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ABSTRACT 

 Uranium hexafluoride (UF6) containment cylinders must be emptied and washed 

every five years in order to undergo recertification, according to ANSI standards.  During 

the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind.  

This heel must be removed in order for recertification to take place. 

To remove it, the inside of the containment cylinder is washed with acid and the 

resulting solution generally contains three or four kilograms of uranium.  Thus, before the 

liquid solution can be disposed of, the uranium must be separated.  A modified sodium 

diuranate (SDU) uranium recovery process was studied to support development of a 

commercial process.  This process was sought to ensure complete uranium recovery, at 

high purity, in order that it might be reused in the nuclear fuel cycle.  An experimental 

procedure was designed and carried out in order to verify the effectiveness of the 

commercial process in a laboratory setting. 

The experiments involved a small quantity of dried UO2F2 powder that was dosed 

with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution.  Each 

experiment series started with a measured amount of this powder mixture which was 

dissolved in enough water to make a solution containing about 120 gmU/liter. 

The experiments involved validating the modified SDU extraction process.  A 

potassium diuranate (KDU) process was also attempted.  Very little information exists 

regarding such a process, so the task was undertaken to evaluate its efficacy and 

determine whether a potassium process yields any significant differences or advantages 
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as compared to a sodium process.  However, the KDU process ultimately proved 

ineffective and was abandoned. 

Each of the experiments was organized into a series of procedures that started 

with the UO2F2 powder being dissolved in water, and proceeded through the steps needed 

to first convert the uranium to a diuranate precipitate, then to a carbonate complex 

solution, and finally to a uranyl peroxide (UO4) precipitate product.  Evaluation of 

operating technique, uranium recovery efficiency, and final product purity were part of 

each experiment.   Evaluation of a technique for removing fluoride from the diuranate 

precipitation byproduct filtrate using granular calcite was also included at the end of the 

uranium recovery testing. 

It was observed that precipitation of sodium diuranate (SDU) was very nearly 

complete at a pH of 11-12, using room temperature conditions.  Uranium residuals in the 

filtrate ranged from 3.6 – 19.6 ppm, meaning almost complete precipitation as SDU.  It 

was postulated and then verified that a tailing reaction occurs in the SDU precipitation, 

which necessitates a digestion period of about 2 hours to complete the precipitation.  

Further, it was shown, during this phase of the process, that a partial precipitation step at 

pH 5.5 did not adequately separate iron contamination due to an overlap of uranium and 

iron precipitations at that condition. 

Carbonate extraction of the SDU required an extended (3-4 hours) digestion at 

40°C and pH 7-8 to complete, with sodium bicarbonate found to be the preferred 

extractant.  The carbonate extraction was also proven to successfully separate the iron 

contamination from the uranium. 



vi 
 

Potassium-based chemistry did produce a potassium diuranate (KDU) analogue of 

SDU, but the subsequent carbonate extraction using either potassium bicarbonate or 

potassium carbonate proved to be too difficult and was incomplete.  The potassium 

testing was terminated at this step. 

The uranyl peroxide precipitation was found to operate best at pH 3.5 – 4.0, at 

room temperature, and required an expected, extended digestion period of 8 -10 hours.  

The reaction was nearly complete at those conditions, with a filtrate residual ranging 

from 2.4 to 36.8 ppmU.  The uranyl peroxide itself was very pure, with impurity averages 

at a very low 0.8 ppmNa and 0.004 ppmFe.  ASTM maximum levels are 20 ppmNa and 

150 ppmFe. 

Fluoride removal from the SDU precipitation filtrate required multiple passes of 

the solution through a calcite bed with acid additions to adjust the pH back down to 

below 6 before each pass to allow the removal reaction to proceed.  This result was a 

modification of the single pass technique that was planned due to the apparent shutdown 

of the NaF/calcite reaction at pH above about 10. 

Conclusions drawn from the testing were that the results demonstrated a workable 

and effective series of processing steps.  Techniques developed from the tests will make 

uranium recovery viable when transferred to the commercial process design. 
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CHAPTER 1:  INTRODUCTION 

 

Uranium hexafluoride (UF6), known in the nuclear industry as “hex,” is a 

chemical compound used in the conversion, enrichment, transportation, and storage of 

uranium.   It is an incredibly useful compound because it has a unique triple point, which 

makes it perfectly suited for most applications.  The triple point of UF6 lies at a mere 

64.05°C (147°F) and just above standard atmospheric pressure—at about 20 psia (1).  

Thus, it can readily be converted between its solid, liquid, and gas phases, making it easy 

to handle, transport, enrich, and store. 

 

 

Figure 1.1 – UF6 Phase Diagram (2) 
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UF6 is usually transported as a solid and then quickly converted to liquid or gas 

for removal from its transport container.  It can then be easily put to use, most often for 

enrichment at gaseous diffusion or centrifuge enrichment facilities (3).  Also, because 

there are not many uses for the large amounts of depleted uranium generated at this time, 

UF6 is used as a chemical means to store it long-term.  

 

 

Figure 1.2 – UF6 crystals in a small glass ampoule (4) 

 

As a solid, UF6 is a white, crystalline material.  It is inert in dry air and will not 

react with oxygen, nitrogen, or carbon dioxide.  However, it is highly corrosive and 

exceptionally reactive with water—the humidity in the air being enough for it to react.  

As UF6 reacts with water, it is quickly converted to uranyl fluoride (UO2F2) and 

hydrogen fluoride (HF).  In aqueous solution, whether in water or even humid air, 

hydrogen fluoride forms hydrofluoric acid, which is incredibly toxic and extremely 

corrosive, even in low concentrations.  This means that stringent measures must be taken 

when transporting UF6, not only to protect the public from the radiation and toxicity 

hazards inherent with uranium, but also from the health hazards of HF. (5) 

To mitigate these risks and make the transport of UF6 safe, easy, and cost-

effective, special containment vessels have been designed for its shipment.  These 

containers come in a variety of sizes depending on the enrichment of the UF6 being 
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transported and the needs leading to its use.  The smallest certified containers are only 1.5 

inches in diameter, hold a maximum of 1lb of UF6, and are made of nickel or nickel-

copper alloy.  The largest containers are 48 inches in diameter, can hold upward of 14 

metric tons of UF6, and are made of stainless steel (6).  The two basic sizes that have 

been developed over the years to transport commercial quantities of UF6 are a 30 inch 

diameter cylinder that holds about 2.25 metric tons of solid UF6 (30B container), and a 48 

inch diameter cylinder that holds either 10 metric tons (48X container) or 14 metric tons 

(48Y container) of UF6, depending on its length.  The current predominant designs are 

the 30B and 48Y containers. 

 

 

Figure 1.3 – 48Y UF6 Container (7) 

 

No matter the size, each of the container designs is a metal cylinder, with rounded 

ends, specially designed to hold solid UF6 for decades.  They are designed to meet or 

exceed very strict ANSI regulations, and during transportation they are fitted with 

overpacks to help protect them in case of fire (8). 
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The expected, worldwide uranium requirements for “commercial nuclear 

generating capacity and reactor-related uranium requirements” for 2011 were 65,180 

metric tons of natural uranium, and that number is expected to increase to somewhere 

between 69,000 and 76,000 metric tons by 2015 (9).  All of this uranium must be 

converted, enriched, and fabricated into fuel before it can be used, and the only way to 

transport it currently is in the described containment cylinders.  Thousands of metric tons 

of UF6 are handled and transported on a yearly basis (3). 

About 6,600, 30B cylinders, containing low enriched uranium (LEU, <5 wt% 

235U), are transported each year, moving UF6 from enrichment plants to fuel fabrication 

plants, where the UF6 is converted into UO2 for power reactor fuel.  About 9,100, 48X 

and 48Y cylinders each year are used each year to transport natural UF6 from UF6 

conversion plants to enrichment plants (10).  About 90,000 48X, 48Y and 48G (a thinner-

walled version of the 48Y) cylinders are used for long-term storage of depleted UF6 

tailings from enrichment plants.  Many of this last group of cylinders have long exceeded 

their transport certification limit and cannot be moved out of their storage sites without 

special dispensation by government authorities or recertification. 

The UF6 being transported is highly corrosive and poses serious health risks 

should it be released to the environment.  So, the transport cylinders must be inspected 

regularly—at “intervals not to exceed 5 years”—to ensure that there are no “leaks, 

corrosion, cracks, bulges, dents, gouges, defective valves, damaged stiffening rings or 

skirts, or other conditions that, in the opinion of the qualified inspector, render it unsafe 

or unserviceable in its existing condition” (11).  Thus, in order to maintain the credentials 

required for continued use as a transportation container, each of these cylinders must be 
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recertified every five years, using a series of physical tests designed to demonstrate the 

integrity of the cylinder.  Successful completion of the physical testing recertifies the 

cylinder for five additional years of service. 

When the time comes for a container’s recertification, it is first heated in order to 

vaporize the UF6 within so that it can be extracted from the container.  Empty cylinders 

contain a small residue of UF6, called a “heel,” which must be washed from the cylinder 

before testing can begin.  This heel is usually 3-4 kg—though regulations allow for up to 

22.7 kg—of solid UF6 that has adhered to the cylinder walls due to corrosion.  Many 

different techniques, operating procedures, additives, and approaches to cylinder washing 

have been developed and are in use throughout the world, with varying degrees of 

efficacy.  Most of these approaches involve the use of a caustic chemical wash that pulls 

the uranium off of the inside of the container.  The wash solution must then be stripped of 

uranium so that it can meet disposal standards. 

This study was conducted to evaluate the efficacy of a sodium diuranate process 

that was designed to completely remove the uranium from a cylinder wash solution, and 

recover it as highly pure, solid uranyl peroxide, which can be put back into the nuclear 

fuel cycle.  

  



6 

 

CHAPTER 2:  LITERATURE REVIEW 

 

 Title 49 of the Code of Federal Regulations, Part 173.420 (49CFR173.420) 

establishes the guidelines for the transportation of UF6 in the United States.  This section 

requires that packages for the transport of UF6 must conform to American National 

Standard N14.1 (ANSI N14.1) (12), which sets standards for all aspects of UF6 

transportation cylinders, covering everything from cylinder design and materials, to 

testing, certification, and transportation. 

ANSI N14.1, Section 6.3.2 requires that “all cylinders shall be periodically 

inspected and tested throughout their service life at intervals not to exceed 5 years” and 

that “cylinders shall not be refilled [after each five-year interval] until they are properly 

reinspected, retested, and restamped.”  This required, periodic inspection includes 

internal and external examinations of the cylinder, hydrostatic strength testing, and air 

leak testing.  Should anything about a cylinder be “found to…, in the opinion of [a] 

qualified inspector, render it unsafe or unserviceable,” it must be removed from service 

for repair or replacement. (11) 

Section 8.1.2 of ANSI N14.1 allows for the transport of empty UF6 cylinders that 

contain less than a specified weight of UF6 residue, or heel.  This allowed weight varies 

according to container size and percent enrichment, but does not exceed a heel of 50 lbs 

at 4.5 wt% U235—the weight allowed to be transported in 48X and 48Y containers (13).  

