
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

1-1-2013

An Application for Keeping Track of Food Item Expiration An Application for Keeping Track of Food Item Expiration

Rejin Paul James
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
James, R. P.(2013). An Application for Keeping Track of Food Item Expiration. (Master's thesis). Retrieved
from https://scholarcommons.sc.edu/etd/2463

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F2463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/2463?utm_source=scholarcommons.sc.edu%2Fetd%2F2463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

AN APPLICATION FOR KEEPING TRACK OF FOOD ITEM EXPIRATION

by

Rejin Paul James

Bachelor of Engineering

Karunya University, 2011

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2013

Accepted by:

Michael Huhns, Director of Thesis

Marco Valtorta, Reader

Yan Tong, Reader

Lacy Ford, Vice Provost and Dean of Graduate Studies

ii

© Copyright by Rejin Paul James, 2013

All Rights Reserved.

iii

DEDICATION

 I would like to dedicate this thesis to my parents, brothers and friends. Thank you

very much for all of your support and encouragement while I wrote this thesis.

iv

ACKNOWLEDGEMENTS

 At the outset, I would like to express my deepest gratitude to our Lord, the GOD

ALMIGHTY, for his abundant grace and guidance without which this thesis would not

have been taken up and successfully completed .

 I would like to place my heartfelt thanks and gratitude to my thesis advisor Dr.

Michael Huhns, I am indebted to my advisor for his valuable support, advice and

encouragement and for the overall guidance that he has provided to me for the successful

completion of the project.

 I also thank my thesis committee members Dr. Marco Valtorta and Dr. Yan

Tong without whose assistance this thesis would not have been successful. With

gratitude I remember the support and encouragement of my parents and friends who have

prayed and helped me a lot during my thesis work.

v

ABSTRACT

 Food, honestly, is too precious to waste. Food wastage is a very serious issue

prevalent in the world today. American households alone throw out an equivalent of $165

billion worth of food each year. People often forget to consume food they purchased

before the expiration date, or sometimes they over-purchase food they can have, then

throw them away. Hence, this thesis aims to prevent food wastage with the help of a

smart phone application that helps keep track of food item expiration dates and gives you

notification alerts when it is about to expire. It implements a barcode scanner for

automatic product name discovery as well as optical character recognition (OCR) for

automatic food expiration discovery.

vi

TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ..v

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS ... viii

CHAPTER 1: INTRODUCTION ..1

CHAPTER 2 MOTIVATION ..3

CHAPTER 3: BACKGROUND ...5

CHAPTER 4: PROBLEM STATEMENT ..6

CHAPTER 5: PROPOSED SOLUTION ..7

 5.1 COMPONENTS ..7

 5.2 FLOW CHART ...13

CHAPTER 6: IMPLEMENTATION AND SCREENSHOTS ..17

 6.1 IMPLEMENTATION..17

 6.2 ADDING A NEW FEATURE ...17

 6.3 SCREENSHOTS ...19

CHAPTER 7: TECHNOLOGIES USED ..25

CHAPTER 8: FUTURE WORK AND CONCLUSION ...27

REFERENCES ...29

APPENDIX A – CODE ...30

vii

LIST OF FIGURES

Figure 5.1 Design Components..8

Figure 5.2 Flow Chart ..14

Figure 6.1 Context Menu XML file ...18

Figure 6.2 The onCreateContextMenu method ...18

Figure 6.3 The code added for delete feature ..19

Figure 6.4 List Activity View when empty ...20

Figure 6.5 Main Activity View ..20

Figure 6.6 Barcode Scanning ...21

Figure 6.7 Barcode Found..21

Figure 6.8 Main View with Item Name ...22

Figure 6.9 OCR Scanning ..22

Figure 6.10 Performing OCR ...23

Figure 6.11 OCR Result ...23

Figure 6.12Main View after all information ..24

Figure 6.13 List View after adding Item ..24

viii

LIST OF ABBREVIATIONS

API .. Application Programmable Interface

EAN .. European Article Numbering

GUI .. Graphical User Interface

IDE .. Integrated Development Environment

JSON .. JavaScript Object Notation

NDK ... Native Development Kit

NRDC ...National Resources Defense Council

OCR .. Optical Character Recognition

SDK... Standard Development Kit

UPC ... Universal Product Code

ZXing .. Zebra Crossing

 1

CHAPTER 1

INTRODUCTION

Food wastage due to expiration is an issue that is evident in almost every American

household and needs to be addressed. It has been ascertained by a study conducted by

National Resources Defense Council (NRDC) that 40 percent of food in the United States

today goes uneaten. This means that more than 20 pounds of food per person every

month goes uneaten. Not only does this imply that Americans are throwing away $165

million each year, but also 25 percent of all freshwater and enormous amounts of

chemicals, energy and land. It is estimated that if the United States wasted 5 percent less

food, it would be enough to feed 4 million Americans.

 If we consider only American households, it is estimated that approximately 25

percent of food bought is wasted. Food wastage has serious implications for wasted

energy. Anecdotal evidence suggests that the following are the major factors that drive

household losses -

i. undervaluing food

ii. unideal storage

iii. misjudged food needs

iv. partially used ingredients

v. bulk purchases

vi. poor planning, and

vii. over preparation

2

It has been proven by a study that household food wastage is less in developing

countries as compared to developed countries. The study then implies that the average

American consumer throws 10 times as much food as the average southeast Asian

consumer.

Hence, a smart phone application has been proposed by this thesis, which will

help keep track of food expiration dates and notify the user when a food is about to expire

so that food wastage is prevented. This application will enable the user to scan the

barcode of the food product to automatically discover the product's name. The user will

then be able to use the optical character recognition feature to capture the date of expiry

from the product, after which the user can add the item to a database and the date is

added to the calendar which will then enable notifications to pop up before food is about

to expire.

This project is novel because it tries to implement an optical character recognition

module to identify the expiry date, which has never been used in this kind of application

before, along with a barcode scanning module, which has just been used in one Android

and one iOS applications of this kind. There has never been a combination of both these

features in any application of this kind. The combination of both the modules may save a

significant amount time spent during item entry.

