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Abstract 

The focus of this research is to study and develop techniques to adapt existing 

NER resources to serve the needs of a broad range of organizations without expert NLP 

manpower.  My methods emphasize usability, robustness and scalability of existing NER 

systems to ensure maximum functionality to a broad range of organizations. Usability is 

facilitated by ensuring that the methodologies are compatible with any available open-

source NER tagger or data set, thus allowing organizations to choose resources that are 

easy to deploy and maintain and fit their requirements. One way of making use of 

available tagged data would be to aggregate a number of different tagged sets in an effort 

to increase the coverage of the NER system. Though, generally, more tagged data can 

mean a more robust NER model, extra data also introduces a significant amount of noise 

and complexity into the model as well. Because adding in additional training data to scale 

up an NER system presents a number of challenges in terms of scalability, this research 

aims to address these difficulties and provide a means for multiple available training sets 

to be aggregated while reducing noise, model complexity and training times. 

In an effort to maintain usability, increase robustness and improve scalability, I 

designed an approach to merge document clustering of the training data with open-source 

or available NER software packages and tagged data that can be easily acquired and 

implemented.  Here, a tagged training set is clustered into smaller data sets, and models 

are then trained on these smaller clusters. This is designed not only to reduce noise by 
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creating more focused models, but also to increase scalability and robustness. Document 

clustering is used extensively in information retrieval, but has never been used in 

conjunction with NER.   
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Chapter 1 Introduction 

1.1 PROBLEM DESCRIPTION 

In the last decade, the world has become immersed in digital information, 

necessitating a complete transformation in the way that we handle this information. 1.8 

zettabytes, or 1.9 billion terabytes, of digital information was created by the world in 

2011, with a projected 7.7 zettabytes in 2015 according to the IDC market projection 

(Gantz & Reinsel, 2011). Any industry or organization that relies on information has had 

to reevaluate their internal processes and update technologies to be able to analyze and 

incorporate the new data medium and the overwhelming quantity that comes with it. A 

notable example of organizations that have acutely felt the impact and challenges of this 

shift to digital data is law enforcement. Whereas law enforcement officers used to simply 

collect physical evidence when building a case, much of the evidence is now in digital 

format on suspects' computers, phones, external hard drives and cloud storage. In 

addition to a change in evidence medium comes a sharp increase in the amount of data 

that is accumulated and must be analyzed during the course of a forensic investigation. 

Cases can involve many sources of data, totaling many terabytes in a single case for 

forensic analysts to examine. Analyzing this amount of data by hand is unfeasible and 

can lead to mistakes or missed critical information. To further compound the problem, 

the data can be extremely varied, ranging from technical manuals or academic papers to 

emails or chat records. 
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Named entity recognition (NER) is a robust field within natural language 

processing (NLP) that has come to play a large role in text-based digital data analysis in a 

number of applications, such as question answering or document retrieval systems. NER 

is a subset of NLP processes called sequence-labeling tasks, meaning that for a given 

sequence of tokens, each token will be tagged with a certain label depending on the task. 

For the NER task, once a data set has been tagged, this information can be used for 

further NLP tasks including relation detection and text summarization. Specifically, NER 

aims to identify, extract, and classify proper names within text data. This facet of NLP 

has a number of applications, the most prevalent of which is for information extraction 

(IE). The goal of IE is to automatically extract pertinent pieces of information from a 

given text-based dataset. This information may be used for information retrieval, question 

answering systems or to populate a knowledge base. Often, a large portion of the 

information that is needed from text consists of entities such as people, places, and 

organizations that contribute a significant amount of meaning to the information 

contained in the data set. For example, users searching for relevant news articles will 

query for entities such as Barack Obama, New York, or Microsoft, shown in figure 1.1. It 

is these types of entities that are targeted by NER systems.  

 

 

 

Figure 1.1 – Example NER tagger output 
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The basic framework of current statistical NER systems, depicted in figure 1.2, 

involves training a machine learning model to predict named entities within a given text. 

A set of sample data, annotated with the correct tag (classification) for each word or 

token, is used as the training data for the NER system, which generally utilizes a machine 

learning algorithm to generate a predictive model based on a variety of features of the 

data. Once this model has been created, it can be used to tag new data and output the 

probable named entities that are contained within those documents.  

 

 

 

Figure 1.2 – Diagram of current NER system framework 

 

In law enforcement applications, NER systems can make a substantial impact to 

ameliorate the data deluge, as investigators are most interested in finding information that 

pertains to specific entities and desire to extract these entities computationally rather than 

by hand due to the significant amount of diverse digital evidence that must be examined. 

Though research in the area of NER is fairly extensive, current state-of-the-art solutions 

are generic, succeeding only for domains similar to their training data, and still fail to 
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adequately provide functionality that is adaptable to a broad range of domains 

(Tkachenko & Simanovsky, 2012). Natural language can contain many instances of non-

standard grammar and spelling and ambiguous wording that can make some sentences 

difficult, even for humans, to understand. This can cause significant difficulty in 

conducting this analysis computationally, such as in the example in figure 1.3, where the 

use of the word “Washington” needs to be properly differentiated for the three tags. 

 

 

 

Figure 1.3 – Example of ambiguous NER tagger output 

 

Another domain in which out-of-domain text poses significant problems for 

sequence-labeling tasks is that of technical manuals or maintenance records. Although 

NLP researchers have conducted a plethora of NER domain adaptation research in an 

attempt to develop systems that will achieve better accuracy on out-of-domain data, the 

resulting systems are either custom made and not open source, or they require additional 

data sources in the form of tagged target data or external data. In previous research, part-

of-speech (POS) tagging and information extraction, other sequence-labeling tasks within 

NLP, were investigated for helicopter maintenance records with the intent to extract 

usable information to further the efforts of condition based maintenance (McKenzie, 

Matthews, Goodman, & Bayoumi, 2010). While many IE systems have already been 

developed for use in analyzing a variety of different types of texts, the majority of these 

systems are developed to analyze documents written in Standard English, such as news 

Mr. [PER Washington] took a late flight out of [LOC Washington, D.C.] on his way 

to [LOC Seattle] to meet with the owners of [ORG Washington Appliances, Inc.] 
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articles and literature. These systems are not suitable for use with maintenance data, 

given the informal and often ambiguous nature of the language used in these reports. For 

this application, a custom system involving a hierarchy of multiple POS taggers and a 

number of hand-crafted text-chunking rules had to be created to produce the desired 

results and even required further adaptations when faced with changing data. This 

research demonstrated the limitations involved with standardized training sets and 

domain-specific NLP systems. 

In order for an open-source NER systems to be broadly effective in a data analysis 

application, such as in a forensic investigation, the system must be robust enough to 

handle large amounts of varied data. For data that is significantly different from that used 

to train a standard, generic model, it may be necessary to manually tag domain-specific 

data with which to train a more focused model. In this instance, tagging a large amount of 

data – such as that used to train a generic model – is not feasible due to time and cost 

constraints for the average forensic investigator, and much less possible for every new 

case. The standard CONLL 2003 training set, used by many current NER systems, 

contains over 900 tagged documents. Assuming an expert can tag a document in 30 

minutes, the expert would require over 450 hours to reproduce a training set of that size 

from the target domain data. Even assuming an optimistic 15 minutes per document 

would result in 225 man hours to create the tagged corpus. This scenario also assumes the 

availability of a qualified person with knowledge of NER and how the data should be 

tagged. Many organizations and law enforcement agencies do not regularly employ NER 

or NLP researchers who would be able to tag domain-specific training data or develop a 

tailor-made NER system to achieve better performance than that of an open-source 
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system trained on a generic training set.  Further, these organizations are often 

constrained by the amount of computing resources that are available to them and do not 

have access to high-performance computing platforms that would enable easier 

scalability and faster training times. 

In the face of the challenges impacting time- and money-constrained (TMC) 

organizations lacking NLP resources, new techniques must be developed to adapt 

existing NER tools and tagged corpora for better performance without specialized 

assistance. The goals and motivation of the research are shaped by the needs and 

requirements of TMC organizations amidst an increased need for expeditiousness and a 

desire to do computational, instead of manual, analysis in the face of an overwhelming 

amount of data that is continually growing.  For this research, we aim to develop a new 

approach that adapts existing NER systems and tagged data sets for more efficient use 

without having to design a specialized tagger, manually tag additional data, or utilize 

high performance computing hardware to complete the computational requirements.  

1.2 RESEARCH CONTRIBUTION 

The focus of this research is to study and develop techniques to adapt existing 

NER resources to serve the needs of broad organizations without expert NLP manpower.  

My methods emphasize usability, robustness and scalability of existing NER systems to 

ensure maximum functionality to a broad range of organizations. Usability is facilitated 

by ensuring that the methodologies are compatible with any available open-source NER 

tagger or data set, thus allowing organizations to choose resources that are easy to deploy 

and maintain and fit their requirements. In law enforcement, an agency might have to rely 

on existing NER systems, given the alternative of spending excess money and significant 
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time to have an expert tag data manually for every new case. This major hurdle has 

motivated the use of available training sets in the place of domain-specific tagged data. 

Pre-built systems trained on a standard corpus of news articles contain numerous 

named entities that either would not likely appear in digital forensic evidence or occur in 

contexts that do not provide useful feature information, resulting in poor accuracy. 

Without specialized systems or domain-specific tagged data, the only options for 

performance improvement for TMC organizations or law enforcement agencies is to 

increase the robustness of existing systems and optimize the use of the available training 

sets to produce models that are more effective at tagging domain-specific data. For out-

of-domain target data, more source training data does not necessarily imply better 

accuracy (McKenzie A. , 2013). Because the training data is not of the same domain as 

the data to be tagged, it contains a lot of noise in the form of tagged entities that do not 

apply to the target data. My approach focuses on increasing the robustness of available 

systems and resources while reducing noise, maintaining usability and improving 

scalability. 

One way of making use of available tagged data would be to aggregate a number 

of different tagged sets in an effort to increase the coverage of the NER system. 

However, this poses challenges in terms of scaling, as model generation complexity 

increases exponentially as training sets get larger. The larger the training set containing 

these noisy and irrelevant named-entity examples, the less focused the resulting model 

will be and the less accurately it will tag the digital forensic data. Augmenting the 

training data with more generic tagged data contributes to the creation of a more complex 

model that is less pertinent to the given task domain. In particular, larger training sets can 
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dilute the efficacy of the context aggregation feature component of many tagger designs. 

These systems pull information about the contexts in which named entities occur within 

the training data and use this data to enhance the NER model. When aggregating over a 

given window of data, the more generic the training data, the more generic the obtained 

feature information will be because relevant entity examples will be more spread out 

across the data and are less likely to fall within that window. Though, generally, more 

tagged data can mean a more robust NER model, extra data also introduces a significant 

amount of noise and complexity into the model as well. Because adding in additional 

training data to scale up an NER system presents a number of challenges in terms of 

scalability, this research aims to address these difficulties and provide a means for 

multiple available training sets to be aggregated while reducing noise, model complexity 

and training times. 

In an effort to maintain usability, increase robustness and improve scalability, I 

designed an approach to merge document clustering of the training data with open-source 

or available NER software packages and tagged data that can be easily acquired and 

implemented.  Here, a tagged training set is clustered into smaller data sets, and models 

are then trained on these smaller clusters. This is designed not only to reduce noise by 

creating more focused models, but also to increase scalability and robustness. Document 

clustering is used extensively in information retrieval, but has never been used in 

conjunction with NER.   

To continue with the previous example, a law enforcement organization wants to 

conduct NER on each case that comes in. Rather than waste precious man hours 

manually tagging a new training set, existing tagged data – either found online or 
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organizational data that had been previously tagged – is clustered into a number of 

smaller, more focused groups. These groups then become the training sets used to 

generate the same number of NER models. Each document to be tagged is clustered into 

the group it is most similar to and tagged using the model trained with that group’s 

training documents. In this way, a document is tagged with a model that is likely to have 

more useful and relevant features. For each new case, forensic analysts must only 

measure the similarity between the incoming data’s documents and the training clusters 

and do not need to tag more data. To further increase the robustness of such a system, 

analysts can employ the developed annotation tool to greatly facilitate the creation of 

domain-specific tagged data. In general, the introduction of document clustering is 

designed to improve the robustness and scalability of existing NER systems. 

