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ABSTRACT 

In this thesis we investigated through experiment and model, the anomalous 

normal stress distribution during constant-force squeeze flow of highly concentrated 

suspensions. Using pressure-sensitive films the normal stress distribution is measured in 

suspensions of glass spheres in a Newtonian liquid undergoing constant-force squeeze 

flow. At volume fractions of solids up to 0.55, the normal stress distribution is 

independent of volume fraction and almost identical to the parabolic pressure distribution 

expected for Newtonian fluids. However, at higher volume fractions, the normal stresses 

become an order of magnitude larger near the center and very low beyond that region. At 

these high volume fractions, the normal stresses decrease in the outer regions and 

increase in the inner regions as the squeezing proceeds. The normal stress distribution 

that results when the glass spheres without any fluid are subjected to squeeze flow is very 

similar to that for suspensions with volume fractions above 0.55, suggesting that the 

cause for the drastic changes in the normal stress distribution is the jamming of the 

particles in the suspension. 

The drastic changes in the normal stress distribution are explained in terms of the 

radial flow migration of the liquid phase away from the center of the sample and of the 

jamming that results from it. Experimental measurements show that changes in the 

volume fraction of solids due to liquid-phase migration are found to depend on the initial 

volume fraction of solids, the viscosity of the suspending fluid, and the size of the 

particles. Under some conditions, the volume fraction of solids remains essentially 
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constant during the squeeze test, indicating that liquid-phase migration does not take 

place to any significant degree; however, under other conditions, the volume fraction of 

solids increases throughout the sample as the squeezing proceeds and liquid is expelled 

from the test region in preference to the solids. In these latter cases the concentration 

increases are largest toward the center of the samples. Criteria for the occurrence of 

liquid-phase migration in suspensions undergoing squeeze flow are discussed in terms of 

dimensionless groups. 

Liquid-phase migration is modeled numerically by taking into account the time 

and position dependence of the rheological properties of the material due to the change in 

the volume fraction of solids. This is done by coupling the equation of motion for a non-

Newtonian material that approximates a Bingham plastic with a continuity equation that 

includes diffusive flux. The developed model is first validated with experimental data and 

then used to study the effect of various parameters on pressure-induced phase separation. 

Changes in the volume fraction of solids within the squeezed suspensions due to liquid-

phase migration were found to depend on the degree of slip at the surfaces and on the 

applied force as well as on the material properties.  
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CHAPTER 1 

INTRODUCTION 

Suspensions of solid particles in liquids are ubiquitous in industry and nature. The 

rheological characterization of highly concentrated suspensions and pastes is useful in 

predicting the processing characteristics of solder pastes, concrete, paving asphalt, bulk 

molding compounds, ceramic pastes, and other industrial materials. Sometimes, the final 

product itself is a concentrated suspension or paste, and its rheological characteristics 

affect its performance. Such is the case for tooth paste, diaper cream, modeling clay, etc. 

The rheological behavior of these suspensions depends on the particle shape, size and 

size distribution, volume fraction of particles, particle-particle and particle-fluid 

interactions, and measurement conditions such as temperature and shear rate (Gulmus 

and Yilmazer 2005). 

The multi-phase nature of highly concentrated suspensions gives rise to complex 

rheological behavior as a result of particle contacts, jamming, liquid-phase migration, and 

shear localization (Mascia and Wilson 2007). The heterogeneities and anisotropy induced 

by the flow may affect the mechanical, thermal, and electrical properties of the final 

product (Collomb et al. 2004).  

Rotational viscometers are, in general, inadequate to characterize these materials, 

mainly because of slip at the surfaces and exudation of the sample during testing. 

Squeeze flow, one of the few tests capable of generating useful rheological data for these 

materials, is now more frequently used. In squeeze flow the material is deformed between 
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two surfaces approaching each other at either a controlled velocity or under the influence 

of a controlled force. Figure 1.1 presents a schematic and the coordinate system for our 

squeeze flow tests. We denote the distance between the plates by H and the half-distance 

by h and use a coordinate system with the origin of the z-axis placed at the symmetry 

plane. 

 

Figure 1.1 Schematic and coordinate system for the squeeze tests  

The review paper by Engmann et al. (2005) summarizes the various aspects of squeeze 

flow rheometry. When highly concentrated suspensions are subjected to constant-velocity 

squeeze flow two main flow regimes can be identified (see, for example, Delhaye et al. 

2000). In the first regime, when the surfaces approach each other at relatively high 

velocities, the suspension remains fairly homogeneous as it squeezed, and the applied 

force at a given gap increases with increasing approach velocity.  In the second regime, 

the fluid filters through the particle network as the material is squeezed, and the applied 

force at a given gap decreases with increasing approach velocity. Two regimes are also 

observed in constant-force experiments depending on the magnitude of the applied 
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squeeze force (Meeten 2007). Sherwood (2002) used the relation describing the uniaxial 

compaction of suspensions in the lubrication analysis of the squeeze flow of a plastic 

material with slip at the walls. He thus derived the governing equations for the solid 

content within the suspension as a function of time and radial position. These equations 

predict that if the squeeze velocity is sufficiently small, the solid volume fraction within 

the suspension will be non-uniform, with higher volume fractions near the axis of plates. 

A constitutive model by Poitou and Racineux (2001) compares the time scale of the 

deformation of the suspension to the time scale of the filtration, due to a pressure 

gradient, of the liquid phase through the solid particle network. At high squeeze 

velocities the deformation time scale is much smaller than the filtration time scale, and 

filtration is not important; on the other hand, at low squeeze velocities the opposite is 

true, and filtration cannot be neglected. This model has been used to describe the 

rheological behavior of ceramic pastes (Poitou and Racineux 2001), sewage sludge 

(Chaari et al. 2003), and suspensions of hard spheres in Newtonian fluids (Delhaye et al. 

2000) and shear thinning fluids (Collomb et al. 2004). When low approach velocities are 

used, the concentration of solids in the squeezed samples is larger towards the center of 

the plate; in some cases (Poitou and Racineux 2001) the material at the center is 

obviously drier than the rest. Roussel and Lanos (2004) studied squeeze flow of dense 

clay suspension and proposed a model that allows prediction of the solid volume fraction 

through the squeeze test in terms of the sample’s rheological parameters but  in their 

model the average permeability and the yield stress value are not depending upon the 

average solid volume fraction.   
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Boundary conditions also play an important role in squeeze flow because, unless there 

is perfect slip at the plates, the shear stress at the surface is transmitted to the bulk of the 

sample. Achieving perfect-slip boundary conditions for any material is very difficult in 

experiments (Meeten 2004) although Mascia and Wilson (2007) studied purely biaxial 

extensional strain by using Teflon to eliminate the friction from the plates together and by 

using large initial sample height (the initial gap was the same order of magnitude as the 

radius of the plate). They also found that the effect of lubricating the plates was 

negligible at large sample heights and the difference was only apparent at heights below 

40% of the initial height. Experiments by Estellé et al. (2006) with smaller initial height 

showed that the squeeze flow boundary condition is divided into two zones: a small 

circular central zone where the sample sticks to the plates, and the region beyond that 

zone, where friction causes the sample to partially slip at the plates. Smyrnaios and 

Tsamopoulos (2001) showed that when a Bingham plastic undergoes squeeze flow 

between parallel disks approaching each other at a constant velocity, there is a region 

around the center of each plate that undergoes no deformation. The unyielded region on 

the top plate does not connect with the unyielded region on the bottom plate. As the 

plates approach each other these unyielded regions become smaller. Previously, for the 

same setup, O’Donovan and Tanner (1984) had shown that regions of almost unyielded 

material would be expected around the flow stagnation points (the centers of the top and 

bottom plates) for a material that approximates a Bingham plastic by having a very large 

viscosity at low shear rates and a shear stress that varies linearly with shear rate at larger 

shear rates. 
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Navier and Sur (1827) first proposed a partial slip condition by relating the tangential 

velocity (slip velocity) to the local tangential shear stress for rough surfaces. If the shear 

viscosity of the fluid comprising the apparent slip is Newtonian then the relation between 

slip velocity and shear stress is linear. Laun et al. (1999) provided analytical solution for 

squeeze flow of Newtonian and power-law fluids by using the lubrication approximation 

and partial wall slip which slip velocity increases linearly with radial position. For yield 

stress materials, the tangential stress at the interfaces is usually assumed to be constant 

and is expressed as a fraction of the yield stress of the material (Engmann et. al 2005). 

Sherwood and Durban (1998) provided analytical solution for Herschel-Bulkley material 

by using this method. 

Using a grid array of miniature pressure sensors distributed over the face of one of the 

plates, Yates et al. (2001) measured the pressure profile in a Newtonian fluid and in some 

food pastes undergoing the constant-velocity squeeze flow. The results for the Newtonian 

fluid were in good agreement with the theoretical predictions and the data for the pastes 

was fitted to the predictions for pseudoplastic fluids. 

The relation between applied velocity and force in squeeze flow for most types of 

homogeneous materials has been studied before (see, for example, the review paper by 

Engmann et al. 2005), but any model which takes into account liquid-phase migration is 

necessarily more complicated than those that assume the test material is homogeneous. 

Lipscomb and Denn (1984), using the constitutive equation for a Bingham plastic and 

assuming no slip at surfaces, showed that on the central plane (between the two 

approaching surfaces) the shear stress is zero and predicted unyielded material in that 

plane. However, the velocity field predicted for this case by lubrication theory implies 
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extensional straining of the material in the central plane. There is, therefore, an 

inconsistency in their analysis. Sherwood and Durban (1996 and 1998) resolved this 

inconsistency by the adoption of a constant shear stress as a boundary condition at the 

wall. 

Sherwood (2002) used the relation describing the uniaxial compaction of suspensions 

when applying lubrication theory to the squeeze flow of a Herschel-Bulkley material 

between parallel disks with slip at the walls. He thus derived the governing equations for 

the solid content within the suspension as a function of time and radial position.  

For a Herschel-Bulkley material, Chan and Baird (2002) estimated that the error 

involved in the lubrication approximation could be large when the ratio of the distance 

between two plates to the radius of plate is large, so that numerical calculation is needed 

for a general case. 

O’Donovan and Tanner (1984) and Smyrnaios and Tsamopoulos (2001) predicted 

numerically that when a Bingham plastic undergoes squeeze flow between parallel disks 

approaching each other at a constant velocity, there is a region at the center of each disk 

that undergoes no deformation. The unyielded region on the top disk does not connect 

with the unyielded region on the bottom disk. They approximated the behavior of the 

Bingham plastic with that of a material with a very high viscosity at low shear rates and a 

linear dependence of shear stress on shear rate at higher shear rates. Yang and Zhu (2006) 

used the same approximation and assumed a linear relation between shear stress and slip 

velocity at the wall to obtain analytical solutions of the velocity profile for a Bingham 

plastic undergoing constant-velocity squeeze flow. 
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Kaci et al. (2011) observed during the constant-velocity squeeze flow of a highly 

concentrated suspension that the squeeze force as a function of the gap between the plates 

becomes almost independent of the velocity below a certain gap size. They believed that 

they had reached a transition to solid-like behavior and that the slope of the force curves 

provided the elastic modulus of the granular skeleton. 