The definitive objective of this project is reducing food wastage by developing an

application to track food expiration. This application will be developed with a

consideration that it does not take up significant time of the users to feed the food item

details into the application.

3

CHAPTER 2

MOTIVATION

The motivations behind developing such an application are the following:

i. Economic Benefits

 Reduce over-purchasing - Americans throw $165 million worth of food each

year. We can save a significant amount of money if the food we purchase is

not wasted when we use it before it expires. It may also deter us from over-

purchasing.

 Lower disposal costs - If each household decreases food wastage there may be

an overall reduction in the food disposal costs on the economy.

ii. Social Benefits

 Feed people - By keeping track of when the food is going to expire, it prevents

wastage and if we have surplus food we can donate it to food rescue

organizations.

iii. Environmental Benefits

 Reduce resource use essential to food production - Many resources are needed

to grow food such as water, pesticides and energy. By wasting food, these

resources are also wasted that went into growing it

4

 Reduce Landfills - By reducing food wastage we also in turn reduce Landfills

which are a major source of the greenhouse gas Methane.

5

CHAPTER 3

BACKGROUND

The idea of using a smart phone application to save food item expiration dates has been

employed before. An application which provides the manual entry of item names and

dates has been developed before in Android [7,8] as well as in iOS [9]. Even though these

applications save the details of the food in a database and give notifications, it takes a

really long time to manually enter each item into the application and may be inconvenient

to a typical user.

 So, significant improvements on such kind of applications were made to reduce

the time taken by manual entry. One of the improvements was implementing a bar code

scanning feature to scan the barcodes of food products which has been developed in both

Android [5] and iOS [6]. Both these applications do improve the time taken to enter each

product. The Android application does not include color coded display to highlight the

food items that are close to expiry and the ones which are not near expiry.

 All the previous work mentioned does have certain improvements but the

proposed thesis aims to save some more time by implementing an Optical Character

Recognition module that will help scan the expiry dates on the products to automatically

discover the expiration dates. It also provides an alternative so that the date can be

entered manually as well. In addition to this, a color coded scheme is used to list out the

food items so that it highlights the food items close to expiry.

6

CHAPTER 4

PROBLEM STATEMENT

Though the problem of food wastage has been quite prevalent in the past few years,

significant efforts were not made to prevent it. As observed by recent trends , American

households tend to ignore the issue of food wastage and do not take necessary steps to

avoid it. This contributes a huge chunk to the total food wasted by the United States.

 It has been proven by a study that household food wastage is less in developing

countries as compared to developed countries. The study then implies that the average

American consumer throws 10 times as much food as the average southeast Asian

consumer.

 As discussed in the background, the existing applications are not adequate enough

for the current problem, so this thesis aims to improve on their shortcomings and thereby

provide a complete solution.

7

CHAPTER 5

PROPOSED SOLUTION

As mentioned above in the problem statement, a comprehensive solution is needed to

tackle food wastage and targeting households will significantly reduce a large amount of

food that is wasted. The application needs to be very easy to use as well as it needs to

significantly reduce user effort and time. Current applications do not implement OCR

which may save a considerable amount of time in data entry. They also do not display the

list of items efficiently.

 For this thesis , the design of the application would then consist of a Graphical

User Interface (GUI) where the user can view the current list of items that is already

present in the database. In order to add a new item the user will have options such as

scanning the barcode of the product, scanning the expiry date of the product and finally

adding the product to the database to get the notifications.

5.1 COMPONENTS

The components of this application (see Figure 5.1) are as follows:

i. The Application with GUI

This is the main graphical user interface of the application. When the application

is launched, the initial interface consists of a view that shows the list of items

that are already added in the database. The list of items will be sorted in the

8

order of closest date of expiry and will also have color bar indicators that will

make it easier to know which items are high priority. There will be a settings

option where we can set different preferences of the application. The preferences

will include the option to enable or disable notifications, setting the notification

time each day to remind what food is expiring, set the number of days before an

item expires that the notification will show. There will also be an option of auto

removal of items once they expire and the number of days after expiry that an

item should be removed from the list as well as the database.

 In addition to this, there will be an option in the view to add new items to

the list which when clicked on will open a new view where the details of the

new item can be filled out. This view will have buttons that will help users to

Figure 5.1 Design Components

9

access other modules of the application such as the barcode scanner and the

optical character recognition module for automatic product discovery as well as

automatic expiration date discovery respectively. Furthermore, it will also have

the feature to manually enter the product name if the product name is not

automatically discovered and to manually enter expiration date if date is not

recognized by the OCR. There will also be a button to finally save all the

information of the food item to the database.

ii. Bar Code Scanner Module

For scanning the barcode information on the back of the food products this

project uses Google's ZXing (Zebra Crossing) multi-format 1D/2D barcode

image processing library implemented in Java. This library is open source and

very easy to integrate in the project but requires an additional application called

Barcode Scanner to be installed on the phone. It is able to read both UPC

(Universal Product Code) barcode format as well as EAN(European Article

Numbering) barcode format, now known as International Article Numbering.

 The authors of ZXing made it very easy for it to be integrated with other

projects. It is achieved with the help of using Intents. Therefore, a barcode is

scanned by calling the Barcode Scanner application via Intents. The authors

provide a small library of code, which correctly handles all the important details,

such as setting category flags and handling the case where Barcode Scanner

application is not installed. This library of code makes sure to prompt the user to

install Barcode Scanner application if it is not already installed on the smart

phone as the ZXing library requires it, to work completely. The scanning result

10

is handled very easily by using some more code examples, given by the author,

in the activity of the barcode scanner. The scanning result is then used by the

JSON Parser module which contacts the web service to extract the name of the

product.

 The graphical user interface of the barcode scanner has a view that

accesses the smart phone's camera. It overlays a selectable region in the view so

that the barcodes can be comfortably scanned within the region. Once the

barcode is scanned it displays a success message briefly along with a snapshot of

the barcode. Then the main view where the item information is entered is pulled

up.

iii. Web Service

A RESTful web service is used to automatically discover the product's name.