1.3 DISSERTATION OUTLINE 

In support of the ideas presented in the previous sections, Chapter 2 presents a 

background section that includes general information about general NER and integral 

concepts, as well as the most relevant and recent research innovations in the area. Related 

work includes work in the areas of statistical NER, features and word representations, 

feature aggregation, available data and NER taggers, domain adaptation, clustering 

techniques, clustering in NER and active learning. Chapter 3 details document clustering 

experiments conducted to test their viability for inclusion in an NER system. Chapter 4 

establishes the flexibility of the techniques involved in the approach by highlighting its 

portability to different taggers and data sets and the integration of the developed 

annotation tool. Chapter 5 examines the performance advantages achieved by the 

approach. The recommendations for use of this approach in a real world setting are set 
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forth in Chapter 6. Conclusions and possible avenues for future work are presented in 

Chapter 7. 
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Chapter 2 Background and related work 

Named-entity recognition (NER) is a subtask of information extraction (IE), 

whereby structured information is automatically extracted from unstructured or semi-

structured machine readable documents.  Using NER methods, one seeks to process 

human language texts using natural language processing (NLP) to locate and classify 

elements of text in predefined categories such as the names of persons, organizations, and 

locations.  Some of the challenges in NER include the extensive annotation labor and 

ensuring robust performance across domains.  This research aims to improve existing 

statistical NER systems to address both of these challenges by integrating document 

clustering to develop better, more focused models that can be employed across many 

domains. Clustering the training set will directly impact the effectiveness of the feature 

aggregation component of a statistical NER system and will alter the resulting model that 

is used to make the tag predictions. As Dalton et al. note, “Another area that could be 

improved is a more principled approach to selecting the passage collection to use for 

feature expansion” (Dalton, Allan, & Smith, 2011). Research on domain adaptation 

details work striving to increase the robustness of NER systems. These techniques either 

adapt what data is used to train the model or the underlying system itself in an attempt to 

improve performance on out-of-domain data. Document clustering for NER, on the other 

hand, has the potential to improve robustness of existing systems using available tagged 

data.  
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A brief background on the important components comprising a standard NER 

system is given in Section 2.1, including recent work on developing and improving NER 

systems. Following an explanation as to why statistical techniques were chosen over rule-

based systems, a general discussion of statistical systems is provided, including details on 

model generation, feature selection and word representations. Section 2.2 and beyond 

describe areas of NER research related to the use of document clustering techniques, 

including feature aggregation, domain adaptation, clustering and active learning, and 

highlight the shortcomings of current techniques and methodologies in those areas.  

2.1 EXISTING NER SYSTEMS 

This section provides a brief discussion on NER and why statistical NER and why 

statistical NER systems are generally considered state-of-the-art for the field. In Section 

2.1.2, an overview is given of features, or characteristics, of text-based data that are 

typically used to predict the classification (tag) of a given word. Features combined with 

the word representations, (presented in Section 2.1.3), or the way that text and its features 

are represented to be able to encode more data in a more compact manner, impact 

statistical model development and the efficacy of that model in identifying named entities 

within text. Finally, Section 2.1.4 provides information about the output format of an 

NER system with some examples. 

2.1.1 Statistical NER 

Research on NER approaches falls into two categories: rule-based systems and 

statistical techniques. Rule-based NER involves finding patterns within the data’s 

morphology or syntax that provide clues as to a word’s category. Gazetteer-based 
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systems fall into this category, as they provide look-up tables of token-entity pairs. 

Because syntax, morphology and word choice vary greatly in today’s digital data – e.g. 

academic publications vs. tweets vs. technical manuals, etc. – rules that are based on 

features of a given data set cannot necessarily be transferred to a new domain. While 

some of the more generic features (discussed in section 2.1.2) are incorporated into 

statistical models, rule-based systems themselves are not well-suited for domain 

adaptation given their reliance on the training data itself. Changing target domains would 

mean that many rules would likely no longer apply and the system would have to be 

adapted with new domain-specific rules, or a new gazetteer manually compiled, for every 

new data set. Given this limitation, the majority of current NER research surrounds 

statistical techniques. While acknowledging that a large body of research exists on rule-

based NER, the research for this thesis focuses on statistical NER due to its adaptability 

and potential for broad ranging applicability. 

Research on statistical NER can be divided into three general categories – 

supervised, semi-supervised and unsupervised – which describe the amount of human 

interaction involved in the training of the NER system.1 Ideally, an unsupervised system 

is desired but, in general, providing more human input in the form of annotated data from 

the target domain or fine-tuning system parameters often proves to out-perform 

unsupervised techniques. In statistical NER methods, a machine learning (ML) algorithm 

is trained using a data set that in which each word has been given an appropriate tag and 

produces a model that can then be used to make inferences over future data. Learning 

methods take feature vectors as training input in order to learn information about the data 

                                                 

1 For a more comprehensive discussion of statistical NER, see (Jurafsky & Martin, 2009). 
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that will provide guidelines on how to infer tags of testing data. These feature vectors are 

composed of a set of parameters, generally unique to the target data set, whose values are 

set based on the given token, word or document that they represent. In this way, text data 

can be expressed by way of vectors that can be easily processed by existing ML 

techniques. Likewise, feature vectors can be used to encode knowledge from large 

amounts of unlabeled text without the unwieldy necessity of processing the text itself 

through the algorithm. Once a data set has been analyzed for features and represented by 

a feature vector, these vectors are aggregated and probabilities for sequence labels are 

computed based on occurrences within the document set. The resulting model is used to 

provide a prediction as to the label of a specific token based on the previous occurrences 

of the token and its surrounding tokens in the training data or its features and 

characteristics. With respect to model generation, a number of factors must be taken into 

account, including learning model choice and inference model algorithm.  

Supervised and semi-supervised approaches require a previously-tagged data set 

that is used to train a model which is then used to predict tags for previously-unseen data. 

The language models used in these approaches are a function for determining the 

conditional probabilities used in predicting a given output - e.g. tags, words, or 

documents - based on the prior input. These models are closely tied to the task that they 

are assigned to, with one language model performing well on one task, such as machine 

translation, but not on another, such as semantic role labeling. These models do not 

necessarily have to stand alone or be mutually exclusive. Many researchers integrate 

several different types of models to increase coverage of their system and improve 

performance. For their work, Uszkoreit and Brants combine a partially class-based model 
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- using the results of their distributed word clustering implementation - with a word-

based model for use in a state-of-the-art system for machine translation leading to 

improvements in translation quality (Uszkoreit & Brants, 2008). Griffiths et al. 

investigates how to model both short- and long-range dependencies within a document by 

implementing a mixture of models: one that models syntactic relations among word 

classes and one that models semantic correlations between words in and across 

documents and found it to be competitive in part-of-speech tagging and classification 

tasks (Griffiths, Steyvers, Blei, & Tenenbaum, 2005). Many times, language models can 

be easily combined, and if it becomes difficult to represent the full variety of desired 

features with one generated model, the process might be broken down to better capture 

the nuances of named entity features. 

In addition to model choice, learning algorithm choice is also a consideration in 

supervised NER system development, as there are a number of different ML algorithms 

available and each produces models that perform differently. In their overview of recent 

work on NER, Nadeau and Sekine note that hidden Markov models (HMMs), decision 

trees, maximum entropy (maxEnt) models, support vector machines (SVMs) and 

conditional random fields (CRFs) have all been used as supervised learning algorithms 

for NER (Nadeau & Sekine, 2009). Ratinov and Roth, reporting the best performance to-

date on the CoNLL-2003 shared task dataset, employed a regularized averaged 

perceptron, another type of machine learning algorithm, for their NER system (Ratinov & 

Roth, 2009). The two NER systems used in the experiments for this research incorporated 

a CRF and a perceptron into their framework (Finkel, Grenager, & Manning, 2005) 

(Ratinov & Roth, 2009). 
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Supervised and semi-supervised techniques and approaches, while popular, are 

not conducive to achieving the development of a successful unsupervised NER system, in 

which no human input is required. However, many of the recent unsupervised approaches 

are extremely limited in scope, focusing on a single targeted domain, or use techniques 

that are not conducive for use in specialized domains that may not contain entities arising 

in Wikipedia. The unsupervised system developed by Usami et al. was equipped only to 

handle biomedical data, in which the corpus is only tagged with one semantic class, Gene 

or Gene Product (GGP) (Usami, Cho, Okazaki, & Tsujii, 2011). Munro and Manning 

developed an unsupervised system that relies on a set of unaligned parallel texts in 

different languages (Munro & Manning, 2012). Lin et al. extract entities based on 

Wikipedia Infoboxes in different languages (Lin, Snover, & Ji, 2011). With the explosion 

of web-based data freely available for use, in particular data that includes categorical 

information such as in Wikipedia, a number of researchers have chosen to use this data to 

fuel their NER engine (Urbansky, Thom, Schuster, & Schill, 2011), (Szarvas, Farkas, & 

Ormándi, 2007), (Janik & Kochut, 2008). Domain-specific and external data-dependent 

unsupervised systems are not practical when trying to extract entities from a large variety 

of, possibly esoteric, data. Domain-specific systems, such as those for biomedical data, 

would perform poorly if applied to data from a different domain, such as general emails. 

In order for it to be successful with other data sets, adaptations would have to be made to 

the system, whereby eliminating the desired unsupervised aspect. While a strictly 

unsupervised system is not likely to be successful in an area requiring domain adaptation, 

clustering training documents in a semi-supervised approach could allow for existing, 

out-of-domain training sets to be utilized to better success without human intervention. 
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Document clustering can be combined with statistical techniques in an effort to introduce 

additional unsupervised elements into the NER process.  

2.1.2 Features 

Statistical NER models rely on characteristics, or features, of the words and their 

surrounding contexts to provide the information needed to be able to make future 

predictions about the classifications of words. Features must be informative about the 

data they are representing so that learning methods can make models that can adequately 

predict tags. The most common features concern lexical information likely because that 

type of information is the most obviously identified and extracted. The one-hot 

representation includes the most basic feature: the word itself. However, these types of 

representations that include only basic information about the word itself cause problems 

with data sparsity because the nature of language is such that many words are hardly, if 

ever, seen in training data. Allison et al. investigate the data sparsity problem in relation 

to large amounts of data and confirm that large numbers of words from a vocabulary will 

not be represented in even significantly large data sets (Allison, Guthrie, & Guthrie, 

2006). In order to allow the model to make predictions for previously unseen words and 

also to reduce the sparseness of the model, more complex linguistic features – such as 

information regarding the word’s morphology or syntax – and features regarding the 

contextual instances of the word or word type within the data set should be included. 

These types of features also facilitate the construction of a more abstract model that is 

less domain-specific. 
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2.1.2.1 Baseline 

Zhang and Johnson focus their NER system development on determining which 

types of features work best for NER and in which combinations (Zhang & Johnson, 

2003). This work establishes a group of features that have been proven to be useful for 

the NER task to serve as a baseline set for theirs and future systems. They divided their 

feature set up into two categories. Simple token-based features included the token itself, 

prefix and suffix information, and capitalization. More sophisticated linguistic features 

included part of speech (POS) and chunking tags and four dictionaries2. They found that 

the actual token itself does not have a significant impact on NER performance. Though 

the word is not particularly useful, prefix and suffix information, as well as capitalization, 

saw significant impact on NER performance. Table 2.1 highlights their findings in terms 

of the performance impact of various feature combinations, with the reference feature 

description described below the results table. POS and chunking features produced little 

improvement, and the dictionaries supplied a "small, but statistically significant 

improvement" (2). The inclusion of several additional dictionaries derived from external 

sources was also tested, though they were not part of the baseline features. These 

dictionaries proved to further boost performance of the system.  

 

                                                 

2 The four dictionaries were the ones supplied for the CoNLL-2003 shared task. 
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Table 2.1 – Performance impact of the inclusion of a variety of 

different baseline features from the work of Zhang and Johnson 

(2003). Table definition below results 

 

 

 

 

Representing some of the most extensive recent work on NER, Ratinov and Roth 

cite their baseline features, based on the work by Zhang and Johnson, as being the 

previous two predictions in the sequence, the current word, the current word type, the 

prefixes and suffixes of the current word, the five-word window that includes two words 

before and two words after the current word, the pattern of capitalization in the five-word 

window sequence and the bigram of the current word and the previous tag (Ratinov & 

Roth, 2009).  
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These two sets of baseline features are fairly representative of common practices 

in NER systems. Most systems go further in trying to add in extra features that will 

significantly boost their performance. However, it is important to determine what 

additional features provide the ideal tradeoff between acquisition costs and performance 

benefits for the system. 

2.1.2.2 Feature types 

Though the actual features do not differ significantly, different research 

approaches classify features in a variety of different ways. For example, features can be 

categorized by their location or generation within the data set or by their linguistic 

classification. Chieu and Ng give a detailed description of the features that they use for 

their maximum entropy NER approach (Chieu & Ng, 2003). They break their extensive 

feature list into three categories: local features from the sentence containing the word, 

global features about the other occurrences of the word in the document and features 

derived from gazetteers. 

Goldberg et al. discuss their integration of syntactic and lexicon-based features 

(Goldberg, Tsarfaty, Adler, & Elhadad, 2009). In developing their parser, they found that 

different resources - a tagset and a lexicon/morphological analyzer - contained different 

sorts of linguistic information and did not want to try to reduce one to the other. Instead, 

they propose to produce a fuzzy mapping between the two resources - the 

"morphosyntactic-transfer layer” – which they surmise captures the interaction between 

the two representations. Their layered approach is illustrated in figure 2.1. Though they 

talk about their feature sets in different terms than Chieu and Ng, they are still referring 
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to standard features such as POS tags, prefix/suffix information, and lexicon 

(vocabulary).  

