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ABSTRACT 

Acoustic microscopy provides extraordinary advantages over state-of-the-art 

invasive imaging techniques to determine the mechanical properties of living colonies of 

pathogens and micro-organisms. It is possible to obtain the morphomechanical 

parameters of the pathogenic colonies e.g. variation of thickness, stiffness and the 

coefficients of attenuation, using scanning acoustic microscope (SAM). However, the 

process requires an expert with extensive understanding of SAM and ultrasonic signals 

which is very time consuming and expensive for complex form of analysis. Due to lack 

of a suitable computational tool, presently the ultrasonic wave scattering, reflection and 

transmission through the biological specimens cannot be properly visualized. Without 

any reliable simulated environment, it is extremely difficult to extract the 

morphomechanical parameters from the invading pathogens. To understand the ultrasonic 

signals that are reflected or scattered back from the biological specimens, one would need 

to compute the Pupil Function (PF), i.e. generated by a particular SAM lens. PF is the 

total pressure field in front of the lens at focal plane generated by the lens and cannot be 

experimentally measured without placing a reflecting surface in front of the lens. Hence 

to determine the PF one could change the interpretation of PF. Thus a detailed computer 

simulation platform for the SAM experiments is necessary. Particularly it is mandatory to 

obtain the accurate PF that is generated by a particular SAM lens used in the experiments 

before decoding the morphomechanical properties of the biological specimens. 
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To obtain the accurate PF in front of an acoustic lens, this dissertation presents a 

detailed development of Distributed Point Source Method (DPSM) for modeling SAM 

experiments. The ultrasonic field in front of the focused 100 MHz lens, obtained from the 

simulation can be further used to determine the material properties of the biological 

specimens. An accurate modelling of SAM lens using the distributed point source method 

(DPSM) is proposed for its proven capability to simulate ultrasonic fields at higher 

frequencies. DPSM is computationally cheap and efficient than the Finite Element 

Method (FEM). 

The acoustic lenses used in the SAM are commonly made of sapphire but 

enclosed with a brass casing. The sapphire head consists of four different geometrical 

shapes and each segment has individual influences on the visualization of the ultrasonic 

field produced by the transducer. Thus, the accurate geometry of the acoustic lens is an 

important factor for modeling. Using the DPSM accurate geometry of a 100 MHz lens is 

modeled and the PF is computed in front of the lens. It is shown that as per the design 

specification of the lens, the pressure field is accurately focused at the focal point. The 

peak pressure at the focal point and the rippled wave effect away from the focal point are 

verified in the DPSM based simulation environment.     
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CHAPTER 1 

INTRODUCTION 

1.1.Background and Motivation 

The term pathogens has been used for  an infectious agent, or a microorganism, in the 

widest sense such as virus, prion, bacteria or fungus, that causes disease to its host by 

secreting toxic agents. Bioactive chemicals discharged by the pathogens, such as 

Aspergillus fungi, can cause detrimental effect on human, animal and plant health, as well 

as food, nutrition and economy worldwide. Aspergillus spores are found nearly 

everywhere, so all the living animals and plants are almost constantly exposed to them. 

Generally, such exposures are normal, and pose no adverse effect on health condition. 

But, a recent study has found that, Aspergillus can and does cause diseases though the 

production of mycotoxins. The most common pathogenic species of Aspergillus is 

Apergillus flavus, and it produces aflatoxin, which is both a toxin and a carcinogen, and 

can potentially contaminate foods[1-13]. Figure 1.1 shows the photographic image [Ref: 

figure 1] of the detrimental effect of Aspergillus flavus. Similarly Aspergillues 

paraciticus which is another fungal species produces carcinogenic aflatoxin in to the air 

corrupting our indoor air quality. It is reported that in the US alone the mycotxin 

management cost is annually $1.3 – $ 2.5 billon[10]  which involves chemical treatment. 

Thus there is an opportunity exists to find an alternative approach to control aflatoxin (a 

form of mycotoxin) by an alternative cheaper menas using mechanical interventions via 

ultrasonics. Thus it is necessary to understand their mechanical characteristics.    
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Figure 1.1: Detrimental effect of Aspergillus Fungus on food  

        Significant research effort has been made to understand about the mechanism of 

secretion of the toxin chemicals and their relation to the biological behavior of the source 

pathogens. Also, researchers are interested to know the growth pattern of the Aspergillus 

colony and the degrees of mechanochemical forces that are exerted by the Aspergillus 

which helps them to penetrate the host body and extract nutrient. It has been 

hypothesized that, for maximization of the toxin production, the Aspergillus has a 

synchronized form of action which consists of significant mechanical transformation 

before, during and after the toxin secretion. If this hypothesis is true and the mechanism 

is known, appropriate mechanical means (non-chemical and thus eco-friendly) could be 

taken to interrupt the process. Thus, the knowledge of the time-dependent mechanical 

properties is important to understand the mechanical behavior of the Aspergillus.  

 

1.2 Limitations of state-of-the-art techniques 

Optical microscopy has been used to determine the biological behavior of 

pathogens. However, the mechanical properties cannot be obtained by using this method. 

Determination of the mechanical properties of pathogens (or any living cells) is a difficult 

task. Different techniques, such as, local aspiration of cytoplasm with a pipette, local 
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poking of cytoplasm, magnetometry, or scanning force microscopy had been used by 

various investigators. Aforementioned methods measure the forces that are needed to 

evoke a certain deformation in the cells. From the stress-strain relationships, these 

invasive methods determine the visco-elastic properties of the specimen and oscillating 

stress as a function of frequency. Among all the methods, acoustic microscopy provides 

some extraordinary advantages (provides excellent spatial resolution, relatively fast and 

is minimally invasive) to determine the mechanical properties of pathogens. 

There are other benefits of using the acoustic waves in microscopy technology. 

One important aspect of using the acoustic wave is that, it has the ability to inspect a 

specimen in dark region; the situation is often needed for the biological specimens. 

Another aspect of using the acoustic wave is its ability to see inside the optically opaque 

specimen, which is the main reason for the popularity of acoustic waves in electronic 

packaging industries for inspecting the integrated circuit (IC) chips.  

 

1.3 Limitation of SAM 

For biological cell characterization, normally 100 MHz to 1 GHz ultrasound 

frequencies are used. Two different types of fungal colonies named Aspergillues 

paraciticus and Aspergillus niger were inspected and it was found that their 

morphological characteristics are very different (see Fig.1.2).  A highly customized SAM 

300 microscope manufactured by PVATepla, Germany was used for acoustic imaging. 

Although the SAM technology is quite advanced it was identified that there are 

significant opportunities exists for improving the methods of understanding the acoustic 

signals emanating from SAM and subsequently determine the mechano-morphological 
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parameters of pathogenic colonies. In order to quantify such characteristics, first it is 

necessary to perform accurate modeling of SAM experiments to understand ultrasonic 

wave that are reflected and scattered by the biological specimens. No such detailed 

modeling exists that can provide accurate pupil function in front of a SAM lens. 

Figure 1.2 SAM 100 MHz images of Aspergillus paraciticus colony with propagating 

hyphae  

Figure 1.3 SAM 100 MHz transducer image of Aspergillus niger colony at 

different depth, showing in depth hyphal network 
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1.4 Definition of Pupil Function 

In acoustic microscopy experiments, V(f) and V(z) techniques are used to 

measure the elastic wave speed and the attenuation of wave. These plots are the variation 

of ultrasonic signal voltage (V) as a function of the frequency of signal (f) and defocus 

distance (z). The voltage detected by these techniques (due to wave field propagating in 

the positive direction and the reflected wave field coming back from the substrate) can be 

written as: 

 ( )  ∫ ∫  (       ) (        ) (       ) 
(     )

   ( )        

 

  

 

  

 

Similarly, 

 ( )  ∫ ∫  (         ) (          ) ( ) 
(     )

   ( )        

 

  

 

  

 

Where, P is the Pupil function, F is the focal distance, f is frequency and R is the 

reflection coefficient. The Pupil function P can be written as: 

 (       )  ∫ ∫  (     ) (          )    
 

  

 

  

 

 For pupil function, it is standard to assume or calculate by fitting a polynomial 

function through several experiments. But, polynomial fit might not represent the actual 

properties of the wave field in front of the lens. Hence, in order to estimate the wave 

speed and the attenuation of the specimen, a semi-analytical method called DPSM has 

been used to model a 100 MHz acoustic microscope lens. This predicted pressure field 

generated by the model can be used to compute the thickness profile and the properties of 

the pathogen from the experimental data. However, obtaining the mechano-
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morphological parameters of our model pathogen (Aspergillus paraciticus) would be the 

next step and was not conducted under the activity of this thesis.  

 

1.5 Problem description and Objective 

 The objective of this problem is to model the ultrasonic field generated by 

ultrasonic transducers of finite dimension when the transducer are immersed partially on 

a fluid. Thus, it numerically simulates the pupil function and focusing of the ultrasonic 

beam emanating from SAM transducers, which can be further used for the cell property 

determination. 

Broadband acoustic lens centered at 100 MHz was used for Aspergillus imaging. 