The website which we use, that stores the database of barcodes, is

http://www.upcdatabase.org. It is a project created by a small group of students

in 2010 and includes barcodes in both UPC and EAN formats. It was started as a

hobby and became popular very quickly. It provides access to the meta data of

the barcodes like product name, manufacturer and price.

 It provides developers with a JSON API service which can be used to

conveniently query the database but it needs an API key which the developer

gets once signing up on their website. A JSON parser class is used that has a

method which queries the JSON API and does the parsing of the JSON data that

it receives back. This method takes a URL as an argument. This URL belongs to

the JSON API which has the API key appended to it as well as the barcode

11

number, that it receives from the barcode scanner module, appended to it. Once

the JSON data is parsed to obtain the product's name, it is then display on the

GUI. Since only the name of the food item is important for this application, the

code is written such that it only extracts that.

 It was possible that a private database of barcodes could have been used in

this application, but it would have a major tradeoff that it would have been very

large as it would have close to 2 million barcodes. Another reason that such a

database was not used was because it would not have been convenient for the

user to update their application each time the database was updated with new

barcodes. Using the web service is more convenient since we do not need to

update the application every time there are updates to the database that the web

service provides. There is do not need to worry about updating the database as it

is constantly updated by users and if a developer has to add a new item to the

database, it is very easy to do so.

iv. Optical Character Recognition Module

This thesis uses the Tess Two library which is based on the Tesseract OCR

Engine, developed by HP and now maintained by Google, and Leptonica image

processing libraries. The Tess Two library is a fork of Tesseract tools for

Android, which provides a set of Android APIs and build files for the Tesseract

OCR and Leptonica, and adds some functions to it. It downloads the already

trained language files when integrated with the application. The OCR module

will capture the date of expiry of the product and display it on the screen after

12

some processing. The application then adds that date to the calendar on

submission of the food item into the database.

 The Tess Two library was readily available as an open source library

which was used to integrate with the project. The major challenge was that the

library was written in C/C++ language and in order to integrate it into the project

the Android Native Development Kit (NDK) was required. Android NDK is a

companion tool to the Android Software Development Kit (SDK) and makes it

possible to port libraries written in C/C++ to Android. Since OCR does CPU

intensive work the authors developed it using native code. The author of Tess

Two also provided an example implementation of an Android project which was

modified to suit this project's requirements.

 The graphical user interface of the optical character recognition module

has a view that accesses the smart phone's camera like in the case of barcode

scanner. It also overlays a selectable region in the view so that the required date

can be conveniently scanned within the region. Once the required date of expiry

is in the small region, the camera button on the interface can be clicked to scan

the date. If the scan results are accurate the done button can be clicked or if scan

results are not satisfactory the skip button can be clicked to skip the scanning

process. In this case, the main view where the food item information is added is

shown and the date can be manually picked in the available date picker widget.

 A pure Java OCR could have been used but on experimentation it was

found that even after training it with a significant number of samples, it did not

13

give satisfactory results and hence the Tess Two OCR was preferred over it. In

addition to it, already trained language files were available for Tess Two.

v. SQLite

SQLite is the database that is used if an application needs to manage its own

private database. This database is used to store the list of items and their

expiration dates. It's database management classes are readily available to store

the application's content. Simple SQL queries can be used to query the database.

 If the application was working on data sent to it by a provider then only

the generic database classes would have been used. Android comes with the

sqlite3 database tool. This tool can be used to browse or run SQL commands on

the device. It is run by typing sqlite3 in a shell window. A separate preferences

file is used to save the preferences of the application. The database will only

consist of one table with a column each for id, name and date of expiry.

5.2 FLOW CHART

The flow chart of the application is given in Figure 5.2. It shows that when the

application is launched it calls the main activity that has a view which displays the list of

all the food items that are already added to the database. This view has the items in the

order of closest day of expiry, so the item which is going to expire soon will show up on

top of the list. In the options, the user has a choice to add a new item, change the

preferences for the application and exit from the application. If the user chooses to add a

new item, the AddItem view shows up which has all the options to add the necessary

information related to the food item.

14

Fridge Buddy

Query DB

Show list of food
items View,

sorted by expiry
date, already in

the DB

Add new food
item

Show Add Item
View

Yes

Change
Preferences

No

Scan Barcode

Scan OCR
Show Preferences

View
Yes

No

Make Changes

Save and Add
new Item to DB

Update DB

Yes

Update DB

No

Exit the
Progrram

Close the
Application

Yes

No

Figure 5.2 Flow Chart

15

 First, the user can scan the barcode of the food item to be added by clicking the

scan barcode button, which calls the bar code scanner module and opens up another view.

This view accesses the smart phone's camera and overlays a selectable region in the view

with a red horizontal line in the middle, so that the barcodes can be comfortably scanned

within the region. Now the product with the barcode is placed in front of the camera so

that the barcode is scanned, after which it displays a success message briefly along with a

snapshot of the product with the barcode. Then in the background the application sends a

JSON query, with the barcode number as a parameter, to the web service called

www.upcdatabase.org. The web service processes the query and searches for product in

its database and sends back a response. The AddItem view shows up with the name of the

product if found in the database else it will prompt to add the name manually in the text

field provided.

 Secondly, the user then tries to scan the date of expiry of the product by clicking

on the scan OCR button, which calls the OCR module and brings up another view. This

view accesses the smart phone's camera and overlays a small selectable region in the

view so that the dates can be scanned easily. The product's date is placed in front of the

camera so that the date can be scanned. Once the date is scanned, the user can either click

on a button called continue if he deems the scan result to be satisfactory or try to scan the

date again. If the result is not satisfactory, they will also have a button to skip the OCR

step, which will then bring back the AddItem view. Meanwhile, in the background the

scanned date will be processed and then converted to the appropriate date format. The

date picker widget will be updated with the new date. If the widget has not been updated,

16

then the user can manually set the date. Once all the information is complete the user can

then click on the save button to add the item to the SQLite database and update it.

 The main view is then shown again with the updated list. Now, if the user wants

to change the application's preferences he can select the change preferences options in the

settings. The change preferences view then comes up on the screen which has all the

different preferences of the application. When we are done making the changes, we can

press the back button which will then update the preferences in the preferences file. The

main view will show up again from where we can click on the exit button in the settings

to exit the application.