This information is given in Table 2.1. 
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Table 2.1 – Maximum Heel Allowed by Cylinder Type 

Cylinder Model Number Heel (lb) Heel (kg) Max U235, wt% 

5A or 5B 0.1 0.045 100 

8A 0.5 0.227 12.5 

12A or 12B 1 0.454 5 

30B 25 11.3 5 

48X 50 22.7 4.5 

48Y 50 22.7 4.5 

48G, 48H, 48O, 48OM 50 22.7 1 

Allied or 48T 50 22.7 1 

 

 

However, when the time comes for recertification, the inside of the container must 

be thoroughly cleaned and the heel must be removed, so that the cylinder can be fully, 

properly, and safely inspected.  The uranium heel is removed with an acidic solution, 

which must then be processed to recover the uranium, which can afterward be processed 

into a form and purity that will allow it to be reused in the nuclear fuel cycle. 

Many milling processes use an acidic solution to leach uranium from its ores so 

that it can be processed into yellow cake.  The acidic solution is treated with an alkaline 

solution to strip the uranium and convert it into an alkali form, which is then processed 

with more acid and precipitated with hydrogen peroxide into a uranium oxide yellow 

cake (14). 

A similar process is used to convert the uranium oxide to UF6.  To produce UF6, 

the yellow cake is dissolved in nitric acid, forming a uranyl nitrate solution.  A selective 

solvent extraction is used to remove impurities, and the resulting, purified uranyl nitrate 

can then be precipitated with an alkaline solution (ammonium hydroxide, sodium 
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hydroxide, potassium hydroxide, etc.) to form an alkali diuranate.  This substance is then 

calcined, reduced, hydrofluorinated, and fluorinated in order to produce UF6. (15) 

The process to recover uranium from a UF6 solution as a usable uranium oxide 

works much like the conversion process in reverse, and uses similar techniques to the 

milling process.  A liquid, acidic UF6 solution is treated with an alkali solution to form an 

alkali diuranate solid.  This diuranate goes through a carbonate solvent extraction, 

wherein the diuranate solid is mixed with a carbonate solution, to strip the uranium from 

any present impurities.  The resulting uranyl carbonate complex can then be precipitated 

with hydrogen peroxide as uranyl peroxide (16), which can be calcined into usable 

yellow cake. 

There are many processes available to convert uranium into an alkali form, but 

according to Murty, et al., the ammonium diuranate (ADU) process “has been the most 

intensively followed and investigated” (17).  Sodium diuranate (SDU) processes have 

also been widely used, but have generally been discarded because of the potential for 

sodium contamination.  Murty, et al., and Manna, Roy and Joshi, point out that the 

properties of the diuranate precursor, which are gained from the processes that make it, 

are passed on to the final uranium dioxide product (17, 18). 

Since SDU and ADU are chemically analogous, it is of great benefit to understand 

the importance of ADU in the nuclear fuel cycle.  ADU is an intermediate compound in 

the milling and conversion of uranium.  It is generally produced by either a uranyl nitrate 

or a uranyl fluoride process, where the uranyl compound is reacted with a gaseous 

ammonia or an aqueous ammonium hydroxide.  The ADU solid formed can then be 

filtered, dried, and calcined in air to form UO3 or U3O8 (18), which can then be more 
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readily converted into UF6 for storage and transport or reduced to UO2 for fuel 

fabrication.  The only thing necessary to produce SDU instead of ADU, is the use of 

sodium compounds as opposed to ammonium compounds (i.e. NaOH instead of 

NH4OH). 

The Triple Altura Laboratory (LTA) in Argentina uses a sodium diuranate process 

to recover uranium from scrap that has been generated by the manufacture of 

uranium/aluminum alloy fuel elements.  In order to recover the nuclear material from the 

scrap, LTA uses a three-step process.  First, the material from which the uranium is to be 

recovered is dissolved using NaNO3 and NaOH solutions.  This alkaline dissolution 

converts the aluminum to soluble sodium aluminate and the uranium to insoluble sodium 

diuranate (Na2U2O7).  The second step is to separate the sodium diuranate from the liquid 

via filtration, and then eliminate any excess aluminum with a wash each of NaOH and 

deionized water.  The solid is then, finally, dissolved with HNO3 to form an aluminum-

free, uranyl nitrate solution.  The process researched follows steps very similar to those 

used by LTA, in that an alkaline dissolution would be used to separate the impurities and 

uranium from the initial solution, and then a carbonate (rather than nitrate) extraction 

dissolution would be used to recover the uranium from the SDU. (19) 

In order for uranium oxides to be used for direct hydrogen reduction to nuclear 

grade uranium dioxide, they must conform to the standards set forth in ASTM C1348.  

Table 1 of ASTM C1348 gives a list of impurity elements and their maximum allowable 

concentrations in the uranium if it is to be used for eventual fuel fabrication (20).  This 

list is shown in Table 2.2. 
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Table 2.2 – Impurity Elements and Maximum Concentration Limits 

Element 
Maximum Concentration Limit of 

Uranium, µg/gU 

Aluminum 50 

Barium 5 

Beryllium 100 

Bismuth 3 

Calcium + Magnesium 100 

Carbon 100 

Chlorine 100 

Chromium 100 

Cobalt 80 

Copper 100 

Fluorine 100 

Iron 150 

Lead 40 

Manganese 50 

Molybdenum 200 

Nickel 80 

Phosphorus 100 

Silicon 200 

Sodium 20 

Tantalum 200 

Thorium 10 

Tin 50 

Titanium 50 

Tungsten 100 

Vanadium 10 

Zinc 20 

 

 

The limit for sodium contaminants is 20 µg/gU, and must be held below this level 

because sodium contamination can cause cracking in reactor fuel.  As SDU processes use 

large amounts of sodium, they typically have to be carried out more slowly and have to 

be more carefully monitored than ADU processes in order to ensure an acceptable final 

product.  Thus, most of the current processes use ammonia to form ADU.  Since fuel 

conversion and fabrication facilities generally shoulder the burden of washing UF6 
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cylinders and use ammonia in their processes, an ADU process is also used to recover 

uranium from the UF6 cylinder wash solution. 

An SDU process was designed that would recover all of the uranium from the 

cylinder wash solution, separate all of the iron contamination from the recovered 

uranium, and allow ensure sodium content less than 20 µg/gU in the final uranium oxide, 

meeting the requirements of ASTM C1348.  In this process, a cylinder wash solution 

would be titrated with sodium hydroxide (NaOH) to a pH of 4.5-5.5, in order to remove 

iron contaminants.  The iron would precipitate out of solution as solid ferric hydroxide 

(Fe(OH)3), which usually precipitates at about pH 3.5 (21).  Literature indicates that the 

uranium should not fully precipitate as SDU (Na2U2O7) until around pH 12.0 (22, 23), 

allowing for full removal of the iron and subsequent precipitation of the SDU with the 

addition of more NaOH.  This SDU would undergo a carbonate solvent extraction with a 

sodium carbonate/sodium bicarbonate solution, in order to strip the uranium from any 

sodium impurities, as a uranyl carbonate complex solution (24).  The uranium would then 

be precipitated out of the solution as uranyl peroxide solid (UO4·nH2O), by titrating it 

with hydrogen peroxide (H2O2) and nitric acid (HNO3), which is used to keep the pH in 

the range of 2.5-5.5, which the literature suggests is the optimal range for the reaction 

(16, 25). 

Since the uranyl peroxide from this process is precipitated as a hydrate, water 

trapped in the final solid could result in an incorrect calculation of recovered uranium if a 

simple mass balance is used.  Thus, measures other than simply weighing, or air drying 

and then weighing, would have to be taken to verify complete uranium recovery, either 

by baking the solid product or converting it into a different, non-hydrated uranium oxide.  
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Both measures were used in order to determine the mass of uranium recovered.  While a 

temperature of 400-450C was chosen to dry the uranyl peroxide, work by Morais, et al., 

and Bonini, et al., showed that a temperature of at least 800°C was necessary to fully 

calcine the UO4·nH2O and convert it to U3O8 (19, 25).  Thus it was calcined at 1000°C 

for 6 hours. 
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CHAPTER 3:  METHODOLOGY 

 

A modified sodium diuranate (SDU) process was designed to extract the uranium 

from UF6 cylinder wash solution, carry it through a purification and conversion process, 

and then recover it as uranyl peroxide (UO4) solid.  An experimental procedure was 

developed and carried out in order to study the process and evaluate its efficacy in a 

laboratory setting. 

The process was designed to first use sodium hydroxide to precipitate any iron 

contamination from the wash solution, according to Eqn. 3.1, which iron would then be 

filtered from the solution. 

             (  )  ( )       (3.1) 

Then more sodium hydroxide would be used to precipitate the uranium out of the 

solution as solid SDU, following the reaction given in Eqn. 3.2. 

                     ( )            (3.2) 

The intermediary precipitation of the iron was thought to be possible because the 

iron should react and precipitate at a much lower pH than the uranium.  The SDU would 

go on to be mixed with a sodium carbonate/bicarbonate solution to extract the uranium as 

a uranyl carbonate complex solution (“uranyl carbonate” and “UCO3” are used as
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shorthand notations for “uranyl carbonate complex solution throughout the study), as 

shown below in Eqn. 3.3. 

                            (   )        (3.3) 

The uranium would then be precipitated out of the carbonate solution with nitric 

acid and hydrogen peroxide, as solid UO4. 

      (   )           (   )                   (3.4) 

   (   )                     ( )        (3.5) 

The process was developed to extract all of the uranium from the wash solution 

and carry it through to the production of UO4, and the UO4 should be devoid of any iron 

or sodium contamination.  Figure 3.1 outlines this process. 
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Figure 3.1 – SDU Process for recovering uranium from UF6 containment cylinder wash solution 

 

A similar, potassium diuranate (KDU) process was also investigated, using 

potassium hydroxide instead of sodium hydroxide to form KDU instead of SDU, and 

using potassium carbonate/bicarbonate to extract the uranium as uranyl carbonate.  

Experimentation was carried out to see if this would make a viable recovery process. 

Nine experiments were developed to evaluate these processes and gauge key 

information, such as precipitate settling rates and titration curves.  Each experiment 

involved an initial quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and 
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was dissolved in water to simulate the cylinder wash solution.  Each experimental series 

started with a measured amount of this powder mixture which was dissolved in enough 

water to make a solution containing about 120 g uranium per liter of solution. 

All of the experiments proceeded from the preparation of simulated cylinder wash 

solution through the steps needed to first convert the uranium to a diuranate precipitate, 

then to a carbonate complex solution, and finally to a UO4 precipitate product.  

