1.5 1.5 1.5 1.5 

Super Plasticizer (fl oz/yd
3
) 24.4 0 0 0 

Water Reducer (fl oz/yd
3
) 15 15 15 15 

Shrinkage Reducer (lb/yd
3
) 11.55 11.55 11.55 11.55 

 

 

 

Table 3.4: Closure pour concrete properties 

 Compressive Strength (psi) 

7-day 4442 

14-day 5159 

21-day 5343 

28-day 5441 

56-day 6247 
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Table 3.5: Residual specimen displacement 

Cycles Residual Displacement 

mm (in) 

500,000 
0.619 

(0.024) 

1,000,000 
0.942 

(0.037) 

1,500,000 
0.919 

(0.036) 

2,000,000 
0.815 

(0.032) 
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Figure 3.1: Section view of longitudinal joint detail 

 

 

Figure 3.2: Plan view of longitudinal joint detail 
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Figure 3.3: Plan view of test specimen 

 

 

 

 

Figure 3.4: Elevation view of test specimen 
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Figure 3.5: Specimen formwork with foam board for shear key 

 

Figure 3.6: Specimen formwork with tied rebar 
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Figure 3.7: View of tied rebar with lift inserts 

 

Figure 3.8: View of both specimens with rebar 
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Figure 3.9: Specimens being moist cured 

 

Figure 3.10: Specimen after casting and curing 
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Figure 3.11: Specimens set in place to form the joint prior to sandblasting 

 

Figure 3.12: Joint formed with #4 headed bars in position following sandblasting 
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Figure 3.13: View of completed joint prior to pour 

 
Figure 3.14: Joint following closure pour 
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Figure 3.15: End view of joint 

 
Figure 3.16: Burlap and plastic used for curing joint 
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Figure 3.17: Shrinkage specimens 

 

Figure 3.18: Shrinkage test results 
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Figure 3.19: View of test set up 

 

 

 

Figure 3.20: Plan view of test set up 
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Figure 3.21: Elevation view of test set up 

 

 

 

 

Figure 3.22: Joint condition following fatigue testing 
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Figure 3.23: Underside of joint after fatigue loading 

 

Figure 3.24: View of ponding test 
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Figure 3.25: Leaking at end of joint 

 

Figure 3.26: Fatigue cycle F1 deflection over time 
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Figure 3.27: Fatigue cycle F2 deflection over time 

 

Figure 3.28: Fatigue cycle F3 deflection over time 
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Figure 3.29: Fatigue cycle F4 deflection over time 

 

Figure 3.30: Load vs. deflection for fatigue cycle F3 



 

58 

 

Figure 3.31: Load vs. deflection for service level overload 1 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

4.1 SUMMARY 

Current practice for construction of the longitudinal joint between precast deck bulb tee 

bridge girders typically results in excessive cracking, resulting in durability concerns. In 

previous studies, it was shown that the primary through cracks that develop in these joints 

occur at the interface between the existing deck concrete and the closure pour. Latex 

modified concrete exhibits higher bond strength and ductility than standard concrete, and 

is therefore capable of reducing crack formation at the interface. 

 Two large scale slab specimens were cast and joined using latex modified 

concrete as the closure pour material. These specimens were then subjected to fatigue 

loading of 2,000,000 cycles at 1.5 Hz. The load varied between 4.4 kips and 25 kips to 

produce the shear and moment which was calculated in the finite element study 

conducted as part of NCHRP 10-71 (French, et al., 2011). At 0.5 million cycle intervals, 

the fatigue loading was paused and a service level overload was applied at 46.9 kips. 

During the fatigue and service level loading, no visible cracking occurred. Following the 

last service loading, a ponding test was conducted. No water was seen penetrating 

through the joint, however a discharge was seen coming from a crack in the end of the 

joint in the compressive zone. It is possible that this crack developed as a result of 

shrinkage or inadequate consolidation during placement and not from external loading. 
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 Deflection data also demonstrates that no significant permanent deformation 

occurred during the fatigue loading phase. This indicates that the U-bar detail and LMC 

formed a joint which is capable of transferring service level shear and moment between 

adjacent bridge girders without sustaining excessive damage and loss of strength. 

4.2 CONCLUSIONS 

The U-bar joint detail displayed superior moment and cracking resistance when tested as 

part of NCHRP 10-71 (French, et al., 2011), however some cracking persisted at service 

level loading. Since these cracks formed at the interface between the existing concrete 

and the closure pour, a material with higher bond strength was proposed to counter this 

effect. Crack formation during the fatigue testing of this study could not be visually 

detected, and no through cracking appears to have occurred based on the results of the 

ponding test. Limited water discharge was seen at one joint end, however the crack 

permitting the flow developed in the compressive zone of the slab. This would indicate 

that the crack was possibly due to drying shrinkage or developed during placement of the 

closure pour concrete. 

 Due to the elimination of cracking in the tensile zone of the joint area as well as 

the performance of the joint in fatigue and service level loading, a joint system consisting 

of LMC and a U-bar reinforcing detail is recommended for use in longitudinal joints 

between deck bulb tee girders. 

4.3 RECOMMENDATIONS AND FUTURE WORK 

Further fatigue loading of the joint will be conducted to reach a total of 2,850,100 cycles, 

matching the expected truck traffic over a typical bridge employing this type of 
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construction. The specimen will then be subjected to the CLT protocol as proposed by 

ACI Committee 437 to determine failure load and behavior of the specimen in failure. 

A prototype bridge will also be constructed using rapid construction methods 

consisting of precast prestressed deck bulb tee girders. LMC can be used in the closure 

pour to determine the full scale behavior of the LMC/U-bar joint system when part of a 

bridge. Additional refinements to the detail include: removal of the #4 headed lacer bars, 

epoxy coated U-bars, bonding agents between the concrete and closure pour, and 

lightweight concrete decks. Additional specimens should be tested using these variations 

to determine if further performance and efficiency gains are possible. 
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APPENDIX A 

ADDITIONAL FATIGUE AND SERVICE LEVEL TEST DATA 

The remaining load and displacement data that were not previously displayed in Chapter 

III are presented here. 

 

Figure A.1: F1 load versus time 
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Figure A.2: F1 Load versus deflection 

 

Figure A.3: F2 Load versus time 
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Figure A.4: F2 Load versus deflection 

 

Figure A.5: F3 Load versus time 
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Figure A.6: F4 Load versus time 

 

Figure A.7: F4 Load versus deflection 
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Figure A.8: Load vs. deflection for service level overload 2 

 

Figure A.9: Load vs. deflection for service level overload 3 
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