Hence, in this study, a 100 MHz acoustic lens has been accurately modeled using the 

actual geometric configuration (Refer Chapter 5). To model the sample 100 MHz lens, 

DPSM technique has been used and the source strength is given accurately on the 

transducer position which is located at the top surface of the lens rod. Fundamentally the 

pupil function, which is our target to find using the proposed model, cannot be accurately 

determined from any experiments. Because the Pupil function is the pure pressure field 

generated by the particular lens in absence of any reflecting surface in front. However, 

any experiment that can be conducted requires a reflecting surface. So with the intention 

of measuring pupil function once could alter the pupil function that is measured. 

Traditional approach to determine the pupil function is to assume a quadratic function of 

depth or frequency. Using multiple reflection data from the experiments and followed by 

an error minimization scheme the pupil function is obtained. As it is argued the state-of-
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the-art method is not accurate, This thesis contribute an accurate calculation of pupil 

function by modeling a 100 MHz SAM lens using DPSM.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Acoustics 

 The advancement of the theory of acoustics is closely related to advances in solid 

mechanics [14, 15]. Classical mechanics, including acoustic phenomena, was first 

inquired by Galileo around 1640. Robert Hook investigated the frequency and pitch of 

vibration and elasticity in the quasi-static state in the late 17
th

 century, and the 

mathematical foundation for the dynamic expression of materials was established by 

Issac Newton. In the early 19
th

 century, Thomas Young introduced the concept of a 

modulus as a material property for elastic deformation. Navier brought to light the 

general form of the equation of equilibrium and the equation of motion for a body under 

elastic deformation in 1821. A year later, Navier’s oversimplified assumption was 

corrected by Cauchy and equations for isotropic materials were determined with 

displacements as independent variables. The extensions of these equations for anisotropic 

materials were made in 1828. Using energy considerations of an elastic body, the 

equation of motion for anisotropic materials had also been derived by George Green. He 

also accurately determined the number of necessary independent coefficients [16]. 

Lord Rayleigh has a significant contribution in the field of acoustics. He 

examined thoroughly the elastic waves which propagate in a body along its surface [17, 

18]. 
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Horace Lamb was particularly interested in elastic waves whose particle motion 

lies in the plane that contains the direction of wave propagation and the plate normal (the 

direction perpendicular to the plate) [18, 19]. The major difference between Rayleigh and 

Lamb wave is the dispersive characteristics of the Lamb wave in a plate while the 

Rayleigh wave is non-dispersive in an elastic half space. 

 With the expansion of the energy methods in 19
th

 century, understanding of stress 

distributions in an elastic body has increased, and use of energy method has been obvious 

for dealing with vibrations. Pochammer [20] and Chree [21] independently worked on 

determining an exact solution to elastic harmonic wave propagation in cylindrical bars, 

and in doing so, they found a dispersion relation for longitudinal, torsional and flexural 

waves. This was a significant conclusion as it was contradictory to the analysis of simple 

longitudinal waves developed before. Wave propagation in solid media in cylindrical 

geometry has been investigated by many other researchers [22-26]. 

 

2.2 DPSM (Distributed Point Source Method) 

 Placko and Kundu was the pioneer of the distributed point source method 

(DPSM). It is a semi-analytical technique which was first used as a tool to model the 

electromagnetic field generated by a magnetic sensor. The theoretical framework of 

DPSM and its application for modeling ultrasonic field was introduced in 2001 by Placko 

and Kundu [27]. The method was extended to problems with an interface between media 

in the following year by Placko, Kundu and Ahmad [28]. Also, modeling is done for an 

ultrasonic field generated by a transducer when a finite dimension scatterer is present in 
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front of the transducer [29]. These works demonstrates the effectiveness of DPSM in 

modeling wave propagation in different media. 

Prior to 2005, many more applied problems were solved using DPSM. Ahmad 

was the first to work on modeling of phased array transducers using DPSM [30]. After 

that, wave propagation in corrugated plates, in layered medium and in acoustic 

microscopy has been done by many researchers [15, 31-35]. 

The technique of DPSM has been modified further to suit with the real life 

problems. Mainly, the point source distribution is the major modification area. In 2003, 

rather than using elemental point sources, triplet sources were developed [29]. This 

modification was introduced for modeling a solid surface, for which, the source strength 

is a vector quantity rather than a scalar value as in the fluid medium. To specify the 

direction of radiation, controlled space radiation (CSR) sources were introduced 

additionally. 

 

2.3 Transducers 

 There are two major approaches in the theoretical study of velocity and pressure 

fields produced by a rigid planar source in an infinite baffle. The first approach is based 

on the presumption that over the source surface the amplitude of excitation is non-

uniform, and the other concerns transient or pulse excitation. In both approaches, to solve 

the baffled radiator problem, there are four mathematical methods employed— 

1. Rayleigh surface integral, 2. King integral, 3. Schoch solution, and 4. Convolution 

integral. 
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 In 1945, the Rayleigh surface integral is utilized first [17]. It is based on Huygens’ 

Principle, which states “every point may be considered as the source of an outgoing 

spherical wavelet for a plane vibrating surface, and the field at an arbitrary point can be 

constructed from the superposition of these wavelets.” The piston source can be of any 

arbitrary shape, and the velocity of source does not have to be uniform over the surface in 

the Rayleigh surface integral. 

 An alternative method came from King for a circular piston with sinusoidal 

excitation in 1934 [36]. In his publication, he considered only the uniform velocity 

distribution. However, the work was later extended to analyze the excitation with an 

arbitrary velocity distribution by Bouwkamp in 1946 [37]. The King integral can be 

obtained by several ways including the homogeneous Helmholtz equation and Rayleigh 

integral. The limiting factor is that, in the analysis, the integration is over an infinite 

domain. 

In 1941, Schoch found a solution of the problem for an arbitrarily shaped planar 

source vibrating sinusoidally with uniform amplitude [38, 39]. Physically, the Schoch 

solution is a statement of diffraction phenomena, which bears explanation of diffraction 

by Thomas Young and differs from Huygens’ view. 

 The convolution process can be used for clarification of the field produced by a 

planar piston. The method includes determining the spatial impulse response function that 

couples the acoustic fields to the source geometry. Analytically it is possible to determine 

the spatial impulse response function for a plane circular radiator [40-48]. 
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2.3.1 Non-Uniform Excitation Amplitude Distribution 

 In the study of piston radiators, works done varies from one another on how the 

piston vibration is mathematically represented. Though a rigid planar piston with uniform 

vibration amplitude distribution is of academic interest, a non-uniform amplitude 

distribution is relevant for empirical applications since the operation of real-world 

transducers involves the periodic deformation of an elastic baffle, and does not allow the 

distribution of uniform amplitude across the surface. In general, the piston motion is 

predicted to be axisymmetric and has  (  
  
 

  )
 

 dependence such that at the center of 

piston the maximum amplitude occurs, and it decreases as the radial coordinate ro 

increases [49, 50]. 

 For the radiator with non-uniform excitation, the amplitude analysis usually 

involves the evaluation of either the Rayleigh or King integral for a harmonically 

oscillating circular disk. Many studies have been done to determine these integrals and 

the solutions for the far field and the piston surface [51-53]. The expression of the 

radiated field using Bessel functions was made by Guptill in early 50’s [54]. 

 Between mid-40’s and mid-50’s, the Rayleigh integral became the major 

hypothesis of the numerical analysis performed. The publications during this time varied 

in the analysis by manipulating the amplitude distribution and radiator shape. These 

studies include the effect of discontinuous piston amplitude on the far-field radiation 

characteristics [55], a numerical evaluation of the Rayleigh integral for the far-field 

pressure produced by pistons with different supports [56], and computations of the errors 

in measuring attenuation by using sinusoidal, Gaussian, and Fermi waveforms [57]. For 
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simply-supported and clamped pistons, on-axis and far-field distribution were calculated 

by Dekker [58]. This solution was an exact solution of the Rayleigh integral. 

 Greenspan presented the extended study of a piston with rigid, simply-supported, 

clamped, and Gaussian vibration distributions [50]. His solution was the same as 

Dekker’s, and the expressions for all four cases were in terms of elementary functions. 

He also shortly discussed the intensity of a rigid piston. As will be mentioned in the next 

section, Greenspan also presented results on transient problems. 

 

2.3.2 Transient Excitation  

 Another important area of the study of piston radiators was the transient field 

created by a pulsed radiator in a rigid infinite baffle. Prior to 1970, the variety of features 

concerning this type of excitation had been thoroughly reviewed by both Hanish [59] and 

Freedman [60]. 

 Morse was the first to derive an approximate expression for the transient field 

produced by a circular piston in 1948 [61]. The study of transient excitation began with 

the analysis of either the Rayleigh or King integral at first. However, the convolution 

integral gained popularity after a more thorough explanation on how the impulse 

response function can express the acoustic field as a convolution integral by 

Oberhettinger [43]. 

By introducing the inverse Fourier transform of harmonic piston oscillation i.e. 

the spatial impulse response function the piston velocity, Fischer described the transient 

field generated by a planar piston in an arbitrary shape [48]. For a circular piston, the 
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impulse response first appeared in Miles’ work in 1953 [42]. Although it was not 

recognized as an impulse response, he employed the Laplace transform and Bessel 

integral relationship to determine the solution for a pulsed circular piston. 