17

CHAPTER 6

IMPLEMENTATION AND SCREENSHOTS

6.1 IMPLEMENTATION

The Android application, Fridge Buddy is developed using many user defined activities

which are based on developer-defined java classes. There are three Activities which are a

part of the lifecycle of the application: MainActivity, BarcodeActivity and

CaptureActivity.

 MainActivity is the main view of the Fridge Buddy application which allows the

user to add a product to the database. BarcodeActivity is called using an Intent. The

authors of ZXing provide Intent Integrator classes to easily integrate barcode scanner into

this project. CaptureActivity is also a sample activity provided by the author of Tess

Two, which accesses the OCR module and provides a variable selectable region to scan

the dates using OCR.

6.2 ADDING A NEW FEATURE

The way that the application has been developed, it makes it very easy to add new

features to the application. So that the list can be customised by the user, a delete item

feature has been implemented in the application.

 The following are the steps that are followed to add this feature to the application:

18

i. Create a context menu xml file

A context menu xml file needs to be created so that context menu items can be

added to the context menu which is shown when the user long clicks on an item in

the list of items. The xml file contains the different menu items with their

respective names. The xml file that was created is shown below.

ii. Add the onCreateContextMenu method to the ItemListView.java file

This method is added to the ItemListView activity so that the context menu xml

file can be used to show the available options when the user long clicks on an

item. The xml file is linked to this method by referring to it. The figure below

shows the code that was added for this purpose.

Figure 6.1 Context Menu XML file

Figure 6.2 The onCreateContextMenu Method

19

iii. Add the onContextItemSelected method to the ItemListView,java file

This method is added to check which context menu item has been selected by the

user and what should be done in each case. A delete menu item is added to the

context menu which when selected will delete the item from the list and show the

updated list. The complete code for adding the delete feature is shown in the

figure below.

6.3 SCREENSHOTS

The screenshots of all the different parts of the application are shown below.

Figure 6.3 The code added for the delete feature

20

Figure 6.5 Main Activity View

Figure 6.4 List Activity View when empty

21

Figure 6.6 Barcode Scanning

Figure 6.7 Barcode Found

22

Figure 6.8 Main View with Item Name

Figure 6.9 OCR Scanning

23

Figure 6.10 Performing OCR

Figure 6.11 OCR Result

24

 Figure 6.12 Main View after all information

Figure 6.13 List View after adding Item

25

CHAPTER 7

TECHNOLOGIES USED

The technologies used to develop this application aims to reduce the time spent by the

user to input the food item details and for implementing the different functionalities in the

application. The technologies used are as follows :

i. Oracle Java 1.7 -

It is the principal programming language used for this application. It is an object

oriented language which allows application developers to write code that runs on

one platform but does not need to be recompiled on another. Java is also

responsible for contributing libraries to parse JSON data retrieved from the Web

Service. It also provides the SQLite libraries which enables the use of databases

for the application.

ii. Google Android 2.2 Operating System -

This is minimum version of the supported mobile operating system on which this

application can run on with all its features.

iii. Microsoft Windows Operating System -

This is the development platform which is being used to develop this application.

It is easier to develop smart phone applications in Windows than in Linux as a lot

of extra steps need to be implemented in Linux.

26

iv. SQLite:

This is the relational database engine which is used to store all the food item

details. It is directly available as implementation classes in Java, as it is open

source, and we can conveniently use it for our application. The preferences of the

application are saved in

v. Eclipse IDE -

It is the integrated development environment that is being used to develop this

application. It is an open source IDE which is readily available online and has a

lot of useful features.

vi. ZXing -

This is the barcode scanning library that is used in this application to extract the

barcodes from a food item. It is very easy to integrate in this project and is

maintained by Google.

vii. Tess Two Library -

This is the optical character recognition library that is used to read the date of

expiry and then manipulate it according to the requirements. This library is

currently maintained by Google as well.

27

CHAPTER 8

FUTURE WORK AND CONCLUSION

8.1 FUTURE WORK

The future work that can be done are as follows :

i. Additional Training of OCR -

It is the principal programming language used for this application. It is an object

oriented language which allows application developers to write code that runs on

one platform but does not need to be recompiled on another. Java is also

responsible for contributing libraries to parse JSON data

ii. Application for IPhone

This application can further be implemented in iOS to create an application for I

Phone. It may be possible to use the same libraries for barcode scanning and

OCR. The GUI would also be considerably for appealing in iOS.

iii. Better, more enhanced GUI

The user interface can be made more appealing to the user. More themes can be

provided for the application to make the look and feel of the application more

eye-catching.

28

iv. More features and preferences

The application can have more features like adding food items to different

categories and different views like grid view or list view for displaying the food

items. Additional preferences like turning off notifications globally or per item

can also be added.

8.2 CONCLUSION

In conclusion, the application is able to show a list of all items by color coding it as well

as sorting it in order of high priority. The application is also able to automatically

discover the name of the products using barcode scanning and tries to detect the date of

expiry by OCR scanning but is unsuccessful in doing so in most attempts. It was also able

to provide preference editing options which makes the application easy to customize.

Overall, this application would definitely be very useful in preventing food wastage as

well as saving money.