 

 

 

Figure 2.1 – Syntactic (TB), lexical (KC) and layered 

representations from Goldberg et al. (2009) 

 

Li and McCallum refer to their groupings as function and content words and 

developed a model that could distinguish between the two types, thereby identifying 

syntactic and semantic categories (Li & McCallum, 2005). Figure 2.2 provides examples 

of syntactic word clusters, while figure 2.3 shows the words occurring in most frequently 

in semantic clusters. They aim to have different cluster features for a word in different 

instances of that word in the document. 
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Figure 2.2 – Sample syntactic word clusters, each column displaying the 

top 10 words in one cluster and their probabilities from Li and McCallum 

(2005) 

 

 

 

Figure 2.3 – Sample semantic word clusters, each column displaying the top 10 

words in one cluster and their probabilities from Li and McCallum (2005) 

2.1.3 Word representations 

Word representations, which can encode lexical and linguistic information about 

the word and its surrounding context and usage, can be used as a means to compute 

similarities between words and can therefore be used to generate a model that will be able 

to make predictions for words not used in the construction of that model. The use of word 

representations for NLP tagging tasks allows for more flexibility and possibilities in 

system design and performance. Likewise, techniques for extracting word representations 

automatically from text have provided the means to expand the set of possible features 

for NLP tagging tasks by enabling more information to be included without significant 

human effort. Previously, semantic information about words or tokens most often had to 
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be hand encoded because that information was not available at the word level and had to 

be provided externally from the system. This led to the development of domain-specific 

systems that must be tailored to fit their target data set. Facilitating the generation of 

feature vectors encoded with semantic representations diminishes the necessity of domain 

adaptation and might lead to more robust systems that can process a wider variety of data 

types. 

While including word representations in NLP systems is a step in the right 

direction toward advancing the field, simply including random features about the text will 

not provide a significant benefit. Tishby et al. introduce the information bottleneck 

method for finding the optimal tradeoff between accuracy and complexity in extracting 

information about a given dependency (Tishby, Pereira, & Bailek, 1999). Their ideas 

apply to signal, as well as text, processing, and they assert that it is important to 

understand what information plays a role in predicting some output in order to specify the 

best function to do the prediction. This idea has significant implications for NLP and 

suggests that different types of features are likely more beneficial for certain NLP tasks 

than others. When developing a system for a specific NLP task, a set of features must be 

identified that optimizes performance for that given task. 

Word representations benefit an NER system in a variety of ways. They allow for 

more information to be encoded into a model, and varying the information included in the 

word representations will produce differences in the performance of the ML algorithm 

when applied to the input data. Word representations can allow us to utilize powerful 

supervised ML algorithms that can have more predictive power than many non-statistical 

techniques, depending on how well the model is generated. Word representations can be 
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automatically generated from unlabeled data, which introduces unsupervised learning 

into the system and reduces the amount of necessary human interaction. This automatic 

generation facilitates the discovery of more abstract features, not readily discernible by 

humans, which help develop domain-independent NER systems. 

Though many features can be hand generated, this can be time consuming and a 

confining method for the task in that humans are limited in the observations we can make 

about a data set. Being able to induce word features automatically from unlabeled data 

introduces a number of possibilities and flexibility to an otherwise labor-intensive task. 

So-called unsupervised word representations have become popular in recent NER 

research and have the ability to facilitate work towards the development of an effective 

domain-independent, unsupervised NER system. 

Unsupervised word representations can generally be categorized into three 

different groups: distributional, distributed and clustering. Distributional representations 

involve an aggregation of the information concerning the co-occurrence of words across a 

given context (Turian, Ratinov, & Bengio, 2010). In contrast, distributed representations, 

also referred to as word embeddings, involve multiple dimensions that represent latent 

features of a word. Clustering-based representations involve clustering words together 

and using inclusion in a cluster as a class label. Turian et al. conducted an investigation of 

these word representations for the NLP tasks of NER and chunking (Turian, Ratinov, 

Bengio, & Roth, 2009). Distributional representations are not considered in the 

experiments in this overview because the authors claim that there is a lack of research on 

this type of representation for sequence labeling tasks resulting in uncertainty as to what 

settings would be best for applying distributional representations to these tasks. Through 
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numerous experiments of different combinations of word representations and NER 

systems, they concluded that cluster-based word representations performed the best on 

the NER task, as seen in Table 2.2 taken from (Turian, Ratinov, Bengio, & Roth, 2009). 

However, the work did not consider distributional representations, did not include any 

soft clustering representations, and did not focus on out-of-domain performance. 

 

Table 2.2 – NER F1 on the dev set and test set, using different 

representation trained on RCV13. Some word representations 

were induced over the cleaned4 RCV1, as indicated by the 

second column. C&W is (Collobert & Weston, 2008). 

 

 

 

The use of automatically generated word representation as included features for 

NER has implications for the development of both unsupervised and domain-independent 

NER systems. They allow for a more robust system to be developed because the 

generated features tend to represent a more general and abstract nature of the words, 

allowing the features to be applied to a broader domain space. These word 

representations also allow for unsupervised aspects to be combined with machine 

                                                 

3 RCV1 is taken from the Reuters corpus and is a superset of the CoNLL ’03 data set. 

4 Here, “cleaned” refers to eliminating any sentences of which less than 90% of the letters are 

lowercase. 
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learning algorithms to produced unsupervised or semi-supervised techniques, where 

supervised prevailed before.  

In order to best utilize these approaches, the most efficient way for generating the 

word representations must be identified so that the benefits gained in domain-adaptation 

and reduction in human interaction from their use are not counter-balanced by loss in 

accuracy and performance. Also, it should be investigated as to whether different 

generation techniques are more appropriate for domain-independent NER and whether 

these techniques can be customized to be more generalizable.  

2.1.4 NER output 

Given that NER is a sequence-labeling task, the choice of labeling format has 

come under consideration by some NER researchers. Once a data set has been tagged, 

each token within the data set is assigned a tag that denotes whether or not it is an entity 

and if so, what type. The most basic tagging convention is to simply tag entity tokens 

with their entity type – e.g. person, organization, location – and tag all other words with 

the standard “O” designation. However, these labels do not serve to indicate whether 

sequences of like tags are the same entity and provide a minimal amount of information 

in the form of features when training a model. A step further, and the most popular type 

of labeling, is BIO, where the ‘B’ stands for the beginning of an entity, ‘I’ is in or inside 

an entity and ‘O’ is outside or not part of an entity. The ‘B’, ‘I’, or ‘O’ is then followed 

by the entity type. In this way, entities can be extracted in chunks rather than by single 

tokens. This tagging convention is employed by the majority of current NER systems and 

researchers. In an effort to improve NER models by expanding the amount of information 
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provided by NER tags, Ratinov and Roth investigated the usefulness of another tag set, 

BILOU (Beginning, Inside, Last, Outside, Unit-length) (Ratinov & Roth, 2009). Figure 

2.4 (a) and (b) demonstrate the differences between the two labeling conventions, though 

both would extract the same entity chunks. 

   

 

   (a) 

   (b) 

 

Figure 2.4 – Example (a) BIO vs. (b) BILOU tagging 

 

Ratinov and Roth determined that BILOU outperformed BIO for the NER tagging 

task. The results of these experiments are depicted in Table 2.3. This tagging set is used 

in a couple of recent NER systems, but most still use BIO due to the fact that it has 

become the standard for many available systems (Ratinov & Roth, 2009) (Usami, Cho, 

Okazaki, & Tsujii, 2011) (Finkel, Grenager, & Manning, 2005) (Ritter, Clark, Mausam, 

& Etzioni, 2011).  
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Table 2.3 – F1 scores for Ratinov and Roth (2009) 

NER system comparing BIO and BILOU labeling 

formats tested on both CoNLL03 and MUC7 

datasets. 

 

 

 

The set of categories assigned to entities also varies by system and is dictated by 

the training set. Categories must be semantically relevant and, while there are a handful 

of generally generic tags such as person, organization and location, many tags are more 

domain specific. For example, the system of Usami et al. for tagging biomedical data 

incorporates only one semantic class, Gene or Gene Product (GGP) (Usami, Cho, 

Okazaki, & Tsujii, 2011). Models incorporate the tag set as features provided by the 

training data and/or gazetteers. The Stanford tagger offers three model options, with a 

three- (location, person organization), four- (location, person, organization, misc), or 

seven-category tag set (time, location, organization, person, money, percent, date) which 

are based on different training sets (Finkel, Grenager, & Manning, 2005). Ratinov and 

Roth have also experimented with different tag sets with varied success (Ratinov & Roth, 

2009).  

2.2 AVAILABLE SYSTEMS AND DATA 

To make the benefits of NER research broadly applicable to organizations without 

NLP specialists, this work focuses on improving existing NER data sets and taggers, 

which can be found online. For this research, I investigate several data sets and two NER 
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taggers, chosen based on their availability, ease of use and rate of previous use by other 

researchers. 

2.2.1 Data 

A number of NER tagged data sets have been created and made available online. 

Standard NER research uses the Conference of Natural Language Learning (CoNLL) 

2003 data set as a baseline benchmark. This corpus was developed and distributed as part 

of the CoNLL-2003 shared task for language-independent named entity recognition 

systems. Each year CoNLL has a challenge task to stimulate research and development of 

NLL systems. The 2003 shared task was the last of the conference devoted to NER. 

Researchers generally test their developed NER systems on this data set, and it is 

regarded as the standard for determining the success of their NER techniques. The 

English portion of the data comprises newswire data from the Reuters Corpus and can be 

obtained free from NIST. The training set contains 946 documents, while the test set 

contains 231. The use of this data set with NER research is necessary to compare the 

technique with previous NER approaches. 

The Ontonotes 4 data set is the result of a project between BBN Technologies, the 

University of Colorado, the University of Pennsylvania and the University of Southern 

California’s Information Sciences Institute, the goal of which was to tag a large corpus 

composed of 7351 documents from a number of different genres: news, conversational 

telephone speech, weblogs, usenet newsgroups, broadcast, and talk shows (Hovy, 

Marcus, Palmer, Ramshaw, & Weischedel, 2006). This data set is available through the 

Linguistic Data Consortium for the price of shipping. Tkachenko and Simanovsky use 
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this data, along with CoNLL 2003, as one of their benchmark data sets in their 

exploration of features for NER (Tkachenko & Simanovsky, 2012).  

Most other available sets are from the early 2000s and late 1990s, though there 

are a few domain-specific sets, such as for twitter or biomedical data that have been 

tagged more recently. A variety of other data sets are available, some free and some not. 

A twitter data set was tagged and made available by Ritter et al. for their work on NER in 

tweets (Ritter, Clark, Mausam, & Etzioni, 2011). They tagged 800 randomly sampled 

tweets using a tag set based on the open-domain ontology Freebase. The MUC 7 data set 

from the Message Understanding Conference in 1997 is another that has been used by 

some NER researchers and is a subset of the North American News Text Corpora 

(Ratinov & Roth, 2009). The MUC 3 and 4 data sets are also available but are from even 

earlier in the 1990s, which will not effectively represent recent language change. The 

availability of these data sets makes it feasible to do NER research without resorting to 

expending a great deal of time manually tagging a new one.  

2.2.2 Taggers 

One of the advantages to the approach proposed in this research is that a 

specialized tagger is not required to implement the proposed techniques. Furthermore, no 

modifications must be made to existing systems. I present studies using two of the most 

commonly used and best open source NER taggers are those produced by the Cognitive 

Computation Group at the University of Illinois at Urbana-Champaign and by the 

Stanford Natural Language Processing Group. Both are considered to be state-of-the-art 

generic taggers in the field. The Illinois Named Entity Tagger (LBJ), part of their 
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Learning Based Java software suite, relies on gazetteers, word class models from 

unlabeled text, and non-local features to produce their models (Ratinov & Roth, 2009). 

The Stanford tagger takes its cues from machine learning in its use of a conditional 

random fields (CRF) classifier augmented by Gibbs sampling “a simple Monte Carlo 

method used to perform approximate inference in factored probabilistic models” (Finkel, 

Grenager, & Manning, 2005). These taggers are relatively simple to download, install and 

get running. 

Some other software packages include NER taggers in their options. The General 

Architecture for Text Engineering (GATE) out of the University of Sheffield includes a 

built-in information extraction component, ANNIE, which contains a semantic tagger 

component (Cunningham, Wilks, & Gaizauskas, 1996). The Natural Language Toolkit 

(NLTK) also contains a built-in MaxEnt named entity tagger (Bird, Klein, & Loper, 

2009). There are also several other NLP packages that provide NER capabilities; 

however, in general, these packages take longer to set up, have a more significant 

learning curve, and do not allow for as much adaptation and modification as the Stanford 

and LBJ taggers. They are also suited for more basic NER and are not designed for 

tougher NER problems, such as that encountered in digital forensic investigation. For 

these reasons, the LBJ and Stanford NER taggers were a more suitable choice for use 

with this research. 

2.3 FEATURE AGGREGATION 

Restructuring the training documents in the manner detailed for this research will 

have a direct impact any aspect of the system that depends on the ordering of these 

training documents, such as feature aggregation. Feature aggregation refers to collecting 
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feature information from across a document or document set, rather than simply taking 

the information from a particular word instance. The method of acquiring features has 

become an integral part of building an NER prediction model. Because aggregating the 

context of every named entity across an entire training set can be fairly computationally 

expensive and introduces significant noise into the features due to the many contexts in 

which an entity may occur, many researchers have chosen instead to conduct local 

aggregation, such as across a document, or with a certain window of tokens that may 

span several documents. However, this method leaves the choice of context to chance: 

determined by how the documents are organized within the training set. A better option 

would be to choose the context that best represents the entities to be tagged. Current 

research attempts to refine the methods of feature aggregation or manipulate the contexts, 

but none focuses on altering the training sets as a means for improving feature 

aggregation. 