Though it was not the conventional approach, the Schoch approach was used to 

determine the pressure in the time domain due to an arbitrary velocity distribution. The 

publication by Kozina and Makarov [39] was the first time the Schoch approach was used 

to create a solution in the time domain. 

Between the mid-60’s and mid-70’s, several publications including the 

convolution integral representation has appeared; however, they addressed the solutions 

to particular problems rather than drawing attention to the convolution integral 

representation as a method. The convolution integral derived by Oberhettinger [43] was 

obtained by others through alternative methods by taking an suitable coordinate 

transformation of Rayleigh integral [62] as well as utilizing Laplace and Hankel 

transforms [63]. 

 In 1967, Ferris found that a time-dependent Green’s function can be utilized to 

describe a general expression for the pressure due to a concentrated acoustic source or 

sources [64]. He identified that the shape of a surface defining the source or sources and 

the position of the field point determine the impulse response function although he did 

not discuss any particular source arrangement. 

 Tupholme displayed how the appropriate Green’s function can lead to the 

Rayleigh integral for a pulsed field due to a baffled planar radiator of any shape [65]. The  

paper by Chadwick and Tupholme [63] considered only a circular piston a few years 
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back. Tupholme, in his article, measured the solution and used it for the circular disk to 

infinite strip cans and infinite wedge pistons. 

 As described so far, prior to Stepanishen, several researchers had achieved to 

solutions for the field generated by a planar circular radiator. However, he was the first 

author to reach the results for a circular radiator via the convolution integral theory. He 

published three articles in 1971 [45-47]. Each of them had different concentration on 

different features of a planar piston in a rigid infinite baffle, oscillating at an arbitrary 

velocity distribution. Papadakis and Fowler demonstrated the pressure distribution 

created by a pulsed circular disk via summation of field at a single frequency [57]. 

Weight of a frequency was empirically determined. 

A greater effort to apply and verify the solutions obtained in practical ways 

became obvious in the mid-70’s. Researchers in this period started to incorporate more 

practical aspects into their research [40, 41]. 

 Greenspan contributed to the research of transient excitation as well as the 

distribution of non-uniform velocity amplitude [50]. He derived the general King integral 

in order to incorporate the use of the integral to a circular radiator with non-uniform 

velocity amplitude as mentioned earlier. Through the analysis of his velocity potential 

expression, he obtained analytical solution for a radiator under four different conditions. 

In both transient and non-transient excitations, the recent aspiration is in identifying a 

simple yet precise and compact expression so that it can be integrated into numerical 

analysis. 
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 A series solution for the velocity potential originated by circular piston is derived 

by Hasegawa, Inoue, and Matsuzawa [66]. The expression consists of a spherical Bessel 

function, a spherical Hankel function of the second kind, and a Legendre polynomial. The 

exact solutions published before this work had problem with computations at high 

frequencies [67] and were not legitimate on the piston surface [68]. The expression 

derived in this paper is valid at any field points such as the piston surface, and the sample 

numerical result is consistent with the analytical solutions. 

 In 2005, two series expansions were derived for pressure fields due to a baffled 

circular piston by expanding the integrand of the Rayleigh integral [69]. 

The outer expansion which is valid for the region     (where a is the radius of 

the piston and r is the distance from the piston center) was previously published [53, 70];  

however, none of them clearly presented series coefficients. Here, the author derived 

these coefficients. The outer expansion converges well except for     and requires 

     order of terms for convergence. The paraxial expansion or near-field solution is 

valid for  √      , where w and z are the perpendicular distance to and the distance 

along the piston axis, respectively. The region near the piston axis (   ) provides the 

fastest convergence while the convergence is the slowest at  √      . The order of 

N~kw is necessary for convergence. These expansions are analytically and 

computationally straightforward and possess good convergence properties compared to 

the exact solution [71]. 

 As an extension of the fast near-field method (FNM), Kelly and McGough 

developed an annular superposition method [72]. This method involves a numerical 
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integration of a double integral expression. The advantage of an annular superposition 

integral over the commonly used Rayleigh-Sommerfield integral and King integral is its 

much faster convergence. The method does not involve integration over an infinite 

domain compared to King integral. However, this is only applicable to 

axisymmetric/circular acoustic radiators. 

Mellow derived pressure expressions due to a resilient disk in an infinite baffle 

[73] and in free space [74]. In the former publication, the canonical form (closed form) 

expressions for near-field, immediate near-field, and far-field pressure distributions due 

to a monopole circular source (resilient disk) in an infinite baffle are presented. The 

velocity distribution is arbitrary or unknown. The boundary conditions implied here are 

vibration at uniformly distributed pressure on a thin flexible disk and zero velocity 

beyond its rim. The expressions are relatively compact and do not involve numerical 

integration and thus no difficulties in computation except that there is a singularity at the 

rim. The Rayleigh integral and Rayleigh’s far-field approximation are solved for the 

near-field and the far-field pressures, respectively. The King integral is solved for the 

immediate near-field expression. 

In the latter article by Mellow [74], the closed form expressions for near-field, 

immediate near-field, and far-field acoustic pressure distribution for a resilient disk 

source in free space are derived. The source considered is the simplest dipole planar 

source where the disk has a uniform pressure across the face and no pressure beyond its 

rim. It can be used as a model for a flexible membrane or diaphragm in free space. The 

near-field expression derived is extended for the case where the driving pressure 

distribution is arbitrary. The relationship between a resilient disk in free space and a rigid 
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disk in an infinite baffle is also discussed (since they are complementing axisymmetric 

planar sources). 

 In 2009, Aarts and Janssen published an article on the on-axis and far-field 

acoustic pressure expression due to two resilient sources [75]. They worked on resilient 

flat disk and dome-shaped radiators in an infinite baffle. Utilizing Zernike expansion of 

azimuthal order 0 to describe the radially symmetric velocity distribution, the series 

expressions involve Zernike expansion coefficients, and Bessel and Hankel functions. In 

the inverse problem, the velocity distribution is estimated from on-axis pressure by 

approximating the Zernike expansion coefficient. A few terms of Zernike expansion are 

adequate to represent a well-behaved velocity distribution, showing that velocity profiles 

of resilient radiators are proficiently described by Zernike polynomials. 

2.4 Acoustic Microscope 

 Acoustic microscopy has a fairly short story compared to the probe transducer. 

The Russian scientist named Sokolov is known to be the father of acoustic microscopy 

[15, 76, 77]. He was the first person to use acoustic radiation to visualize the internal 

structure of materials. He conducted an experiment in 1940’s, in which he succeeded to 

obtain high-frequency acoustic images [78]. Due to the limited capability of equipment, 

at that time, the power of acoustic microscopy was withheld. Advancement of the 

technology in wave generation and reception enabled the visualization of high-frequency 

sound in hypersonic range in early 1970’s [79, 80]. 

 In the early stage of the development of the Acoustic Microscope, there were two 

approaches. The first one approach was proposed by Corpel and Kessler [79]. In their 
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approach, a laser beam has been used to read a pattern formed at the liquid boundary 

generated by an irradiated specimen immersed in water. The first commercial product 

based on this principle was built in 1975, and the microscope was able to achieve an 

image of the order of 20 to 25 µm at a sensitivity of 10 W/cm at 100 MHz operating 

frequency. However, the resolution of this type of microscope cannot be enhanced due to 

the underlying principle. 

The other approach is the basis of modern acoustic microscopes made possible to 

obtain high-resolution images. In 1974, Quate and Lemons created the first scanning 

acoustic microscope [80]. In this method, a focused beam has been used to radiate and 

scan across a specimen. The acoustic image is, then, formed by the deviation in received 

signals at different scanning positions. The operating frequency of the microscope 

determines its resolution in this type of acoustic microscope. 

A modern acoustic microscope can determine the size and location of objects 

inside a solid, thanks to the recent developments in the theory of acoustic microscopy 

[14, 81, 82]. In 1992, Briggs published a book in which he described many applications 

of acoustic microscopy, such as inspection of biological tissue, layered structures, and 

surface cracks. Crossen et al. combined acoustic microscopy with time-of-flight 

technique to investigate adhesion problems [83] while Levin et al. studied microstructure 

of super-hard materials [84]. Moreover, stress inside solid materials can be visualized 

using acoustic microscopes [85]. The ultrasonic force microscope [86] and the atomic 

force acoustic microscope [87] pushed the resolution of the conventional acoustic 

microscope to the nanometer range in recent years. 
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CHAPTER 3 

WAVES 

 

3.1 Wave Propagation through an Infinite Space  

Depending on the location of propagation within a medium, mechanical waves 

can be characterized in to two types: (a) body waves, and (b) guided waves. Body waves 

are the waves that pass though the interior of a medium, whereas guided waves are the 

wave that propagates along the boundaries or the interfaces of unbounded media or may 

also be confined within two boundaries of bounded media. Body waves can be further 

classified to longitudinal and transverse waves. Rayleigh waves, Love waves, Stonley 

waves are several examples of the guided wave. In the following section, wave 

transmission is discussed further. 