26

REFERENCES

[1] Gábor Sörös, Christian Floerkemeier " Towards next generation barcode scanning",

Proc. Int. Conf. on Mobile and Ubiquitous Multimedia (MUM 2012), Ulm, Germany,

2012

[2] R. Smith "An overview of the Tesseract OCR engine", Proc. Int. Conf. Document

Anal. Recognit., pp.629 -633 2007

[3] R. Adelmann "Mobile phone based interaction with everyday products - On the go",

Proc. IEEE Next Generation Mobile Applications, Services and Technologies, Cardiff,

UK, 2007

[4] Gunders, Dana. “Wasted: How America Is Losing Up to 40 Percent of Its Food from

Farm to Fork to Landfill”. IP:12-06-B. New York, NY: National Resources Defense

Council,2012

[5] "Best Before" -

https://play.google.com/store/apps/details?id=com.nicedistractions.bestbefore&hl=en

[6] "Fridge Police" - https://itunes.apple.com/us/app/fridge-police-food-

expiratio/id394119420?mt=8&ign-mpt=uo%3D4

[7] "Food Expiration Track" -

https://play.google.com/store/apps/details?id=com.touchsi.keepemfresh

[8] "Food Expiration Saver"-

https://play.google.com/store/apps/details?id=tw.com.expiration

[9] "Shelf Life" - https://itunes.apple.com/us/app/shelf-life-food-

expiration/id292997652?mt=8

https://play.google.com/store/apps/details?id=com.nicedistractions.bestbefore&hl=en
https://itunes.apple.com/us/app/fridge-police-food-expiratio/id394119420?mt=8&ign-mpt=uo%3D4
https://itunes.apple.com/us/app/fridge-police-food-expiratio/id394119420?mt=8&ign-mpt=uo%3D4
https://play.google.com/store/apps/details?id=com.touchsi.keepemfresh
https://play.google.com/store/apps/details?id=tw.com.expiration
https://itunes.apple.com/us/app/shelf-life-food-expiration/id292997652?mt=8
https://itunes.apple.com/us/app/shelf-life-food-expiration/id292997652?mt=8

30

APPENDIX A – CODE

1. ItemListView.java

package com.FridgeBuddy.barcodescanning;

import java.util.Date;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import android.app.ListActivity;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.Context;

import android.content.Intent;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.net.ParseException;

import android.net.Uri;

import android.os.Bundle;

import android.support.v4.app.NotificationCompat;

import android.util.Log;

import android.view.ContextMenu;

import android.view.Gravity;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.view.ContextMenu.ContextMenuInfo;

import android.widget.ListView;

import android.widget.SimpleCursorAdapter;

import android.widget.AdapterView.AdapterContextMenuInfo;

import android.widget.Toast;

public class ItemListView extends ListActivity {

 private static final int INSERT_ID = Menu.FIRST;

31

 private static final int SETTINGS_ID = Menu.FIRST+1;

 private static final int QUIT_ID = Menu.NONE;

 private Cursor mNotesCursor;

 private String tableName = DBHelper.tableName;

 private static ArrayList<ListItem> msgList = new ArrayList<ListItem>();

 private Cursor c;

 SQLiteDatabase newDB;

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.notes_list);

 fillData();

 registerForContextMenu(getListView());

 }

 @SuppressWarnings("deprecation")

 private void fillData() {

 try {

 msgList.clear();

 DBHelper sqlHelper = new DBHelper(getApplicationContext());

 newDB = sqlHelper.getWritableDatabase();

 c = newDB.rawQuery("SELECT ID, ITEMNAME,

DATEOFEXPIRY FROM " + tableName + " ORDER BY DATEOFEXPIRY ASC",

null);

 if (c != null) {

 if (c.moveToFirst()) {

 do {

 int id = c.getInt(c.getColumnIndex("ID"));

 String itemName =

c.getString(c.getColumnIndex("ITEMNAME"));

 String dateOfExp =

c.getString(c.getColumnIndex("DATEOFEXPIRY"));

 Calendar c = Calendar.getInstance();

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd");

 Date currentDate = (Date) c.getTime();

 Date convertedDate = new Date();

32

 try {

 convertedDate =

dateFormat.parse(dateOfExp);

 } catch (ParseException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (java.text.ParseException e) {

 // TODO Auto-

generated catch block

 e.printStackTrace();

 }

 String NoDays =

getDateDiffString(convertedDate,currentDate);

 msgList.add(new ListItem(itemName,

NoDays,id));

 }while (c.moveToNext());

 }

 }

 c.close();

 newDB.close();

 }

 catch (SQLiteException se) {

 Log.e(getClass().getSimpleName(), "Could not open the cursor");

 }

 finally {

 newDB.close();

 }

 ItemListAdapter adapter = new ItemListAdapter(this, msgList);

 setListAdapter(adapter);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 super.onCreateOptionsMenu(menu);

 menu.add(0, INSERT_ID, 0, R.string.menu_insert);

 menu.add(0, SETTINGS_ID, 0, R.string.menu_preferences);

 menu.add(0, QUIT_ID, 0, R.string.menu_quit);

 return true;

33

 }

 @Override

 public boolean onMenuItemSelected(int featureId, MenuItem item) {

 switch(item.getItemId()) {

 case INSERT_ID:

 Intent res = new Intent(this, MainActivity.class);

 startActivityForResult(res, 1);

 return true;

 case SETTINGS_ID:

 Intent res2 = new Intent(this, Prefs.class);

 startActivityForResult(res2, 1);

 return true;

 case QUIT_ID:

 finish();

 return true;

 }

 return super.onMenuItemSelected(featureId, item);

 }

 @Override

 public void onCreateContextMenu(ContextMenu menu, View v,

 ContextMenuInfo menuInfo) {

 // TODO Auto-generated method stub

 super.onCreateContextMenu(menu, v, menuInfo);

 getMenuInflater().inflate(R.menu.ct_menu, menu);

 }

 @Override

 public boolean onContextItemSelected(MenuItem item) {

 // TODO Auto-generated method stub

 ItemListAdapter adapter = new ItemListAdapter(this, msgList);

 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuInfo();

 ListItem listItem = adapter.getItem(info.position);

 switch (item.getItemId()) {

 case R.id.item_edit:

 Intent res3 = new Intent(this, EditActivity.class);

 startActivityForResult(res3, 1);

 return true;

 case R.id.item_delete:

 showMsg("Item Deleted !");

34

 setListAdapter(adapter);

 DBHelper sqlHelper = new DBHelper(getApplicationContext());

 newDB = sqlHelper.getWritableDatabase();

 newDB.delete(tableName, "ID=?", new String[]

{Integer.toString(listItem.idnum)});

 adapter.remove(adapter.getItem(info.position));

 return true;

 default:return super.onContextItemSelected(item);

 }

 }

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == 1) {

 if(resultCode == RESULT_OK){

 String itemName=data.getStringExtra("item");