Ratinov and Roth, whose research details their work on the University of Illinois 

NER tagger, provide a number of different feature aggregation approaches in their 

discussion of design considerations for NER (Ratinov & Roth, 2009). They refer to the 

information gathered from aggregation as non-local features and categorize the different 

approaches as context aggregation, two-stage prediction aggregation and extended 

prediction history. Context aggregation refers simply to aggregating the context that 

tokens appear in across a given document. Two-stage prediction involves applying a 

baseline NER system to the training documents and use the resulting labels as features for 

those given tokens. In an effort not to treat all tokens in a text similarly, which they assert 

is the case with context aggregation and two-stage prediction, Ratinov and Roth 
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developed an approach for non-local feature generation based on extended prediction 

history (Ratinov & Roth, 2009). Their approach is based on the idea that named entities 

are easier to spot at the beginning of texts where they are first introduced. Table 2.4 

details the results of their experiments where they keep track of all label assignments for 

the token in the last 1000 words and use that probability information as a prediction 

history feature for the token. On testing the performance of their NER system with the 

three feature aggregation approaches, the authors concluded that the approaches are 

complementary and that no single approach out-performed the others.  

 

Table 2.4 – Feature aggregation results tested on CoNLL03, MUC7 and web pages data sets from 

Ratinov and Roth (2009) 

 

 

 

Krishnan and Manning introduce a two-stage approach to feature aggregation 

(Krishnan & Manning, 2006). They implement a layered approach of two classifiers 

based on CRFs in which the second uses the output of the first as features. In addition to 

a set of standard baseline features, the occurrences of tokens, entities and entities that 

contain other entities (so named "superentities") are aggregated over both documents and 

the entire corpus, resulting in a set of six additional features, in an effort to construct a 

soft-constraint label consistency. By applying a soft constraint using document and 

corpus aggregation, the authors strive to encourage identical labeling of same entities, but 
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not make it a requirement, thus remaining flexible for the possibility of different types of 

labeling for the same entity in the case of entities that might be ambiguous.  

Huang and Yates present their feature aggregation approaches in the form of 

smoothing of the dataset (Huang & Yates, 2009). Their goal for smoothing is the same as 

for aggregation in that they strive to extend the usefulness of the model by sharing 

information about multiple contexts for a token in order to provide more information 

about words that are rarely, or never, seen in training. In experimentation, the authors 

found that their smoothing approach improved performance on rare words, out-of-domain 

text, and smaller training sets. 

Dalton et al. take an external knowledge approach to context aggregation (Dalton, 

Allan, & Smith, 2011). Using an information retrieval method called Pseudo-Relevance 

Feedback (PRF), they query for relevant passages in an external data set using the context 

for the target token. Given that they searched for the context that the entity occurs in, it is 

assumed that the top returned passages all contain instances of the entity with the same 

label. They then aggregate the features for this token across a number of the top retrieved 

documents and induce features based on this information. Their approach is compared 

with the Stanford NER and LBJ NER systems and found that their aggregated features 

improved performance over those systems.  

With feature aggregation, researchers strive to expand the context used to predict 

the classification of a given token. Much of the recent work on features for NER has been 

related to aggregation of some sort in an effort to widen model coverage, decrease human 

interaction in the feature generation process, and increase detection and classification 

accuracy. Many systems incorporating feature aggregation have seen performance 
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improvements over other nearly state-of-the-art systems. However, only Huang and Yates 

and Dalton et al. make an effort to make changes to the input data used to train the model. 

With feature aggregation being so dependent on the supplied context, more research must 

be devoted to determining what optimizations can be made with regards to the training 

data so as to improve the feature aggregation portion of the system. 

2.4 DOMAIN ADAPTATION 

Because semi-supervised systems, in which the efficacy of the predictive models 

is determined by the inputted training data, are so prevalent in current NER research, the 

majority of systems are largely dependent upon the domain through the training set used 

to generate the NER model. These currently-available systems exhibit poor performance 

on out-of-domain data in general. Liu et al. applied the Stanford NER system, considered 

to be one of the best NER systems currently available, to a data set of tweets and found 

that the performance dropped from the 90.8% achieved on the CoNLL03 shared task data 

set to a dismal 45.8% average F1 score on the out-of-domain data (Liu, Zhang, Wei, & 

Zhou, 2011). Dalton et al. tested the same system on a corpus of historical books and 

only achieved 51% accuracy (Dalton, Allan, & Smith, 2011). Other researchers have 

tested NER systems trained with data from one domain on data from another and 

demonstrated deteriorated performance using common NER algorithms (Rüd, Ciaramita, 

Müller, & Schütze, 2011). Futher, Ciaramita and Altun trained a HMM model on the 

Reuters corpus using a perceptron algorithm and test it on the out-of-domain Wall Street 

Journal (WSJ) test set (Ciaramita & Altun, 2005). They observed a drop in F-measure 

from 91% on the Reuters test set to 64% on the WSJ test set. This previous research 
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demonstrates that domains that do not already have tagged data available can make only 

limited use of mainstream NER systems for their applications.  

Because of this poor performance, many researchers strive to develop techniques 

or systems that will achieve better performance on out-of-domain data. Domain 

adaptation approaches in NER have involved including additional data or employing 

methodologies to adapt NER models to better address target data (Ben-David, et al., 

2010), (Rüd, Ciaramita, Müller, & Schütze, 2011), (Guo, et al., 2009), (Wu, Lee, Ye, & 

Leong, 2009), (Sun & Grishman, 2011). However, all of these approaches involve hand-

tagging or using external data, or creating specially-designed systems that are not freely 

available for use by other researchers or organizations. 

Ben-David et al. use a small amount of tagged data from the target domain 

combined with a larger amount of available out-of-domain tagged data to improve tagger 

performance (Ben-David, et al., 2010). However, this approach does not prove suitable 

for applications in which the target data changes frequently.  In the work of Rüd et al., 

search results similar to the target entity are used to extract additional features with which 

to augment and adapt the NER model to the target data (Rüd, Ciaramita, Müller, & 

Schütze, 2011). The motivation for their work was to apply a system trained on news 

articles to web query data. In this instance, the approach is only truly applicable to the 

web query domain, as the additional features are extracted from this domain and will 

likely not transfer well to other domain-specific data. 

Guo et al. employ latent semantic association to fine tune a NER model without 

including any additional domain-specific training data (Guo, et al., 2009). Their system 

learns latent semantic association among words from untagged text, which is then used to 
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augment or tune the original model, with the idea that words in different domains will 

still share similar semantic and syntactic contexts. Bootstrapping, or using the output of a 

system to refine and improve the system itself, is a common approach to the domain-

adaptation problem in NER. Wu et al. combine traditional bootstrapping ideas with 

domain adaptation goals to select instances that are both informative and easy to 

automatically label correctly (Wu, Lee, Ye, & Leong, 2009). They also set criteria that 

stop the bootstrapping process before it begins to add in incorrectly labeled instances. In 

this way, they aim to identify and incorporate instances that contain both domain-

independent and target-domain specific features. Similarly, Sun and Grishman employ 

bootstrapping in their system but also include additional features based on membership in 

Brown word clusters generated from both source and target data (Sun & Grishman, 

2011). Example clusters from their bootstrapping process are presented in Table 2.5, 

demonstrating how words are grouped together by the clustering process and thus 

provided with a classification to be included as an added feature. 

 

Table 2.5 – Example results of bootstrapping technique from Sun and 

Grishman (2011), including Brown bit string representation used to 

traverse binary tree to produce hierarchical clusters (Section 2.5) 
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2.5 CLUSTERING FOR NER 

Clustering of training documents has not been previously used in NER research; 

however, the general idea of clustering has been implemented to improve NER systems 

and models. Word clustering is the most common application of clustering in the NER 

space though some recent work has incorporated clustering of just the named entities, 

instead of all words in a corpus. Word clusters are a common addition to semi-supervised 

NER models in current research. Unlabeled data is clustered and membership in those 

clusters is included as an additional feature for supervised learning. In this way, even if 

words are not in the training data, if they share characteristics with a cluster, they will 

still be able to be classified.  

Much of the early word-clustering work approaches the problem in one of two 

ways: either words are moved around among groups until some ending condition is met 

or clusters are repeatedly merged until a satisfactory partitioning is reached, generally 

one in which the average mutual information (AMI)5 is maximized. However, most 

recent research in clustering tends to follow the merging approach, which was pioneered 

by Brown et al. (Brown, deSouza, Mercer, Della Pietra, & Lai, 1992). The work by 

Brown et al. was motivated by the need to make predictions on a string of text from a 

noisy channel and the desire to assign words to classes based on a large body of text. In 

this approach, each word in the vocabulary of the training data starts out in its own 

cluster. Clusters are repeatedly merged based on which merging will produce the least 

amount of loss of AMI. In this way, they strive to find the clustering that maximizes the 

                                                 

5 Mutual information is a measure of how much information one variable can provide about 

another, or the mutual dependency of two variables. 
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amount of information the model contains about the target domain. Once a partitioning is 

achieved to reach the desired number of classes, reshuffling of words sometimes can 

improve the AMI of the model. Figure 2.5 demonstrates some of the clusters obtained 

from a sample text from the Canadian parliament using the Brown clustering technique. 

This idea of clustering similar words into class designations is used extensively in 

subsequent research on NLP labeling tasks with many researchers seeking to make 

improvements which will increase performance and accuracy of their systems. 

 

 

 

Figure 2.5 – Semantic clusters created using Brown 

clustering taken from (Brown, deSouza, Mercer, Della 

Pietra, & Lai, 1992) 

 

Usioda introduced a hierarchical clustering of words in an effort to improve their 

decision-tree based POS tagger in their parsing system (Ushioda, 1996). He also attempts 

to combine the two ways of clustering - shuffling between clusters and merging clusters - 

to determine if that can improve performance. The author asserts that clusters provide 

more functionality for the system if they can be constructed at variable granularities or in 
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a hierarchically structured way. Further, clusters should promote what he calls "mutual 

substitutability" in which clusters can represent both syntactic and semantic information. 

A sample word clustering is given in figure 2.6. This extends the capabilities of the system 

to more competently handle unknown words. Lin and Wu take word clustering one step 

further by also including phrase-based clustering (Lin & Wu, 2009). They also implement 

the algorithm in such a way so as to enable scaling up to tens of millions of clustering 

elements.  

 

 

 

Figure 2.6 – Sample clustering of words for one class in the Wall Street Journal 

corpus taken from (Ushioda, 1996) 

 

Whereas most previously mentioned clustering implementations use a hard 

clustering methodology, or one in which every word can belong to only one cluster, Li 

and McCallum employ a soft clustering technique in which words can probabilistically 

belong to multiple classes (Li & McCallum, 2005). Lin and Wu describe an extension to 

their k-means algorithm that can convert their hard-clustering implementation to a soft-
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clustering (Lin & Wu, 2009). Instead of just adding a word to the most appropriate 

cluster, the extension would allow a word to be added to any cluster within a given 

similarity value. This produces a sort of fuzzy mapping between words and clusters and 

could prove to be more flexible when developing an NER system for wider coverage. 

Koo et al. test a two stage approach in which they establish clusters based on 

unlabeled data and then pass those clusters to a discriminative learning algorithm to 

identify informative features (Koo, Carreras, & Collins, 2008). In this way, they learn 

features without requiring prior information as to the origin of those features. Koo et al. 

were able to show that clustering can reduce the need for supervised data by half. Though 

their work was targeted for dependency parsing, the ideas can be applied to other NLP 

tasks, such as sequence labeling tasks, as evidenced by the work of applying 

discriminative learning to NER conducted by Miller et al. (Miller, Guinness, & 

Zamanian, 2004). 

In contrast to word clustering, Ah-Pine and Jacquet cluster cliques of named 

entities in order to identify other possible annotations for a given entity (Ah-Pine & 

Jacquet, 2009). Some example clusters of cliques and the contexts they are associated 

with are provided in figure 2.7. Their motivation is to resolve ambiguities and incorrect 

annotations output by a given NER system. The use of clustering in NER is limited in its 

application and has the potential to provide a higher degree of usefulness if utilized in 

other areas such as training document clustering. 
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Figure 2.7 – Examples of clusters of cliques and their associated contexts 

taken from (Ah-Pine & Jacquet, 2009) 

 

2.6 DOCUMENT CLUSTERING 

Document clustering has been used extensively in machine learning, with many 

approaches developed for clustering documents. The clustering methods perform with 

varying degrees of success for different applications. This observation, combined with 

the lack of previous research applying document clustering to NER, means that it was 

necessary to test a number of different clustering approaches to determine the optimal 

clustering strategy for use in this setting. As with domain adaptation, significant research 

has been devoted to this area, and many algorithms and systems are developed for a 

specific purpose or application area. For this research, k-means, topic modeling and a 
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clustering technique based on cosine similarity are investigated as options for inclusion 

with NER systems due to their widespread general use and the availability of existing 

code and tools.6  

K-means is a common clustering methodology employed in many machine 

learning applications. Simply, n documents are assigned to k clusters based on the 

similarity of their vector representation to the mean of that cluster. It is an iterative 

procedure in which after documents are assigned to clusters, cluster centers are 

determined and these new cluster centers are then used to reclassify the documents. 