Depending on the industrial application, it is sometimes important to either hinder or 

promote liquid-phase migration. Phase separation in constant-velocity squeeze flow has 

been investigated in ceramic pastes (Poitou and Racineux 2001), clay (Roussel and Lanos 

2004), sewage sludge (Chaari et al. 2003), suspensions of hard spheres in Newtonian 

fluids (Delhaye et al. 2000), suspensions of hard spheres in shear thinning fluids 

(Collomb et al. 2004), and highly concentrated microcrystalline cellulose suspensions 

(Mascia and Wilson 2007). Mascia and Wilson (2008) proposed a modified Herschel-

Bulkley model for constant-velocity squeeze flow with perfect slip at the surfaces. They 

also observed liquid-phase migration at slow approach velocities. 

Delhaye et al. (2000) argued that the concentration heterogeneity cannot be attributed 

to the well studied shear-induced particle migration in non-homogeneous shear flow 

(Leighton and Acrivos 1987) because shear-induced migration is a diffusive phenomenon 

that occurs on time scales much larger than those involved in typical squeeze flow 

experiments. 

Ramachandran and Leighton (2010) studied the constant-volume squeeze flow of a 

concentrated suspension between two parallel disks. Under certain conditions, they 

observed the formation of a highly packed layer of particles at the advancing front of the 

suspension, with the concentration in the rest of the suspension remaining unaffected. 
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They attributed the accumulation of particles at the advancing front to shear-induced 

migration (Leighton and Acrivos 1987) and developed criteria to predict when this 

phenomenon would occur. Using their criteria, this effect should be absent from our 

experiments even if they had been performed at constant volume. In constant-area 

squeeze flow, the method we used in our measurements, there is no advancing front 

because the gap between the plates is always full and suspension is being expelled from 

the edge as the disks approach one another. Therefore, we expect that the phenomenon 

observed by Ramachandran and Leighton did not affect our experiments. 

Meeten (2007) investigated the behavior of several soft solids undergoing constant-

force squeeze flow. His results showed that samples that readily lost liquid when placed 

on filter paper also deviated from the behavior predicted for Herschel-Bulkley materials.  

He attributed the deviation to the radial filtration of the liquid during the squeeze flow. A 

few milliliters of the material held in a cylindrical tube of radius a, were placed in contact 

with filter paper of thickness, porosity. Capillary suction drew the liquid out of the 

material and the radius of the wetting front was measured as a function of time. Patel et 

al. (2007) verified the existence of liquid-phase migration experimentally and developed 

a model that predicted this phenomenon for highly concentrated suspensions of glass 

spheres in Newtonian fluid undergoing extrusion. 

According to Meeten and Smeulders (1995) the desorptivity is proportional to the 

square root of the ratio of the permeability of the material’s solid matrix to the viscosity 

of the liquid. Meeten (2007) found that materials for which porosity is larger than 2  

μm·s
-1/2

 deviated from the behavior predicted for Herschel-Bulkley materials and thus 

were presumed to exhibit radial filtration of the liquid during the squeeze flow. This 
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criterion for the prediction of liquid-phase migration in squeeze flow does not account for 

the possible effect of the squeezing conditions. For example, for constant-force squeeze 

flow, a material may exhibit liquid-phase migration when squeezed with a small force but 

not when squeezed with a large force. Similarly, under constant-velocity squeeze flow, a 

material may exhibit liquid-phase migration when squeezed slowly but not when 

squeezed rapidly. 

Yield stress is another phenomena commonly observed in highly concentrated 

suspensions (Barnes 1999). Heymann et al. (2002) present evidence for an elastic 

component of deformation at high particle concentrations and conclude that, at low shear 

stress, particles interact as an elastic network, which breaks up when the yield stress is 

reached. They found that the yield stress is a function of the particle volume fraction and 

is larger for smaller spheres because of the greater density of particle-particle 

interactions, which gives rise to a more robust particle network. They found that the 

network deforms elastically in response to an applied stress, which is transmitted through 

the network via direct particle-particle contact. The yield stress is reached when the 

applied stress is sufficient to cause the network to break up, beyond which point the 

suspension flows. It appeared that by carefully controlling the experimental conditions of 

the squeeze test one can obtain yield stress values that agree with the common 

rheological measurements (Rabideau et al. 2009). 

As the solid volume fraction of a concentrated suspension approaches its maximum 

value, the rheology changes from Newtonian to pseudo-plastic behavior (Mueller et al. 

2010). Moreover, potential of the particle migration (see for example Leighton and 

Acrivos 1987) and liquid phase redistribution make the mechanics of these systems more 
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complicated. Therefore, a numerical modeling that takes into account time and position 

dependence of the rheological properties of the material is needed. 

Mascia and Wilson (2008) performed a constant-velocity squeeze flow of highly 

concentrated suspension of glass powder in Newtonian liquid between lubricated plates. 

Measuring solid content showed uniform radial concentration of solid at high squeeze 

velocity and non-uniform solid profile at low squeeze velocity. Kaci et al. (2011) 

reported an experimental study of concentrated suspension undergoing constant-force 

squeeze flow. By measuring the squeeze forces at constant velocity versus the sample 

thickness, they concluded that the suspension experiences squeeze-induced 

heterogeneities, and eventually jamming under certain conditions. Liquid-phase 

migration have also reported in cement-based materials (Toutou et al. 2005), 

microcrystalline cellulose pastes (Mascia et al. 2006), sewage sludge (Chaari et al. 2003), 

titanium oxide particle in an acidic binder (Poitou and Racineux 2001), and clay (Roussel 

and Lanos 2004) at constant-velocity slow squeezing and for soft solids (Meeten 2007) at 

constant-force squeeze flow. 

Suspensions can be studied from a microscopic or macroscopic pinot of view (Ritz et 

al. 2000). In the microscopic, or particle-based, point of view, despite the limitation in the 

amount of computing, the characterization of interactions appearing at the scale of 

particles can applied to describe flow behavior in the scale of suspension. On the other 

hand, macroscopic approach considers the suspension as a continuum phase modeled 

through a rheological law which is a function of the local values of macroscopic 

quantities such as shear rate and concentration. 
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In most studies on the squeeze flow, the tested material is assumed to remain 

homogeneous through the test although there is evidence that complex materials like 

suspensions became heterogeneous when undergoing squeeze flow. Poitou and Racineux 

(2001) showed that in a constant-velocity squeezing flow of suspensions, liquid-phase 

migration occurs in the suspension as long as the squeeze velocity does not exceed a 

critical value. Roussel and Lanos (2004) proposed a simplified model in order to take into 

account the drainage of water during the constant-velocity squeezing the clay. Their 

results showed that the heterogeneity is induced by slow compression and their model 

predicted of the average void ratio evolution through the squeeze test in terms of 

parameters that can be identified on high speed squeezing test. 

Boundary conditions also play an important role in the squeeze flow of suspensions. 

Meeten (2004) experimental study on Newtonian fluids and soft solids showed that 

achieving perfect-slip boundary conditions for any material is very difficult. On the other 

hand, achieving perfect no-slip boundary condition is difficult for highly concentrated 

suspensions too because the local particle concentration of the suspension is depleted at a 

boundary such that the suspension’s rheological properties differ from those in the bulk 

then apparent wall slip may occur (Barnes 1995). Gulmus and Yilmazer (2005) observed 

that as the volume fraction of particles increased, the wall slip velocity increased and as 

the particle size increased, the wall slip velocity decreased.  Navier and Sur (1827) first 

proposed a partial slip condition by relating the slip velocity to the local tangential shear 

stress for rough surfaces. If the shear viscosity of the fluid comprising the apparent slip is 

Newtonian then the relation between slip velocity and shear stress is linear. Laun et al. 

(1999) provided an analytical solution for the squeeze flow of Newtonian and power-law 
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fluids by using the lubrication approximation and partial wall slip which slip velocity 

increases linearly with the radial position. For materials with yield stress, the tangential 

stress at the interfaces is usually assumed to be constant and is expressed as a fraction of 

the yield stress of the material (Engmann 2005). Sherwood and Durban (1998) provided 

an analytical solution for Herschel-Bulkley materials by using this method. Slip tests on 

suspensions with high concentrations showed that the squeeze flow boundary condition is 

not uniform and the boundary condition on the surface of the plates was intermediate 

between perfect slip and no slip and slip at the surfaces promoted by increasing the solid 

volume fraction. Slip can affect the liquid phase migration in squeeze flow of 

suspensions; theoretical work by Ayadi (2011) on the squeeze flow of Bingham plastics 

showed that the radial pressure gradient increases when there is no slip at the plates, and 

this boosts the liquid filtration process. 

In this thesis we investigated through experiment and model, the normal stress 

distribution during constant-force squeeze flow of highly concentrated suspensions. In 

chapter 2, the results of using pressure-sensitive films to measure the normal stress 

distribution in suspensions of glass spheres in a Newtonian liquid are presented. In order 

to validate the use of the pressure-sensitive films, the normal stress distribution for a 

Newtonian fluid was measured and compared to the theoretical predictions. The changes 

in the normal stress distribution were also investigated as the squeezing proceeded by 

changing the pressure-sensitive film. 

In chapter 3, the results of measuring the solid volume fraction distribution throughout 

the suspension undergoing the squeeze flow are presented. The influence of rheological 

and process parameters on the liquid phase migration was investigated and criteria for the 
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occurrence of liquid-phase migration in suspensions undergoing squeeze flow are 

discussed in terms of dimensionless groups. 