 String dateExp=data.getStringExtra("date");

 DBHelper sqlHelper = new DBHelper(getApplicationContext());

 newDB = sqlHelper.getWritableDatabase();

 sqlHelper.insertIntoDatabase(itemName, dateExp);

 newDB.close();

 fillData();

 }

 if (resultCode == RESULT_CANCELED) {

 //Write your code if there's no result

 }

 }

 }//o

 @Override

 protected void onDestroy() {

 super.onDestroy();

 }

 @Override

 protected void onResume() {

 super.onResume();

 //mDbHelper = new DBHelper(this);

 fillData();

35

 }

 @Override

 protected void onPause() {

 super.onPause();

 //mDbHelper.close();

 }

 class ListItem{

 public ListItem(String itemName2, String dateOfExp, int id) {

 itemName = itemName2;

 date = dateOfExp;

 idnum=id;

 }

 String itemName;

 String date;

 int idnum;

 }

 /**

 * Returns a string that describes the number of days

 * between dateOne and dateTwo.

 *

 */

 public String getDateDiffString(Date dateOne, Date dateTwo)

 {

 long timeOne = dateOne.getTime();

 long timeTwo = dateTwo.getTime();

 long oneDay = 1000 * 60 * 60 * 24;

 timeOne+=oneDay;

 long delta = (timeTwo - timeOne) / oneDay;

 if (delta >= 0) {

 if(delta==1)

 return "EXPIRED !! " + delta + " day ";

 else

 return "EXPIRED !! " + delta + " days ";

 }

 else {

 delta *= -1;

 if(delta==1)

36

 return "" + delta + " day left to Expire";

 else

 return "" + delta + " days left to Expire";

 }

 }

 private void showMsg(String message) {

 Toast msg = Toast.makeText(ItemListView.this, message,

Toast.LENGTH_LONG);

 msg.setGravity(Gravity.CENTER, msg.getXOffset() / 2,

 msg.getYOffset() / 2);

 msg.show();

 }

}

 }

2. MainActivity.java

package com.FridgeBuddy.barcodescanning;

import java.sql.Date;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.HashMap;

import org.json.JSONException;

import org.json.JSONObject;

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

import android.net.Uri;

import android.os.Bundle;

import android.os.SystemClock;

import android.preference.PreferenceManager;

import android.app.Activity;

import android.app.AlarmManager;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

37

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.support.v4.app.NotificationCompat;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.DatePicker;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import android.view.Menu;

import com.FridgeBuddy.barcodescanning.ocr.CaptureActivity;

import com.FridgeBuddy.jsonparsing.JSONParser;

import com.FridgeBuddy.barcodescanning.R;

import com.google.zxing.integration.android.IntentIntegrator;

import com.google.zxing.integration.android.IntentResult;

//import com.FridgeBuddy.barcodescanning.DBAdapter;;

public class MainActivity extends Activity implements OnClickListener {

 private Button scanBtn;

 private Button ocrBtn;

 private Button submitBtn;

 private TextView formatTxt, contentTxt,validTxt,numberTxt;

 private EditText itemnameTxt;

 private TextView itemlabelTxt;

 //newly added

 public static final String NOTIFICATION_DATA = "NOTIFICATION_DATA";

 private DatePicker date1;

 // url to make request

 private static String url =

"http://upcdatabase.org/api/json/a65fbd5cec11e92233ddbb55f00c8921/";

 // JSON Node names

 private static final String TAG_VALID = "valid";

 private static final String TAG_NUMBER = "number";

 private static final String TAG_ITEMNAME = "itemname";

 private static final String TAG_DESCRIPTION = "description";

 private static final String TAG_PRICE = "price";

 private static final String TAG_RATINGSUP = "ratingsup";

 private static final String TAG_RATINGSDOWN = "ratingsdown";

 //DB

 // DBAdapter db = new DBAdapter(this);

38

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 scanBtn = (Button)findViewById(R.id.scan_button);

 ocrBtn = (Button)findViewById(R.id.ocr_button);

 submitBtn = (Button)findViewById(R.id.submit_button);

 itemnameTxt = (EditText)findViewById(R.id.itemname);

 scanBtn.setOnClickListener(this);

 ocrBtn.setOnClickListener(this);

 submitBtn.setOnClickListener(this);

 date1 = (DatePicker)findViewById(R.id.datePicker1);

 }

 //NOTIFICATION SERVICE CODE

 @Override

 public void onResume() {

 super.onResume();

 SharedPreferences prefs =

PreferenceManager.getDefaultSharedPreferences(this);

 int minutes = prefs.getInt("interval",0);

 AlarmManager am = (AlarmManager) getSystemService(ALARM_SERVICE);

 Intent i = new Intent(this, NotificationService.class);

 PendingIntent pi = PendingIntent.getService(this, 0, i, 0);

 am.cancel(pi);

 // by my own convention, minutes <= 0 means notifications are disabled

 if (minutes > 0) {

 am.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,

 SystemClock.elapsedRealtime() + minutes*60*1000,

 minutes*60*1000, pi);

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @SuppressWarnings("deprecation")

 public void onClick(View v){

 //respond to clicks

 if(v.getId()==R.id.scan_button){

39

 //scan

 IntentIntegrator scanIntegrator = new IntentIntegrator(this);

 scanIntegrator.initiateScan();

 }

 if(v.getId()==R.id.ocr_button){

 //scan OCR

 Calendar cal = Calendar.getInstance();

 int year = cal.get(Calendar.YEAR);

 int month = cal.get(Calendar.MONTH);

 int day = cal.get(Calendar.DAY_OF_MONTH);

 // cal.set(year, month + 1, day);

 // cal.set(date1.getYear(), date1.getMonth() + 1,

date1.getDayOfMonth());

 cal.add(Calendar.DATE, 7);

 date1.updateDate(year, month-1,

cal.get(Calendar.DAY_OF_MONTH));

 Intent res = new Intent(this, CaptureActivity.class);

 startActivity(res);