Evaluation of operating technique, uranium recovery efficiency, and final product purity 

were part of each experiment.   Evaluation of a technique for removing fluoride from the 

diuranate precipitation byproduct filtrate using granular calcite was also included at the 

end of the uranium recovery testing.  The nine experiments are described thusly: 

 

Experiment One 

The first experiment was to be used to develop a titration curve for the SDU 

precipitation reaction, and to exercise the laboratory setup and equipment for the first 

time.  The simulated wash solution would be prepared and placed in a magnetically-

stirred polyethylene beaker.  The solution would then be slowly titrated with 24% NaOH 

solution, dispensed as droplets from a 100 mL burette that was positioned over the 

beaker.  The pH of the mixture would be periodically measured with p-Hydrion paper 

strips as the titration progressed, at room temperature, and it would be titrated with NaOH 

from a pH of about 1 to a pH of 11-12.  The data would be collected, and a curve 

prepared. 
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Experiment Two 

The second experiment was designed to begin a run-through of the full recovery 

process, by first titrating the simulated wash solution to a pH of 4.5.  This was to be done 

to evaluate a partial precipitation technique for separating the iron from the uranium in 

the mixture.   In theory, the FeF3 solid and any dissolved iron would be immediately 

converted to Fe(OH)3  solid at the first addition of NaOH and would remain insoluble at a 

pH lower than that at which the uranium would begin to precipitate as SDU, and this 

separation of the iron from the uranium was thought to be possible at a pH of about 4.5.  

A new batch of simulated wash solution would be prepared, and the same set-up was to 

be used as that for the first experiment, except an 8% NaOH solution was used for 

titration, to allow for a slower approach toward the pH of 4.5.  After the target pH of 4.5 

was reached, the third experiment was to begin. 

 

Figure 3.2 – Experiments 2 & 3 

 

Experiment Three 

The third experiment was a settling test to determine the volume of Fe(OH)3 

precipitate generated in Experiment Two, and the time it takes to settle out of solution.  

Thus, the solution from the second experiment would be poured into a graduated cylinder 
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and allowed to settle for two hours.  During these two hours, the demarcation level 

between the sediment and the clear, supernate liquid above it would be recorded at 

specific time intervals.  The solution would then be allowed to sit overnight, and the final 

demarcation would be recorded. 

 

Experiment Four 

The fourth experiment was to precipitate the uranium out of the remainder of the 

wash solution (now devoid of iron) as solid SDU precipitate.  First, a vacuum transfer 

apparatus would be assembled by connecting a vacuum pump to a polypropylene 

Erlenmeyer flask with a bit of tubing.  The first flask would serve as an overflow flask to 

protect the vacuum pump, and it would be connected to a second, capture flask by more 

tubing.  The second flask would be attached to a dipping tube, which would be dipped 

into the clear supernate solution to draw it into the flask.  This set up is shown in Figure 

3.3. 

 

 

Figure 3.3 – Vacuum apparatus system 
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This vacuum apparatus would be used to remove the clear supernate liquid from 

the top of the Experiment Three settling test, and, afterward, the solid precipitate would 

be filtered from the dregs, leaving a brilliant yellow, partially titrated wash solution, now 

containing no iron.  This solution would be put in a new beaker and further titrated with 

8% NaOH, to a pH of 11-12, to form the solid SDU precipitate.  An electronic pH sensor 

was to be used to record the pH during this titration, and a reading would be taken at 

regular intervals to form a titration curve.  After the pH reached about 12, the magnetic 

stirrer would be stopped and initial settling observations would be made.  After these 

observations had been made, the stirrer would be started again, a temperature sensor 

would be lowered into the solution, and the hot plate would be turned on.  The solution 

was then to be heated to 35-40°C, and allowed to stir slowly for two hours, to see if heat 

and a digestion period increase particle size and speed precipitate settling.  After the two 

hour digestion time passed, the hot plate and stirrer would be turned off and Experiment 

Five would immediately begin.  

 

Figure 3.4 – Experiments 4 & 5 
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Experiment Five 

The fifth experiment was to be used to observe the settling behavior of the SDU 

precipitate formed in Experiment Four.  The final solution from the fourth experiment 

would be poured into a graduated cylinder and the demarcation between the supernate 

liquid and solid precipitate was to be recorded, at regular intervals, as in Experiment 

Three. 

 

Experiment Six 

Once full separation between the SDU precipitate and the liquid waste had been 

achieved, Experiment Six would begin.  This experiment would be used to extract the 

uranium from the SDU precipitate in the form of a carbonate complex solution.  This 

would start with a filtering of the solution to separate out the SDU.  The liquid filtrate 

would be set aside for further testing to measure residual uranium content.  The SDU 

filter cake and filter paper would be removed from the vacuum filtration system and the 

SDU scraped into a beaker.  A sodium carbonate/sodium bicarbonate solution would be 

made by mixing together 240 mL of saturated NaHCO3 solution and 60 mL of 10% 

Na2CO3 solution.  The filter paper would be washed into the SDU beaker with a bit of 

this solution and the rest would be poured into the beaker as well.  The magnetic stir bar 

would then be added and the stirrer turned on to thoroughly mix the SDU and carbonate 

solution, forming a bright yellow/orange uranyl carbonate solution. 
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Figure 3.5 – Experiment 6 

 

Experiment Seven 

Experiment Seven was designed to precipitate the uranium out of the carbonate 

solution and into a UO4 solid.  A 50 mL portion of the UCO3 solution would be poured 

into a beaker with the stir rod.  Two 100 mL burettes would be mounted and positioned 

above the beaker, one filled with 100 mL of additional UCO3 solution, and the other 

filled with 100 mL of 35% H2O2.  A small squeeze bottle would be filled with 20% 

HNO3, to be used throughout the experiment.  The temperature and pH sensors would be 

extended into the beaker and preliminary measurements made.  Enough HNO3 would be 

gradually added to the uranyl carbonate solution in the beaker until the pH dropped to 3, 

and then titration would begin.  A slow drip of H2O2 would be started, and when yellow 

UO4 crystals began to form in the solution, a slow drip of UCO3 would be started as well.  

The pH meter reading would be closely monitored at this point, and the flow rates would 

be adjusted, and HNO3 would be added, a little at a time, to hold the pH of the solution at 

4.  The precipitation would be continued until all of the UCO3 had been used, pausing to 

refill burettes as needed.  Once all of the UCO3 had been added the burettes would be 

removed and the final pH and volumes recorded.  The mixture would stir slowly 

overnight, to allow for a complete reaction and crystal growth. 
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Figure 3.6 – Experiment 7 

 

Experiment Eight 

Experiment Eight was a settling test for the UO4 precipitate produced in 

Experiment Seven.  After being allowed to stir all night, the mixture from the seventh 

experiment would be poured into a graduated cylinder and observed as in the third and 

fifth experiments.  After full settling had taken place, the solution would be filtered, 

separating the UO4 precipitate from the NaNO3 solution filtrate.  The liquid filtrate was 

stored for further analysis and the solids were set aside for drying and subsequent 

analysis. 

Both the liquid and solids were analyzed by on a Thermo Scientific Element II 

high –resolution inductively coupled plasma mass spectrometer (ICP-MS).  The liquids 

were analyzed for uranium content in parts per million (ppm) and the solids were 

analyzed for Na and Fe contamination in ppm.  Each liquid sample was collected and 

diluted by a factor of 100, and each solid sample was made by dissolving about 1 mg of 

solid UO4 in 100 mL of 5% HNO3 solution.  The ICP-MS was calibrated by analyzing a 

blank rinse of 2% distilled nitric acid five times, then, each sample was run through the 

machine and the data was collected.  The concentrations of the contaminants in question 
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were calculated based on a linear regression.  Special thanks must be given to Elizabeth 

Bair and the Center for Elemental Mass Spectrometry at the University of South Carolina 

for running these tests and analyzing the data. 

 

Experiment Nine 

The ninth and final experiment was designed to evaluate a process for the removal 

of fluoride from the NaF solution generated in Experiment Four and filtered in 

Experiment Five.  This was to be accomplished by filling a Sentry RC-100 column with 

calcite granules and capping it.  The bottom end would be attached to the vacuum 

apparatus and the top connected to a length of tubing which was to be used to draw the 

NaF solution into the column. 

The NaF solution would be poured in a glass beaker, placed on the hot plate, and 

heated to about 70°C, then enough 20% HNO3 would be added to drop the pH to about 5.  

This heated, pH-modified solution would be drawn out of the beaker and run through the 

column slowly—in increments of about 5mL each—until it had all passed through the 

column.  The NaF solution, at a pH of about 5, reacts with the calcite to form sodium 

carbonate and calcium fluoride according to the reaction noted in Equation 3.6. 

                       (3.6) 

Should multiple passes be required, the solution exiting the column would be 

collected and have its pH checked and modified as necessary.  It would then be heated 

and run through the column again. 

These nine experiments came together into five test series.  The first test series 

dealt only with experiment one.  The second test series followed the complete sodium 
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process from experiment two through experiment eight.  The results of the second test 

series led to the development of modifications to the process, which had to be tested, and 

an auxiliary test was devised to do this using the combination SDU/Fe(OH)3 precipitate 

in NaF solution that was the product of the first test series.  This modified process was 

altered to forego the partial precipitation step in experiments two and three, and separated 

the iron from the wash solution during the carbonate extraction in experiment six, also 

changing the carbonate extraction process to use only water and NaHCO3.  This test 

series was named “Auxiliary Tests on First Test Series SDU.”   The modified process is 

shown in Figure 3.3. 

 

Figure 3.7 – Modified Recovery Process 
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The third and fourth test series ran through the potassium-analogous process, 

going from experiments two through eight, as modified in Figure 3.3, using KOH in 

place of NaOH, KHCO3 in place of NaHCO3, and K2CO3 in place of Na2CO3.  The fifth 

and final test series was used as a verification run for the modified recovery process, 

going through the entire procedure from the second to ninth experiments, again, as 

modified. 
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CHAPTER 4:  RESULTS AND DISCUSSION 

 

First Test Series  

The first test series was used to develop a precipitation curve for the initial 

reagents.  A  UO2F2 solution was prepared by dissolving 16 g of the UO2F2 powder mix 

into 100 mL of water, and this mixture was titrated with 24 wt% NaOH solution.  A 

magnetically stirred polyethylene beaker was the reaction container and the NaOH 

solution was dispensed as droplets from a 100 mL burette positioned over the beaker.  

The pH of the mixture was periodically measured with p-Hydrion paper strips as the 

titration progressed, at room temperature.  Table 4.1 following depicts the results of the 

titration. 

 

Table 4.1 – First Test Series, SDU Precipitation 

NaOH added (total mL) pH Comments 

0 1.0 Solution light green color 

1.8 3.0 Local precipitation, re-dissolved 

2.6 3.5  

4.6 5.5 Precipitation persisting more 

5.6 5.5 Tan/yellow precipitate forming 

7.5 6.5 Precipitating heavily 

9.2 7.0  

12.6 8.0  

17.8 10.0 Precipitation complete 

20.6 12.0  
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The data are displayed graphically in Figure 4.1 below.  Test photos are also 

shown in Figure 4.2 and 4.3. 