 

3.1.1 Body Waves  

 Body waves are waves that pass through the material. Longitudinal and 

transverse are the types of the body waves. Longitudinal waves are compressional waves 

that are longitudinal in nature and the vibration direction is parallel to the direction of 

wave propagation. They are also called as primary wave or P-wave. Transverse waves are 

commonly known as Secondary wave, Shear waves or S wave and they propagate in the
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transverse direction. The P-wave and S- waves are represented at figure 3.1(a) & (b) 

respectively. Depending on the perpendicular to the travelling direction, there are two 

possible direction on which the particle can oscillate. If the oscillation plane is similar to 

the propagation direction, then it is called vertically polarized shear wave and is denoted 

by SV. If the oscillation is in and out of plane of the direction of travel, then it is called 

horizontally polarized shear wave or SH wave. 

Body Waves 

 

 

 

 

 

 

 

 

Figure 3.1 Particle movements of body waves [ref. C] 

 

3.1.2 Guided Waves  

  Guided waves can be of two types: (a) surface wave and (b) interface wave. 

Surface waves travel on and near the surface and interface waves are limited to an 

interface. For these waves, the energy dissipation is very rapid with the movement when 

the waves are away from the surface or interface. Rayleigh wave is a kind of surface 
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wave that travels like the ripples in motion. The speed of Rayleigh wave is around 90% 

of the shear wave speed in any given medium, and it can penetrate roughly 1.5 times the 

wavelength beneath the surface of a medium. Love waves are another kind of surface 

waves which can propagate through a layered solid half space that is an infinite medium 

bounded by one surface. Particle movement direction is the main difference between 

Rayleigh wave and Love wave. In Rayleigh wave, the particle motion forms an ellipse in 

the same plane as direction of propagation. The particle motion of Love wave is in the 

direction perpendicular to the direction of propagation. The movements of the particles 

are illustrated in figure 3.2 (a) and (b). 

  The propagation of Lamb wave in a plate or a structure needs to have much 

smaller thickness than the other two dimensions with the stress-free boundaries on the 

plate surfaces. Cylindrical guided waves are the waves that propagate through a rod- or 

pipe-like structure. 

Surface Waves 

 

 

 

 

 

 

Figure 3.2 Particle movements of surface waves [ref. C] 

(a) 

(b) 
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3.2 Wave Equation  

3.2.1 Equation of Motion  

 

For a homogeneous isotropic elastic body, the equation of motion can be written 

in tensor or index notation as 

            ̈  (3 - 1) 

where,     is the stress tensor at a point, and    and    are the body force and 

displacement vectors, respectively. Ρ is the mass density per unit volume of the body.  

The constitutive relationship for linear isotropic material is given by  

                   (3 - 2) 

The strain and rotation tensors are defined as follows: 

 
     

 

 
(         ) 

(3 - 3) 

 

 
    

 

 
(         ) 

(3 - 4) 

where,     and     are the strain and rotation tensors, respectively. The constants µ and λ 

are the elastic constants known as the Lamé constants. The relationship between the 

stress tensor and displacement can be obtained by substituting equation 3-2 and 3-3 into 

equation 3-1, and the so called Navier’s equation is obtained.  

 (   )                   ̈  (3 - 5) 
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In vector form, the equation is written as, 

 (   ) (   )           ̈ (3 - 6) 

Using the vector identity,      (   )       , one can write equation 3-6 as 

 (   ) (   )             ̈ (3 - 7) 

In index notations, equations 3-6 and 3-7 can be expressed as 

 (   )                   ̈  (3 - 8) 

And 

 (    )                           ̈  (3 - 9) 

respectively.      and      are permutation symbols.  

Equations 3-7, 3-8, and 3-9 subjected to proper boundary conditions give rise to 

various elastic waves. However, there is no general solution for two- or three-

dimensional Navier’s equation. It is common practice to apply Stokes-Helmholtz 

decomposition to transform Navier’s equation into wave equations. 

 

3.2.2 Helmholtz Decomposition  

Helmholtz’s theorem states that any sufficiently smooth, rapidly decaying vector 

field in three dimensions can be resolved into the sum of an irrotational vector field and a 

solenoidal vector field. This indicates that a pair of potentials—a scalar potential and a 
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vector potential, can generate such vector field. Applying this theorem, any displacement 

field u can be decomposed as 

          (3 - 10) 

where ϕ is a scalar potential, and A is a vector potential. In order to ensure unique 

relation between the components of u (u1 , u2 , and u3 ) and ϕ, A1 , A2 , A3 , the following 

auxiliary condition is defined: 

       (3 - 11) 

Substituting Equation 2-10 in the absence of a body force, Equation 2-6 can be written as 

(   ) [  (      )]       (      )   

  (  ̈     ̈) 

(3 - 12) 

Using the auxiliary condition (Equation 2-11), Equation 2-12 can be simplified to 

(    ) (   )     (    )   (  ̈     ̈) 

 [(    )      ̈]    (       ̈)    

 

(3 - 13) 

Note that, the following vector identities are used to obtain equation 3-13: 

   (   )    

  (  )    

       (   )      

 

 

(3 - 14) 

 

The following conditions are sufficient to satisfy equation 3-13: 

(    )      ̈    
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       ̈    

 

3.2.3 One-Dimensional Wave Equation  

Dividing both sides of the above equations by the coefficients of the first terms, 

the above equations can be written as: 

    
 

(    )
 ̈       

 

  
 
 ̈    

    
 

 
 ̈      

 

  
 
 ̈    

 

 

(3 - 15) 

 

where,                                                      √
(    )

 
 

   √
 

 
 

Both equations in Equation 3-15 are one-dimensional wave equation. It can be shown that 

Equation 3-15 has a solution in the form of 

  (   )   (       ) 

 (   )   (       ) 

 

(3 - 16) 

These equations correspond to the waves travelling in the n direction with the velocity    

and   , respectively. n is an arbitrary unit vector. 

From equation 3-10 and 3-16, the displacement field u can be written as 

    (       )     (       ) 

       (       )     (       ) 

where,    is the derivative of   with respect to its argument. 
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When A=0, the displacement expression simplifies to 

      (       ) (3 - 17) 

Note that the displacement vector is in the same direction as the propagating wave; 

therefore, the displacement field in Equation 3-17 corresponds to longitudinal waves or 

P-waves by definition. 

On the other hand, if     , the displacement expression becomes 

      (       ) (3 - 18) 

This can be written in terms of components in the Cartesian coordinate as 

       
  (       )      

 (       ) 

       
 (       )      

 (       ) 

       
 (       )      

 (       ) 

Then, the dot product between n and u becomes 

             [    
 (       )      

 (       )]

   [    
 (       )      

 (       )]

   [    
 (       )      

 (       )]    

 

Thus the displacement vector u is perpendicular to the direction of propagation, n, and 

equation 3-18 corresponds to the shear wave or S- wave. 
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CHAPTER 4 

DISTRIBUTED POINT SOURCE METHOD 

 

4.1 Principle of DPSM  

The main principal on which DPSM is based is the Huygens’ Principle. In 

Huygens’ Principal, it is stated that, in a wave front, every point may be considered as the 

source of secondary wavelets that spreads out in all the directions with identical speed as 

the propagating wave. If a point emits a spherical wave depicted in Figure 4.1 (a) and 

multiple point sources are placed in a line shown in (b), then the wave front of such 

points form a cylindrical shape shown in (c) provided that sufficient number of points are 

positioned next to each other since the neighboring points cancel the opposing wave 

fronts. Although it is not shown in the figure, the same principle can be easily extended to 

two-dimensional space to represent a planar radiation source. Huygens’ Principle also 

enables to relate the speed of a propagating wave some distance away from the source to 

that at the point of emission. Thus, given the speed of a wave at a certain location, the 

speed at any point can be determined. 
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Figure 4.1 Huygens’ Principle 

For example, let us consider an ultrasonic transducer immersed in a fluid medium. Let, 

for this problem, G(x,y) be the Green’s function for the equation of motion. If the 

excitation of the transducer is represented by N points of amplitudes Am, then the solution 

at point x can be expressed as 

 

 ( )  ∑    (     )

 

   

 

(4- 1) 

This is illustrated in Figure 4.2. When solutions at M target points are sought, the 

equation forms the system of M equations shown in Equation 4-2. 

{

 (  )
 (  )

 
 (  )

}  [

 (     )  (     )   (     )
    
    
    (     )

]{

  

  

 
  

} 

 

(4- 2) 

or u = DA . Applying the boundary condition of the transducer surface, this system of 

equations can be solved for the amplitudes at the same location by inverting the matrix D 

as     
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Figure 4.2 Point sources representing a transducer 

 

4.2 Comparison of DPSM to Other Numerical Methods  

The immediate benefit of modeling with DPSM is that it can handle a complex geometry 

like the Finite Element Method (FEM) but point sources are distributed only at the 

surface of a structure unlike in FEM [27, 88]. This significantly decreases the size of the 

matrices involved in the computations as complexity and size of the structure increase. In 

addition, DPSM yields the solution with accuracy better than that of FEM for ultrasonic 

applications. Since DPSM does not require full-space discretization as FEM does, it 

conserves the computation time and space. It becomes exceedingly propitious when wave 

       (4-3) 
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frequency increases because size of an element in FEM must decrease at high 

frequencies. In addition, DPSM is more accurate when accounting for an infinite 

boundary condition in the calculation. Since the FEM must introduce a finite boundary in 

modeling, it imitates infinite boundaries by assigning extra layers of elements with 

damping properties to absorb the wave to eliminate the reflection from the boundaries. 