Given that k-means represents one of the more commonly used approaches, it was a 

logical initial choice for testing (Steinbach, Karypis, & Kumar, 2000).  In order to 

conduct a clustering of the documents, they must first be converted to a representational 

format from which similarity can be measured, most often a vectorized form. Term 

frequency – inverse document frequency (TF-IDF) is a common document representation 

protocol in which the frequency of each term is related back to its frequency across the 

documents in a corpus, giving an indication of the importance of the word within the 

corpus (Robertson, 2004).  

Another method of conducting document clustering called topic models are 

utilized as a means of representing the semantic content of a document, rather than 

simply using the standard bag-of-words representation, in which a vector is created out of 

all of the words in the lexicon and documents are represented based on which words they 

contain (Steyvers & Griffiths, 2007). Topics consist of clusters of words that generally 

                                                 

6 An in-depth discussion of document clustering is out of the scope of this work. For a more 

detailed explanation, refer to Shah and Mahajan’s work (Shah & Mahajan, 2012). 
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occur together and are a means of highlighting abstract concepts contained in a 

document. Once a corpus has been statistically analyzed for potential topics and 

documents have been assigned to a number of topics based on their similarity to those 

topics, clusters can be generated by grouping documents from the same topic or topics. 

As a third methodology, documents were represented by term frequency – inverse 

corpus frequency (TF-ICF), an alternative to TF-IDF that utilizes observations based 

on Zipf's law to provide a corpus based estimate of TF-IDF (Reed, et al., 2006). TF-ICF 

is a good choice for out-of-domain NER because the base corpus is generic and not 

dependent on the given data set. Document vectors were compared using cosine 

similarity and clustered into groups based on a specified similarity threshold (Reed, 

Potok, & Patton, 2004). Previous work has shown that cosine similarity was effective 

when choosing top similar documents and could likely be effective for this application. 

Using this implementation, the user is able to alter the threshold of similarity between 

documents in the clusters. In this way, the technique performs a form of hierarchical 

clustering, another common document clustering approach. 

2.7 ACTIVE LEARNING 

In the event that human resources are available to create a domain-specific tagged 

training set, active learning has become increasingly popular as a means of decreasing the 

amount of tagged data required to create an efficient NER model. Active learning refers 

to the idea of using machine learning algorithms to choose the data to learn from, 

ultimately resulting in the need for less data to be used (Settles, 2009). Olsson presents an 

extensive survey of active learning as it relates to natural language processing (Olsson, A 
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literature survey of active machine learning in the context of natural language processing, 

2009).  

With reference to the specific task of named entity recognition, Shen et al. attempt 

to maximize the usefulness of the information provided to the model by a given example 

based on three criteria: informativeness, representativeness and diversity (Shen, Zhang, 

Su, Zhou, & Tan, 2004). They employ a support vector machine to choose examples 

based on the quantified measures they developed for the three specified criteria. These 

techniques were able to reduce labeling costs by 80% without showing significant 

reductions in performance. Becker and Osborne pursue a committee-based approach in 

which a number of different classifiers are implemented, each taking into account a 

different feature space (Becker & Osborne, 2005). The degree of deviation of the 

classifiers determines whether an instance is potentially interesting and deserves further 

examination by a human annotator. In the work of Vlachos, active learning is compared 

to the coined term “active annotation”, in which data is tagged using an unsupervised 

tagger, the resulting data used to train a model and that model is used to identify the 

instances to be fed to the human annotator (Vlachos, 2006). Kim et al. explore an 

adaptation to uncertainty-based systems in the form of an entropy-based measure for 

quantifying the classifier’s uncertainty (Kim, Song, Kim, Cha, & Lee, 2006). They also 

strive for diversity within their sampling set and combine these two goals using the MMR 

(Maximal Marginal Relevance) method to rank the potential samples. Olsson introduces a 

bootstrapping approach to named entity annotation (Olsson, 2008). in which a set of 

documents is manually annotated, this set is used as a seed for machine learning to 
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identify future documents to tag, and the remaining documents are pre-tagged using the 

resulting system, while using a human annotator to conduct corrections.  

While all of these active learning methods were able to significantly reduce the 

time and effort required by human NER annotators, some visible limitations still remain. 

Given the reliance of the approaches on machine learning, the methods require a 

significant investment in terms of implementation, as the majority of machine learning 

algorithms can be rather complex. Many of the best active learning algorithms are closely 

coupled to the machine learning algorithm being utilized. Future instances or documents 

being fed to the algorithm are chosen based on their degree of informativeness for the 

model. However, what constitutes this informativeness is contingent on the particular 

algorithm, thus introducing a level of dependence and specialization to the 

implementation. 
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Chapter 3 Document clustering 

Manually tagging large training sets or developing customized systems are not 

viable solutions for mainstream NER needs, such as for companies and organizations 

who do not have the time and money to develop their own system or acquire additional 

data, as is often the case in law enforcement. The focus of this research is to improve the 

robustness, scalability and time-to-solution of existing NER resources without resorting 

to developing custom, application-driven systems. Document clustering techniques 

present a promising option for creating smaller, focused training sets that allow for larger 

overall training data sets and greater scalability and have previously never been used in 

this manner. To explore the effects of document clustering, I investigated several 

different clustering techniques using the CoNLL 2003 data set to determine which is best 

suited for the NER application area. The three clustering techniques that were explored – 

k-means, topic modeling, and cosine similarity – were chosen due to their diversity 

within the field and the availability of a simple implementation. 

The CoNLL 2003 data used comprised the test (not the development) and training 

documents in the CoNLL-2003 shared task data. This corpus is considered to be the 

baseline standard for most current NER research and is a necessary inclusion in order to 

make the experiments comparable to other research in the field. Also, it has been noted 

that the test and training sets within the corpus are not as similar in nature as are the 

development and training sets (Ratinov & Roth, 2009). The training set contains 946 
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documents, while the test set contains 231. The NER tagger produced by the University 

of Illinois at Urbana-Champaign, one of the best performing systems on the CoNLL 2003 

data set, uses a 1000 token window across which to take their global context aggregation 

(Ratinov & Roth, 2009). For this system, the F1 score using one model trained on all 946 

training documents was 90.77. By choosing 1000 tokens, Ratinov and Roth hope to be 

able to capture a large enough example set to provide a robust feature value while 

maintaining a reasonable computation time. However, this method leaves the choice of 

context to chance: determined by how the documents are organized within the training 

set. It would seem that a better option would be to choose the context that best represents 

the entities to be tagged. To that end, this work serves to provide a more useful and 

informative training set from which to pull context information.  

 



49 

 

 

Figure 3.1 – Diagram of approach 

 

Depicted in figure 3.1, the training set clustering technique presented in this 

research adapts the typical methodology utilized by standard statistical NER frameworks. 

For my approach, all the training documents are clustered into smaller groups based on a 

given similarity measure. Each of these clustered groups is then inputted to train a model 

using the targeted NER system. Test or input documents can then be clustered together 

with the training cluster that they are the most similar to and tagged using the model that 

was trained on that cluster. In this way, test documents are tagged with the model that is 
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most likely to contain contexts and features that are relevant and useful for that text. The 

models make predictions as to the likely classifications for the words within the test 

documents and named entities within the texts are identified. This process produces 

smaller, less noisy models that allow for increased robustness and scalability using 

existing NER resources. 

3.1 TOP SIMILAR DOCUMENTS 

The hypothesis explored in this work is that the context aggregation feature would 

prove more useful if the training data were more specific to the target entities. For this 

initial work, documents from the training set were compiled based on their similarity to 

the target document. These documents were then used to train a model for the LBJ 

tagger. In this way, I strived to reduce the noise present in the context aggregation feature 

as a result of the generic contexts found in a large, often heterogeneous, training set and 

produce feature values that are more representative of the target entities, thus producing 

more reliable output labels.  

For an initial proof-of-concept test, for each test document, a specified number of 

the top documents from the training set most similar to that test document was collected. 

For this experiment, a simple cosine similarity measure was used. These top similar 

documents were used as a training set for the LBJ tagger, and the test document was then 

tagged using the resultant model. The system was tested by pulling the top 20, 50, 100, 

and 300 similar training documents to train the models. Creating training sets of larger 

than 300, which represents roughly a third of the entire training set, would diminish the 

efficacy of the experiment in trying to demonstrate that significantly smaller training sets 

can compete with the larger, full set. The performance of this customized model is 
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compared to that of the standard, two-phase LBJ tagger trained on the full CoNLL 2003 

training set. 

For this research, because each test document is tagged using a different model, 

performance was measured on a per-document basis, rather than the standard overall 

measure for the entire test set.7 This performance is compared to that achieved by the 

standard LBJ tagger on the same document. Figure 3.2 shows the percentage of 

documents that were tagged more accurately using the proposed system compared to the 

LBJ tagger.  

 

 

 

Figure 3.2 – Number of documents for which each 

system achieved better F1 scores. 

 

Further, figure 3.3 displays the average percentage better and worse in terms of 

F1 score for each training document size. In contrast to figure 3.2, figure 3.3 

demonstrates the average difference in F1 scores between the LBJ tagger trained on the 

                                                 

7 The Illinois NE tagger only provides performance information in the form of percentages and 

does not give enough information to calculate an overall F1 score for the test set using the CoNLL eval 

script. 
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entire training set and the proposed system trained on varying numbers of training 

documents. These numbers indicate that there exists an optimal balance that can achieve 

the dual advantages of having a smaller, more relevant training set while also maintaining 

enough data to ensure enough features to accurately predict NER labels. 

 The overall aggregated difference is also provided as a more global view of 

performance achievements. This measurement is calculated by multiplying the F1 score 

of a given document by the number of entity tokens contained in that document, 

summing these calculations, and then dividing by the total number of entity tokens across 

the test dataset. Though the overall F1 score for all test documents was lower at 90.55 

than the 90.77 achieved by the model trained on the entire training set, the fact that of the 

individual training sets achieved better accuracy for a majority of the test documents 

illustrates that the entire training set is not needed for effective NER tagging. Rather, a 

process must be established for determining which training documents are suitable for 

use with a given test set. 

 

 

 

Figure 3.3 – Average percentage points better and 

worse in the F1 score that the proposed system 

achieved compared to the standard LBJ tagger for 
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models trained with the top 20, 50, 100, and 300 

similar documents. 

 

Because clustering a training set into groups will result in smaller training sets, it 

was important to first determine that performance and accuracy would not deteriorate 

under these conditions. These initial results demonstrate that an available training set can 

be easily tailored to better serve the needs of a target data set that differs from the training 

set and showed improvements on an existing competitive NER system by modifying the 

training data set used to build the prediction model. By identifying a smaller, relevant 

training set, the sequence tagging model is better equipped to accurately predict output 

labels for target data that does not closely align with the training documents. 

This research has implications in the NER domain adaptation space as it 

demonstrates that fewer training documents are required as long as they are sufficiently 

similar to the targeted test set. This methodology could allow for better utilization of 

existing, freely-available (possibly generic) training sets by extracting portions of the 

training set that are more similar to the target data. It also allows for existing NER 

systems to be better adapted to domain-specific data without modification for feature 

augmentation or the inclusion of additional external data sources. Aggregating the most 

similar training docs for each document to be tagged is not feasible on a larger scale. Pre-

clustering the original training set into smaller, more focused groups is a doable approach 

that allows target documents to be matched with the group of documents that is most 

likely to contain relevant features and example entity instances. 
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3.2 K-MEANS 

For this application, I used the k-means implementation provided by sci-learn 

(Pedregosa et al., 2011). Trials were conducted with two, three and four clusters using a 

TF-IDF vector representation of the documents. Initially, test and training documents 

were all clustered together at the same time. I also experimented with clustering only the 

training documents and then fitting the test documents to those cluster. During all of 

these tests, none of the clusters performed better than the original model trained on the 

whole training set. Performance was sufficiently poor so as to preclude any further testing 

with different cluster sizes; not once, in any of the trials, did any cluster achieve a higher 

F1 score than the original model. Presented in Table 3.1, the highest scoring 

configuration involved fitting the test documents to the training documents in four 

clusters, two of which were extremely large and contained the majority of the test and 

training documents.  

 

Table 3.1 – K-means cluster results; 

details F1 score of the test system, the 

performance of the model training on the 

entire training set, and the make-up of the 

clusters. 

 

# 
Test 

system 
Full set 

Test 

docs 

Train 

docs 

1 90.36 92.03 102 310 

2 84.89 88.41 1 25 

3 92.81 97.98 4 26 

4 89.06 91.39 124 585 
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3.3 TOPIC MODELING 

The topic modeling representation was chosen based on a desire to conduct more 

of a fuzzy clustering in which training documents could appear in multiple clusters. With 

the k-means implementation, each document can be present in only one cluster, which 

limits the ability for an especially useful training document to be used in multiple models 

and improve the tagging of a larger number of test documents. With topic modeling using 

Mallet, the training set is used to determine the relevant topics of a given document based 

on a pre-set parameter (McCallum, 2002). Based on those overall topics, each training 

document is then compared to each topic, with the top topics being outputted with the 

document’s similarity to that topic.  