 

 

Figure 4.1 – Graph of First Test Series, SDU Precipitation pH Curve, pH v. Volume 

NaOH Added (mL) 

 

 

 

Figure 4.2 – Powdered UO2F2 dosed with 3wt% FeF3, and 
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Figure 4.3 – Titration with NaOH 

 

One item of test observation was that the magnetic mixing system was having 

difficulty dispersing first additions of NaOH with the result that localized precipitation 

formations took several seconds to re-dissolve and stabilize in the solution.  As a result, a 

decision was made to dilute the NaOH solution with water from 24% to 8% on 

subsequent test series, in order to better control the uniformity of the precipitations. 

After the pH of the slurry of precipitated SDU/Fe(OH)3 reached 12.0, it was 

transferred to a storage bottle and left overnight to settle.  The next morning the solids 

had settled to one-third of the original slurry volume, with the remaining two-thirds of the 

volume consisting of a clear supernate liquid.  The settled mixture was held for additional 

testing, described later in this chapter, in the section “Auxiliary Tests on First Test Series 

SDU”. 
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Figure 4.4 – First Test Series SDU 

after overnight settling 

 

Second Test Series 

The second test series started with 50 g of the UO2F2 powder dissolved in 300 mL 

of water.  The precipitation setup was the same as it was for the first test series, except 

8% NaOH solution was loaded into the titration burette. The purpose of the first step of 

this series was to evaluate a partial precipitation technique for separating the iron from 

the uranium in the mixture.  In theory, the FeF3 solid and any dissolved Fe would be 

immediately converted to Fe(OH)3  solid at the first addition of NaOH and would remain 

insoluble at a pH lower than where the uranium would begin to precipitate as SDU.  A 

physical separation of the iron from the uranium at pH of about 4.5 was thought to be 

possible.  As the titration began, a rust colored precipitate soon formed, so it looked as if 

the reaction was following the prediction.  As the titration reaction progressed, however, 

some yellowing occurred in the precipitate.  After a slow addition of 17.6 mL of NaOH, 
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the pH measured 4.5.  The titration was stopped and the mixture was transferred to a 

graduated cylinder for a settling test. 

The settling test data are shown in Table 4.2 following.  The starting volume of 

the mixture was 315 mL on the graduated cylinder. 

 

Table 4.2 – Second Test Series, Partial Precipitation of Iron Sediment Settling 

Settling Time (min) 

Volume of 

Supernate Liquid 

(mL) 

Volume of Slurry 

(mL) 
Comments 

10 305 10 Murky supernate 

20 307.5 7.5  

30 307.5 7.5 Some clearing 

40 307.5 7.5 Clear 

50 307.5 7.5  

60 307.5 7.5  

80 307.5 7.5  

100 307.5 7.5  

120 307.5 7.5  

Overnight 307.5 7.5 Clear* 
*Had a slight haze to about 15 mL above slurry 
 

The result of the settling was a very rapid separation to a fixed fraction of solids 

and liquid that did not change even with extended settling.  A yellowish caste remained in 

the precipitate indicating some SDU had precipitated with the iron. 

 

 

Figure 4.5 – Settling of Fe(OH)3 Solid 
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The purpose of the next steps of this series was to filter the mixture to separate the 

iron precipitate and then set up the filtrate to complete the precipitation of SDU. 

 

 

Figure 4.6 – Siphoning off supernate liquid before filtering out 

Fe(OH)3 solids 

 

The filtration yielded 265 mL of filtrate which was put into a beaker for titration 

with additional 8% NaOH solution.  The filtrate volume had been reduced by the solids 

removal and some evaporation losses during the previous overnight settling test.  The 

Hanna electrical pH meter was set up for the first time and its probe was submerged in 

the beaker of filtrate before the titration began.  It took about 20 minutes for the pH meter 

to stabilize at a starting reading of 5.05 (versus pH 4.50 by p-Hydrion paper measurement 

at the end of the previous day).  Table 4.3 and Figure 4.7 show the SDU precipitation 

data and the pH readings on the Hanna instrument. 
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Table 4.3 – Second Test Series, SDU Precipitation 

Time mL NaOH Added pH Meter Reading Comments 

9:30 0 5.05  

9:45 6.5 5.34 Precipitation starting 

10:00 17.2 5.58 Additional precipitate 

10:10 24.2 5.81  

10:22 36.0 6.38  

10:30 43.4 6.91  

10:40 50.0 7.37 Heavy precipitation 

10:50 60.0 7.87  

11:00 74.0 8.38  

11:10 86.0 8.74 Precipitation about done 

11:20 98.5 9.19  

11:25 100.0 9.22 Stop and reload burette 

11:35 107.5 9.50 Precipitation done 

11:45 114.0 10.08  

11:55 121.2 10.90  

12:05 128.8 11.63  

12:07 129.5 11.62 Stopped titration 

 

 

 

Figure 4.7 – Graph of Second Test Series, SDU Precipitation pH Curve, pH v. Volume 

NaOH Added (mL) 
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Figure 4.8 – Titration set-up 

 

The magnetic stirring was stopped to install the temperature probe into the beaker.  

Just after the stirring stopped, preliminary observations of the settling characteristics were 

noted.  The estimated supernate volume in the beaker for each time period is shown in 

Table 4.4 below, as a prior-to-digestion settling data set. 

 

Table 4.4 – Second Test Series, SDU Settling, No Digestion Period 

Time Estimated Supernate Volume (% of total volume) 

12:11 0 

12:16 50 

12:21 70 

12:31 73 

13:35 73 

 

 

These data indicated that even without a heated digestion period to promote 

particle size growth, the solids settled into the bottom 27% of the beaker within 20 

minutes. 
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Figure 4.9 – SDU settling, no digestion period 

 

 

Figure 4.10 – Graph of the Estimated Supernate Volume (%) over Time (min) for Second 

Test Series, SDU Settling, Without a Digestion Period 

 

At 13:40 the magnetic stirrer was re-started and the heating plate under the beaker 

was turned on.  The temperature of the slurry was elevated to 35-40°C and held there for 

about 2 hours to give the mixture a digestion period.  Next, the mixture was poured into a 

graduated cylinder along with about 5 mL of water used to rinse out the beaker.  The 

settling test data for the 400 mL of digested slurry follows in Table 4.5. 
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Table 4.5 – Second Test Series, SDU Settling, With Digestion Period 

Time Supernate Volume (mL) Slurry Volume (mL) 

15:45 0 400 

15:50 160 240 

15:55 240 160 

16:00 275 125 

16:05 290 110 

16:10 300 100 

16:15 310 90 

16:20 315 85 

16:25 315 85 

16:30 315 85 

Overnight 317.5 82.5 

 

 

An interesting observation of the data in Table 4.4 and Table 4.5 shows that a 

twenty minute settling gives almost exactly the same sediment volume fraction (about 

27%), indicating that heated digestion at about 40°C does not improve settling rates of 

the slurry sediment—at least not in the early stages of the settling.  A graph display of the 

data and photos follow. 
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Figure 4.11 – Graph of the Supernate Volume (mL) over Time (min) for Second Test 

Series, SDU Settling, With 2 hour Digestion Period 

 

 

 

 

Figure 4.12 – Second Test Series, SDU settling after 2 hour digestion 
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The next step in this series was used to convert the solid SDU into a solution of 

uranyl carbonate and further remove any carryover iron contamination.  This was 

accomplished by mixing the SDU with a solution of Na2CO3 and/or NaHCO3 at a pH of 

about 10.1.  The two carbonate reagents used were 10% Na2CO3, which measured at a pH 

of 11.84, and saturated NaHCO3, which measured at a pH of 8.27. 

The settled mixture from the graduated cylinder in the previous test was filtered to 

separate the SDU from the NaF solution present at that stage of the process. The SDU 

filter cake was recovered from the filter paper and put into a beaker with 300 mL of 10% 

Na2CO3 solution.   This mixture was stirred for 45 minutes to break up the SDU filter 

cake, then heated to 35°C for one hour while stirring.  The mixture was then poured into 

a storage bottle and allowed to settle overnight.  The next day the mixture had separated 

into about two-thirds clear yellow solution and one-third tan colored sediment.  The tan 

sediment color (instead of a bright yellow) indicated that some iron was still present, and 

because of the sizeable amount of sediment, not all of the SDU had been converted into 

soluble uranyl carbonate complex.  The pH of the mixture was also high, at 11.83. 

 

 

Figure 4.13 – Filtration set-up, SDU Filter Cake, SDU filtrate (NaF Solution) 
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Figure 4.14 – SDU Filter Cake in Beaker, Sodium Carbonate/Bicarbonate mixture (pH=10), Slurry 

of SDU and 300 mL of 10% Na2CO3 solution 
 

 

Figure 4.15 – Uranyl Carbonate Solution 

after overnight settling.  Yellow sediment 

at the bottom shows that not all of the 

SDU has been converted. 
 

These results led to a decision to re-treat the mixture with additional carbonate 

this time using the 8.27 pH, NaHCO3 solution as the carbonate source in order to lower 

the pH of the mixture toward the target of 10.1.  First, 50 mL of water was added and the 

pH was checked again.  It was measured at 11.81, which was almost exactly the same.  
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Next, 100 mL of the NaHCO3 solution was loaded into a burette and slowly added to the 

mixture.  The pH decreased to 10.45.  Another 100 mL increment was similarly added 

and the pH decreased to 10.12.  By this time the 600 mL beaker being used was nearly 

full, so the mixture was split into two portions with one portion placed into a storage 

bottle for an extended settling period and the other portion returned to the beaker for 

additional processing. 

Addition of another 50 mL of NaHCO3 to the beaker decreased the pH to 9.95, at 

which point no further NaHCO3 was added.  The mixture was then heated to 40°C and 

poured into a storage bottle.  The final pH of the heated mixture was 9.84.  After 

overnight settling both halves of the mixture had light brown flocculent precipitates with 

the volume of precipitate in the heated portion about half the volume in the unheated 

portion.  

 

 

Figure 4.16 – Final UCO3 Products. Clear, yellow uranyl carbonate 

solution, with thin layers of brown sediment (most likely iron 

carryover). 
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The continuing presence of the light brown flocculent precipitate indicated that 

there was some iron carryover from the earlier pH 4.5 separation step.  That, coupled 

with the indication that some uranium also precipitated around the pH 4.5 region, pointed 

to a precipitation overlap, and suggested that the anticipated clean separation of the two 

elements at that condition does not occur.  With that being the case, a decision was made 

to modify the process to completely precipitate the iron and uranium together at pH 11 – 

12, then use the carbonate extraction of the uranium step to separate the two elements. 

The purpose of the next test in the second series was to separate the uranium from 

the solution of residual sodium compounds.  The technique was to precipitate the 

uranium as uranyl peroxide, perform a settling test on the peroxide crystals, and then 

physically separate the peroxide crystals from the solution mixture of sodium 

compounds. 

To begin, the first half of the sodium uranyl carbonate solution produced in the 

previous test was filtered to remove the iron precipitate remnant.  A 50 mL portion of the 

filtrate (pH 10) was then put in a beaker to serve as the initiation solution.  A total of 25 

mL of 20% nitric acid was slowly added to the carbonate until the pH was reduced to 2.0.  