However this adds the extra elements on top of the already computationally expensive 

method.  

 

4.3 Pressure and Displacement Green’s Functions in Fluid  

The equation of motion is given by 

             ̈  (4- 3) 

In order to obtain the fundamental solution for a fluid medium, the fluid is assumed to be 

a perfect fluid. Perfect fluids have no shear stresses, viscosity, or heat conduction. The 

constitutive relation for isotropic materials can be specialized for perfect fluids by setting 

     

                           (4- 4) 

Since hydrostatic pressure p is the only stress in a fluid, the stress field is given by: 

               

Then Equation 4-4 can be written as 
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               (           ) 

                     (              ) 

              

Or                 

  
 

 
     

(4- 5) 

Since there is no shear stress, the equation of motion (Equation 4-3) can be simplified to 

{

            ̈

            ̈

            ̈

 {

           ̈

           ̈

           ̈

 

Or simply, 

         ̈ (4- 6) 

Taking the divergence on both sides of Equation 4-6 gives 

  (     )    (  )̈ 

              ̈ 

            
   

   
 

Exchanging the order of the divergence operator and time derivative and letting       

produces 
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(   ) 

Substituting Equation 4-5 into the above equation gives 
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(4- 7) 

Where,    √
 

 
 

Equation 4-8 is the wave equation for a fluid medium. 

 

4.3.1 Point Source in Fluid 

A point source in a fluid medium can be considered a radially oscillating sphere whose 

size is infinitesimally small. In an unbounded fluid, the wave generated is called a 

spherical (bulk) wave, named after the shape of its wave front. When a point source is 

generating the wave, its force contributes to the body force term in the wave equation; 

thus, 
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(4- 8) 

Where  (   ) is the Dirac delta function whose properties are as follows: 

 (   )                   

∫  ( ) (   )  ( )  {

 ( )                    
 

 
 ( )                    

                                 

 

 

 

Since the pressure disturbance produced by a point source should only be the function of 

radial distance from the point source, it is convenient to rewrite Equation 4-9 in spherical 
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)] 

Then, for    , the wave equation becomes 
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Without the loss of generality, we can assume    (   )  . Then, 
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(4- 9) 

Equation 4-10 is simply the wave equation in one-dimension, r, and it can be shown that 

the equation has general solutions of the form: 

    (  
 

  
)    (  

 

  
) 

where P1 and P2 are arbitrary functions. The function P1 corresponds to a wave traveling 

in the +r direction (outward), and P2 corresponds to a wave traveling in the -r (inward) 

direction. Physically, it is impossible for a point source to have an inwardly propagating 

wave; therefore, the solution should be of the form: 

  
 

 
 

 

 
  (  

 

  
) 

It can be shown that the relationship between the temporal part of P1 and force f(t) in the 

wave equation is      ( )    ( ) [89]. Thus, the pressure expression becomes 

  
 

   
 (  

 

  
) 

If a point source emits an impulsive force, the time function f itself is a delta function. 

The governing wave equation and its solution, then, can be expressed as 
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(4- 11) 

Taking the Fourier transforms of equations 4-11 and 4-12 gives 
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Where G is the Fourier transform of p. Note that G is also the solution for harmonically 

excited point sources in the fluid. 

 

4.3.2 Displacement Field in Fluid 

Using Helmholtz decomposition, any displacement field u due to a point source in fluid 

can be written in terms of a scalar potential φ and a vector potential A as        

 . The displacement corresponding to    represents the P-wave and generates normal 

stresses in the medium while the displacement corresponding to     represents the S-

wave and generates shear stresses in the medium. Since there should be no shear stress in 

ideal fluid, the displacement is expressed as 

      (4- 12) 
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For harmonic time dependency, the potential φ takes the following form 

 (   )   (       ) 

                               (        ) 

Without loss of generality, one can let B=1. When the harmonic time dependency is 

implied, from equation 4-6, the pressure-potential relation can be obtained as 
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In terms of Green’s function, the potential can be expressed as 

   
    (    )

      
 

Therefore, the displacements in fluid are given in spherical coordinates by 
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(4- 13) 

In Cartesian coordinates, the displacements due to a point source in all three directions 

are written as  
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where    
     

 
 

4.4 Pressure and Velocity Fields in Fluids Due to Multiple Point Sources  

Placing a substantial number of point sources can model the wave generated by a finite 

planar surface. When point sources are distributed over a surface, the pressure field at 

position x due to the sources at position y can be determined by integrating the individual 

contributions over the surface. Therefore, the pressure field can be given by 

 
 ( )  ∫  

   (    )

   

 

 

  ( ) 
 

(4- 17) 

where B is the strength of the point sources. Equation 4-18 can be written in the 

summation form as: 
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(4- 18) 

where N is the number of point sources distributed over the surface S. The subscript m 

indicates m-th point source. Sm is the elemental surface area, Am is the source strength, 

and rm  is the distance from the m-th point source to a target point x. 

4.4.1 Pressure-Velocity Relation  

In the absence of a body force, the equation of motion in a fluid medium can be written 

as 

      ̈ 

      ̇   
  

  
 

Taking the dot product on both sides of the above equation with a unit vector n gives 
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(4- 19) 

The left hand side of the above equation can be written as 

       
  

   

   

  
  

  

  
 

The right hand side of Equation 4-20 can be simplified to 

 
 (   )

  
  

   

  
 

Therefore, Equation 4-20 can also be expressed in the following form, 
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Integrating both sides leads to 
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For harmonic time dependency with constant material properties, 
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Thus, using the pressure expression in Equation 4-19, the velocity due to the m-th point 

source can be obtained (harmonic time dependency is implied) 
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(4- 23) 

 

Then, the velocity components in all three directions due to m-th point source are 
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(4- 24) 
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Where   √  
    

    
  

The total velocity at target point x due to N number of point sources can be obtained 

simply by adding the contributions from all N point sources. Thus, 
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Figure 4.3 Rotation of the radiation source by θ about axis x2 
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If the surface represented by the point sources is inclined at an angle θ as shown in Figure 

4.3, the velocity component normal to the inclined surface can be easily determined by 

  ( )    ( )        ( )      

 ∑
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(4- 30) 

 

Note that the rotation is by angle θ about the x2 -axis and that the x3 -axis is no longer 

aligns with the outward normal of the surface. 

 

4.4.2 Matrix Representation 

The velocity at M target or observation points due to N source points forms a   

  vector. 

  [                           ]  

where v
n
  is the velocity at the n-th target point. 

When the strength of N source points varies, the source strength can be expressed as a 

     vector 

  [                           ]  

From Equations 4-27 to 4-29, the velocity vector can be related to the source strength 

vector by 
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      (4- 31) 

The dimensions of M matrix are    , and it can be written as 
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Where 
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(4- 33) 

  
  is the distance between m-th point source and the n-th target point.  

   is the distance 

from m-th point source to n-th target point along the xt -axis. 

Similarly, using Equation 4-19, the pressure at M target points due to N source points can 

be related via 

       (4- 34) 

Where                             [                 ]  

The expression for Q is as follows: 
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and                                                         (  
 )  

    (     
 )

  
  

In the similar manner, the matrix representation of the displacement components at M 

target points due to N number of source points can be found using Equations 4-15, 4-16, 

and 4-17 as 
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and                                                    
 

 
  

  
    

 
 

 
 

 

  
  

 

4.5 Displacement and Stress Green’s Functions in Solids  

As discussed in Chapter 3, the equation of motion written in terms of the displacement is 

called Navier’s equation. In vector notion, Navier’s equation can be written as 

(    ) (   )     (   )      ̈ (4- 41) 

Dividing equation 4-42 by ρ, it becomes 

(    )

 
 (   )  

 

 
  (   )  

 

 
  ̈ 

 

(4- 42) 

Recall the longitudinal (P-wave) speed and transverse (S-wave) speed in homogeneous 

isotropic materials are    √
    

 
 and    √

 

 
 respectively. Then, 

  
  (   )    

   (   )  
 

 
  ̈ 

 

(4- 43) 

It is also shown in Chapter 3 that Helmholtz decomposition allows one to express the 

displacement vector field in terms of two potentials: a scalar potential and a vector 

potential. Since any scalar potential can be written as the divergence of a vector potential, 

and any vector potential may be expressed as the curl of another vector potential, the 

displacement vector field can be written in terms of two vector potentials. Thus, 
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   (   )    (   ) (4- 44) 

Where ϕ and ψ are vector potentials and are functions of time and space. Note that, 

      and        in equation 3-10. Substituting equation 4-45 into equation 4-

44 gives 

   (  
      ̈)      (  

      ̈)  
 

 
   

 

(4- 45) 

Note that, ϕ is irrotational (     ), and ψ is solenoidal (     ) by definition of 

Helmholtz decomposition. In deriving equation 4-46, the following vector identity is also 

used: 

      (   )        (4- 46) 

4.5.1 Point Source in Solids  

The fundamental solution (Green’s Function) of Equation 4-46 is the response in a solid 

medium due to the excitation caused by a point source. The point source excitation 

contributes to the body force term in Equation 4-46 as a concentrated impulse force. 