One limitation to this approach is the inability to specify the number of desired 

clusters. Given each document’s list of most similar topics, I experimented with a number 

of different criteria for assigning documents to clusters. As an initial test, I began by 

simply putting the document in the cluster of the topic that held the highest similarity. 

However, that did not achieve my goal of allowing documents to be in multiple clusters. I 

then provided a threshold for the similarity value, above which the document would be 

included in that cluster. This resulted in extremely haphazard and irregular clusters, as 

well as clusters that did not contain any training documents, only test documents. The 

ultimate configuration was to put documents in their top two topics. Using the top three 

topics resulted in too many clusters. I also experimented with varying the number of 

topics, using 7, 10, 20 and 30. 
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The best-performing configuration was 20 topics which resulted in four different 

clusters containing test documents (clusters 1, 3, 6, and 9).8 The overall F1 score for the 

best-performing configuration was 90.52. Table 3.2 details the topic model performance 

by cluster. Though performing better than the k-means clusters, the topic model clusters 

were uneven and could be rather large. This defeated the purpose of trying to decrease the 

number of training documents in the clusters and created a larger training time for the 

whole system. 

 

Table 3.2 – Topic model cluster results; 

details F1 score of the test system, the 

performance of the model training on the 

entire training set, and the make-up of the 

clusters. 

 

# 
Test 

system 
Full set 

Test 

docs 

Train 

docs 

1 88.547 88.245 22 461 

3 0.000 66.667 1 1 

6 90.586 90.175 156 903 

9 93.222 93.670 52 507 

 

3.4 TF-ICF AND COSINE SIMILARITY 

For TF-ICF and cosine similarity, I chose to use an implementation of the work of 

Reed et al. (2004) developed at Oak Ridge National Laboratory. Most of the engineering 

of the system is designed for performance in creating the clusters, and it is backed by 

                                                 

8 The training documents clustered into more clusters, but I only used the clusters that contained 

test documents. 
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simple concepts that can be reproduced using freely available code. When clustering the 

training documents, varying the similarity threshold resulted in a varying number of 

clusters. A similarity threshold of 0.012 yielded seven cluster groups, whereas a larger 

value yielded too few groups and a smaller value yielded too many. The training 

documents proved to be more evenly distributed in these clusters than when using the 

topic models. 

This clustering approach provided the best accuracy of the three approaches, with 

F1 scores that were comparable to those achieved using the entire training set. The 

cluster-based models achieved an F1 score of 90.57, compared with 90.77 for the larger 

model. Table 3.3 gives the results of the individual clusters. 

 

Table 3.3 – TF-ICF model cluster results; 

details the original test system F1 score, the F1 

score after augmenting the clusters (Test+), the 

performance of the model training on the entire 

training set and the cluster make-ups after 

augmentation. 

 

 Test Test+ Full set 
# Test 

docs 

# Train 

docs 

1 88.921 88.905 90.145 24 160 

2 96.341 96.495 95.856 64 284 

3 86.195 86.114 86.398 58 273 

4 74.641 78.641 86.792 6 52 

5 91.350 91.135 91.095 58 301 

6 85.714 85.106 82.667 9 67 

7 93.951 93.484 93.321 13 102 
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3.5 CLUSTER ADAPTATION 

One adaptation was made to the clusters to address a limitation in the best-

performing (TF-ICF) approach: training documents could not be included in multiple 

clusters. The negative impact of this fact was observed when one of the clusters ended up 

only containing three training documents to the six clustered test documents. When this 

instance arose in the test, a decision had to be made as to which documents would be 

added to supplement the training documents already contained in the cluster. This is also 

a way of remedying the problem of training documents only being assigned to one 

cluster. 

After an analysis of the data set and the previous work in which each test 

document was matched with the training documents that were most similar, a number of 

training documents were identified as frequently occurring in these groups of most 

similar documents. As a result, all clusters were augmented with the 50 most similar 

documents (minus duplicate documents that were already contained in the cluster) to 

smooth out clusters and ensure that each cluster comprised an adequate number of 

training documents to train a model. Using the optimally performing configuration for the 

TF-ICF technique, performance improved from an F1 score of 90.57 to a score of 90.68 

with the inclusion of the additional documents. The results of these clusters are 

highlighted in Table 3.3. This demonstrates that the clusters did benefit from the 

information contained within this universal document set without resorting to a model 

that includes all the training documents. 

Further proposed work in this area includes examining what makes this universal 

set more useful than the other training documents. In particular, it would be interesting to 
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determine whether there are identifiable features of these documents that set them apart 

from the rest of the training documents. I am interested in establishing whether there is a 

way to identify more useful or relevant documents by only examining the training set 

itself or whether it is sufficient simply to extract this universal set in the same way that 

was used in the completed work.  

Another cluster adaptation that warrants exploration is whether there are optimal 

cluster sizes, both training and testing, and whether performance can be improved by 

combining smaller clusters together. For the TF-ICF clusters, clusters 4 and 6 contained 

less than ten test documents each. When combined, though little change in accuracy is 

observed, with an F1 score of 90.69, the total training time is decreased with the deletion 

of one necessary model.  
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Chapter 4 Improving robustness and versatility 

Chapter 3 establishes document clustering of training sets to be a viable method to 

improve the use of existing NER resources. However, to establish the robustness and 

broad applicability of this approach, I extend it to other taggers and training data. First, I 

apply the clustering approach on the Stanford tagger to determine whether the technique 

can be utilized with any tagger or is reliant on the underlying NER system. Similarly, I 

test additional data using this approach to highlight the method’s flexibility to handle a 

broad range of available tagged data sets. Adding in more data to the training set 

clustering and model generation process provides for broader coverage for the NER 

system in general. Finally, in an effort to further increase the robustness of the NER 

process, an annotation tool was developed to facilitate tagging of domain-specific 

training data, if human resources are available. This tool incorporates a ranking algorithm 

that decreases the amount of data that must be tagged without a noticeable decrease in 

performance.  

4.1 TAGGER VERSATILITY 

One of the advantages to this research is that a specialized tagger is not required 

to implement the proposed techniques. Because the clustering does not manipulate the 

actual data being used to train the models, this technique does not have any bearing on 

the choice of tagger being employed. Furthermore, no modifications must be made to 
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existing systems. In this way, the approach is flexible enough to be integrated into any 

NER system. 

Two of the most common open source NER taggers are those produced by the 

Cognitive Computation Group at University of Illinois at Urbana-Champaign and by the 

Stanford Natural Language Processing Group. Both are considered to be state-of-the-art 

generic taggers in the field. The experiments conducted to test the clustering techniques 

were originally established using the LBJ tagger from Illinois to take advantage of the 

feature aggregation component. To verify the transferability of the technique, the clusters 

created out of the CoNLL ’03 data using the TF-ICF and cosine similarity clustering 

technique were then run on the Stanford tagger. Transferring these experiments required 

only minor modifications to the format of the training data and no alterations to the 

Stanford tagger, demonstrating the ease with which this approach can be integrated with 

an existing system. 

From the previous work of Ratinov and Roth, the Stanford tagger was shown to 

do worse in comparison to the LBJ tagger, with F1 scores of 87.04 and 90.74 respectively 

(Ratinov & Roth, 2009). Given this, when comparing the performance of both taggers 

trained on the full CoNLL training set, it was expected that the Stanford tagger would 

achieve slightly lower F1 scores overall on the clusters than did the LBJ tagger. The F1 

scores achieved on each cluster’s test set are presented in Table 4.1.  
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Table 4.1 – Comparison of F1 

scores between LBJ and 

Stanford taggers trained on full 

training sets  

 

 Full LBJ Full Stan 
# Test 

docs 

1 90.14 

 

 

85.36 

 

24 

2 95.85 89.05 64 

3 86.39 72.66 58 

4 86.79 70.92 6 

5 91.09 86.47 58 

6 82.66 75.81 9 

7 93.32 91.04 13 

 

Rather than compare the F1 scores of the two taggers to each other, the 

experiment was designed to test the performance of the model trained on the training set 

from each cluster and compare that with the model trained on the entire training set. In 

contrast to the LBJ tagger, none of the clusters trained on the smaller training set using 

the Stanford tagger achieved a better F1 score than the model trained on the full training 

data, as demonstrated in Table 4.2. However, for the majority of the clusters, the 

difference in scores is not significant and would not render the tagger ineffective. Table 

4.2 provides the F1 scores for the original clusters run on the Stanford tagger and those 

augmented by the universal set (Stan and Stan+, respectively), the scores from the 

clusters run on the Stanford model trained on the full training set (Full Stan), and the 

training and test set sizes for each cluster. 
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Table 4.2 – F1 scores of Stanford tagger model 

trained on full training set compared with 

cluster-based models 

 

 Stan Stan+ Full Stan 
# Test 

docs 

# Train 

docs 

1 82.84 82.86 85.36 

 

24 160 

2 88.54 88.54 89.05 64 284 

3 71.56 71.59 72.66 58 273 

4 62.94 62.94 70.92 6 52 

5 84.07 84.15 86.47 58 301 

6 52.71 51.16 75.81 9 67 

7 85.47 85.71 91.04 13 102 

 

The discrepancy in performance between the taggers is likely due to the lack of 

context aggregation feature in the Stanford tagger. A component of the LBJ system, 

feature aggregation is directly impacted by document clustering as a result of the 

subsequent organization of the training set. The absence of this component in the 

Stanford tagger diminishes the effectiveness of the clustering, though it does not render it 

useless. Smaller, focused training sets would be less effective in the absence of such a 

component. The inclusion of the universal set proved to do little to improve the F1 

scores. Despite the slight drop in F1 scores for the clusters as compared with training on 

the full training set, it is clear that the Stanford NER system can also be integrated with 

the training document clustering technique, thus verifying the versatility of the approach 

with different types of available taggers. This allows for the Stanford tagger to be made 

more robust by including additional training data without adding significant time and 

computational constraints. 
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4.2 AVAILABLE DATA SETS 

In order to determine the limitations of this method on diverse data sets, I explore 

the efficacy of the approach on different sets of available tagged data. To this end, three 

diverse NER corpora were identified and acquired: CoNLL 2003, Ontonotes 4 and a 

Twitter data set. These data sets have been used in previous NER research, with results 

available with which to compare performance improvements. These data sets are taken 

from sufficiently different sources so as to represent a wide range of out-of-domain data 

when compared to each other.  

It was the original intent to include the tagged Twitter set in the experiments to 

represent another out-of-domain data set in addition to Ontonotes. However, it was 

quickly determined that Twitter textual data would not be a good candidate for use with 

this technique. To conduct document similarities for clustering, documents are 

represented in their vector forms based on their word frequencies across the dataset 

lexicon. Because tweets are so short, they contain very few words relative to the entire 

lexicon, resulting in extremely sparse vectors. This creates difficulties when trying to 

cluster them using traditional document clustering techniques because the majority of 

tweets will have no words in common at all. These observations about the ineffectiveness 

of the proposed techniques on Twitter data will be incorporated as recommendations for 

the use of these methodologies. The Ontonotes dataset represents a broad variety of 

textual genres and provides adequate out-of-domain examples. 

All experiments on training set clustering detailed in Chapter 3 were conducted 

using the CoNLL 2003 training and test data. This was done to ensure consistency across 

experiments. To test the viability of the technique on other data sets, the Ontonotes data 
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set was clustered using the best-performing clustering option – TF-ICF combined with a 

form of cosine similarity. After some trial-and-error experimentation on similarity 

threshold values, a threshold value of .30 was decided to produce adequate clusters. Since 

the threshold value determines the granularity of the clustering, smaller values produced 

a smaller number of large clusters while larger values produces a significant number of 

small clusters, some containing only one or two training documents. Initially the data set 

seemed to split into two or three large clusters with the remaining documents spreading 

out into a large number of much smaller clusters. Because the data set is large – 7351 

documents – and in an effort to even out the clusters, the methodology for finding the 

universal set of documents was employed to identify the top documents in the training set 

most similar to the test set. A training set was aggregated using the documents that fell 

within the top 1000 most similar documents and had a frequency of at least 200. This 

resulted in a set of 2712 documents that clustered slightly more evenly. Eliminating any 

clusters with less than 20 training documents produced eight clusters, three of which 

contained significantly more documents. The results of this configuration are presented in 

Table 4.3. 
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Table 4.3 – F1 scores for Ontonotes 

clusters using LBJ tagger compared 

with model trained on entire 

Ontonotes data set 

 

 Test Full set 
# Test 

docs 

# Train 

docs 

1 83.86 85.46 418 1283 

276 

842 

63 

 

2 30.50 

 

46.22 154 276 

 
3 74.14 

 

80.45 500 842 

49 0 0 28 63 

5 1.76 52.13 48 

 

72 

6 2.74 24.39 

 

115 77 

7 18.07 75.50 69 76 

 
8 3.28 75.68 31 23 

 

Though the first three larger clusters exhibited F1 scores that could prove to be 

usable in a real-world setting, clusters 4 through 8 experienced inferior performance due 

to the small size of their training sets. One way of ameliorating this problem would be to 

amalgamate those clusters into the other clusters10, thus ensuring that the training data is 

not lost and providing the corresponding test documents with a more substantial model 

with which to be tagged. This rearrangement revealed a substantial improvement in 

cluster 2 (Table 4.4(a)). 