In chapter 4, the result of developing a model to predict the behavior of highly 

concentrated suspensions in squeeze flow is introduced. We compare the model’s 

predictions with our previous experimental results on the constant-force squeeze flow of 

highly concentrated suspensions. The model is then used to study the effect of process 

parameters (such as slip and applied force) and material properties (such as the viscosity 

of the suspending fluid, the yield stress, and the particle size) on the migration of the 

liquid phase during squeeze flow. 
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CHAPTER 2 

NORMAL STRESS DISTRIBUTION IN SQUEEZE FLOW OF SUSPENSIONS 

 

2.1.  Background 

According to Bird et al. (2002), the radial distribution of the normal stress in a 

Newtonian fluid undergoing squeeze flow in the filled gap between a stationary and a 

moving disk with no slip at surfaces is given by: 

 22
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h

V
patmzz 


  (2.1) 

where the quantity on the left is the normal stress acting on the plate (patm is the 

atmospheric pressure acting on the other side of the plate, and τzz is the relevant 

component of the deviatoric stress tensor minus the pressure in the fluid), μ is the 

viscosity of the fluid, V is the velocity of the moving disk, h is the half of gap between 

the disks, R is the radius of the disks, and r is the radial position in cylindrical 

coordinates. This relation clearly shows that for a Newtonian fluid we should expect to 

see a quadratic normal stress on the surface of the plates that becomes equal to the 

atmospheric pressure at the edge. Equation 2.1 is derived by assuming lubrication 

approximation (h<<R). The more general form of this equation without this assumption is 
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Equation 2.1 can be integrated to obtain the total force acting on the plate: 
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  (2.3) 

Using Eq. 2.1 the following expression is obtained for the normal stress on the surface 

of the plate: 
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Since Eq. 2.4 was derived assuming a quasi steady state, it applies to squeeze flow 

with constant velocity, V, as well as with constant force, F. In the latter case, it is 

interesting to note that the normal stress distribution on the plate is independent of the 

viscosity of the fluid, the gap between the plates, and the velocity at which the plates 

approach one another. Since the weight of the sample undergoing the squeeze test is 

small compared to the other forces involved, the normal stresses at the top and bottom 

plate have the same values. 

 

2.2. Experiments 

2.2.1. Materials 

Suspensions of various concentrations were prepared by mixing glass spheres into a 

silicone oil. The glass spheres (manufactured by Cataphote Inc., Jackson, MS) were 

sieved in order to isolate those between 75 and 90 microns (between 200 and 170 mesh). 

A micrograph of the spheres is shown in Figure 2.1.  
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Figure 2.1 Optical micrograph of the glass spheres used in the suspensions 

The particle size distribution, shown in Figure 2.2, was obtained with a single-particle 

optical sizer (Accusizer Model 780, Particle Sizing Systems, Santa Barbara, CA).   The 

number-average diameter of the glass spheres was 74 μm. A considerable number of 

smaller spheres did not go through the finer sieve and some doublets were able to go 

through the coarser sieve. The density of the glass spheres was determined to be 2,730 

kg/m
3
 using a pycnometer and water. The suspending fluid was Dow Corning 200 Fluid 

300,000 cSt (Dow Corning Corp., Midland, MI). Its viscosity at 22°C (the temperature 

near which all experiments were conducted), measured with a Rheometrics Fluid 

Spectrometer RFS II, was constant at 327.5 Pa·s at all shear rates applied (0.05 s
-1

 to 8.0 

s
-1

). Its density was determined using the pycnometer to be 970 kg/m
3
. 
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Figure 2.2 Particle size distribution of the glass spheres used in the suspensions 

Suspensions were prepared with weight percent of solids of 20%, 60%, 70%, 75%, 

77.5%, 79%, and 80%, which correspond to volume fractions of solids of 0.082, 0.348, 

0.516, 0.550, 0.572, and 0.586, respectively. The glass spheres were thoroughly mixed 

into the fluid using a spatula. Most of the air entrained during the mixing process was 

removed by placing the suspensions in a vacuum chamber for periods up to two hours 

depending on concentration. Upon removal from the vacuum chamber, the suspensions 

were lightly stirred to ensure uniformity while trying to avoid the entrainment of any air. 

Although the particles were much denser than the fluid, the fluid was viscous enough that 

no settling was apparent for periods of several hours, more than ample time for the 

completion of a typical squeeze flow experiment. Delhaye et al. (2000) estimates the 
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sedimentation time of a sphere in a suspension, tsed, that is, the time required for a sphere 

to fall a distance equivalent to its diameter, as follows 

55.6)1()(

18

φgDρρ

μ
t

fs

sed




,
 

(2.5) 

where μ is the viscosity of the fluid, ρs is the density of the spheres, ρf is the density of the 

suspending fluid, g is the acceleration due to gravity, D is the diameter of the sphere, and 

φ is the volume fraction. For our spheres and fluid, in our most dilute suspension (φ = 

0.082), the largest particles present (D = 165 μm), would have a sedimentation time of 

3600 s (1.0 h), which is much longer than the duration of the squeeze tests. Therefore, the 

sedimentation of the particles during the tests was neglected. 

 

2.2.2. Equipment and procedure 

The suspensions were squeezed between a circular stainless-steel disk, 3.50 in. (88.9 

mm) in diameter, and a large flat steel plate in a 12-ton hydraulic press ordered from 

Technical Machine Products, Cleveland, OH to our specifications. The circular disk and 

the plate were covered with stainless steel foil, soft temper, type 304, 0.002-in. (0.051 

mm) thick (McMaster-Carr Supply Company, Elmhurst, IL). In all experiments we 

applied a constant force of 1.5 short tons (13.3 kN) to the suspensions. It is worth noting 

that the bottom plate, on which the disk rested, approaches the stationary top plate at a 

relatively high constant velocity until the required force reaches the set point. After that, 

the force remains constant and the approach velocity changes with time in a way 

determined by the properties of the sample. We used a closing speed of 50 mm/s (the 

highest available in our press) to minimize the period of constant velocity relative to the 
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total duration of the experiment.  In a typical experiment, the initial sample height was 18 

mm and the force reached its desired value when the sample height had been reduced to 

about 4 mm. At a closing speed of 50 mm/s, this takes place after about 0.28 s. This 

period of time is about one hundredth of the total duration of a typical experiment (about 

35 s). The disk (resting on the bottom plate) and the top plate were covered with stainless 

steel foil, and, without a sample between them, were pressed together to flatten the 

stainless steel foil. The pressure-sensitive films were then placed between the disk and its 

stainless steel foil. Since the normal stress distribution was radially symmetric, it was 

enough to measure it on a one-centimeter-wide strip of pressure-sensitive film passing 

through the axis of the disk. Previously-used pressure-sensitive film of the same 

thickness was placed on either side of the strip to provide the same thickness throughout. 

Finally, the sample was placed between the stainless steel foils and squeezed by raising 

the lower plate of the hydraulic press towards the top plate. The setup is shown in Figure 

2.3. 

used Pressure-X pressure-sensitive films (Sensor Products Inc., Madison, NJ) to 

determine the normal stress distribution. These polymer films contain red pigment in 

micro-capsules which rupture when subjected to pressure. The intensity of the red color 

that results when the films are pressed increases with the magnitude of the applied 

pressure. The intensity of the red color of a film already exposed to a moderate pressure 

increases when the film is exposed to a higher pressure, but it does not decrease when the 

film is exposed to a lower pressure. The redness of the film thus reflects the highest 

pressure the film has experienced during a test. In order to convert the intensity of the red 

color to a pressure, we calibrated the films by applying a known force to a specific area 
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of the film. We then obtained a bitmap color image of the film on a scanner and 

determined the average intensity of the pixels in that area using the Matlab image 

analysis toolbox (The MathWorks, Inc., Natick, MA). Temperature and humidity as well 

as the time of exposure influence the color intensity of the pressure-sensitive films. 

Therefore, to minimize error, we kept the conditions in our experiments close to the 

conditions at which the films were calibrated. The estimated error in measuring the 

normal stresses using the pressure-sensitive films is about 10%. Three different pressure-

sensitive films: medium 1400-7100 psi (9700-49000 kPa), low 350-1400 psi (2400-9700 

kPa), and super low 70-350 psi (480-2400 kPa) were used in our experiments. The 

procedure of pressure sensitive films calibration and use is explained in detail in 

appendix A. 

Steel plate

Suspension

Steel foil

Steel foil

Medium pressure film

Low pressure film

Super-low pressure film

Hydraulic press upper plate

Hydraulic press lower plate

 

Figure 2.3 Schematic of the squeeze test setup 
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We Each suspension was squeezed for 35 s and the resulting films were analyzed. 

Figure 2.4 shows the result of measuring normal stress distribution using this method. As 

described below, one of the tests on the suspension with a volume fraction of 0.586 (80 

wt%), was interrupted at regular intervals in order to replace the pressure-sensitive films 

to determine how the normal stress profile changed during the squeeze test.  

 

Figure 2.4 Normal stress distribution result from scanning pressure-sensitive 

films 

 

2.3. Results and Discussions 

In order to test the technique for measuring the normal stress distribution with the 

pressure-sensitive films, the Newtonian Dow Corning fluid was subjected to squeeze 

flow and the resulting pressure distribution was compared to Eq. 2.4. Figure 2.5 shows 

0 

1000 

2000 

3000 

4000 

5000 

6000 

0 5 10 15 20 25 30 35 40 45 

P
re

ss
u

re
 (

k
P

a)
 

Radius (mm) 

Medium film 

Low film 

Super-low film 



 

22 

that the results for the Dow Corning fluid, using a force of 13.3 kN, are in close 

agreement with the predictions. 

 

Figure 2.5 Normal stress distribution for Dow Corning 200 Fluid 300,000 cSt 

squeezed with a constant-force of 13.3 kN for 35 s. The dashed line is the 

predicted normal stress distribution for a Newtonian fluid 

Figure 2.6 shows the appearance of the three different types of pressure-sensitive film 

after the Dow Corning suspending fluid and the suspensions were subjected to squeeze 

flow under a constant force of 13.3 kN for 35 s. The impressions on the film are very 

similar for the pure fluid and for suspensions with volume fractions below 0.55. The 

impressions on the films for the suspension with volume fraction of 0.550 differ 

somewhat from those only in the outermost region. The normal stress at the center of disk 
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for the two suspensions with volume fraction above 0.55 is much higher than for the less 

concentrated suspensions and reaches the range of the pressure of the medium film. Also, 

the width of red color on the super-low and low pressure-sensitive films decreases for 

these two suspensions which means that qualitatively the maximum pressure at the center 

for the highest volume fraction suspensions increases while the area on which the normal 

stress is felt decreases. 

 

Figure 2.6 Images of the pressure-sensitive films used in the squeeze tests of the 

suspensions of glass spheres in Dow Corning 200 Fluid 300,000 cSt with volume 

fractions between zero and 0.586. Also shown are the results of squeezing the 

glass spheres without fluid. The materials were squeezed between a disk and a flat 

plate with a constant force of 13.3 kN for 35 s. 

Figures 2.7 and 2.8 show the normal stress profiles obtained for suspensions with 

various volume fractions. The data plotted were taken from the pressure-sensitive films in 
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the applicable range. Each curve represents a single run, but combines measurements 

from pressure-sensitive films of various sensitivities; this and the error inherent in the 

technique contribute to the waviness of some of the curves. In both Figures the prediction 

for Newtonian fluids is presented for comparison. The suspensions with volume fractions 

up to 0.55 have normal stress profiles very similar to that for Newtonian fluids. On the 

other hand, the suspensions with higher volume fraction have normal stress profiles with 

a prominent region in the middle of the disk in which the normal stress is much higher 

than that predicted for Newtonian fluids.  