Without the loss of generality, the body force term can be expressed as 

 (   )    ( ) ( ) 

or    

       ( ) (  ) (4- 47) 

where, P is the force vector with no temporal or spatial dependence and δ(x) is the Dirac-

delta function. 
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In order to further simplify Equation 4-46, one can focus on the spatial derivative of the 

potentials. Poisson’s equation,      ( ) has the general solution of  

 
   

 

  
∫

 ( )

|   |
  

 

 

 
 

(4- 48) 

For  ( )   ( ), the following property of Dirac-delta function 

∫ ( ) ( )    ( )
 

 

 

Can be utilized to simplify equation 4-49 to 

 
   

 

  

 

| |
  

 

  | |
 

 

(4- 49) 

Substituting equation 3-50 into the Poisson’s equation gives: 

      ( 
 

   
)   ( )   ( ) 

(4- 50) 

Where   | | for a source at the origin. 

Using the above expression of δ(x) and the vector identity (equation 4-47), one can write 

equation 4-48 as 

      (
 ( )

   
)   { [  (

 ( )

   
)]    [  (

 ( )

   
)]} 

 

(4- 51) 

The two vector potentials, ϕ and ψ, without any loss of generality, can be written in terms 

of two scalar potentials of the form 
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(4- 52) 

 

Substituting equations 4-52 and 4-53 into equation 4-46, 
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(4- 53) 

For harmonic time dependency (     ) of the point source, other variables can also be 

assumed to be harmonic and they can be expressed as 

 (    )   (  ) 
     

 (    )   (  ) 
     

  (    )    (  ) 
     

Replacing these expressions in equation 4-54 
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)            (  
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(4- 54) 

This equation can be satisfied with the following sufficient conditions: 

 
    

  

  
 

  
 

     
  

 
(4- 55) 
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(4- 56) 

From Mal and Singh [90], particular solutions of equations 4-56 and 4-57 can be written 

as 

 
  

        

      
 

 

(4- 57) 

And 

 
  

        

      
 

 

(4- 58) 

Where,    
 

  
  and    

 

  
. 

4.5.2 Displacement Field in Solids  

By substituting Equations 4-58 and 4-59 into Equation 4-45, the displacement field can 

be expressed in terms of force vector P and the properties of the solid medium as 

          [   (
       

      
)]         [   (

       

      
)]       

 

(4- 59) 

Using the vector identity equation 4-47 modifies equation 4-60 to 
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(4- 60) 

Or 
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(4- 61) 

Applying the Laplace operator on the second term in equation 4-62, 

          [   (
           

      
)]       (

      

      
  

 )       [ (   ) ]      

(4- 62) 

In index notation, the spatial part U of the displacement expression in          can be 

written as 
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(4- 63) 

Equations 4-63 and 4-64 are the expressions of the displacement at point x due to a point 

source located at the origin. The response at point x due to a point source placed at 

coordinate y is 

       
        (   )   

     (4- 64) 

Gij (x;y) is regarded as the space dependent Green’s function of displacement for 

homogeneous isotropic solids. Substituting   |   | for the distance between a target 

point and source point, the Green’s function can be written as [90], 
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(4- 65) 

Where    
     

 
 

In matrix form 

 (   )  [  (   )   (   )   (   )]  

And 

   [ (   ) ]      (4- 66) 

Note that a point source with unit excitation force at y acting in the j-th direction 

produces the displacement    (   ) in the i-th direction at point x. 

4.5.3 Stress Field in Solids 

Recall the strain-displacement relation (equation 1-3). Using equation 4-65, it can be 

expressed in terms of displacement Green’s function as 

 
    

 

 
(           )   

 

(4- 67) 

Note that the harmonic time dependency is implied in Equation 4-68. Henceforth, the 

time dependency is always implied unless it is otherwise specified. The relation between 

stress and strain called the constitutive law for linear elastic material is 

              (4- 68) 
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The stress at position x due to a concentrated force at y can be expressed in terms of 

Green’s function by substituting Equation 4-68 into Equation 4-69, 

 
   (   )  

 

 
     (           )   

 

(4- 69) 

On the other hand, recall                   (Equation 1-2). Therefore, the stress at 

point x due to a force at point y can also be expressed as 

   (   )   (           )               (4- 70) 

Or      

                                (   )  [ (           )               ]   (4- 71) 

When all differentiations of the Green’s function in the above equation are carried out, 

the components of stress (    ) at point x generated by a concentrated force of unit 

amplitude acting at point y in the xm –direction is denoted by    
  whose components can 

be expressed as 

   
  (    )(     )   (           ) (4- 72) 

   
  (    )(     )   (           ) (4- 73) 

   
  (    )(     )   (           ) (4- 74) 

  

   
  (    )(     )   (           ) (4- 75) 

   
  (    )(     )   (           ) (4- 76) 
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  (    )(     )   (           ) (4- 77) 

 

   
   (           ) (4- 78) 

   
   (           ) (4- 79) 

   
   (           ) (4- 80) 

 

   
   (           ) (4- 81) 

   
   (           ) (4- 82) 

   
   (           ) (4- 83) 

The detailed derivation of equation 4-73 through 4-84 is given in Appendix A. 

 

4.6 Displacement and Stress Fields in Solids Due to Multiple Point Sources  

When a number of point sources generate an excitation in a solid medium, the response at 

any point in the medium can be determined by superposition of the contributions from 

every point source. If N number of point sources are used to express the excitation in a 

solid as shown in Figure 4.4, the displacement at point x can be expressed simply by 

summing all individual contributions. Therefore, based on Equation 4-65 or 4-67, the 

expressions for displacement components at point x due to N number of point sources are 

given by 
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(4- 86) 

 

  

where    
  is equal to     given in equation 4-66 for the m-th point source. 

 

Figure 4.4 Group of point sources at the solid boundary contributing to the field at point 

T 

Similarly, using Equations 4-73 through 4-84, one can compute stress components at 

point x when a group of concentrated forces are contributing. Superimposing all the 

contributions from all N point sources results in the total stress at point x as 
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(4- 87) 

Where 
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] (4- 88) 

    [  
   

   
 ] (4- 89) 

Note that m-th concentric force (point source) has the force components   
    

  and   
  

in the       and    directions, respectively. 

 

4.6.1 Matrix Representation  

In order to obtain the total ultrasonic fields in a solid medium, it is necessary to determine 

the fields at multiple target points. Assuming that N source points emulate the excitation 

in a solid and that there are M target points in the solid where the field is to be computed, 

the i-th component of displacement at M target points forms a     vector. 

   [  
   

   
    

     
 ]  (4- 90) 

where i = 1, 2, 3. The element ui
n
  is the displacement at n-th target point in the i-th 

direction. Due to Equation 4-85, 4-86, and 4-87, one can determine    vector by 

    [   ]  (4- 91) 
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where,  
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(4- 92) 

And 

  [(  ) (  ) (  )    (    ) (  ) ] (4- 93) 

p
Gi

q
 is displacement Green’s function at p-th target point due to q-th point source. 

(  )
 
 is the transpose of      vector defined in Equation 4-90 for the i-th point source. 

In addition, each stress component at M target points forms a      vector given by the 

following expression: 

    [   
    

    
      

      
 ]

 
 (4- 94) 

where    
  is defined in equation 4-89.     vector can be computed from 

     [   ]  (4- 95) 

where A is defined in equation 4-94 and     is given by 
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(4- 96) 

Note that    
 

 
  is the stress component ij (   )  at p-th target point due to q-th point 

source.[46]  
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CHAPTER 5 

MODELLING OF TRANSDUCER OF AN ACOUSTIC MICROSCOPE 

 

Acoustic microscopy is a popular technique for characterization of biological 

tissues and cells. There are three basic types of acoustic microscope: (i) Scanning 

Acoustic Microscope (SAM), (ii) Scanning Laser Acoustic Microscope (SLAM) and 

(iii) C-mode Scanning Acoustic Microscope (C-SAM).   

SLAM uses the principles of plane wave sound propagation for imaging and 

quantification of acoustic properties [91]. A scanning laser detection system is used 

here for capturing the wave signals optically. While SAM’s output is the amplitude of 

either reflected or transmitted wave by a specimen at a particular point [92], the C-

SAM uses C-scan mode which provides a planar view image at a particular depth [93]. 