 }

 if(v.getId()==R.id.submit_button){

 //Submit. Add Item to database

 Calendar cal = Calendar.getInstance();

 int year = cal.get(Calendar.YEAR);

 int month = cal.get(Calendar.MONTH);

 int day = cal.get(Calendar.DAY_OF_MONTH);

 cal.set(year, month + 1, day);

 Intent returnIntent = new Intent();

 returnIntent.putExtra("item",itemnameTxt.getText().toString());

 Date date2 = new Date(date1.getYear()-1900, date1.getMonth(),

date1.getDayOfMonth());

 //Date date = (Date) new SimpleDateFormat("yyyy-MM-

dd").parse(date2.toString());

 returnIntent.putExtra("date",date2.toString());

 setResult(RESULT_OK,returnIntent);

40

 int hour = 10;

 int minute = 10;

 Calendar calendar = Calendar.getInstance(); // CALENDAR

 calendar.set(date2.getYear(), date2.getMonth(), date2.getDate(),

 hour, minute, 0);

 long startTime = calendar.getTimeInMillis()+120000;

 //NOTIFICATIONS CODE

 createNotification(System.currentTimeMillis(),

itemnameTxt.getText().toString());

 //createNotification(startTime, itemnameTxt.getText().toString());

 finish();

 }

 }

 private void createNotification(long when,String data){

 String notificationContent ="Click Here to see your list ";

 String notificationTitle ="Your "+data + " is about to expire !!";

 //large icon for notification,normally use App icon

 Bitmap largeIcon =

BitmapFactory.decodeResource(getResources(),R.drawable.ic_launcher);

 int smalIcon =R.drawable.ic_launcher;

 String notificationData="This is data : "+data;

 /*create intent for show notification details when user clicks notification*/

 Intent intent =new Intent(getApplicationContext(), ItemListView.class);

 intent.putExtra(NOTIFICATION_DATA, notificationData);

 /*create unique this intent from other intent using setData */

 intent.setData(Uri.parse("content://"+when));

 /*create new task for each notification with pending intent so we set

Intent.FLAG_ACTIVITY_NEW_TASK */

 PendingIntent pendingIntent =

PendingIntent.getActivity(getApplicationContext(), 0, intent,

Intent.FLAG_ACTIVITY_NEW_TASK);

 /*get the system service that manage notification NotificationManager*/

 NotificationManager notificationManager =(NotificationManager)

getApplicationContext().getSystemService(Context.NOTIFICATION_SERVICE);

 /*build the notification*/

41

 NotificationCompat.Builder notificationBuilder = new

NotificationCompat.Builder(

 getApplicationContext())

 .setWhen(when)

 .setContentText(notificationContent)

 .setContentTitle(notificationTitle)

 .setSmallIcon(smalIcon)

 .setAutoCancel(true)

 .setTicker(notificationTitle)

 .setLargeIcon(largeIcon)

 .setDefaults(Notification.DEFAULT_LIGHTS|

Notification.DEFAULT_VIBRATE| Notification.DEFAULT_SOUND)

 .setContentIntent(pendingIntent);

 /*Create notification with builder*/

 Notification notification=notificationBuilder.build();

 /*sending notification to system.Here we use unique id (when)for making

different each notification

 * if we use same id,then first notification replace by the last notification*/

 notificationManager.notify((int) when, notification);

 }

 public void onActivityResult(int requestCode, int resultCode, Intent intent) {

 //retrieve scan result

 IntentResult scanningResult =

IntentIntegrator.parseActivityResult(requestCode, resultCode, intent);

 if (scanningResult != null) {

 //we have a result

 String scanContent = scanningResult.getContents();

 String scanFormat = scanningResult.getFormatName();

 getDetailsonline(scanContent);

 }

 else{

 Toast toast = Toast.makeText(getApplicationContext(),

 "No scan data received!", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

 private void getDetailsonline(String scanContent) {

42

 // Hashmap for ListView

 ArrayList<HashMap<String, String>> contactList = new

ArrayList<HashMap<String, String>>();

 if(haveNetworkConnection())

 {

 // Creating JSON Parser instance

 JSONParser jParser = new JSONParser();

 // getting JSON string from URL

 JSONObject json =

jParser.getJSONFromUrl(url+scanContent);

 try {

 // Storing each json item in variable

 String valid = json.getString(TAG_VALID);

 String number =

json.getString(TAG_NUMBER);

 String itemname =

json.getString(TAG_ITEMNAME);

 String description =

json.getString(TAG_DESCRIPTION);

 String price = json.getString(TAG_PRICE);

 String ratingsup =

json.getString(TAG_RATINGSUP);

 String ratingsdown =

json.getString(TAG_RATINGSDOWN);

 itemnameTxt.setText(itemname);

 } catch (JSONException e) {

 e.printStackTrace();

 }

 // TODO Auto-generated method stub

 }

}

 private boolean haveNetworkConnection() {

 // TODO Auto-generated method stub

 boolean haveConnectedWifi = false;

43

 boolean haveConnectedMobile = false;

 ConnectivityManager cm = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo[] netInfo = cm.getAllNetworkInfo();

 for (NetworkInfo ni : netInfo)

 {

 if (ni.getTypeName().equalsIgnoreCase("WIFI"))

 if (ni.isConnected())

 haveConnectedWifi = true;

 if (ni.getTypeName().equalsIgnoreCase("MOBILE"))

 if (ni.isConnected())

 haveConnectedMobile = true;

 }

 return haveConnectedWifi || haveConnectedMobile;

 }

 }

 3. JSONParser.java

package net.niceandroid.jsonparsing;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.UnsupportedEncodingException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.json.JSONException;

import org.json.JSONObject;

import android.util.Log;

public class JSONParser {

 static InputStream is = null;

 static JSONObject jObj = null;

 static String json = "";

44

 // constructor

 public JSONParser() {

 }

 public JSONObject getJSONFromUrl(String url) {

 // Making HTTP request

 try {

 // defaultHttpClient

 DefaultHttpClient httpClient = new DefaultHttpClient();

 HttpPost httpPost = new HttpPost(url);

 HttpResponse httpResponse = httpClient.execute(httpPost);