 

Figure 2.7 Normal stress distributions for suspensions of glass spheres in Dow 

Corning 200 Fluid 300,000 cSt with volume fractions of 0.55 and below squeezed 

between a disk and a flat plate with a constant force of 13.3 kN for 35 s. The 

dashed line is the predicted normal stress distribution for a Newtonian fluid 
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The normal stress profile for the glass spheres without liquid, also shown in Figure 

2.8, is very similar to those for the suspensions with volume fraction above 0.55. 

 

Figure 2.8 Normal stress distributions for suspensions of glass spheres in Dow 

Corning 200 Fluid 300,000 cSt with volume fractions of 0.572 and 0.586 

squeezed between a disk and a flat plate with a constant force of 13.3 kN for 35 s. 

Also shown is the normal stress distribution for the glass spheres without liquid. 

The dashed line is the predicted normal stress distribution for a Newtonian fluid 

Figure 2.9 plots the total force computed by integrating the pressure profiles of 

Figures. 2.7 and 2.8 over the area of the disk.  For volume fractions less than 0.586, the 

calculated total force is within 15% of the applied force. On the other hand, for the 

suspensions with a volume fraction of 0.586 the total calculated force is considerably 

higher than the applied force. As will be explained below, this discrepancy is due to the 
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fact that, at this volume fraction, the pressure profile changes during the constant-force 

squeezing process. Since the pressure-sensitive films do not recover their original color 

once they have been subjected to pressure, they accumulate the effect of pressure changes 

during the experiment. 

 

Figure 2.9 The total force on the sample computed by integrating the normal 

stress distributions of Figures. 2.6 and 2.7 over the area of the disk. The dashed 

line shows the applied force of 13.3 kN. The label next each data point indicates 

the volume fraction of the suspension 

In order to investigate the “pressure accumulation” effect, we measured the normal 

stress profile at different times during the squeezing of the suspension with a volume 

fraction of 0.586. Two sets of pressure-sensitive films were used in this measurement. 

The first set remained for the entire experiment (0 to 40 s); the second set was replaced at 
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various intervals, and the squeezing was then resumed. The results are shown in Figure 

2.10. In the central region (r < 5 mm), the normal stress increases dramatically after the 

first three seconds of squeezing, whereas in the middle region (5 mm < r < 15 mm), the 

normal stress decreases.  

 

Figure 2.10 Normal stress distributions at various times in a suspension of glass 

spheres in Dow Corning 200 Fluid 300,000 cSt with a volume fraction of 0.586 

squeezed between a parallel disk and a flat plate with a constant force of 13.3 kN 

The highest normal stress experienced at each position is close to that of the normal 

stress distribution measured by the set of pressure-sensitive films that remained for the 

entire experiment (0 to 40 s). The curve made up from the highest normal stress at each 
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position is higher than any of the curves for partial squeezing, thus explaining the higher 

apparent force calculated when the normal stresses are integrated. 

In order to determine whether or not there was slip at the wall, we used a transparent 

Plexiglas disk and plate in one experiment. We drew concentric circles of various radii 

(after Estellé et al. 2006 and Mascia and Wilson 2007 and 2008) with a felt-tip marker on 

a suspension with a volume fraction of 0.586 and subjected it to squeeze flow. We 

interrupted the experiment at various times and photographed the suspension through the 

transparent plate to measure the change in the radii of the circles. Figure 2.11 shows as 

data points the radii of the drawn circles at various times, and as curves, their radii if 

there had been perfect slip at the surface. The results indicate neither perfect slip nor no 

slip, but an intermediate condition. 
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Figure 2.11 Radii of the concentric circles drawn at the plate surface as a function 

of time during the slip visualization test for a suspension of glass spheres in Dow 

Corning 200 Fluid 300,000 cSt with a volume fraction of 0.586 squeezed between 

a parallel disk and a flat plate with a constant force of 13.3 kN. The curves show 

the radii of the circles predicted assuming perfect slip at the surface 
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In the suspension with a volume fraction of 0.586, a small region (about 5 mm in 

diameter) at the center became very dry, as ascertained visually by the change in the 

appearance of the suspension. The suspension in the central region became whiter and 

less smooth than before as can be seen in Figure 2.12. This region corresponds to the 

region of high normal stresses in Figure 2.8. The fact that squeezing the spheres without 

fluid results in a similar normal stress distribution suggests that at concentrations above 

0.55, the liquid phase migrates out of the central region and jamming takes place. 

 

Figure 2.12 Image of the squeezed suspension of glass spheres in Dow Corning 

200 Fluid 300,000 cSt with volume fraction of 0.586 showing a whiter and dryer 

spot at the center. 

In squeeze flow, liquid-phase migration becomes important in suspensions when the 

approach velocity between the surfaces is lower than a critical approach velocity, Vcritical. 
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For squeeze flow between parallel disks with perfect slip at both surfaces, Mascia and 

Wilson (2007) obtained an expression for the critical approach velocity by comparing 

two of the time scales involved. The first relates to the deformation of the suspension as a 

whole, and the second to the filtration of the liquid phase through the particle network. 

Their result is equivalent to 
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 (2.6) 

where k is the absolute permeability of the solids matrix, ΔP is the pressure difference 

between the center (r = 0) and the edge (r = R) of the disks, h is the gap between the 

disks, R is the radius of the disks, and μ is the viscosity of the liquid phase.  

This expression can be easily obtained by finding the approach velocity, V, at which 

vr,susp, the radial velocity at which the suspension as a whole flows when there is perfect 

slip on both plates, 
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is equal to vr,liq, the velocity at which the liquid phase filters through the particulate 

network according to Darcy’s law, 
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For our calculations, we estimated the absolute permeability using Happel’s (1986) 

correlation,  
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where D is the particle diameter and ε is the porosity of the suspension (1 - φ). The 

absolute permeability for our suspension of 74 μm-diameter spheres with a volume 

fraction of 0.586 was thus estimated to be 3.5410
-11

 m
2
.  

 

Figure 2.13 Plate separation as a function of time for a suspension of glass 

spheres in Dow Corning 200 Fluid 300,000 cSt with a volume fraction of 0.586 

squeezed between a parallel disk and a flat plate with a constant force of 13.3 kN 

Figure 2.13 shows the gap between the disk and the plate as a function of time for this 

suspension when squeezed with a force of 13.3 kN using the 3.5-in. diameter disk.  
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Figure 2.14 Comparison of the approach velocity estimated from the data in 

Figure 2.12 to the critical approach velocity predicted by Eq. (3) for the case of 

perfect slip on both plates. 

The approach velocity as a function of time was calculated by numerical differentiation 

of these data and is presented in Figure 2.14. Also plotted are the estimates for the critical 

approach velocity obtained using Eq. 2.6. These estimates are two orders of magnitude 

smaller than the actual approach velocity, thus predicting no liquid phase migration in 

this suspension. That the prediction is contrary to our observations is not surprising in 

view of the evidence, clear from Figure 2.11, that the assumption of perfect slip does not 

apply in this case. 
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If there is no slip or partial slip at the surface, the rheological characteristics of the 

suspension play a large role in determining whether or not liquid-phase migration takes 

place. If our suspensions could be modeled approximately as a Bingham plastic, the work 

of Smyrnaios and Tsamopoulos (2001) would predict an unyielded region near the center 

of plates. In the unyielded region, where the radial velocity of the suspension as a whole 

is zero, the pressure gradient would cause the liquid phase to filter out. Eventually, the 

volume fraction of solids in the central region would be so high that the particles would 

jam. As squeezing continued the jammed structure would be disturbed and the particles 

would jam again at a lower plate separation.  

 

2.4. Conclusions 

The normal stress distribution for suspensions of glass spheres in a Newtonian fluid 

near their maximum packing fraction undergoing squeeze flow with a constant-force 

between a parallel circular disk and a large flat surface is qualitatively different from that 

for Newtonian fluids. The central region of high normal stresses may be due to migration 

of the liquid from the central region to the outer regions causing the formation of a highly 

viscous material with a yield stress in the central region.  

It is well documented that the viscosity of suspensions is very sensitive to volume 

fraction and increases sharply near the maximum packing fraction. The normal stress 

distribution changes drastically in our suspensions with volume fractions beyond 0.55. At 

high concentrations, suspensions have a yield stress. It is possible that the yield stress 

causes the material near the middle of the top surface and of the bottom surface to remain 

unyielded during a squeeze test. At first these unyielded regions are separated by material 
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that deforms. As the squeeze test proceeds, the unyielded region on the top surface 

touches the unyielded region on the bottom surface and the particles jam. Particles of the 

suspension near the central region jam and the continued squeezing causes the liquid to 

migrate out of that region.  

At lower concentrations the unyielded region does not form in the center of the plates 

because these suspensions have a small or no yield stress. On the other hand, at high 

concentrations, a small increase in the solid content in the central region as a 

consequence of liquid filtration can cause particle jamming in that region. This in turn 

causes a very large pressure gradient between the center and the outer region forcing the 

remaining suspending liquid out of that region, which results in an almost dry spot in the 

center of the disk. 

The concentration gradient that results from accumulation of particles in the middle of 

the disk during the squeeze flow requires that the analysis take into account the time and 

position dependence of the rheological properties of the material. In these cases, 

assuming that the material is characterized by a rheological model with constant 

parameters is not sufficient. 
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CHAPTER 3 

LIQUID PHASE MIGRATION IN SQUEEZE FLOW OF SUSPENSIONS 

 

3.1. Theory of liquid phase migration 

The dynamics of a suspension can be characterized by the momentum transport 

equation for the suspension as a whole and the continuity and transport equations for the 

solid phase. Darcy’s law can be used to determine the particle flux and the relative 

velocity between the solid particles and the liquid. When inertial effects are negligible, 

the relative velocity, ur, defined as the difference between the velocity of the solid, and 

the velocity of the liquid 

sfr uuu 
.  (3.1) 

The relative velocity can be determined by Darcy’s law, 

r

Pk
ur





 , (3.2) 

where k is the absolute permeability of the solids matrix, μ is the viscosity of the liquid, P 

is the isotropic fluid pressure (pore pressure), and φ is the solid volume fraction. Darcy’s 

law is an expression of conservation of momentum and describes linearity between flow 

rate and applied pressure. Darcy’s law is developed experimentally by Darcy; however, 

Darcy’s law can also be derived from a spatial average of Stoke’s equation (Whitaker 

1986). 
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The absolute permeability of the solids matrix can be estimated, for example, from the 

Carman-Kozeny correlation (Li and Logan 2001),  

 
2

32

180

1






D
k  (3.3) 

The hydraulic conductivity of a solid matrix is denoted the permeability and it is 

typically used to provide an indication of the capacity of the solid matrix for allowing 

fluid to penetrate; a high permeability means a high throughput. The permeability 

typically ranges from 10
−7

 m
2
 in very permeable materials, such as clean gravel, to 10

−20
 

m
2
 in materials, which are almost impermeable, such as concrete. The relative velocity is 

directly proportional to the permeability and the pressure gradient and inversely 

proportional to the liquid viscosity. The pressure profile for a Newtonian fluid in squeeze 

fluid is given by (Bird et al. 2002) 

 22

4

2
)( rR

Rπ

F
rP 

. (3.4) 

where F is the applied force and R is the radius of the plate. Consequently the pressure 

gradient becomes: 

3

4

R

F

r

P







. (3.5) 

Therefore, the pressure gradient is directly proportional to the combination F/R
3
, 

which is constant in constant-force squeeze flow. 