The microscope can operate either on reflection-mode, or in transmission mode. In 

reflection mode, the microscope can capture the reflected wave as the output signal, 

whereas, in transmission mode, the transmitted wave is detected by a secondary 

transducer placed behind a sample. Acoustic microscopy is especially powerful at high 

frequencies, i.e, around 1 GHz, which can be used for high resolution imaging, 

material characterization or biological cell property determination. 
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Focused ultrasonic waves with high spatial resolution can be used to determine the 

mechanical properties of samples such as living cells [94-99]. Samples are submerged in 

a liquid medium such as distilled water or alcohol to ensure the acoustic waves are 

delivered to and from the samples (acoustic waves propagates most efficiently through 

liquid and solid materials). Therefore, modelling of ultrasonic fields generated by a 

transducer of finite dimension which is immersed in fluid medium is an important 

fundamental problem. Due to its timeless appeal as well as numerous practical 

applications, it continues to inspire many researchers to work on finding a better solution. 

There are numerous publications for generalized expressions derived by rigorous 

mathematical theories [66, 73, 74]. As an alternative and more efficient method, DPSM is 

used to compute the ultrasonic field. But due to its requirement of rigorous 

understanding, most of the previous works was done with single surface of the 

transducer, whereas, the actual transducer used for acoustic microscopy is not consisted 

of only one surface. This real life modelling shows an agreement with design 

specification of the transducer.  

5.1 Problem Description 

The objective of this problem is to model the ultrasonic field generated by 

ultrasonic transducers of finite dimension when the transducer are immersed partially on 

a fluid. Thus, it numerically simulates the pupil function and focusing of the ultrasonic 

beam emanating from a SAM transducers, which can be further used for the cell property 

determination. 
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(a)                                                                     (b) 

Figure 5.1 (a) Side view of the Acoustic Microscope Lens,  

(b) 100 MHz lens tip 

The side view of the acoustic microscope lens is shown in the photograph 

presented in fig 5-1(a) and image of the lens tip in shown in fig 5-1(b). The dark circular 

region at the center of the acoustic image of figure 5-1(b) corresponds to the concave 

lens.  

The illustration of this particular acoustic microscope lens is shown in figure 5-2. 

It has four different type of geometrical configuration. The top surface of the lens rod is a 

circular portion on which a transducer is mounted. The lens rod is a cylindrical portion, 

and after the cylinder part, there is a conical part. At the end of the conical part, the 

concave lens is situated. 

The geometry and the dimension of the lens as manufactured are presented in table 5.1. 
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Table 5.1: Geometry and dimension of the lens 

Geometrical Shape Position Dimension 

Circular part Position A 

Surface 1 

Diameter = 6.5 mm 

Cylindrical part Position B 

Surface 2 

Diameter = 6.5 mm 

Height= 4  mm 

Conical part Position C 

Surface 3 

Top end Dia = 6.5 mm 

Height= 0.407 

 pening angle 100  

Concave lens Position D 

Surface 4 

Sphere dia= 1.140 mm 

 pening angle 100  

 

Figure 5-2 shows the position of liquid relative to the lens rod. The focused lens 

has a radius of curvature r. Its center of curvature is located at point E and the focal point 

is F.  
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Figure 5.2 Schematic of the acoustic microscope inspecting a solid surface submerged 

in fluid layer. A is a point located in surface 1, B in surface 2, C in surface 

3 and D in surface 4.  E is the center of curvature of the lens, F is the focal 

point. 
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A number of point sources are distributed over the surfaces. Depending on the 

influence of the point sources, source distribution is done on either one side or both side 

of the surface. These sources, when superimposed, should produce the total ultrasonic 

field in the fluid and the solid media. The distribution of point sources is shown in figure 

5-3. On the flat end of the lens rod, the ultrasonic transducer (signal generator) is 

mounted. The end is denoted as surface 1. A layer of point source denoted by A1 is 

distributed on this surface. The ultrasonic signal that is generated by the transducer is 

propagated through the lens rod. Thus the surface of the lens rod has an impact on the 

propagation. Hence, a layer of point source outside the surface has been distributed, and 

the sources are denoted by A2. The third surface is the conical portion, and from this 

portion, the lens is submerged in fluid. Part of the signal energy is reflected back into the 

solid lens material (Medium 1) and part is transmitting through the fluid and the solid 

layer ahead. So, the distribution of point sources is necessary on both sides of the surface. 

Hence, two layers of point source, named A3 and A3
*
, are positioned here. 

 

Figure 5.3 Point source distribution relative to the lens geometry for the DPSM 

modeling of the acoustic lens 
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  One layer (A3
*
) models the transmitted field in fluid layer and the other layer 

(A3) models the reflected field inside the lens rod. Then the ultrasonic signal strikes the 

concave surface of the lens. Similar to surface 3, two layers of point sources has been 

distributed along surface 4, as A4 and A4
*.
 Note that, for this problem, uniformly 

distributed point sources have been used as shown in figure 5-3. Figure 5-4 shows the 

point source distribution in different surface of the lens body.  

  

 

 

 

 

 

  

 

 

                                                                                       

Figure 5.4
 Distribution of point sources over the acoustic lens surface;  

(a)  Surface 1 – Circular surface; (b) Surface 2 – Cylindrical surface;  

(c) Surface 3 – Conical surface; (d) Surface 4 – Concave lens.  

(Not to Scale ) 
 

 

(c) 
(d) 

(a) (b) 

(a) (b) 
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Figure 5.5 Distribution of point sources over the whole surface 

 

5.2 Matrix Formulation to Calculate Source Strengths 

 Every point source considered to calculate the transmitted field in the solid has 

three different point forces in three mutually perpendicular directions as unknowns. If the 

number of target points is M for any surface, the displacement due to N number of point 

sources at the surface are related to the point source strength and is an      matrix.  

From equation (4-92), the displacement in three directions at surface 1 (the set of target 

point called I1) due to               source strength vector can be written as: 

                                     (5- 1) 

                                     (5- 2) 

                                     (5- 3) 
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For surface 2, the surface is a nonplaner surface, and for that, at every point of the 

interface, normal stress relative to the surface need to be defined to satisfy the continuity 

condition across the surface. When the point source is acting at y in an isotropic solid, the 

stress develops at point x can be written as follows: 

   [

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

] 

For this surface, angle between x- and y- direction in θ, the transformation matrix at any 

point x should be: 

  [
         
          

   
] 

Therefore, transformed stresses for point x is: 
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] [

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

] [
          
         
   

] 

Therefore, the normal stress in the    direction (the set of target points are called I2) due 

to               source strength vectors can be written as: 

                                          (5- 4) 

Similarly, for shear stresses, from equation (4-96), the following equations can be 

obtained: 

                                          (5- 5) 

                                          (5- 6) 

For surface 3, the displacement and stress components are much more complex, as 

different point sources contributed differently on the displacement and stress 
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components. So, considering the respective point sources, the displacement and stresses 

for surface 3 are as follows: 

Displacement along normal direction: Surface 3 has a fluid-solid interface. So, at every 

point at the interface, normal displacement relative to the surface need to be defined such 

that it satisfies the continuity condition across the surface. If displacements at point x 

generated by a point source acting at point y is along the     direction is denoted by 

             , the normal displacement can be written as: 

   (               )             

Where θ and φ are angle between        direction and opening angle respectively. 

Using the above equation and equation (4-67), at I3 sets of target points, the displacement 

in the normal direction along inside and outside the surface 3 can be written as: 

    
                                  (5- 7) 

    
  

                   (5- 8) 

Using equation (4-39) to (4-41) the displacement at any set of target points in the fluid 

can be calculated as: 

     (  )           

Normal stress: As surface 3 has the nonplaner boundary surface, and for that, at every 

point of the interface, normal stress relative to the surface need to be defined to satisfy 

the continuity condition across the surface. When the point source is acting at y in an 

isotropic solid, the stress develops at point x can be written as follows: 
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] 
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For this surface, if the opening angle is φ and the angle between x- and y- direction in θ, 

the transformation matrix at any point x should be: 

  [
                     
                    

          

] 

Therefore, transformed stresses for point x is: 
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] [

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

] [

                    
                     
          

] 

Normal stresses can be calculated at I3 target points using equation (4-96) 

    
                                  (5- 9) 

    
  

                 (5- 10) 

Following the steps similar to (4-34) to (4-36), the pressure at any sets of target point in 

the fluid below the plate due to the transducer sources, can be written as: 

    
   (  )           

Shear stress: Shear stress can also be calculated using the above transformation matrix. 

At surface 3 can be calculated using equation (4-96): 

    
        

          
          

          
    (5- 11) 

     
         

           
           

           
    (5- 12) 

For surface 4, the basic equations for displacement and stress will be same as surface 3. 