It should be noted that only 2712 documents out of the training set were used to 

make the clusters and train those models though the F1 scores are compared with the 

model trained on the entire Ontonotes training set made up of 7351 documents. This 

                                                 

9 Cluster 4 contains no entities. 

10 In this case, the clusters were combined with the smallest of the three, cluster 2, in an effort to 

keep training times to a minimum and improve performance on that one cluster. 
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information is significant when noting that the first three clusters maintained comparable. 

A more realistic comparison would be conducted by comparing to a model trained on 

only those 2712 documents, as opposed to the entire training set. Table 4.4(b) highlights 

the results of the three clusters compared with the model trained on only the data set 

composed of the frequently occurring Ontonotes documents in per-document similarity 

clusters. This experiment demonstrated much more comparable cluster performance 

compared to the model trained on the whole training set and further validates the 

technique as a manner of improving both robustness and scalability of a variety of 

available NER systems.  

 

Table 4.4 – F1 scores for top three 

Ontonotes clusters with combined 

smaller clusters using LBJ tagger 

compared with model trained on (a) 

entire Ontonotes data set (7351 

documents) and (b) smaller top 

Ontonotes data set 

 

 Test Full set 
# Test 

docs 

# Train 

docs 

1 83.86 85.46 418 1283 

276 

842 

63 

 

2 50.34 60.71 445 587 

3 74.14 

 

80.45 500 842 

(a) 

 Test Top set 
# Test 

docs 

# Train 

docs 

1 83.86 82.07 418 1283 

276 

842 

63 

 

2 50.34 60.64 445 587 

 
3 74.14 

 

78.38 500 842 

(b) 
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4.3 ANNOTATION OPTIMIZATION 

At times, human resources may be available that would enable domain-specific 

data to be annotated for inclusion into the model-generation process. Most often, 

however, minimal time and labor resources are available, and an effort must be made to 

optimize the use of the time spent annotating text. In the event that domain-specific 

annotated data is desired, techniques are available to ensure that the time spent manually 

tagging data is spent in the most efficient manner. The research field of active learning 

attempts to address this problem by generating models designed to choose relevant 

training instances, whereby reducing the amount of training data required without 

impacting accuracy. However, several limitations arise within the complexity of 

implementing active learning that prohibit them from use by non-technical organizations. 

Particularly, sequence labeling tasks require more complicated algorithms to compute 

metrics such as diversity, representativeness, uncertainty, etc. 

4.3.1 Annotation tool 

An annotation tool was developed to facilitate the tagging process and decrease 

the amount of time spent manually annotating a training set, in the event such a training 

set was desired or necessary (Taylor & McKenzie, 2013). Figure 4.1 shows a snapshot of 

the annotation tool graphical user interface. While most active learning methods either 

begin with an untagged corpus or a human-annotated set of seed data, the developed 

approach conducts an initial tagging of the data using an open source tagger trained on 

the standard training set. Any freely available NER tagger could be utilized in this 

implementation, making the approach extremely flexible. In this way, future annotators 
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are required only to correct already tagged data, rather than tag plain text, thus reducing 

the amount of time spent on manipulating the data. Pre-tagging the plain text also serves 

to decrease the amount of overall work to be completed by the annotators, thus likely 

reducing the amount of errors introduced. 

 

 

 

Figure 4.1 – Screenshot of tool to facilitate NER text annotation 

 

To facilitate the tagging process, the data set is first annotated using the open-

source NER tagger developed by the Stanford NLP group (Finkel, Grenager, & Manning, 

2005). Once the training set has been tagged, a document ordering technique is employed 

to re-order the training set to ensure that the most useful parts of the data set are being 

corrected first, thus decreasing the amount of tagged data required. Next the data analyst 

can manually tag/correct the re-ordered training set using the color-coordinated 
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annotation scheme provided by the tool developed for this work (Taylor and McKenzie, 

2013).  When finished, the tool can output a correctly formatted training set based on the 

corrections made by the analyst. This corrected training set is then used to build a revised 

model to be utilized in automating the tagging of the target data. Due to its frequent use 

in previous NER research, the CoNLL-2003 shared task data was chosen to demonstrate 

the applicability of the proposed technique (Ratinov & Roth, 2009). 

4.3.2 Ordering algorithm 

If portions of a larger data set are chosen at random to be annotated in order to 

produce a NER training set, it is not guaranteed that the most useful portions of this data 

are being utilized, thus creating a need for more tagged data to generate a more robust 

model. In an effort to reduce the amount of effort expended by already time-constrained 

human annotators in creating training sets, an algorithm was developed to order the data 

set so that the most useful portions will be annotated first and less tagged data is required 

overall. 

This approach addresses a perceived limitation in active learning techniques in 

that many are dependent on the machine learning algorithm being used to make the 

incremental sample data selections. The use of a generic function for ordering documents 

that does not depend on the underlying machine learning algorithm being employed 

means that this technique is much more adaptable for the future use of a variety of 

diverse NER methods and algorithms, in particular, the popular voting scheme in which a 

number of different models are used in combination. 
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To determine the best method for ordering training sets, two scoring functions 

were developed for ranking portions of text based on the entities that they contain. The 

first scoring function sorts the training set by individual sentences based on the ratio of 

the frequency of a given entity within the sentence to the frequency of that entity in the 

entire corpus. 

The sentence scoring function is denoted as: 

(𝑁𝑡1
 –  𝑁𝑠1

) + (𝑁𝑡2
 – 𝑁𝑠2

) + ⋯ + (𝑁𝑡𝑥
– 𝑁𝑠𝑥

) 

where 𝑁𝑡𝑖
 is the number of occurrences of an entity within the training set and 𝑁𝑠𝑖

 is the 

number of occurrences of an entity within the sentence. The benefit obtained by using the 

sentence scoring function is that the rarest entities will be positioned at the beginning of 

the document. To illustrate this point, if there is only one occurrence of Jon in the entire 

training set, the sentence containing the word Jon will be placed at the beginning of the 

document. However, if Jon appears 50 times in the training set, a sentence containing one 

instance of Jon would not be placed as close to the beginning. This scoring function also 

ensures a sentence holding all or most occurrences of one entity will appear at the 

beginning; otherwise your final training set may not include any instances of that entity. 

In a real world situation, sentences will contain more than one unique, tagged entity. In 

this instance, each entity affects the score of that sentence, meaning the training set will 

be ordered by sentences with the rarest entities near the front. 

An alternative scoring function was also developed that is based on 500-word 

blocks. The larger block size allows for a more complex function that takes into account 

more information about the type and uniqueness of entities within the block as compared 
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to the sentence-based function that only looks at entity frequencies. The 500-word 

scoring function is denoted as: 

(∑ |(
𝐸𝑡𝑖

 

𝑁𝑒
) −

1

𝑁𝑇
|

𝑁𝑇

𝑖=1

) + (
𝑁𝑤

𝑁𝑒
) + (

𝑁𝑒

𝑁𝑢
) 

where 𝐸𝑡𝑖
 is the number of occurrences of a specific entity type (e.g. Person, Location), 

𝑁𝑒 is the number of tagged entities, 𝑁𝑇 is the number of types, 𝑁𝑤 is the number of 

words, and 𝑁𝑢 is the number of unique entities. The scoring function contains three 

components. The first is a summation of each entity type’s deviation from 
1

𝑁𝑡
, which 

details the amount of entities of a given type that occur in that block as compared with 

the total number of that type across the training set. The second component is the ratio of 

words in the block to the number of tagged entities, which highlights how much of the 

block is made up of entities. The final component is the ratio of tagged entities to the 

number of unique entities in the block. Blocks with the highest rank are the ones that 

contain a significant amount of entities of a given type, a larger number entities in 

general, and a number of unique entities. Due to the output of the equation, blocks with 

the lowest score are determined to be most useful and are placed in the front of the 

document.  

For these experiments, a training set size of 16k words was utilized. This training 

set was then sorted using each of the proposed scoring functions. Next a portion of the 

beginning of that training set was used to train the model. Finally, the model was tested 

on the same test data for each case. The procedures were evaluated using F1 score, a 

standard NER performance metric. Also, as a baseline measure, the techniques were 

compared against the model trained on the same training set that had not been ordered. 
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As seen in figure 4.2, the F1 score of the model created by the unordered set immediately 

drops as the size of the training set decreases. Conversely, the F1 score of the documents 

ordered by sentence is maintained until the number of words drops to 8000. Both scoring 

functions outperform the unordered data set and effectively reduce the amount of 

necessary tagged data by half, demonstrating that document ordering is an effective 

technique for reducing the burden on human annotators. 

 

 

 

Figure 4.2 – F1 score trends using document ordering compared to 

unordered training sets 
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Chapter 5 Improving scalability 

A goal for NER systems in general is to improve scalability, which means the 

ability to scale to larger amounts of training data. Scalability is a major motivation behind 

the proposed techniques of training set clustering and cluster model generation. Simply 

including a significant amount of training data to increase coverage is one obvious way of 

improving the applicability of a given NER model. However, training times increase 

exponentially as training sets get larger and creating a large, complex model may be 

time-prohibitive. One of the goals of this approach is to decrease the amount of noise and 

create more focused, tailored training sets, specifically to address this challenge.  

5.1 CONLL 

Not only do the clusters perform comparably in terms of accuracy, but training the 

individual cluster models proved to take less time overall than training one large model 

using all of the documents from the CoNLL training set. In an attempt to simulate larger 

training sets, training sets were multiplied by four, and models were trained again to test 

training times. The training times as well as original cluster sizes are highlighted in Table 

5.1. At this scale, the model trained on the training set consisting of four times the whole 

training set failed to complete within the default memory settings of 4GB. However, the 

cluster training sets, even after being increased fourfold, were able to complete within the 

default memory settings. These tests demonstrate the benefits of smaller training sets in 

terms of training times and memory requirements are observable. During all of the 
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proposed work, time and memory use will be recorded to determine the overall picture of 

how clustering training sets impacts NER system performance and to identify any areas 

that might need alterations or improvements based on observations. 

 

Table 5.1 – Performance of clustering technique 

compared to training a model using the full 

training set for both the original training 

documents and doubled training sets. 

 

 # docs Training time 4x 

Cluster 1 160 1m46s 3m37s 

Cluster 2 284 2m13s 4m39s 

Cluster 3 273 2m3s 3m58s 

Cluster 4 52 1m6s 1m49s 

Cluster 5 301 2m18s 4m45s 

Cluster 6 67 56s 1m49s 

Cluster 7 102 1m9s 2m28s 

Total time  11m31s 23m5s 

Full data set 946 14m13s N/A 

 

The technique can be extended to any NER tagger without tagger modification 

due to its manipulation of the input data rather than the tagger itself. This is demonstrated 

by conducting the same experiments on an additional open-source tagger, that produced 

by the Stanford NLP group. The Stanford tagger maintains higher memory requirements 

than the Illinois tagger because of its underlying machine learning framework. For this 

reason, memory settings were raised to ensure of the completion of some model training, 

though not to levels that might not be achievable by the average forensic investigator. 

The results of these experiments mirrored those observed with the Illinois tagger. 

The combined training times for the cluster-based models did not approach that of the 

one model training time for the combined training set. These results are presented in 

Table 5.2. 
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Table 5.2 – Clustering technique compared to 

training a model using the full CoNLL training set 

for both the original training documents and 

quadrupled training sets using Stanford tagger. 

 

 # docs Training time 4x 

Cluster 1 160 1m16s 4m24s 

Cluster 2 284 2m59s 7m37s 

Cluster 3 273 3m54s 10m28s 

Cluster 4 52 0m35s 1m58s 

Cluster 5 301 2m21s 6m58s 

Cluster 6 67 0m36s 2m12s 

Cluster 7 102 0m49s 2m42s 

Total time  12m30s 36m19s 

Full data set 946 14m58s 60m21s 

 

Though most NER research focuses on F1 score as a measure of the success of a 

given NER system or technique, other measures exist for determining the outcome of this 

type of research. Training time is one and has already been addressed for this approach. 

In addition, accuracy, precision and recall are other common measurement statistics, 

though precision and recall are already included in the calculation for F1. Given that the 

goal of this system is to ease the burden and complexity of NER for resource-constrained 

organizations, it is also necessary to ensure that the proposed technique accomplishes 

these goals by measuring savings of time and resources, as has been noted previously. 

These measurements will be taken into account for the final presentation of this research. 

5.2 CONLL AND ONTONOTES 

Further experimentation combining the CoNLL and Ontonotes data sets revealed 

similar performance gains when conducted on the Illinois tagger. Due to the variety of 

different types of data contained within the data set, the inclusions of Ontonotes broadens 

the applicability of the training set to a number of other domains and widens the coverage 
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of the model. This serves to facilitate domain adaptation and the efficacy of exiting NER 

taggers and data sets, while bypassing the need for manual tagging. However, adding in 

the Ontonotes data makes for a significantly more complex model due to a larger part-of-

speech and named entity tagsets, resulting in much longer training times. While the 

cluster-based models could be trained using the pre-specified 4GB of memory, the large 

combined model ran out of memory after 3 hours and 20 minutes, necessitating an 

increase in memory to 8GB. Despite the superior memory allotment, the model trained on 

the full CoNLL and Ontonotes data sets nevertheless took a significantly longer amount 

of time to train than the combined training times of the models trained on the clusters, as 

illustrated in Table 5.3. 