The relation between the applied force and the sample thickness for a Newtonian fluid 

is given by (Bird et al. 2002): 
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. (3.6) 
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In our experimental set-up, the constant-force squeeze test can be divided into two 

steps: in the first step, the approach velocity is constant and the force increases until it 

reaches the desired value, F1; in the second step, the force remains constant at the desired 

value and the velocity decreases. It is clear from Equation 3.6 that in the constant-

velocity step the product Fh
3
 is constant, so that  

3

11

3

00 HFHF 
 (3.7) 

and 

3

1

0
01

F

F
HH 

. (3.8) 

The thickness, H1, at the time the force reaches the desired value is 
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and the time that takes to reach desire force becomes 
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In Eq. 3.6, the velocity, V=-dh/dt, can be expressed in terms of thickness and then 

integrated from H1 to the final thickness H2 to find the time it takes to reach the final 

thickness,  
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Finally, the total squeeze time becomes 
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3.2. Dimensional analysis 

If we assume that for a suspension of spheres undergoing constant-force squeeze flow 

the fractional change in volume fraction at the center of the sample, Δφ/φinitial, due to 

liquid-phase migration is a function of the initial solid volume fraction, φ, the applied 

force, F, the radius of the disk, R, the particle diameter, D, the viscosity of the suspending 

fluid, μ, the average squeeze velocity (found by dividing the difference between initial 

and final thickness of the sample by the squeezing time), V, yield stress, τ0, and 

permeability, k, that is,  

),,,,,,,( 0 kVDRFg ave

initial








 (3.13) 

then, according to Buckingham’s Pi theorem, these nine variables involving six 

dimensions can be related by three dimensionless groups, which we can choose as 

initial


,  , 

D

R
, 2D

k
, 2

0D

F


,

aveV

D
f



 0 ; (3.14) 

in what follows we will refer to f as the filterability number.  

 

3.3. Experimental 

3.3.1. Materials 

Suspensions of various concentrations were prepared by mixing either glass or PMMA 

spheres in various Newtonian fluids (suspensions A through I in Table 3.1). 
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Table 3.1 Suspensions used 

Suspension φinitial 
μ 

(Pa∙s) 

D 

(μm) 

Spherical 

particles 

k (Eq. 3.3)* 

(m
2
) 

A 0.544 1.00 275 PMMA 1.35×10
−10

 

B 0.624 1.00 275 PMMA 5.74×10
−11

 

C 0.546 1.00 74 Glass 9.55×10
−12

 

D 0.618 1.00 74 Glass 5.12×10
−12

 

E 0.602 61.5 74 Glass 5.29×10
−12

 

F 0.482 327 74 Glass 1.82×10
−11

 

G 0.527 327 74 Glass 1.16×10
−11

 

H 0.563 327 74 Glass 8.01×10
−12

 

I 0.586 327 74 Glass 1.26×10
−10

 
*
 Obtained from Eq. 3.2 

 The average diameter of the glass spheres was 74-μm (determined with an Accusizer 

Model 780, Particle Sizing Systems, Santa Barbara, CA) and the diameter of the PMMA 

spheres varied between 250 and 300 μm as specified by the manufacturer (we use the 

middle value of 275 μm to describe these particles). The densities of the glass and 

PMMA spheres are 2,730 and 1,390 kg/m
3
, respectively, determined using a pycnometer 

and water. The suspending fluids were Dow Corning 200 Fluids 300,000 and 60,000 cSt 

with viscosities of 327.5 Pa·s and 61.5 Pa·s, respectively, and silicone oil DC 200 (Fluka) 

with a viscosity of 1.0 Pa·s. Liquid viscosities were measured at 22°C in a Rheometrics 

Fluid Spectrometer RFS II. Figure 3.1 shows the viscosity of the suspensions with 

various solid volume fractions. The suspensions with volume fractions above 0.35 

exhibited shear thinning. 

http://www.google.com/search?hl=en&biw=1600&bih=750&sa=X&ei=HSWKTv20J4qitge73Lwz&ved=0CBcQvwUoAQ&q=their+viscosity+are+respectively&spell=1
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Figure 3.1 Measured relative viscosity of suspensions of 74-μm glass spheres in 

Dow Corning 200 Fluid 300,000 cSt with various different solid volume fraction 

3.3.2. Equipment and procedure 

The suspensions were squeezed between a circular Plexiglas disk, 3.5 in. (88.9 mm) in 

diameter, and a large Plexiglas plate in a hydraulic press (Technical Machine Products 

(TMP) Inc., Cleveland, OH). The Plexiglas disk and plate were covered with stainless 

steel foil, soft temper, type 304, 0.002 in. (0.051 mm) thick (McMaster-Carr Supply 

Company, Elmhurst, IL). The stainless steel foil kept the suspension separate from the 

pressure sensitive films in the experiments that mentioned in chapter 2 and it was used 

here to reproduce the same boundary conditions and make it easier to remove the surfaces 

0 

10 

20 

30 

40 

50 

60 

70 

0.01 0.1 1 10 100 

R
el

at
iv

e 
V

is
co

si
ty

 

Shear rate (1/s) 

0.51 in DC 200 

0.45 in DC 200 

0.35 in DC 200 

0.27 in Dow 60,000 

0.20 in DC 200 

0.14 in Dow 60,000 

0.04 in Dow 60,000 



 

42 

from the squeezed suspensions in order to obtain the samples needed to measure the 

volume fractions at various positions. The setup is shown in Figure 3.2.  

Plexiglas disk

Suspension

Stainless 

steel foil

Stainless 

steel foil

Hydraulic press upper plate

Hydraulic press lower plate

Plexiglas plate

 

Figure 3.2 Schematic of the squeeze test setup 

The top plate of the press was stationary and the bottom plate, on which the disk 

rested, moved up. In all experiments we applied a constant force of 4.45 kN to the 

suspensions except in one set of experiments in which we applied a force of 13.3 kN in 

order to match the conditions used to measure the normal stress distribution. It is worth 

noting that the bottom plate approaches the top plate at a constant velocity of 5 mm/s 

until the required force reaches the set point. After that, the force remains constant and 

the approach velocity changes with time in a way determined by the properties of the 

sample.  
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Figure 3.3 Measured force as a function of time for suspensions with different 

initial solid volume fractions of 74-μm glass spheres squeezed with a constant 

force of 4.45 kN 

Figure 3.3 shows the force applied by the hydraulic press as a function of time for four 

suspensions of 74-μm glass spheres with different initial volume fractions squeezed to a 

desired constant force of 4.45 kN. In all cases, the desired constant force is reached in 

slightly more than 1 s. All samples filled the gap between the two plates at the start of the 

experiment. The initial thickness of the samples was 8 mm, and the tests stopped before 

the plate separation reached 1.5 mm. 

Samples of the squeezed suspension were removed from three different radial 

positions by using a spatula and weighed. Then, the samples were washed five times with 

hexane in order to remove all of the suspending liquid. Finally, the washed particles were 
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dried in a vacuum chamber and weighed. The mass of the dry particles and the mass of 

the original suspension, together with the densities of the particles and of the fluid were 

used to calculate the volume fraction of solids in the suspensions. Except for the value at 

the center of the sample, the values reported for the volume fractions are the average of 

measurements on samples from three different locations at the same radial position; 

Figure 3.4 shows the positions from which the samples were taken. 

III

II

I II III

II

III

 

Figure 3.4 Diagram and photograph of a suspension after squeezing showing the 

positions at which samples were taken to measure the solid volume fraction 

We determined the yield stress, 
0 , of our suspensions by measuring their final 

thickness, h,  after squeezing them with a constant force using the following relation 

(Covey and Stanmore 1981), which is valid when there is no slip at the surfaces. 

30
2

3

R

Fh


    (3.15)  

In order to measure the yield stress of the suspensions, they were placed between a 

circular disk on top and a larger disk below, and weights were placed on the top disk. 

Sand paper was glued to the surfaces of both disks to prevent slip. In order to prevent 
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liquid-phase migration when measuring the yield stress, the maximum squeeze force used 

to measure the yield stress was 30 N which is much smaller than the force in the squeeze 

flow tests used to determine the effect of liquid phase migration (4.45 kN). The lower 

squeeze force reduces the pressure gradient that causes liquid-phase migration. Also, the 

initial thickness in the yield stress measurements was less that 4 mm, which was about 

half the initial thickness of the suspensions used in the squeeze tests. Liquid-phase 

migration is less important when the plate separation is small because the final plate 

separation can be reached faster. 

 

Figure 3.5 Yield stress of suspensions of 74-μm glass spheres in Dow Corning 

200 Fluid 300,000 cSt with various solid volume fractions 

Figure 3.5 shows the yield stress of our suspensions measured as described above. 

There was no observable yield stress at low volume fractions, but for volume fractions 
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between 0.48 and 0.63, the yield stress varied approximately linearly with volume 

fraction.  

 

3.4. Results and Discussion 

We prepared suspensions with different suspending fluid viscosities, particle sizes, 

and volume fractions in order to observe the effect of these parameters on the 

concentration profile due to liquid-phase migration during the squeeze flow. The list of 

suspensions used in our experiments is shown in Table 3.1.  

 

3.4.1. Effect of initial solid volume fraction 

In order to study the effect of the initial solid volume fraction on liquid-phase 

migration during squeeze flow, suspensions with four different initial solid volume 

fractions in Dow Corning 200 Fluid 300,000 cSt were subjected to squeeze flow 

(suspensions F through I in Table 3.1). Figure 3.6a presents the solid volume fraction 

profile after squeezing the suspensions with a force of 4.45 kN. The initial thickness of 

the suspensions was 8 mm and each test was stopped when the thickness had decreased to 

1.5 mm. The volume fraction profiles for the suspensions with φ = 0.482 and 0.527 are 

almost flat at values close to the initial volume fractions. The volume fraction profile for 

the suspension with φ = 0.563 shows a slightly larger volume fraction near the center than 

near the edge, but the volume fractions everywhere are still not very different from the 

initial volume fraction. On the other hand, for the suspension with φ = 0.586, the volume 

fraction after squeezing is much larger at the center of the sample than near its edge, and 

the volume fraction is everywhere significantly higher than the initial volume fraction. 
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Figure 3.6b shows the normal stress distribution for four similar suspensions with 

initial solid volume fractions close to the suspensions in Figure 3.6a, squeezed for 35 s 

with constant force of 13.3 kN. The suspensions with φ = 0.453 and 0.516 have normal 

stress profiles very similar to that for Newtonian fluids. On the other hand, the 

suspensions with higher volume fraction have normal stress profiles with a prominent 

region in the middle of the disk in which the normal stresses are much higher than those 

predicted for Newtonian fluids. The normal stress distribution of the suspension with φ = 

0.586 was very similar to that obtained when squeezing the particles without liquid. 