Only the transformation angles are different. If the angle between x
m

 and y
m

 direction is 

θ, and the opening angle is φ, then the transformed displacement and stress components 

can be written as: 
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   (               )             

  [
                       
                     

          

] 

Therefore, transformed stresses for point x is: 
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] [

                     
                      

          
] 

So, for surface 4, the transformed displacement and stress components are as follows: 

    
                                  (5- 13) 

    
  

                   (5- 14) 

    
                                  (5- 15) 

    
  

                (5- 16) 

    
        

          
          

          
    (5- 17) 

     
         

           
           

           
    (5- 18) 

 

For fluid layer, only        
   point sources are contributing, hence, pressure components 

measured in this surface is as follows: 

   
         (5- 19) 

   
  

       (5- 20) 
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5.3 Boundary and continuity condition 

Along surface 1, unit displacement V is given in the normal direction. So, at this 

direction, the displacement normal to the interface should be equal to the given 

displacement and other displacement component must vanish. Then, the displacement 

condition at surface 1 can be expressed as: 

                                  (5- 21) 

                                  (5-22) 

                                  (5-23) 

At surface 2, the normal and shear forces does not have a value due to balanced 

state: 

                                      (5-24) 

                                      (5-25) 

                                      (5-26) 

Also, across the interfaces, the normal stress (s33) in solid and fluid media should be 

continuous and the shear stresses at the interfaces must vanish. Therefore, the equations 

(5-7) to (5-12) can be written as:  

                                                  (5- 27) 

                                                (5- 28) 

      
          

          
          

      (5-29) 

       
           

           
           

      (5-30) 

Along surface 4, same boundary and continuity condition exists, and this can be written 

as: 

                                                  (5-31) 
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                                               (5-32) 

      
          

          
          

      (5-33) 

       
           

           
           

      (5-34) 

 

At fluid layer, due to stress free boundary condition: 

                (5-35) 
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Equations (5-21) to (5-35) can be written in the following matrix form: 
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{
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Or                                                                                        [   ]{ }  { } 

  

(5-37) 

(5-36) 
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5.4 Solution 

The source strength vector { } of the total system can be calculated from equation (5-

37): 

{ }  [   ]  { } 

After calculating the source strengths, the pressure, velocity, stress and displacement 

values at any point can be obtained from the equations (5-21) through (5-36). 

 

 

5.5 Numerical Results 

  

 The total ultrasonic pressure field in front of the acoustic lens is generated using 

the formulation described in the above section. It should be mentioned here, despite the 

fact that along the central axis of a transducer there are many closed form analytical 

expressions available; there is no such closed form solution for the total ultrasonic field in 

front of the transducer. If the source geometry is circular, one can utilize the alternative 

methods [69, 72-74] that involves summation of a finite number of terms in an infinite 

series in order to compute the ultrasonic field. Nonetheless, for more complex geometry, 

there is no existing analytical solution. So, application of a semi- analytical solution like 

DPSM is unavoidable. 

 The results for the focused 100 MHz transducer is presented in figure 5-6. The 

image shows that the beam from the lens first converges at the focal point of the lens 

curvature, and then the beam diverges beyond the focal point. Very little ultrasonic 

energy is observed outside of this converging and diverging beam and which is desired. 
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The maximum strength, represented by the lighter color in figure 5-6, seems to be at the 

focal point as expected. It can also be observed that the field seems to have an area with 

high magnitude around the focal point. This phenomenon is particularly valuable, 

because there could be an extended sweet spot near the focal point where the specimen 

can be kept. Particularly this is advantageous while focusing the lens on the specimen 

avoiding tedious and relentless work. Here the sweet spot was found to be 80 μm. 

 

Figure 5.6: Computed pressure field in front of the acoustic lens   
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 The radius of curvature of the lens is 1140 µm. The pressure field variations near 

(a) 850 µm and (b) the focal point at 1000 μm are shown in figure 5-7. The pressure 

variations are plotted along the central axis of the acoustic lens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Acoustic pressure field variation near (a) 850 µm, (b) focal length. 

 

 Figure 5-8 shows the pressure variation plotted along the central axis of the 

acoustic lens across the z depth. The pressure is nearly 0 when it is close to the lens 

surface, and the value increases significantly near the focal point. The pressure value is 

maximum (0.8 MPa) at the focal point (nearly 1000 µm). The acoustic pressure variations 

near the focal point are shown in figure 5-9. One can see from the plots that the pressure 
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field is notably strong at the focal point location. The manufacturer PVATepla specified 

that the 100 MHz acoustic lens manufactured in Germany has a focal length of 1000 μm. 

The DPSM simulation of the lens has also provided the similar results and thus the 

computational method is verified. Another method of verification of the pupil function 

would be calculating the pupil function (assuming a quadratic or cubic polynomial of 

depth) and through a set of experiments (by incrementally moving the specimen from the 

focal plane towards the lens) via error minimization of unknown coefficients in the 

polynomial. However, the later step is omitted from this thesis.   

 

 

Figure 5.8: Acoustic pressure field variation along z-axis. The peak location suggests 

the maximum pressure at focal length of the lens 
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Figure 5.9: Acoustic pressure field variation in the fluid along z-axis. The peak 

location suggests the maximum pressure at focal length of the lens 

 

5.6 Summary 

 Previous study on acoustic transducer modelling did not clearly demonstrate the 

dependence on the generated ultrasonic field on the geometric configurations of the 

transducer. In this investigation, ultrasonic pressure field in front of an acoustic 

transducer immersed in a fluid in studied. Here, the boundary conditions are considered 

similar to the real experimental scenario, and these results can be used to predict the pupil 

function in front of the acoustic lens.  

 For this study, a computational model is used to demonstrate a converging 

ultrasonic beam by a point focus transducer in fluid medium. The problem is modeled by 

DPSM technique. This technique is able to generate a complete acoustic pressure field in 

front of a 100 MHz transducer. The numerical result shows special features of the 

pressure field.  
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 Pressure field variations are presented both at the radius of curvature and at the 

focal point. From the acoustic pressure field distribution plots, the focal point is very 

much prominent. The focusing of the beam at the focal point at around 1000 μm closely 

matched with the vendor specification of the SAM 100 MHz lens and thus the modeling 

technique is verified.  
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CHAPTER 6  

CONCLUSION 

 

The fundamental objective of the present work is to compute the Pupil function 

generated by a 100 MHz SAM lens. It is experimentally found that the 100 MHz lens is 

especially useful for the property determination of the biological material. As the Pupil 

function cannot be determined experimentally, the only way to compute the PF is the 

detailed computer simulation. Thus, using the PF, the morphological properties of a 

pathogen can be determined. 

 In this dissertation, the detailed development on obtaining the accurate PF in 

front of an acoustic lens using the DPSM method has been presented. The source strength 

is given accurately on the transducer position which is located at the top of the surface. 

The major work was to establish an understanding of the influence of geometry of 

acoustical lens. The acoustic lens has different geometrical shape, and thus the geometry 

has played a vital role on the determination of the PF. The basic principle of DPSM as 

well as how it manifests in mathematical procedures in general are also explained. Using 

this understanding, the pressure field has been calculated in front of the acoustic lens and 

it has been found that, the pressure field is accurately focused at the focal point. The peak 
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pressure at the focal point and the ripple wave effect away from the focal point are also 

observed. 

By obtaining the accurate pupil function for a specific acoustic lens using DPSM 

(which cannot be determined by other method), the morphomechanical properties of a 

biological cell can be determined. In this dissertation, accurate PF has been determined, 

which is the foundation for the understanding of the biological cells. The present work 

begins the task of developing that fundamental understanding.
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APPENDIX A 

DIFFERENTIATI N  F GREEN’S FUNCTI N 

 

Throughout the dissertation, the Green’s functions are denoted as follows: 
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If we substitute these expressions into equation 4-66, the resultant will be: 
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If the first and second terms on the right hand side of equation A-2 be denoted by 
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So, the combinations that is possible for the                can be written as follows: 

And  
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Substituting equations A-4 to A-10 into equation A-3, and then using equation 4-65, the 

displacement components at an arbitrary point x due to a point force acting at point  y can 

be written as:  

                     

                     

                     

 

(A-11) 

 Where,            are the components of the force vector P acting at y. Therefore, the 

equation 4-65 can be expressed as:  
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And   [      ] 

Let, the derivative of a parameter with respect to    be denoted by the parameter followed 

by the letter             
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   is defined below equation A-2.  

Let           and                  , then, the differentiation od the equations can 

be expressed as: 

        
   

 

 
 

   

 
         

   
   

 
 

  

 
        

 

(A-17) 

        
       

 
         

   
   

 
 

 

(A-18) 

        
   

 

 
 

  

 
         

   
   

 
 

   

 
        

(A-19) 

        
       

 
         

   
   

 
 

(A-20) 

The repeated index in the above expressions does not imply summation. 

Differentiating the terms             (equations A-4 to A-10) with respect to    and 

substituting equations A-14 to A-20 into the differentiations, the following equations can 

be obtained: 
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(A-30) 

 

In addition, from equation A-3, the differentiation of the displacement Green’s function 

can be written as: 
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                    (A-31) 

                    (A-32) 

                    (A-33) 

                    (A-34) 

                    (A-35) 

As stated earlier, repeated indices in equation A-21 to A-35 does not imply summations. 

The stress components (   ) at any point x generated by a concentrated force of unit 

amplitude acting at any point y in the     direction can be denoted by    
  and each 

component can be expressed as: 

   
  (    )(     )   (           ) (A-36) 

   
  (    )(     )   (           ) (A-37) 

   
  (    )(     )   (           ) (A-38) 
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  (    )(     )   (           ) (A-41) 
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