 

Table 5.3 – Clustering technique 

compared to training a model using the 

full CoNLL and Ontonotes training sets 

using Illinois tagger 

 

 # docs Training time 

Cluster 1 1160 50m1s 

Cluster 2 1284 69m6s 

Cluster 3 1273 65m46s 

Cluster 4 1052 23m33s 

Cluster 5 1301 82m33s 

Cluster 6 1067 17m17s 

Cluster 7 1102 33m10s 

Total time  5h41m38s 

Full data set 7946 24h13m46s 

 

For the combined CoNLL and Ontonotes training set, the memory requirements 

of the Stanford tagger exceeded the previously used settings of 4GB and 8GB and would 

not successfully complete. This is largely due to the significant amount of features 

generated for CRF model development. To overcome this limitation, only the word and 
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its NER tag were passed in the training stage, and the part-of-speech and chunk tags were 

discarded. This allowed for the cluster-based models to be trained. However, the full 

model trained on the whole training set was unable to complete as the system ran out of 

memory trying to generate the model.  

 

Table 5.4 – Clustering technique 

compared to training a model using the 

full CoNLL and Ontonotes training sets 

using Stanford tagger 

 

 # docs Training time 

Cluster 1 1160 62m17s 

Cluster 2 1284 74m35s 

Cluster 3 1273 75m5s 

Cluster 4 1052 28m9s 

Cluster 5 1301 99m45s 

Cluster 6 1067 20m12s 

Cluster 7 1102 40m56s 

Total time  6h50m59s 

Full data set 7946 N/A 

 

The approach presented in this work demonstrated that clustering the training set 

into more focused smaller groups allows more data to be incorporated into the training 

process, whereby increasing the efficacy of existing taggers and tagged data sets and 

avoiding the necessity to manually tag training data. It was shown that smaller clusters 

can be trained in less time and using less memory than one larger cluster using all the 

training data. 
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Chapter 6 NER recommendations 

This research can be taken a step further by expanding the approach into a set of 

recommendations for organizations, in particular, law enforcement, as to the best options 

for implementation for their data. Data contains general characteristics that will lend 

itself well to being tagged with more generic approaches or makes it necessary to employ 

modifications such as are presented in this technique. It is important for law enforcement 

analysts to have an idea as to when the use of this approach is required or recommended. 

The development of this research revealed certain aspects of the methodologies 

that lend themselves to a certain usage or optimization. One of the goals of this research 

is to provide an approach that is more accessible to non-scientific organizations. To 

establish a complete solution, recommendations must be offered as to the use and 

optimization of the approach. These recommendations serve to eliminate much of the 

guesswork involved in the implementations of these ideas in a real-world setting and to 

ensure that the best possible performance is achieved on the NER tagging task. In general 

recommendations can be made in the areas of: 

 Data 

 Clustering 

 Taggers 

 Performance 
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6.1 DATA 

Choice of training data is the first consideration that must be taken into account 

during implementation of any NER system. For this approach, the structure of the 

training set is impacted by the document clustering and must also be taken into 

consideration. Most document clustering methods rely on vector-based similarity 

measures. These document vector representations impose constraints on the types of 

documents that can be effectively clustered to make the focused training sets. When the 

document length is too small, vectors become too sparse, making it difficult to compare 

for similarity and therefore create clusters based on that data. For that reason, this 

technique would not perform well on data that naturally contains documents with short 

text fragments – such as Twitter or individual chat messages. It is recommended that 

Twitter, or other similar, data be analyzed separately when utilizing the described 

approach. 

Though not appropriate for Twitter, the proposed technique does facilitate the use 

of multiple disparate data sets. Generally, combining a number of significantly different 

data sets into one training set could potentially generate an extremely noisy and 

inaccurate model, thus negatively impacting performance. By employing the clustering 

technique, data sets from significantly different domains, possibly with their own tag sets, 

will likely cluster together and wind up in different models. The initial clustering step 

provides a means of determining to which model each test document should be fed by 

way of a similarity comparison with each cluster center. Simply creating a model with 

each disparate data set provides no such means. In this way, organizations are free to 
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aggregate any freely-available and/or customized training sets in an effort to create 

broader coverage for the system. 

For larger data sets, if the documents seem to cluster together into only a couple 

of similar large groups, it was found to be useful to first employ the technique to identify 

the universal set of documents used to augment the clusters (detailed in Section 0). The 

smaller training set, constructed out of an original set that had many similar documents, 

clusters more easily and is guaranteed to contain documents that are most similar to the 

target data. 

6.2 CLUSTERING 

During the course of the research on document clustering algorithms for NER, 

several best-practice recommendations were highlighted. First, it is important to note that 

training set clustering is independent of the NER tagger in terms of implementation. This 

means that any decisions affecting clustering do not need to take tagger choice into 

account. After an analysis of several varied document clustering algorithms, cosine 

similarity using TF-ICF vector representations proved to achieve superior performance 

over other methods tested. This technique should be included as part of the implemented 

NER system for optimal system configuration. 

During the clustering experimentation, cluster structure was analyzed for its 

efficacy in the approach. Based on these observations, organizations should strive to 

obtain a handful of clusters that are relatively evenly distributed in terms of size. Too 

many clusters results in models with inadequate information; too few increases training 

times and introduces additional noise into the models. Some data sets may require some 

minor experimentation with similarity thresholds to identify the best cluster 
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configuration. Testing also showed that model performance degrades quickly when 

training sets begin to get too small – in general, smaller than 150-200 documents. Smaller 

clusters that would otherwise not perform well could be re-clustered into larger existing 

clusters to insure against a drop in performance. 

Once a training set has been split into clusters, it might be tempting to train 

models only on clusters that contain test documents in an effort to reduce training times. 

However, this effectively diminishes the robustness of the system, as some previously 

unseen input documents might be best tagged by a model trained on one of those clusters. 

It is therefore recommended that models be generated for all training clusters, regardless 

of whether they originally contained test documents. This ensures the maximum accuracy 

for future input documents. 

6.3 TAGGER 

As was previously noted, document clustering in this approach is independent of 

the underlying tagger and can be employed with any available NER tagging system. This 

is due to the fact that clustering simply results in smaller training sets and conducts no 

data manipulation that would otherwise affect tagger usage. That being said, performance 

of the technique was found to be optimal with the NER tagger developed by the 

University of Illinois at Urbana-Champaign rather than that produced by Stanford’s NLP 

group. This is likely due to the fact that the Stanford tagger has no feature aggregation 

component to be positively impacted by the clustering. 

Though only tested on these two state-of-the-art open source taggers, the 

approach does not require the use of one of these taggers. Organizations should identify a 

tagger that is easily accessible and involves a minimal amount of complexity in terms of 
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implementation and configuration. If possible, it would be advantageous to employ a 

tagger that includes some manner of context aggregation feature that would benefit from 

the training set clustering involved in this research. 

6.4 PERFORMANCE AND SCALING 

Two of the main benefits of this approach related to performance are decreases in 

model training times and the scalability that results from deconstructing the training data 

set into smaller, focused clusters. For smaller training sets, a single model may be best 

rather than employing the clustering technique. This approach is appropriate for larger 

training sets or when adding in additional instances. Particularly for law enforcement, 

when the target data can be so varied, it is essential to be able to add in more tagged data 

to make the model more robust. If a small amount of data were to be tagged to 

supplement each new case, with traditional methods, only the case-specific data could be 

included with the general training set due to computational constraints when training a 

model as training sets grow. To counteract the extra complexity and training time 

introduced by the added data, the smaller clusters can train a number of models in less 

time than it would take to train one large model on all aggregated data. This technology 

makes it feasible to combine tagged sets from multiple cases over time, resulting in an 

increasingly more accurate and robust NER system. 

The approach developed for this research is designed to enable organizations to 

more easily implement and scale NER tagging systems. By providing recommendations 

as to the best-use practices for the approach, the intent is to ensure that the maximum 

benefits in terms of accuracy, ease-of-use, and performance are realized. 
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Chapter 7 Conclusion 

As information grows exponentially, so does the desire to analyze and make use 

of this data in a systematic manner. Turning to the NLP community for help, 

organizations attempt to utilize existing tools, often with limited success due to the 

difference between their data and the data on which the systems have been trained. 

Rather than develop specialized NER systems or ways of automatically generating new 

tagged data, it is imperative that methods be developed for adapting these systems for 

improved performance with existing systems and data.  

For law enforcement or other organizations needing to conduct text-based data 

analysis, the implementation of state-of-the-art NER techniques can prove prohibitively 

complex and time consuming. On the other hand, utilizing open-source solutions often 

results in sub-par performance due to variations inherent in the target data and difficulties 

in scaling to accommodate more diverse training data. These challenges motivated this 

research to develop an NER approach that facilitates the use of open-source or available 

resources, bypasses the need for a specialized NLP expert, and allows a system to scale 

up to larger training sets without the need for sophisticated computational hardware. 

All facets of this research were designed to address the aforementioned goals. 

NER was combined with document clustering – after experimentation with different 

clustering methodologies – to produce a novel way of computing models from training 

data that reduces noise inherent in larger models. Not only is this technique able to be 
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integrated with any NER system, it also generates smaller training sets, allowing for more 

tagged data to be used than when only working from a single training set. An annotation 

tool was also developed to simplify the tagging process for analysts not skilled in NER. 

This tool incorporates a method for ordering the training data which reduces the amount 

of data needed to maintain accuracy. Finally, recommendations were provided for the use 

and implementation of these tools and techniques to ensure optimal performance. 

The TF-ICF and cosine similarity clustering method produced a reasonable 

number of clusters, and the models trained on those clusters were shown to be nearly as 

accurate as a single model trained on the entire CoNLL training set. In addition, the 

clustered training sets proved to significantly decrease training times – up to 5x speed up 

– as compared to training the larger model. This introduces a novel way of scaling to 

larger training sets and incorporating more training data, thus creating a more robust 

system. The document ordering technique incorporated into the annotation tool further 

decreases time involved in the training process by effectively cutting in half the amount 

of data required to be tagged while maintaining accuracy. All developed tools and 

techniques are independent of the underlying NER resources and can be integrated with 

any available tagger or data sets. 

The motivation for this research stems from a need to improve the performance of 

available NER taggers combined with existing tagged data and leverage these resources 

in a way that make them more accessible and useful for organizations such as law 

enforcement. The contributions of this research include: 

 demonstrating that smaller, more focused training sets can compete with a 

larger, more generic training set, 
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 presenting document clustering of training sets as a way of grouping together 

like features, whereby achieving better accuracy for out-of-domain data, 

 analyzing a variety of document clustering techniques for their utility in an 

NER application, 

 highlighting the utility of document clustering with real-world NER taggers 

and tagged data sets,  

 demonstrating that document clustering of training sets reduces model training 

time and memory requirements and eliminates the need for manual tagging or 

system development, 

 providing a tool for simplified annotation that results in less training data 

being required for comparable performance, and 

 detailing a set of recommendations for the implementation of this approach 

and ways to optimize performance. 

7.1 FUTURE WORK 

There are several avenues of research that could be continued to improve this 

approach and further the research. One interesting pursuit would be an in-depth 

examination of the impact that clustering has on the context aggregation feature. The 

assumption is that clustering the training set so that similar documents are grouped 

together would mean that the context for a given entity would then be aggregated across 

similar documents, rather than across a random assortment. In theory, this should serve to 

provide a more representative context and improve the model. However, this hypothesis 

has not been thoroughly tested. In order to verify the impact that clustering has on this 

feature, an instance of an entity would have to be manufactured so that certain documents 



87 

contained representative contexts, while others did not. In this way, the placement of 

those representative documents could be tracked and the effect of clustering could be 

determined. 

Similarly, there is also a need to be able to characterize documents and identify 

the usefulness they might have for the performance of the NER system as training data 

instances. In this way, the methodology for augmenting the clusters could be refined to 

take into account the actual make-up of the clusters and which documents would serve to 

provide the most useful information. Useful information might include the number and 

type of entities, document length, sentence lengths, type of document, topic clusters, etc. 

This document characterization could also be employed to evaluated document 

representation schemes specifically for NER and determine what type of representation 

would best serve the needs of the NER task. While much research has been conducted on 

evaluating NER systems and their performance for a given task or domain, no work to-

date has been done to validate the usefulness of annotated data sets themselves or to 

determine which available data sets, or subsets of that data, would yield the best accuracy 

for a given target domain. This information would be extremely useful for organizations 

looking to make efficient use of data that has already been tagged, rather than annotating 

domain-specific target data. 

Further work on the annotation tool would involve developing a more 

sophisticated document ranking algorithm using machine learning. The goal would be to 

develop a ranking function that did not depend on the underlying machine learning 

algorithm. In this way, the function itself could be optimized by integrating supervised or 

semi-supervised learning techniques that would be better equipped to determine the best 
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documents to be tagged. However, the supplied seeding instances would not have to be 

tailored to the particular machine learning algorithm. Work in this area could also prove 

to be innovative in the field of active learning, as well as NER.  
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