Comparison of Figures. 3.6a and 3.6b leads to conclude that an increase in the volume 

fraction due to liquid-phase migration was the cause of the observed deviation of the 

normal stress profile from that for Newtonian liquids, and that at high volume fractions 

the loss of fluid led to jamming of the particles in the central region. The data obtained in 

the present work validate those conclusions. 
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Figure 3.6 (a) Solid volume fraction distributions of suspensions with different 

initial solid volume fractions of 74-μm glass spheres in Dow Corning 200 Fluid 

300,000 cSt squeezed with a constant-force of 4.45 kN from a thickness of 8 mm 

to a thickness of 1.5 mm (b) Normal stress distributions of suspensions squeezed 

with a constant force of 13.3 kN for 35 s 
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Figure 3.7 shows, for the suspensions used to obtain the data in Figure 3.6a, the plate 

separation as a function of time. The time required for the sample to be squeezed to a 

final plate separation of 1.5 mm is indicated by a circle at the end of each plot and varied 

from 4.1 s for the suspension with φ = 0.482 to 34.6 s for the suspension with φ = 0.586.  

 

Figure 3.7 Plate separation as a function of time and estimated squeeze time (Eq. 

15) for suspensions with different initial solid volume fractions of 74-μm glass 

spheres in Dow Corning 200 Fluid 300,000 cSt squeezed with a constant-force of 

4.45 kN 

Figure 3.7 also compares the squeeze time required for the samples to reach the final 

plate separation of 1.5 mm to the squeeze time predicted using Eq. 3.12, which applies to 

Newtonian fluids. The estimated time is close to the experimental time for suspensions 

with initial volume fractions of 0.563 or lower. For the suspension with φ = 0.586, the 

experimental time is much longer than the estimated time.  This discrepancy may be 
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partly explained by liquid-phase migration during squeezing. The compaction and 

perhaps jamming of the particles in the central region would make it harder to squeeze 

the suspension and would cause a disproportionate increase in the squeeze time. The 

discrepancy between the measured and estimated squeeze times for the suspension with φ 

= 0.586 may also be due to the deviation of the rheological behavior of this suspension 

from that for Newtonian fluids. For the suspension with  φ = 0.586, the plate separation 

was still above 1 mm after 600 s of squeezing, although Eq. 3.15 would have predicted a 

minimum plate separation of 0.4 mm if there had not been no liquid-phase migration and 

the boundary conditions had been those used to measure the yield stress. 

The jamming of the particles in the central region due to the liquid-phase migration 

hinders the movement of the squeezing surfaces towards one another and may limit the 

minimum thickness that can be achieved by squeezing the suspension. This has 

implications for the minimum thickness that can be achieved in compression molded 

parts.  

The enhancement of liquid-phase migration as the initial solid volume fraction 

increases may be attributed to an increase in the yield stress. Suspensions with larger 

yield stresses exhibit larger unyielded regions at the center of the disks when the 

suspensions undergo squeeze flow, and liquid is expelled from these regions under the 

influence of the pressure gradient between the central region and the edge. 

 

3.4.2. Effect of squeeze force and squeeze time 

In one experiment with the suspension of glass spheres in Dow Corning 200 Fluid 

300,000 cSt (μ = 327.5 Pa·s) with a solid volume fraction of 0.586, we measured the 
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solid volume fraction distribution for various squeeze times under constant force. The 

results of this experiment (Figures. 3.8a and 3.9 for the applied forces of 13.3 kN and 

4.45 kN, respectively) indicate that, as the squeezing proceeds, the solid volume fraction 

increases especially toward the center of the disk. Each curve represents a separate 

experiment. The difference between the solid volume fraction at the center of the disk 

and that at the edge increases with squeeze time. Figure 3.8b showed that under 

conditions similar to those used to generate the data of Figure 3.8a, as the squeeze test 

proceeds, the normal stress increases in the central region of the suspension while it 

decreases near its edge. The normal stresses in the central region deviate dramatically 

from the predicted stress distribution in Newtonian fluids, even after the first three 

seconds of squeezing, and continue to change as the squeezing proceeds.  

The changes in the normal stress distribution occur in the same time frame as the 

changes in solid volume fraction, suggesting a correlation between liquid-phase 

migration and the changes in the normal stress profile. The normal stress distribution at 

very high concentrations is very close to the normal stress distribution of solid particles 

without fluid; therefore it seems that, due to liquid filtration, the solid volume fraction at 

the center of the disk reaches a critical concentration at which the particles jam. After 

jamming, the pressure at the center increases dramatically, setting up a huge pressure 

gradient between the central and outer regions, which would further boost the migration 

of the liquid phase away from the center. 
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Figure 3.8 (a) Solid volume fraction distributions after various squeezing times 

for a suspension of 74-μm glass spheres in Dow Corning 200 Fluid 300,000 cSt 

with an initial volume fraction of 0.586 squeezed with a constant force of 13.3 

kN. (b) Normal stress distributions at various times for the same suspension  
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Figure 3.9 Solid volume fraction distributions after various squeezing times for a 

suspension of 74-μm glass spheres in Dow Corning 200 Fluid 300,000 cSt with an 

initial volume fraction of 0.586 squeezed with a constant force of 4.45 kN 

The volume fractions measured using the two different forces, shown in Figures. 3.8a 

and 3.9, are quite similar, implying that, in this range, the applied force has little effect on 

the changes in volume fraction. This point is reinforced in Figure 3.10, which presents 

the solid volume fraction data of Figures. 3.8a and 3.9 as a function of squeeze time. 

There is very little difference between the data for the two applied forces. This can be 

explained in terms of the two competing effects on liquid-phase migration: a larger force 

creates a larger pressure gradient which boosts liquid-phase migration; on the other hand, 

the larger force also increases the approach velocity, allowing less time for the liquid to 

filtrate. 

0.651 

0.621 

0.606 

0.632 

0.611 

0.602 

0.619 

0.608 0.604 0.604 

0.596 
0.594 

0 5 10 15 20 25 30 35 40 45 

0.58 

0.60 

0.62 

0.64 

0.66 

0.68 

S
o

li
d

 v
o

lu
m

e 
fr

ac
ti

o
n

 

r (mm) 

600 s 

35 s 

25 s 

15 s 

φ = 0.586 (initial) 

F = 4.45 kN 



 

54 

 

Figure 3.10 The data in Figures. 3.8a and 3.9 plotted as the solid volume fraction 

as a function of squeeze time at various radial positions. The suspensions consist 

of 74-μm glass spheres in Dow Corning 200 Fluid 300,000 cSt with a volume 

fraction of 0.586 squeezed with a constant force of either 4,450 or 13.3 kN 

 

3.4.3. Visual observations 

Figure 3.11 presents images of the suspensions with φ = 0.563 and φ = 0.586 squeezed 

for different periods of time with a constant force of 4.45 kN. These experiments were 

performed without the stainless steel foils, and the images taken through the top Plexiglas 

plate (refer to Figure 3.2). There was no significant change in the appearance of the 

suspension with φ = 0.563 after being squeezed up to 45 s. When this suspension was 

squeezed for longer periods of time there was so little suspension remaining between the 

plates that further observations were not pursued. For the suspension with φ = 0.586 the 
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increase in the volume fraction at the center was visually apparent after 35 s of squeezing 

and the central region was noticeably whiter and dryer after 600 s of squeezing. The 

Figure presents under each image a plot of the relative gray level as a function of position 

along a five pixel-wide horizontal strip going through the center of the sample. Each 

point on the plot is the average of the grey level of the five pixels at that horizontal 

position divided by the average gray level in the whole strip. In these images the diameter 

of the samples is about 800 pixels long. The relative gray level intensity is fairly constant 

for the suspension with φ = 0.563, but shows a peak at the center for the suspension with 

φ = 0.586 starting at a squeeze time of 35 s; this peak becomes more prominent as the 

squeeze time increases. 
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Figure 3.11 Images of suspensions of 74-μm glass spheres in Dow Corning 200 

Fluid 300,000 cSt with volume fractions of 0.563 and 0.586 squeezed with a 

constant-force of 4.45 kN for different periods of time. Also shown are plots of 
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the relative gray level along a horizontal strip passing through the center of the 

samples 

3.4.4. Effect of particle size 

The measured concentration profiles after squeeze flow for suspensions with different 

particle sizes are shown in Figure 3.12. Suspensions of the 74-μm glass spheres and of 

the 275-μm PMMA spheres with volume fractions near 0.54 and 0.62 were used in these 

experiments. It is possible that the surface roughness of the two types of spheres was 

slightly different; if this affects the behavior, then these results will reflect that in addition 

to the effect of particle size. 

 

Figure 3.12 Solid volume fraction distributions of suspensions of 74-μm glass 

spheres and 275-μm PMMA spheres in silicone oil, μ = 1.00 Pa·s, squeezed with 

a constant-force of 4.45 kN from a thickness of 8 mm to a thickness of 2 mm 
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In these experiments, the squeezing force was 4.45 kN, the initial thickness of the 

suspensions was close to 8 mm, and the squeezing was stopped when the thickness 

reached 1.5 mm. In the suspensions with an initial volume fraction near 0.54, the volume 

fraction of the suspension of 74-μm glass spheres remained close to the initial value 

everywhere after squeezing. In contrast, the volume fraction of the suspension of 275-μm 

PMMA spheres was larger everywhere after squeezing, reaching 0.585 at the center. In 

the suspensions with an initial volume fraction near 0.62, the final volume fraction was 

larger than the initial volume fraction mostly near the center of the sample. The final 

volume fraction near the edge was very close to the initial volume fraction. At this 

volume fraction also, the effect is more pronounced in the suspension of 275-μm PMMA 

spheres than in the suspension of 74-μm glass spheres. 

The effect of particle size on liquid-phase migration can be understood from Eq. 3.3; 

larger particles have larger permeability allowing the fluid to filter more easily through 

the network of the larger particles.  