Bubbles of CO2 formed and dissipated as the acid reacted with the carbonate.  One 

burette was filled with 100 mL of 35% H2O2 and another burette was filled with 100 mL 

of the carbonate filtrate.  Both burettes were mounted above the beaker of starter solution.  

A 125 mL squeeze bottle of 20% nitric acid was on standby. 

A slow drip of H2O2 was started and immediately a pale yellow (almost white) 

precipitate began forming in the starter solution.  Next a drip of the carbonate solution 

was started and the heating plate was turned on.  The pH gradually started to increase and 
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when it reached 7.0, nitric acid was added from the squeeze bottle to bring it back down.  

The two burette drips and intermittent squirts of nitric acid were continued with frequent 

pH checks attempting to hold the pH in the desired 3.5 – 4.5 range during the reaction.  

At the beginning there were both high and low excursions out of the desired pH range as 

the flows were juggled, but as experience developed, better pH control resulted.  The 

additions continued until all of the carbonate solution had been used up.  The final tally 

of inputs was:  230 mL carbonate solution, 35.6 mL 35% H2O2, and 95 mL 20% HNO3.  

The mixture was stirred while heated to 45°C for 1.5 hours, then the heat was turned off 

and the mixture was left stirring slowly for 72 hours, to allow the peroxide precipitation 

to complete.  The pH after the heating had fallen to 3.0, evidence of a continuing 

peroxide precipitation reaction. 

 

 

Figure 4.17 – UO4 Precipitation 
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After the 72-hour stirring period, the pH had fallen further to 1.5, so some extra 

Na2CO3/NaHCO3 mix was added to bring the pH back up to 4.0.  During the 72-hour 

period, there had also been a substantial evaporation loss from the beaker such that only 

195 mL remained of what had started out as 360 mL.  The mixture was poured into a 

graduated cylinder for a settling test, which test data can be found in Table 4.6. 

 

Table 4.6 – Second Test Series, First Half, UO4 Settling Test 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 195 

10 5 190 

20 5 190 

30 10 185 

60 15 180 

80 20 175 

100 22 173 

120 25 170 

2 days 42 153 

 

 

 

Figure 4.18 – Graph of Supernate Volume (mL) over Time (min) for Second Test Series, 

First Half, UO4 Settling 
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Figure 4.19 – Settling of Second 

Test Series, First Half, UO4 

 

The settling data indicated that the peroxide particle size was very small and that 

separation may be quite difficult.  This was not the case, however, as the subsequent 

filtration required only 23 minutes.  The peroxide crystals were scraped off the filter 

paper and placed in an open container in the process hood to air dry.  The dried crystals 

were placed in a tared sample bottle, and had a net weight of 30.24 g UO4·nH2O.  The 

filtrate was a clear solution and a portion of it was also placed in a sample bottle for 

subsequent analyses. 

 

Figure 4.20 – Filtration of Second Test Series, First Half, UO4. From left to right: 

filtration apparatus, UO4 filter cake, UO4 in container to air dry. 
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The second half of the second series carbonate extract solution was then filtered 

to remove the trace of Fe(OH) 3  solid and was transferred to a beaker.  The solution was 

precipitated with hydrogen peroxide using the same burette setup and titration technique 

described previously for the first half to completely precipitate the UO4 from the solution.  

The total reagents used were 394 mL carbonate solution, 65.6 mL 35% H2O2, and 156 

mL 20% HNO3.  The final slurry was put into a graduated cylinder for a settling test with 

the results in Table 4.7, below. 

 

Table 4.7 – Second Test Series, Second Half, UO4 Settling Test 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 500 

10 452 48 

20 460 40 

30 460 40 

40 470 30 

50 470 30 

60 470 30 

 

 

The settling data showed very rapid initial settling and a very complete separation 

of 6% slurry and 94% supernate liquid, after 40 minutes.  The mixture was then filtered, 

along with the remaining slurry that would not fit into the settling test cylinder and the 

UO4 cake was air dried for one week.  The air-dried cake weighed 27.82 g. 

 

Auxiliary Tests on First Test Series SDU 

An auxiliary series of processing was carried out using the SDU/Fe(OH)3 co-

precipitate slurry made from the first test series.  The purpose of these tests was to 

evaluate an iron-uranium separation after a complete co-precipitation of both had been 
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done.   Since an iron separation on this slurry had not been attempted, it was ideal to use 

it to test the concept of making the iron separation at the carbonate extraction step rather 

than at the pH 4.5 partial precipitation step used in the Series 2 sequence.  Also, since the 

Na2CO3/NaHCO3 mixture used in the Series 2 carbonate extraction yielded such a high 

final pH (11.84), it was decided to use only NaHCO3 (pH 8.27) as the extractant in the 

auxiliary test.  Processing at room temperature (no heating) was a third variant added to 

the test technique. 

The SDU/FeOH3 slurry from the Series 1 precipitation was filtered and the solids 

were scraped off the filter paper into a beaker.  A 50 mL allotment of water was used to 

help wash off the filter paper, and was added to the beaker and stirred to re-slurry the 

SDU/FeOH3 solids.  The pH of the mixture was 7.6. 

A burette was filled with 100 mL of the saturated NaHCO3 solution and a drip 

was started, adding NaHCO3 solution to the SDU/FeOH3 slurry.  The beaker was not 

heated during this test.  The pH measured 7.5 after 50 mL of the carbonate solution was 

added and 7.7 after 100 mL was added.  Addition of carbonate solution was halted at this 

point and the mixture was put into a storage bottle and left to settle.  After settling, the 

solids had almost completely dissolved leaving a bright yellow solution over a thin, dark-

brown sediment layer. 

This mixture was filtered to remove the dark-brown iron sediment, and 50 mL of 

the filtrate was put into a small container as a starter solution. 
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Figure 4.21 – Uranyl Carbonate Solution prepared from First Test 

Series SDU and NaHCO3, then filtered.  This is the 50mL put into a 

small container that served as a starter solution. 

 

A burette was filled with 100 mL of the filtrate, and was mounted above the small 

starter solution container, along with a second burette containing 35% H2O2.   To begin 

the uranyl peroxide precipitation, 18.4 mL of 20% HNO3 plus 1.6 mL of 35% H2O2, plus 

an additional 20 mL of the filtrate were added to the container, at which point the mixture 

was transferred to a 600 mL beaker.  Additional carbonate, acid and peroxide were 

slowly added in proportions to keep the pH in the 3.0 – 4.0 range.  Once again the beaker 

was not heated.  The tally of reagents at the end of the precipitation was 194 mL 

carbonate solution, 32.1 mL 35% H2O2, and 27.3 mL 20% HNO3.  The final pH was 3.5.  

The mixture was poured into a graduated cylinder for a settling test, with data shown in 

Table 4.8, below. 

 

Table 4.8 – First Test Series, Auxiliary Testing, UO4 Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 235 

10 10 225 

20 14 221 
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30 25 210 

40 40 195 

50 57 178 

60 85 150 

80 97 138 

100 105 130 

120 110 125 

2 days 155 80 

 

 

 

Figure 4.22 – Graph of Supernate Volume (mL) over Time (min) for First Test Series, 

Auxiliary Testing, UO4 Settling 
 

 

Figure 4.23 – First Test Series, Auxiliary Testing, UO4 Settling 
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It is noteworthy that the settling results for the room temperature tests in the 

auxiliary and second half of Series Two portions were considerably better than the results 

of the same settling test in the first half of the Series Two work, indicating that larger 

particle sizes resulted from room temperature reaction conditions.  

After 48 hours of settling, the mixture was filtered and the UO4·nH2O crystals 

were scraped off the filter paper and put into an open container in the work hood.  After 

air-drying for 48 hours, the crystals were put into a tared sample bottle, and the net 

weight of the dried crystals was 17.76 g.  A uranium material balance calculation on this 

weight, however, indicated some water was still present in the crystals so a heated re-

drying was planned for later.  A sample bottle of the filtrate was also collected for 

analysis.  

 

 

Figure 4.24 – First Test Series, Auxiliary Testing, UO4 

(yellow solids) and filtrate (clear liquid) 
 

Third Test Series: KDU Testing with Potassium Bicarbonate 

A third test series was done using analogous potassium compounds in place of 

sodium compounds as the reagents.  The purpose of this series was to identify process 

differences and detect any possible advantages for using potassium compounds.  Very 
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little information exists regarding the use of potassium compounds in uranium processes 

so another goal was to expand the knowledge of what results can be expected.  The 

experiment protocols used were, for the most part, the same as those used for the sodium 

tests, but followed the modified recovery process outlined at the end of Chapter 3, and in 

Figure 4.7. 

The first test started with 50 g of the UO2F2 powder dissolved in 300 mL of 

distilled water.  That mixture was titrated using a burette filled with 100 mL of 15% 

KOH solution, and a KDU/Fe(OH)3 mixture was produced.  The titration was done very 

slowly, with heating, to observe any differences and keep the reaction mixture close to 

equilibrium.  Table 4.9 below shows the data collected. 

 

Table 4.9 – Third Test Series, KDU Precipitation 

Vol. KOH Added 

(mL) 
pH Temp. (°C) Comments 

0 1.0 22 Clumps of precipitate, redissolved 

4 1.5 30  

6 2.0 32  

8 3.5 35  

10 3.5 36  

12 4.0 37  

14 4.0 38 Clumps more persistent 

16 4.5 39 Color darkening yellow/brown 

18 5.0 39  

20 5.0 39  

24 5.5 39 Clumps stopped forming 

28 6.0 39 Persistent yellow/brown precipitate 

32 6.5 39 Precipitate more grainy 

36 6.5 39 Precipitate getting uniform 

40 7.0 39  

44 7.0 39  

49 7.0 39  

57 7.5 39 Precipitate very uniform 

67 7.5 39  

77 8.0 39  
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87 9.0 39  

100 9.5 38 Precipitation appears complete 

 

 

 

Figure 4.25 – Graph of pH v. Time (min) for Third Test Series, KDU Precipitation 

 

The KDU mixture was poured into a graduated cylinder for a settling test.  Of the 

400 mL of liquid titrated, 20 mL were lost to evaporation during the 2 hour titration so 

the volume for the settling test was 380 mL.  Table 4.10, below, shows the settling data. 

 

Table 4.10 – Third Test Series, KDU Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 380 

10 95 285 

20 160 220 

30 200 180 

40 225 155 

50 240 140 
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60 245 135 

80 255 125 

100 255 125 

120 257.5 122.5 

2 days 260 120 

 

 

 

Figure 4.26 – Graph of Supernate Volume (mL) over Time (min) for Third Test Series, 

KDU Precipitate Settling 

 

After 7 days, the settled mixture was filtered to recover the precipitate.  An 

additional 13 mL of evaporation loss had occurred from the graduated cylinder, so a total 

of 367 mL of mixture plus a few mL of water used to rinse out the graduated cylinder 

were filtered.  The filter cake was scraped of the filter paper, was re-slurried in 50 mL of 

water, and was put in a storage bottle.  The filtrate had a pH of 7.0, indicating that the 

precipitation reaction had continued after the titration had stopped causing the pH to 

decrease from 9.5 to 7.0.  A few drops of KOH solution were added to the filtrate, 
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resulting in more precipitate forming in the filtrate, so the decision was made to resume 

the titration on the filtrate.  Two 10 mL portions of KOH were then added to the filtrate.  