 HttpEntity httpEntity = httpResponse.getEntity();

 is = httpEntity.getContent();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 } catch (ClientProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 try {

 BufferedReader reader = new BufferedReader(new

InputStreamReader(

 is, "iso-8859-1"), 8);

 StringBuilder sb = new StringBuilder();

 String line = null;

 while ((line = reader.readLine()) != null) {

 sb.append(line + "\n");

 }

 is.close();

 json = sb.toString();

 } catch (Exception e) {

 Log.e("Buffer Error", "Error converting result " + e.toString());

 }

 // try parse the string to a JSON object

 try {

 jObj = new JSONObject(json);

 } catch (JSONException e) {

 Log.e("JSON Parser", "Error parsing data " + e.toString());

 }

45

 // return JSON String

 return jObj;

 }

}

4. DBHelper.java

package com.FridgeBuddy.barcodescanning;

import java.sql.Date;

import android.content.ContentValues;

import android.content.Context;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.util.Log;

public class DBHelper extends SQLiteOpenHelper {

 public static SQLiteDatabase DB;

 public String DBPath;

 public static String DBName = "FridgeBuddyDb3";

 public static final int version = '1';

 public static Context currentContext;

 public static String tableName = "Items";

 public DBHelper(Context context) {

 super(context, DBName, null, version);

 currentContext = context;

// DBPath = "/data/data/" + context.getPackageName() + "/databases/";

 DBPath = "/mnt/";

 Log.d("DBPAth", "DBPath is " + DBPath);

// clearDatabase();

 createDatabase();

 }

 @Override

 public void onCreate(SQLiteDatabase arg0) {

 // TODO Auto-generated method stub

 }

 @Override

46

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 // TODO Auto-generated method stub

 }

 private void createDatabase() {

 boolean dbExists = checkDbExists();

 if (dbExists) {

 Log.d("DBHELPER", "DB already exists");

 } else {

 DB = currentContext.openOrCreateDatabase(DBName, 0, null);

 DB.execSQL("CREATE TABLE IF NOT EXISTS " + tableName

+

 " (ID integer primary key autoincrement, "

 + "ITEMNAME VARCHAR not null, DATEOFEXPIRY datetime);");

 Log.d("DBHELPER", "Table creation check");

 }

 }

 private boolean checkDbExists() {

 SQLiteDatabase checkDB = null;

 try {

 String myPath = DBPath + DBName;

 checkDB = SQLiteDatabase.openDatabase(myPath, null,

SQLiteDatabase.OPEN_READONLY);

 } catch (SQLException e) {

 e.printStackTrace();

 Log.e(getClass().getSimpleName(), "Could not open the

database");

 }

 if (checkDB != null) {

 Log.d("DBHELPER", "DB exists");

 checkDB.close();

 }

 return checkDB != null ? true : false;

 }

 public static boolean insertIntoDatabase(String itemName, String dateExp){

 ContentValues contentValues = new ContentValues();

 contentValues.put("ITEMNAME", itemName);

 contentValues.put("DATEOFEXPIRY", dateExp);

47

 DB = currentContext.openOrCreateDatabase(DBName, 0, null);

 if (DB.insert(tableName, null, contentValues)<0){

 Log.d("DBHELPER", "Insert Failed");

 return false;

 }

 else{

 Log.d("DBHELPER", "Insert Successful");

 return true;

 }

 }

 public static void clearDatabase(){

 DB = currentContext.openOrCreateDatabase(DBName, 0, null);

 DB.execSQL("DELETE FROM " + tableName + ";");

 Log.d("DBHELPER", "Table cleared.");

 }

}

5. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.FridgeBuddy.barcodescanning"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="18" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.CAMERA"/>

 <uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 <uses-permission

android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

 <uses-feature android:name="android.hardware.camera.autofocus" />

 <uses-feature android:name="android.hardware.camera.flash" android:required="false"

/>

 <uses-feature android:name="android.hardware.camera"/>

 <uses-feature android:name="android.hardware.screen.landscape"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

48

 android:theme="@style/AppTheme"

 android:debuggable="true" >

 <activity

 android:name="com.FridgeBuddy.barcodescanning.MainActivity"

 android:label="@string/app_name" >

 </activity>

 <activity

 android:name="com.FridgeBuddy.barcodescanning.ItemListView"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name="com.FridgeBuddy.barcodescanning.ocr.CaptureActivity"

 android:screenOrientation="landscape"

 android:configChanges="orientation|keyboardHidden|screenSize"

 android:theme="@android:style/Theme.NoTitleBar.Fullscreen"

 android:windowSoftInputMode="stateAlwaysHidden"

 >

 </activity>

 <activity android:name="com.FridgeBuddy.barcodescanning.ocr.HelpActivity"

 android:screenOrientation="user">

 <intent-filter>

 <action android:name="android.intent.action.VIEW"/>

 <category android:name="android.intent.category.DEFAULT"/>

 </intent-filter>

 </activity>

 <activity

 android:name="com.FridgeBuddy.barcodescanning.EditActivity"

 />

 <activity android:name="com.FridgeBuddy.barcodescanning.ocr.PreferencesActivity"

/>

 <activity android:name=".Prefs" android:theme="@android:style/Theme.Light"/>

 <receiver android:name=".BootReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED" />

 </intent-filter>

 </receiver>

 </application>

49

</manifest>

6. activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <Button

 android:id="@+id/scan_button"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:text="@string/scan" />

 <EditText

 android:id="@+id/itemname"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/scan_button"

 android:layout_marginTop="23dp"

 android:ems="10"

 />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/itemname"

 android:layout_alignParentLeft="true"

 android:layout_alignTop="@+id/itemname"

 android:text="Item Name"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/ocr_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/itemname"

50

 android:layout_marginTop="38dp"

 android:minWidth="64dip"

 android:text="@string/scan1" />

 <Button

 android:id="@+id/submit_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:text="Submit" />

 <DatePicker

 android:id="@+id/datePicker1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:layout_below="@+id/ocr_button" />

</RelativeLayout>

	An Application for Keeping Track of Food Item Expiration
	Recommended Citation

	tmp.1397088816.pdf.Dbif7