 

3.4.5. Effect of suspending fluid viscosity 

Figure 3.13 shows the volume fraction profile after squeeze flow for suspensions with 

suspending fluids of different viscosities. The suspensions were made with the 74-μm 

glass spheres with an initial volume fraction close to 0.595. A constant force of 4.45 kN 

was applied to all suspensions. The initial thickness of the samples was 8 mm and 

squeezing was stopped when the thickness reached 2 mm. The suspending fluids were 

Newtonian silicone oils with viscosities of 1.0, 61.5 and 327.5 Pa∙s. The increase in the 

volume fraction in the central region was highest for the suspension with the lowest 
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suspending fluid viscosity. This result is consistent with the theory because the flow rate 

of a fluid through porous media is inversely proportional to its viscosity according to 

Darcy’s law (Eq. 3.2). Although the range of suspending fluid viscosities was large, the 

effect of fluid viscosity on liquid-phase migration was not as large as the effect of particle 

size or initial volume fraction. This is mainly because the time required to squeeze the 

suspension from a thickness of 8 mm to a thickness of 2 mm is shorter for the suspension 

with lower liquid viscosity; therefore, although liquid-phase migration is facilitated by 

the lower viscosity, the time during which it is allowed to take place is shorter because 

the sample reaches the final thickness faster.  

 

Figure 3.13 Solid volume fraction distributions of suspensions of 74-μm glass 

spheres with an initial volume fraction of 0.595 in three fluids of different 

viscosities squeezed with a constant-force of 4.45 kN from a thickness of 8 mm to 

a thickness of 2 mm 
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Figure 3.14 shows the fractional change in solid volume fraction at the center of the 

sample, Δφ/φinitial, during squeeze flow as a function of the filterability number, f, (Eq. 

3.14). 

 

Figure 3.14 Fractional change in the solid volume fraction at the center of the 

sample after squeeze flow for suspensions with φ = 0.586 and different 

filterability numbers. The parameters for each data point are given in Table 3.2. 

For all data points in this Figure the R/D, k/D
2
, and F/τ0D

2
 ratios are constant. The 

parameters for each data point are given in Table 3.2. The data for the suspension with φ 

= 0.586 was obtained using the same suspending fluid viscosity; the changes in 

filterability number for this suspension are due to the use of different squeeze forces and 

different initial and final thicknesses, which affect the average squeeze velocity. 

Although there are some scatter in the data, for the suspensions with φ = 0.586 the 
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fractional increase in the solid volume fraction at the center increases with filterability 

number along a fairly well defined curve.  

Table 3.2 Parameters for the data points in Figure 3.14 

Suspension φinitial hfinal (mm) t (s) F (kN) F/τ0D
2
 f* 

I 0.586 1.7 5 13.3 2.63×10
10

 0.0165 

I 0.586 1.5 25 13.3 2.63×10
10

 0.0801 

I 0.586 1.4 40 13.3 2.63×10
10

 0.1263 

I 0.586 1.3 600 13.3 2.63×10
10

 1.8656 

I 0.586 1.9 15 4.45 8.81×10
10

 0.0512 

I 0.586 1.6 25 4.45 8.81×10
10

 0.0814 

I 0.586 1.5 35 4.45 8.81×10
10

 0.1122 

I 0.586 1.3 600 4.45 8.81×10
10

 1.8656 
*
 Obtained from Eq. 3.14 
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CHAPTER 4 

NUMERICAL MODELING OF RADIAL FILTRATION 

 

4.1. Theory 

We model the dynamics of the suspension by solving the momentum transport 

equation for the whole suspension and the conservation of mass equation for the solid 

phase volume fraction. Constitutive equation for computing particle concentration and 

velocity fields consists of two parts: a non-Newtonian part in which the viscosity depends 

on the local particle volume fraction and a filtration equation that accounts for solid 

particle migration. 

In the diffusion model we assumed that the liquid and solid phases are not in 

mechanical equilibrium, so their velocities can differ from each other and from the 

velocity of the suspension. In this model, the relative velocity, ur, between the solid and 

liquid phases, is defined as, 

sfr uuu 
, (4.1) 

where uf and us are, respectively, the velocities of the solid and the fluid and phases. ur is 

assumed to obey Darcy’s law, 

r

Pk
ur







 (4.2) 
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where μ is the liquid phase viscosity, P is the pore pressure, and k is the absolute 

permeability of the solids matrix. The absolute permeability is estimated by using 

Carman-Kozeny correlation (Li and Logan 2001),  

 
2

32

180

1






D
k  (4.3) 

where φ is the solid volume fraction and D is the particle diameter. For an axisymmetric 

deformation of the suspension, when gravity is neglected, the equations for the 

conservation of momentum reduce to (Engmann et al. 2005) 

rr

r

rz

p

z

v
v

r

v
v

t

v zzrzz
z

z
r

z




































 


)(1
 (4.4) 

rzr

r

rr

p

z

v
v

r

v
v

t

v zzrrr
z

r
r

r 
 




































 )(1
 (4.5) 

where the ρ is the density of the suspension, defined as 

fs  )1(   (4.6) 

where ρs and ρf are, respectively, the densities of solid and fluid phases. 

The conservation equation for the solid volume fraction can be expressed as 

sNv
t







 
, (4.7) 

where the solid phase flux, Ns, can expressed as a function of relative velocity and the 

solid mass fraction, ms, 

)1( srs muN    (4.8) 

The viscosity of concentrated suspension was approximated by the Krieger (1972) 

correlation, 
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 (4.9) 

where μK and μf are the viscosity of suspension and fluid respectively. φmax is the 

maximum packing fraction and determined by fitting with the viscosity data, obtained 

experimentally. Figure 4.1 shows the dependence of the relative viscosity of the glass 

spheres suspensions on volume fraction and the fit to the Krieger correlation, using φmax = 

0.68. 

 

Figure 4.1 Measured relative viscosity of suspensions with different solid volume 

fractions 

At volume fractions above 0.5, suspensions exhibit a yield stress (Mueller et al. 2010). 

This yield stress can change the velocity profile and cause the formation of an unyielded 
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region during squeeze flow (O’Donovan and Tanner 1984). In order to consider yield 

stress, 
0 , and have continuous conservation equations, we use the following exponential 

function for suspension viscosity, μs (Papanastasiou 1987). 
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 (4.10) 

where n is a constant. With a relatively large exponent, n, a quick stress growth (large 

viscosity) can be achieved at relatively very low strain rates, which is consistent with the 

behavior of the Bingham material in its practically unyielded state. Typically, a value of 

100 for n is large enough to approximate the yield stress behavior (Ellwood et al. 1990). 

We used the value of n = 1000 in our model. The yield stress values in our model are 

extracted from experimental results (Figure 3.5). 

To control the slip at surface we defined the slip parameter, δ, as follows (after Laun et 

al. 1999) 

 rV

hvslip


  (4.11) 

Here vr is the radial slip velocity at the plate which increases linearly with radius and 

V is the approaching velocity. The value of δ varies from 0 for no slip to 0.5 for perfect 

slip at surfaces. The value of slip parameter can be determined either by the slip test or by 

fitting the force versus time result from squeeze test. 

The numerical solutions were obtained with COMSOL Multiphysics version 4.1 

(COMSOL, Inc., Burlington, MA), using as the primary variables the two velocity 

components, vr and vz, the solid-phase volume fraction, φ, and the pressure, p. Due to 

symmetry, just half of the cross section is modeled. The mesh was triangular with 2,420 

elements as shown in Figure 4.2, with a finer mesh used close to the boundaries. The 
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largest elements were 0.70 mm long (at the upper and lower surfaces) and the smallest 

elements were 0.32 mm long (at the axis and at the edge). It is worth noting that the 

meshing deformed as the upper boundary moved down while the lower boundary 

remained stationary. 

 

 

Figure 4.2 Finite-element mesh used to model the squeeze flow 

The direct (MUMPS) linear system solver of COMSOL Multiphysics was chosen 

because it was faster and more stable that the other solvers available.  

 

4.2. Boundary conditions 

The boundary conditions for the system shown in Figure 4.3 are: 

(1) Symmetry along axis AB: vr = 0, ∂P/∂r = 0 

(2) Slip along the stationary bottom wall BC: vr = vslip, vz = 0 

(3) Atmospheric pressure along edge CD where suspension exits: P = 0 

(4) Slip along the moving top wall DA: vr = vslip, vz = −V 
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The approach velocity, V, is constant during the constant velocity stage, before the 

force reaches the set value. Subsequently, in the constant force stage, the approach 

velocity is determined in such a way that the following constrain along DA is maintained: 


R

zzrdrF
0

2  (4.12) 

A

B C

D

z

r

Figure 4.3 Nomenclature for the coordinates and boundaries 

 

4.3. Experimental 

Suspensions of various concentrations and with two different particle sizes were 

prepared by mixing glass spheres and PMMA in silicone oils with different viscosities. 

The suspending fluids were Dow Corning 200 Fluid 300,000 and 60,000 cSt with 

viscosities of 327.5 Pa·s and 61.5 Pa.s, respectively, and silicone oil with a viscosity of 

1.0 Pa·s. Fluids viscosity was measured at 22°C (the temperature near which all 

experiments were conducted) with a Rheometrics Fluid Spectrometer RFS II and 

suspensions viscosity was measured with a NDJ-8S digital viscometer at constant shear 

rate of 10 s
-1

. The suspensions were squeezed between a circular Plexiglas disk, 3.5 in. 

http://www.google.com/search?hl=en&biw=1600&bih=750&sa=X&ei=HSWKTv20J4qitge73Lwz&ved=0CBcQvwUoAQ&q=their+viscosity+are+respectively&spell=1
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(88.9 mm) in diameter, and a large Plexiglas plate in the hydraulic press (Technical 

Machine Products, Cleveland, OH) with a constant force of 4,450 N. All samples filled 

the gap between two plates at the start of the experiments. The initial thickness of the 

samples was 8 mm, and the tests were stopped before the thickness reached to 1 mm. The 

particle average diameter of the glass beads used was 74 μm and their density was 

determined to be 2,730 kg/m
3
. PMMA microspheres with the diameters between 250 and 

300 microns were used in some suspensions. 

It is worth noting the bottom plate approaches the top plate at a constant velocity until 

the required force reaches the set point. After that, the force remains constant and the 

approach velocity changes with time in a way determined by the properties of the sample.  

Samples from three different radial positions of the squeezed suspension were 

weighted. Then, the samples were washed with hexane to dissolve the silicone oil. The 

washing was repeated 5 times in order to remove all of the silicone oil. Finally, the 

particles were dried in a vacuum chamber and weighted again. To get the average 

concentration throughout the squeezed suspension, we took the samples from three 

different points with the same radius and averaged the concentrations.   
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4.4. Results and Discussion 

In order to validate the model we used it to analyze the constant-force squeeze flow of 

a Newtonian fluid between two parallel disks and compared the thickness and pressure 

profile predicted by our model to those of the analytical solution by Laun et al. (1999). 