The first raised the pH to 8.5 and the second raised the pH to 11.5.  A moderate amount 

of additional precipitate formed in the filtrate, so the 395 mL of mixture was heated to 

40°C for a one-hour digestion, and was then poured back into a graduated cylinder for a 

settling test, the data of which is shown in Table 4.11.  

 

Table 4.11 – Third Test Series, Additional KDU Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 395 

10 75 320 

20 135 260 

30 185 210 

40 220 175 

50 245 150 

60 265 130 

2 days 332 63 

 

 

 

Figure 4.27 – Graph of Supernate Volume (mL) over Time (min) for Third Test Series, 

Additional KDU Settling 
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Figure 4.28 – Third Test Series 

KDU Extraction after settling. 
 

After two days the settled mixture was filtered and the filter cake was re-slurried 

in 50 mL of water and put into a storage bottle.  The filtrate test pH 11.5 indicating the 

precipitation reaction had gone to completion in the second titration.  The filtrate was 

saved in a storage bottle for later analysis.  

The next step was to set up for carbonate extraction of the KDU filter cakes.  

Because of the good results using NaHCO3 as the extractant in the auxiliary series above, 

it was decided to use its analog, KHCO3,  for the first potassium-based carbonate 

extraction.  A solution of KHCO3 could not be obtained, so a crystalline solid version of 

the compound was procured, and a solution was prepared by dissolving 90 g of the 

KHCO3 crystals in 300 mL of distilled water.  This solution tested at pH 7.5, somewhat 

lower than the 8.27 measured for the NaHCO3 solution.  The filter cakes from the two 

KDU/Fe(OH)3 filtrations, 100 mL of water, and the filter paper rinse waters were 

combined in a beaker and stirred to re-slurry the solids.  The combined mixture volume 
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was 175 mL.  A burette was filled with 100 mL of the KHCO3 solution, as prepared 

above, and was mounted over the beaker.  The titration data is shown in Table 4.12. 

 

Table 4.12 – Third Test Series, First Uranyl Carbonate Extraction Titration 

Time (min) Vol. KHCO3 Added (mL) pH Comments 

0 0 7.0  

4 10 7.0  

13 20 7.0  

19 30 7.0  

22 40 7.0 Beginning to see bubbles 

25 50 7.0  

28 60 7.0 More vigorous bubbles 

31 70 7.0  

33 80 7.0  

37 90 7.0  

39 100 7.0 Stopped to reload burette 

43 - - Started back up 

46 110 7.0 Getting brown color in slurry 

49 120 6.7 Stopped titration 

 

 

The slurry was then poured into a graduated cylinder to start a settling test.  

Bubbles continued to form but no settling was observed, so the settling test was aborted 

and the mixture was put back into a beaker and placed on the stir plate.  The heater was 

turned on and the mixture was warmed to 40°C.  Once this temperature was reached, an 

additional 40 mL of KHCO3 solution was slowly added, which generated even more 

bubbles, indicating that the pH was so low that the carbonate was breaking down into 

CO2.  At a low enough pH, the carbonate reacts with the nitric acid before it can react 

with the uranium and following reaction takes place before the uranyl carbonate can 

form. 

                        (4.1) 
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To counteract this, a 4 mL allotment of 15% KOH solution was added to the 

mixture to pull the pH back up, and the bubbling stopped.  The mixture was poured back 

into the graduated cylinder, but no immediate settling occurred.  The mixture was left in 

the graduated cylinder for 72 hours, after which the solids slurry had settled to 190 mL 

supernate liquid and 145 mL of combination KDU/Fe(OH)3 solids.  The mixture was 

filtered and the filter cake was scraped off the filter paper into a beaker.  The yellow 

colored filtrate was put into a storage bottle as the first carbonate extraction. 

 

Figure 4.29 – Third Test Series, First Carbonate Extraction.  High volume of solids on filter led to the 

belief that not all of the uranium had been extracted, so a second attempt was made. 
 

The substantial amount of solids left after the first uranyl carbonate extraction 

indicated that a significant amount of KDU did not dissolve as carbonate complex, so the 

cake in the beaker was mixed with 120 mL more KHCO3 solution.  That mixture was 

stirred and heated to 40°C for one hour and was then poured back into a graduated 

cylinder for four days.  The mixture pH was 9.0.  After four days, the mixture was 

filtered and the yellow colored filtrate was put into a storage bottle as the second 

carbonate extraction.  The filter cake was scraped off the filter paper, re-slurried in water 

and put into a storage bottle. 
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Figure 4.30 – Re-slurried solids from Third Test Series, first carbonate extraction 

 

 

Figure 4.31 – Left to right: Third Test Series, second 

carbonate extraction filtrate; Solids from second carbonate 

extraction, re-slurried in water. 

 

Three days later, the slurry in the storage bottle was put back into a beaker and a 

third carbonate extraction was done.  The mixture was heated to 40°C and 100 mL more 

of KHCO3 was slowly added.  The pH of the mixture started at 8.0 and remained at 8.0 

throughout the carbonate addition.  No evolution of bubbles occurred.  The heat was 

turned off and filtering preparations were started.  Before filtration was started, however, 
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the mixture separated quickly into a dark brown slurry above a tan sediment, as shown in 

Figure 4.32. 

 

 

Figure 4.32 – Attempted third carbonate 

extraction 

 

When filtration was started the slurry portion easily separated from the sediment 

layer so it was decanted off the top, through the filter.  Nearly all of the dark brown 

material decanted off the sediment so the filtration was stopped at the end of the 

decanting.  The filtered solid was a grainy, almost black material on the filter paper.  The 

filter paper was set aside to air dry and the sediment slurry was poured back into its 

storage bottle with enough KHCO3 solution to fill the bottle.  The filtrate was put in a 

separate storage bottle and set aside as the third carbonate extraction. 
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Figure 4.33 – Third Test Series, Third Carbonate Extraction filtration. 

Dark brown solids on filter are mostly iron; the yellow solids indicate the presence of even more uranium.  

It was determined that the potassium series made total uranium extraction too difficult.  The yellow liquid 

on the left is the third carbonate extraction filtrate. 
 

With the result so far that the KDU was substantially too resistant to the KHCO3 

extraction attempts, the decision was made to abandon further efforts on this approach.  

One final idea for using a potassium-based reagent was to repeat the carbonate extraction 

attempts with K2CO3 solution in place of KHCO3 solution. 

 

Fourth Test Series:  KDU Testing with Potassium Carbonate 

The fourth test series was put forth to duplicate the KOH precipitation sequence, 

then attempt to extract the uranium from the KDU with K2CO3 solution, while heating 

the reactions to about 40°C.  The batch size was reduced to half, so the series started with 

25 g UO2F2 dissolved in 150 mL water.  This solution was titrated with 15% KOH and 

Table 4.13 below shows the titration results. 
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Table 4.13 – Fourth Test Series, KDU Precipitation 

Time Vol. KOH Added (mL) pH Temp. (°C) 

1:52 0 1.0 22 

1:56 10 3.5 35 

2:01 20 5.0 37 

2:06 30 6.5 38 

2:12 40 7.0 39 

2:18 50 7.5 40 

2:24 60 8.0 40 

2:28 65 9.0 40 

2:33 70 9.5 40 

2:38 75 10.0 40 

 

 

The mixture was held at 40°C for one hour and was then poured into a graduated 

cylinder.  After four days, the pH of the mixture had decreased to 7.0, so 3 mL of KOH 

solution were added to bring the pH up to 12.  The mixture was filtered and the KDU 

cake was mixed with water and put into a storage bottle. 

A solution of 150 g K2CO3 in 300 mL water was prepared which measured pH 12.  

The water slurry of KDU was put in a beaker and titrated with the prepared K2CO3 

solution.  A total of 200 mL of carbonate solution were added to the mixture while 

holding the temperature at 40°C, then the heat was turned off and the mixture was 

continually stirred for 72 hours as a digestion step.  Even after the extended digestion 

time there was still substantial un-dissolved KDU remaining in the mixture, so further 

efforts were abandoned, and this concluded the study of potassium-based reagents.  The 

conclusion drawn from the testing was that while the KDU precipitation is just as 

adequate as the SDU precipitation, subsequent complete recovery of soluble uranyl 

carbonate from the KDU is much more difficult and not practical. 
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Fifth Test Series:  Modified SDU Confirmation 

A final uranium test series was performed as a confirmation run of the SDU 

techniques developed from the results of the first and second test series.   The tests started 

with 50 g of UO2F2 powder dissolved in 300 mL water which was put into a beaker and 

titrated with 8% NaOH, at room temperature.  The titration is recorded in Table 4.14 

below. 

 

Table 4.14 – Fifth Test Series, SDU Precipitation 

Time Vol. NaOH Added (mL) pH Comments 

9:23 0 1.0 Light green solution 

9:27 20 4.5 Local precipitate clumps, dark color 

9:32 40 5.0 More persistent precipitate 

9:37 60 7.0 More persistent heavy precipitate 

9:41 80 8.0 Heavy precipitate, dark yellow 

9:45 100 8.0  

9:52 120 8.0  

9:56 130 8.5  

10:02 140 9.0  

10:07 150 9.0  

10:11 160 9.5  

10:16 170 10.0  

10:19 180 11.0  

10:20 180 11.0 Started one-hour digestion 

11:20 180 8.0 Still heavy precipitate, but low pH 

11:21 185 9.0  

11:22 190 9.5  

11:23 195 9.5  

11:24 200 9.5  

11:25 205 9.7  

11:26 210 10.0  

11:26 215 11.0 Started second hour-long digestion 

12:26 215 9.5  

12:27 225 11.0 Precipitation complete 
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Figure 4.34 – Graph of Fifth Test Series, SDU Precipitation pH Curve, pH v. Volume 

NaOH Added (mL) 
 

 

Figure 4.35 – Fifth Test Series SDU Precipitation 

 

The precipitation slurry and a small amount of rinse water were transferred to a 

graduated cylinder for a settling test.  Results of that test are in Table 4.15. 
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Table 4.15 – Fifth Test Series, SDU Settling 

Time Supernate Volume (mL) Slurry Volume (mL) 

12:42 0 528 

12:52 63 465 

13:02 108 420 

13:12 153 375 

13:22 191 337 

13:32 228 300 

13:42 253 275 

13:52 298 230 

14:02 318 210 

14:12 328 200 

14:22 343 185 

14:32 358 170 

14:42 363 165 

Overnight 383 (pH=10.5) 145 (27.5% of total volume) 

 

 

 

 

Figure 4.36 – Graph of Volume Supernate Liquid (mL) over Time (min) for Fifth Test 

Series, SDU Settling 
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Figure 4.37 – Fifth Test Series SDU Settling 

 

The mixture in the graduated cylinder was then filtered (filtration time = 14 

minutes) and the filter cake was scraped into a beaker where 200 mL of saturated 

NaHCO3 solution was added.  The mixture was stirred for about 15 minutes then another 

100 mL of NaHCO3 and 150 mL water was added.  The mixture was stirred for another 

hour, and the stirring was stopped and the slurry was allowed to settle for 15 minutes, so 

that the color intensity of the supernate liquid might be observed.  The color was only 

moderately intense, indicating that not much uranyl carbonate had been produced, so the 

stirring was resumed and the heater was turned on.  The slurry was heated to 40°C and 

stirred for an additional hour after which it was poured into a graduated cylinder for a 

settling test.  The settling was slow with only 21% supernate separation after one hour of 

settling.  The mixture was then filtered (filtration time = 1 hour 35 minutes).  The filtrate, 

which was the first carbonate extraction for this series, was put into a storage bottle.  The 
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filter cake was re-slurried in 250 mL water (slurry pH 10) and put into a storage bottle 

overnight. 

The next day, the slurry was put back into a beaker and 8 mL of 20% HNO3 was 

added to decrease the pH to 8.0.  100 mL of saturated NaHCO3 solution was added and 

the mixture was stirred at room temperature for one hour, and then poured back into a 

graduated cylinder.  Settling was observed to be once again very slow, so the mixture was 

put back into a beaker and another 8 mL of acid was added to decrease the pH to 7.5.  

The heater was turned on and the mixture was stirred for one hour at 40°C.  The volume 

of mixture at that point was 290 mL, which was poured back into a graduated cylinder 

and kept there overnight. 

The next day, the mixture had settled to 200 mL supernate liquid and 90 mL 

slurry, with a pH of 7.5.  It was filtered, and the intensely colored filtrate was designated 

as the second carbonate extraction.  The filter cake was re-slurried in 100 mL water and 

100 mL saturated NaHCO3.  It was then stirred and heated to 40°C for 1 hour 35 minutes, 

and then poured into a graduated cylinder.  The 220 mL of mixture had completely 

separated into 200 mL of intensely colored supernate liquid and 40 mL of a dark brown 

slurry after one hour.  The final pH was 8.0.  After filtering, the filtrate was designated as 

the third carbonate extraction and the brown filter cake was placed in a small container to 

air dry.  After 72 hours of drying, the brown residue net weight was 2.157 g.  The 

theoretical residue weight from 50 g of starting material dosed with 3% FeF3 would be 

about 0.03 x 50 = 1.5 g Fe(OH)3,  so the maximum SDU carryover possible is 0.657 g or  

0.657/49.92 x 100 = 0.013 or 1.3% of the original SDU in this series.  Un-evaporated 
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water likely contributed some to the residue weight so the actual SDU carryover loss was 

likely less than 1%. 

 

 

Figure 4.38 – Fifth Test Series SDU Carbonate Extraction 1. 

Residual solids are on the left, re-slurried in water.  Carbonate 

extraction is on the right. 
 

 

Figure 4.39 – Fifth Test Series SDU Carbonate Extraction 2. 

Residual solids on the left and carbonate extractions #2 and #1 on 

the right. 
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Figure 4.40 – Fifth Test Series SDU Carbonate Extraction 3. 

The final bit of deep brown residue is on the left and all three carbonate extractions are 

on the right. 
 

The three carbonate extractions totaled more than the capacity of the processing 

beaker, so they were peroxide precipitated in three batches comprised as follows:   

1.   Batch 1 was the entire first carbonate extraction 

2.   Extractions 2 and 3 were combined, then divided in half to make Batch 2 and 

Batch 3 for the peroxide precipitation. 

The data for each of the batches follows. 

 

Batch 1 

First, 100 mL of extract starter solution was added to a beaker, and 20% HNO3 

was added slowly to reduce the pH to 3.5.  Then the combined slow addition of H2O2, 

extract solution, and acid commenced.  The data is shown in Table 4.16 below.  
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Table 4.16 – Fifth Test Series, Batch 1, UO4 Precipitation 

Volume Carbonate 

(mL) 

Volume H2O2 (mL) Volume HNO3 (mL) pH 

100 0 0 11.5 

100 0 2 7.5 

100 0 4 7.0 

100 0 15 6.0 

100 0 17 5.0 

100 0 20 5.0 

100 0 21 4.5 

100 0 22 3.5 

200 26 42 3.5 

300 55 64 2.5 

400 82 83 4.0 

412 84 87 3.5 

 

 

 

Figure 4.41 – Fifth Test Series, Batch 1, UO4 

precipitation. 
 

The mixture was stirred overnight, then put into a graduated cylinder for a settling 

test.  The data from the settling test is shown in Table 4.17. 
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Table 4.17 – Fifth Test Series, Batch 1, UO4 Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 550 

10 180 370 

20 235 315 

30 305 245 

40 365 185 

50 400 150 

60 425 125 

80 450 100 

100 455 95 

120 455 95 (17.2% of total volume) 

 

 

The mixture was then filtered, and the filter cake was scraped into a container for 

air drying.  The filtrate was put into a storage bottle. 

 

 

Figure 4.42 – Graph of Volume Supernate Liquid (mL) over Time (min) for Fifth Test 

Series, Batch 1, UO4 Settling 
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Figure 4.43 – Fifth Test Series, Batch 1, UO4 

settling. 
 

 

Figure 4.44 – Fifth Test Series, Batch 1, UO4 filter 

cake (left) and filtrate (right). 
 

Batch 2 

The peroxide precipitation technique was the same as Batch 1 and the data is in 

Table 4.18. 
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Table 4.18 – Fifth Test Series, Batch 2, UO4 Precipitation 

Volume Carbonate (mL) Volume H2O2 (mL) Volume HNO3 (mL) pH 

100 0 0 8.8 

100 0 10 6.0 

100 0 12 3.5 

200 26 26 3.5 

300 50 40 4.0 

 

 

The mixture was stirred for 1.5 hours and then poured into a graduated cylinder 

for a settling test.  Table 4.19 shows the settling data. 

 

Table 4.19 – Fifth Test Series, Batch 2, UO4 Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 360 

10 30 330 

30 100 260 

40 130 230 

50 160 200 

60 190 170 

80 230 130 

100 265 95 

120 265 95 
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Figure 4.45 – Graph of Volume of Supernate Liquid (mL) over Time (min) for Fifth Test 

Series, Batch 2, UO4 Settling 
 

 

The mixture was then filtered, and the filter cake was scraped into a container for 

air drying.  The filtrate was put into a storage bottle. 

 

 

Figure 4.46 – Fifth Test Series, Batch 2, UO4 filter 

cake (left) and filtrate (right). 
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Batch 3 

Peroxide precipitation technique was the same as Batches 1 and 2, and the data is 

in Table 4.20. 

 

Table 4.20 – Fifth Test Series, Batch 3, UO4 Precipitation 

Volume Carbonate (mL) Volume H2O2 (mL) Volume HNO3 (mL) pH 

100 0 0 8.0 

100 0 11 3.0 

200 28 26 3.5 

221 34 29 4.0 

 

 

The mixture was stirred overnight then poured into a graduated cylinder for a 

settling test.  Table 4.21 below shows the settling data. 

 

Table 4.21 – Fifth Test Series, Batch 3, UO4 Settling 

Time (min) Supernate Volume (mL) Slurry Volume (mL) 

0 0 253 

10 43 210 

20 88 165 

30 126 127 

40 163 90 

50 178 75 

60 183 70 

80 183 70 

100 183 70 

120 183 
70 (27.7% of total 

volume) 
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Figure 4.47 – Graph of Volume of Supernate Liquid (mL) over Time (min) for Fifth Test 

Series, Batch 3, UO4 Settling 
 

 

The mixture was then filtered, and the filter cake was scraped into a container for 

air drying.  The filtrate was put into a storage bottle. 

 

 

Figure 4.48 – Fifth Test Series, Batch 3, UO4 filter 

cake (left) and filtrate (right). 
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Removal of Fluoride Using a Calcite Bed 

The sodium fluoride (NaF) solution recovered from the filtration of the Series 

Five SDU slurry was heated to 70°C and percolated through a 2.54 cm diameter column, 

partially filled with a 0.04 cm sized granular calcite (CaCO3), in order to test the ability 

of the calcite to capture the fluoride and remove it from the solution. 

 

 

Figure 4.49 – Calcite column apparatus. 

 

The reaction involved was the formation of CaF2 within the calcite crystal 

structure via the reaction given in Eqn. 3.6 and reiterated below. 

 

                        

 

Literature information indicated it was necessary to lower the pH of the solution 

from the original pH of 11 to about 6 or less, in order for the reaction to proceed.  Early 

expectations were that a single pass of the solution through the calcite bed would remove 
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nearly all the fluoride.  The actual testing, however, showed this was not the case 

because, as the reaction progressed, the Na2CO3 produced quickly raised the pH back up 

to 11 and stopped the reaction long before all the fluoride was captured.  To counter that 

situation, a technique was developed to collect the solution after each pass and re-acidify 

it back to below pH 6.   A series of nine consecutive passes were performed using this 

technique, generating the following data: 

 

Table 4.22 – pH Change with Each Pass through Calcite Column 

Pass Number 
Volume 20% HNO3 

Added (mL) 
pH In pH Out 

1 37 5 11 

2 18 5 11 

3 12 5 10 

4 8 4 9 

5 2 5 8 

6 1.5 4 7 

7 1 3 6.75 

8 0.4 4 6.5 

9 0.2 5 6.5 

 

 

The data showed that after the seventh pass, the pH was stabilizing, indicating 

that nearly all the fluoride had reacted.  The slight pH movement on pass 8 and 9 were 

likely a reaction of the acid present with the calcite itself rather than the formation of 

Na2CO3.  Confirming fluoride analyses on samples of solution from each pass were not 

available due to a lack of analytical means for that element.  The samples were saved for 

later analysis, if needed.  Figure 4.49 displays a graph of the data. 
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Figure 4.50 – Graph of pH In and pH Out for each pass through the calcite column. 

 

UO4 and Filtrate Analysis 

The UO4·nH2O product collected from each portion of the precipitation test was 

first air dried at room temperature, then weighed on an analytical balance in order to 

project a material balance for each series of experiments.  Preliminary calculations using 

the air-dried weights, however, gave uranium recoveries in excess of 100% so an add-on 

drying procedure was implemented in an attempt to remove as much excess water as 

possible.  Each batch of filter cake was re-dried at 180°C for 1.5 hours then cooled and 

re-weighed.  The results were then compared with the stoichiometric prediction from the 

precise weight of the starting feed material.  The results are shown in Table 4.23 below.  

Note that the starting material UO2F2 actual weight was decreased by the known 3% of 

FeF3 that was added to simulate cylinder wash solution.  
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Table 4.23 – Mass UO4·nH2O from Each Series 

Series Number Net wt. (g) UO2F2 wt. (g) 
UO4 predicted 

(g) 

UO4·nH2O  

actual (g) 

1 (“Aux”) 15.8142 15.3398 15.9375 16.4086 

2 (Combined) 50.2060 48.6998 50.5972 50.9737 

5 (Confirm) 50.0920 48.5892 50.4823 52.1118 

 

 

The results showed consistently more recovery than what was predicted from 

stoichiometric calculations indicating that there was likely still some water trapped in the 

matrix of the material. 

To better evaluate the uranium recovery, samples of UO4·nH2O were taken from 

the second and fifth test series and were dried to remove the water from the UO4.  This 

was done using a Netzsch TG 409 CD thermobalance.  The initial mass was taken for a 

sample, it was loaded into the machine, and it was dried in an argon environment at 420-

450°C, for 2-3 hours.  After drying, the mass of each sample was taken to determine the 

percentage of mass lost, and this data was used to determine the amount of uranium 

recovered. 

First, the mass of UO2F2 powder, dosed with 3 wt% FeF3, was corrected for just 

the UO2F2 mass.  This was then multiplied by the mass fraction of U in UO2F2, to obtain 

the initial mass of uranium present in each series.  This data is shown in Table 4.24. 

 

Table 4.24 – Mass of Uranium before Recovery Process 

Series Number Mass UO2F2 (g) 
Mass Fraction U in 

UO2F2 

Initial Mass U 

(g) 

1 15.3398 0.772727 11.8535 

2 48.6998 0.772727 37.6317 

5 48.5892 0.772727 37.5462 

 



78 
 

 

Next, a small sample of UO4·nH2O was taken from each series, and was dried in 

the thermobalance, which recorded the change in mass over time, while the drying took 

place.  This allowed for a mass reduction percentage to be calculated, as seen in Table 

4.25. 

 

Table 4.25 – Drying Data 

Series 

Number 

Initial Mass 

UO4 (g) 

Drying 

Temp (°C) 

Time Dried 

(minutes) 

Mass UO4 

After Drying 

(g) 

% 

Reduction 

in Mass 

2 1.0364 420 120 0.7941 23.3790 

5 1.1681 450 180 0.9029 22.7035 

 

 

The mass reduction percentage of each sample was extrapolated to the entire mass 

of UO4·nH2O for its respective series, in order to calculate the final mass of UO4 from the 

series.  The mass fraction of U in UO4 was calculated and the mass of UO4 was 

multiplied by this fraction to determine the mass of uranium recovered from the process, 

for each series.  This was then used to determine the percentage of uranium recovered in 

each series.  This data can be seen in Table 4.26 

 

Table 4.26 – Mass of Uranium Recovered 

Series 

Number 

Mass 

UO4·nH2O 

(g) 

Mass 

Reduction 

Fraction 

During 

Drying 

Mass 

UO4 (g) 

Mass 

Fraction 

U in UO4 

Mass U 

Recovered 

(g) 

% 

Uranium 

Recovered 

2 50.9737 0.766210 39.0566 0.788079 30.7797 81.7919 

5 52.1118 0.772965 40.2806 0.788079 31.7443 84.5473 
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 A sample of the UO4 produced by the first test series auxiliary testing was 

calcined using the same Netzsch TG 409 CD thermobalance, to see if different results 

were obtained.  It was ground with a mortar and pestle to maximize the reaction surface 

area, and was then loaded into the thermobalance and calcined at 1000°C, for 6 hours, in 

air, to convert it to U3O8.  The same mass analysis was performed to determine how 

much uranium was recovered.  This data is shown in Tables 4.24, 4.27, and 4.28. 

 

Table 4.27 – Calcining Data 

Series 

Number 

Initial Mass 

UO4 (g) 

Mass U3O8 After 

Calcining (g) 

% Reduction 

in Mass 

1 0.56577 0.40813 27.8629 

 

 

Table 4.28 – Mass of Uranium Recovered through Calcination  

Series 

Number 

Mass 

UO4·nH2O 

(g) 

Mass 

Reduction 

Fraction 

During 

Calcination 

Total 

Mass 

U3O8 

(g) 

Mass 

Fraction 

U in U3O8 

Mass U 

Recovered 

(g) 

% 

Uranium 

Recovered 

1 16.4086 0.721371 11.8367 0.847981 10.0373 84.6780 

 

 

 The calcining did not show any significant change in results from the drying.  

Therefore, this testing suggested that 81-85% of the initial uranium was recovered as 

uranyl peroxide through the modified process. 

Liquid filtrates from both the SDU and UO4 filtrations were also analyzed to 

determine how much residual uranium was left behind during precipitation and filtration.  

These samples were analyzed by Dr. Elizabeth Bair and the Center for Elemental Mass 

Spectrometry at the University of South Carolina, using a Thermo Scientific Element II 
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high-resolution inductively coupled plasma mass spectrometer (ICP-MS).  Data from the 

ICP-MS analysis shows that a very high uranium recovery was experienced for the SDU 

and UO4 precipitations.  Table 4.29 shows this data. 

 

Table 4.29 – Residual Uranium Content in SDU and UO4 Filtrates 

Series Number SDU Filtrate Uranium 

Content (ppm) 

UO4 Filtrate Uranium 

Content (ppm) 

           1 (“Aux”) 19.6 25.0 

           2 (Combined) 16.2 6.3 

           5 (Confirm) 3.6 19.6 (avg. of 2 filtrations) 

 

 

Uranium recovery from both the SDU precipitation step and the uranyl peroxide 

precipitation step were nearly complete as indicated by the filtrate uranium measurements 

after the mixtures were filtered.  However, the drying and calcination data shows that 

only about 81-85% of the uranium was carried through the entire process from the wash 

solution to the UO4 product.  This was a significant amount of loss, that had to be 

accounted for somewhere in the process other than the precipitation steps. 

First, a detailed isotopic analysis of the UO2F2 powder, dosed with 3 wt% FeF3, 

was never obtained, so the purity of the material could not be determined.  This fact 

likely accounts for the majority of the recovery discrepancy.  Also, during 

experimentation, the uranium precipitates tended to be very sticky and would adhere to 

gloves, instruments, and the sides of the beakers and graduated cylinders, resulting in 

mass lost from the system throughout the procedure.  The removal of Fe(OH)3 during the 

process lead to a bit of uranium loss from the system.  For example, during the second 

test series, a small amount of uranium was lost during the attempted partial precipitation 
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of Fe(OH)3, prior to SDU precipitation, and in the fifth series some losses occurred when 

filtering out the Fe(OH)3 precipitate after carbonate extraction.  Error could also appear 

through the fact that small samples of each UO4 batch were taken for drying and 

calcination, which data may not be wholly applicable to the entire batch. 

The UO4·nH2O product was also analyzed via ICP Mass Spectrometry for sodium 

and iron content, and was found to have much less than ASTM limits for both elements, 

verifying a very high purity for the material.  Maximum limits in ASTM C1348 for 

mixed oxides are 20 ppm Na and 150 ppm Fe.  Table 4.30 below shows that data. 

 

Table 4.30 – Sodium and Iron Contaminant Concentrations in UO4 Product 

Series Number Product Na (ppm) Product Fe (ppm) 

           1 (“Aux”) 1.5 0.002 

           2 (Sample A) 0.4 0.002 

           2 (Sample B) 0.7 0.004 

           5 (Sample A) 1.1 0.004 

           5 (Sample B) 0.7 0.006 

           5 (Sample C) 0.2 0.007 

 

 

These impurity results are much less than the ASTM nuclear grade standards of 

20 ppm for Na maximum and 150 ppm maximum for Fe and are conclusive evidence of 

the uranium-selective capability of the peroxide precipitation process.  
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CHAPTER 5:  CONCLUSIONS 

 

During the first, second, and fifth test series, it was observed that precipitation of 

sodium diuranate (SDU) was very nearly complete at a pH of 11-12, using room 

temperature conditions.  ICP-MS analysis of the NaF solution filtered from the SDU 

showed that residual uranium levels ranged from 3.6 – 19.6 ppm, meaning almost 

complete precipitation of the uranium as SDU.  It was postulated that a tailing reaction 

occurs during SDU precipitation, which necessitates a digestion period of about 2 hours 

to complete the precipitation, this was verified during experimentation.  Further, it was 

shown in the second test series that a partial precipitation step to precipitate Fe(OH)3 at 

pH 5.5 did not adequately separate iron contamination due to an overlap of uranium and 

iron precipitations at that condition. 

Carbonate extraction of the uranium from the SDU required an extended (3-4 

hours) digestion at 40°C and pH 7-8 to complete.  Sodium bicarbonate was found to be 

the preferred extractant because of its lower pH, which helped drop the pH of the reaction 

solution and allow for continued uranyl carbonate formation.  During the second and fifth 

test series, the carbonate extraction was proven to successfully separate the iron 

contamination from the uranium, since the iron remained in solid precipitate form after 

the uranium had been converted into a liquid uranyl carbonate solution. 

Potassium-based chemistry did produce a potassium diuranate (KDU) analogue to 

SDU, but the subsequent carbonate extraction using either potassium bicarbonate or 
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potassium carbonate could not be completed fully.  More research will need to be done to 

find out exactly why this reaction did not work, but the potassium carbonate and 

bicarbonate simply could not strip the uranium from the KDU and form a uranyl 

carbonate complex solution.  The potassium testing was terminated at this step. 

The uranyl peroxide precipitation was found to operate best at pH 3.5 – 4.0, at 

room temperature, and required an extended digestion period of 8 -10 hours.  The 

reaction was nearly complete at those conditions, and ICP-MS analysis showed a filtrate 

residual ranging from 2.4 to 36.8 ppmU, with an average of 17.625 ppmU.  The uranyl 

peroxide itself was very pure, with impurity averages at a very low 0.8 ppmNa and 0.004 

ppmFe.  ASTM maximum levels are 20 ppmNa and 150 ppmFe, so the uranyl peroxide 

produced met and exceeded those standards, and could be reintroduced to the nuclear fuel 

cycle if all other standards were met, as they were assumed to be throughout 

experimentation.  Drying and calcination of the UO4·nH2O showed that 81-85% of the 

uranium present in the simulated wash solution was recovered by the process. 

Fluoride removal from the NaF solution that was a product of the SDU 

precipitation step required multiple passes of the solution through a calcite bed.  Each 

pass required acid addition to adjust the pH back down to below 6 and heating to 70°C 

before each pass to allow the removal reaction to proceed.  This result was a modification 

of a single pass technique that was initially hypothesized and attempted due to the 

apparent shutdown of the NaF/calcite reaction at a pH above about 10. 

Conclusions drawn from the testing were that the results demonstrated a workable 

and effective series of processing steps.  The process successfully removes the uranium 

and iron from cylinder wash solution through a co-precipitation of SDU and Fe(OH)3.  It 
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then separates out the iron contaminants during uranyl carbonate extraction with sodium 

bicarbonate.  Highly pure, solid uranyl peroxide can be precipitated from the uranyl 

carbonate complex solution, nearly completely recovering the initial amount of uranium.  

Techniques developed from the tests will make uranium recovery viable when transferred 

to a commercial process design. 
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