Figure 4.4 shows the thickness as a function of time predicted by our numerical model 

for constant-force squeeze flow of a Newtonian fluid with a viscosity of 1000 Pa·s, 

squeezed for 1 s with a constant force of 50 N between two parallel disks with a radius of 

44.45 mm (1.75 in.) which initially are 20 mm apart. Results for three degrees of slip (as 

defined by eq. 4.11) are presented: no-slip (δ = 0), intermediate slip (δ = 1/4), and perfect 

slip (δ = 1/2). 

Also presented in the Figure are the predictions of the analytical solution by Laun et 

al. (1999): 

   







 


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2
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4

R

h

h

RV
F , (4.13a) 

where   

dt

dh
V  , (4.13b) 

is the approach velocity.  This expression includes, as special cases, the previously 

reported solutions for no-slip and perfect slip, and does not require the ratio h/R to be 

small (lubrication approximation). 

The analytical solution is an ordinary differential equation for h, for which there is no 

explicit solution. Therefore, it was solved numerically using Euler’s method. 

The predictions of our numerical model are in close agreement with those of the 

analytical solution. 



 

70 

Figure 4.5 presents the predictions of our numerical model for the same fluid in the 

same set up, but only for the case of no slip at the plates. Also presented are the 

predictions of the analytical solution by (Laun et al. 1999); 
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Figure 4.4 Comparison of the thickness of the sample as a function of time 

predicted by our numerical model to the analytical solution by Laun et al. (1999) 

of a Newtonian fluid with a viscosity of 1000 Pa·s, squeezed for 1 s with a 

constant force of 50 N between two parallel disks with a radius of 44.45 mm 

Note that when h/R is very small, and there is no slip (δ = 0), we obtain the well 

known result (see for example Bird, et al. 2002)  
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 (4.15) 

Again, the predictions of our numerical model are in close agreement with those of the 

analytical solution. 

 

Figure 4.5 Comparison of the pressure profile predicted by our numerical model 

to the analytical solution by Laun et al. (1999) of a Newtonian fluid with a 

viscosity of 1000 Pa·s, squeezed for 1 s with a constant force of 50 N 

Figure 4.6 shows the force applied by the hydraulic press as a function of time for the 

squeezing of four suspensions of 74 μm glass spheres with different initial volume 

fractions when the force is set to 4,450 N. The suspensions were squeezed from a 

thickness of 8.0 mm to thickness of 1.5 mm. In the first stage of the squeeze test the 
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lower plate rises at a constant velocity of 5 mm/s and the force increases sharply toward 

the set point. In all of experiments a small overshoot of the force was observed due to the 

pressure control system of the press. In the second stage, the press keeps the force 

constant at the set point and the velocity varies depending on the properties of the sample 

being squeezed. The model takes into account the two stages of the squeeze flow test in 

order to imitate the experimental conditions. We calculate the total force by integrating 

the pressure profile on the top plate using Eq. 4.12. The lines through data points in 

Figure 4.6 represent the result from our squeeze flow model. The model predictions agree 

well with the experimental measurements. 

 

Figure 4.6 Measured force as a function of time and the result of fitting model 

prediction by changing slip parameter for suspensions with different initial solid 
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volume fractions of 74-μm glass spheres in Dow Corning 200 Fluid 300,000 cSt 

squeezed with a constant force of 4,450 N 

 

Figure 4.7 Comparison of the measured gap as a function of time with the 

prediction of model for suspensions with different initial solid volume fractions of 

74-μm glass spheres in Dow Corning 200 Fluid 300,000 cSt squeezed with a 

constant force of 4,450 N 

Figure 4.8 compares the result of the solid volume fraction profile predicted by our 

model to the experimental measurements for four different suspensions with volume 

fraction between φ = 0.482 and 0.586 squeezed with a constant force of 4,450 N from a 

thickness of 8.0 mm to a thickness of 1.5 mm. Experimental and modeling results shows 

that the deviations from the initial solid volume fraction increase with solid volume 

fraction and that the deviation is greater in the central region. Modeling confirmed that 
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liquid-phase migration is more prevalent at higher concentrations, that the solid volume 

fraction increases throughout the sample, and that concentration profile is almost flat 

except at the central region, where there is a sharp increase in solid volume fraction. The 

reason of increasing solid volume fraction at the central region is due to formation of 

unyielded region at this region. 

 

 

Figure 4.8 Experimental and model prediction of the solid volume fraction 

distributions of suspensions with different initial solid volume fractions of 74-μm 

glass spheres in Dow Corning 200 Fluid 300,000 cSt squeezed with a constant 

force of 4,450 N 

Figure 4.9 compares the solid volume fraction distributions predicted by our model 

after various squeeze times to the experimental measurements for the suspension with φ = 
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0.586 squeezed with a constant force of 4,450 N. The solid volume fraction throughout 

the sample increases with squeezing time exhibiting a sharp peak at the center. The 

volume fraction everywhere in the sample was higher than the initial volume fraction in 

all cases. The data point at the center is the average volume fraction of a region with a 

radius of 2.5 mm centered at the axis; the small horizontal lines in the Figure show the 

predicted average volume fractions for this region. The agreement between the model 

predictions and the experimental measurements is fair. 

 

Figure 4.9 Experimental and model prediction of the solid volume fraction 

distributions after various squeezing times for a suspension of 74-μm glass 

spheres in Dow Corning 200 Fluid 300,000 cSt with a volume fraction of 0.586 

squeezed with a constant force of 4,450 N 

0.632 

0.611 

0.602 

0.619 

0.608 
0.604 

0.604 

0.596 0.594 

0 5 10 15 20 25 30 35 40 45 

0.604 

0.614 

0.622 

0.58 

0.60 

0.62 

0.64 

0.66 

0.68 

S
o

li
d

 v
o

lu
m

e 
fr

ac
ti

o
n

 

r (mm) 

35 s 

25 s 

15 s 

ϕ = 0.586 (initial) 

Model prediction 



 

76 

The effect of suspending fluid viscosity is shown in Figure 4.10, where we compare 

the volume fraction distributions predicted by the model to the experimental results for 

three suspensions with φ = 0.595 with suspending fluids with viscosities of 1.0, 61.5, and 

327.5 Pa∙s after they have been squeezed with a constant force of 4,450 N from a 

thickness of 8 mm to a thickness of 2 mm.  The increase in the solid volume fraction is 

becomes more pronounced as the suspending fluid viscosity decreases, a trend that the 

model predicts very well. 

 

Figure 4.10 Experimental and model prediction of the solid volume fraction 

distributions of suspensions of 74-μm glass spheres in three different suspending 

fluids squeezed with a constant-force of 4,450 N from a thickness of 8 mm to a 

thickness of 2 mm 
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The effect of yield stress on liquid-phase migration is shown in Figure 4.11. We model 

the squeeze flow of a suspensions with φ = 0.560 and yield stress of 0, 10, and 100 Pa 

squeezed with constant force of 4,000 N when the thickness decreases from 8 mm to 1 

mm. The suspending liquid viscosity is assumed to be 50 Pa·s. The time required to 

squeeze the suspensions does not vary significantly in this range of yield stress, varying 

from 5.15 s for the suspension without yield stress to 5.64 s for the suspension a yield 

stress of 100 Pa. The solid volume fraction profiles of the squeezed suspensions in the 

outer region are almost equal but there is a large difference in the solid volume fraction at 

the central region due to the formation of the unyielded region. For the suspension with a 

yield stress of 100 Pa, the solid volume fraction has two maxima because the liquid 

filtrates out of the central region very quickly and decreases the solid volume fraction in 

the region adjacent to it. 

Figure 4.12 shows that radial velocity at h = 0.5 mm and parallel to the plates for the 

suspensions in Figure 4.11 after 5 s of squeezing. The radial velocity for the suspension 

with a yield stress of 100 Pa is negligible for r < 3 mm due to the unyielded region so the 

difference between liquid radial velocity and suspension radial velocity is higher for this 

suspension. 
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Figure 4.11 Model prediction of the solid volume fraction distributions of 

suspensions with different yield stress and φ = 0.560 of 74-μm glass spheres in a 

Newtonian fluid with μ = 50 Pa·s squeezed with a constant force of 4,000 N from 

thickness of 8 to 1 mm 
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Figure 4.12 Model prediction of the radial velocity profile at h = 0.5 mm of 

suspensions used in Figure 4.7 after 5 s squeeze time 

Figure 4.13 presents the boundary of the unyielded region around the center of lower 

plate for a suspension with φ = 0.560 and 
0  = 100 Pa yield stress squeezed with constant 

velocity of 2 mm/s. The initial thickness of suspension is 20 mm and the boundary is 
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Figure 4.13 Model prediction of changing the boundary of the unyielded region 

around the center of the lower plate versus time for a suspension with φ = 0.560 

and 
0 = 100 Pa squeezed at constant velocity of 2 mm/s. 
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the surface decreases. In our model the time to squeeze the suspension with no slip is 

5.39 s and decreases to 2.29 s for perfect slip at surface. 

 

Figure 4.14 Model prediction of solid volume fraction profile for the suspension 

with φ = 0.560 and 
0τ = 50 Pa squeezed with a constant force of 4,000 N from 

thickness of 8 to 1 mm of 74-μm glass spheres in a Newtonian fluid with μ = 50 

Pa·s  

The effect of the magnitude of the applied force on the liquid-phase migration is 

complicated because increasing the force will increase the pressure gradient, thus 

increasing the migration rate, but on the other hand increasing the force shortens the 

squeezing time so the liquid has less time to migrate. Modeling results showed that the 
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migration. Figure 4.15 shows the solid volume fraction profile of a suspension with φ = 

0.560 after squeeze flow with four different forces ranging from 500 N to 4,000 N. The 

thickness of sample was decreased from 15 mm to 1 mm. There is a larger increase in the 

solid volume fraction after the squeeze test for suspensions squeezed with smaller forces, 

the reason it that the time required for squeeze increases sharply for smaller forces. The 

squeeze time is 129.6 s for F = 500 N and is 10.6 s for F = 4,000 N. 

 

Figure 4.15 Model prediction of solid volume fraction profile for a suspension 

with φ = 0.560 and 50 Pa yield stress of 74-μm glass spheres in a Newtonian fluid 

with μ = 50 Pa·s squeezed with different constant force from thickness of 15 to 1 

mm 
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Figure 4.16 represent the solid volume fraction profile of the same suspension in 

Figure 4.15 after squeeze to the final thickness of 2 mm. The difference between the solid 

volume fractions in Figure 4.16 is small for different forces. 

 

Figure 4.16 Model prediction of solid volume fraction profile for a suspension 

with φ = 0.560 and 50 Pa yield stress of 74-μm glass spheres in a Newtonian fluid 

with μ = 50 Pa·s squeezed with different constant force from thickness of 15 to 2 

mm 

In order to investigate the effect of different parameters on liquid phase migration a 

series of simulations were performed using the model we developed. The results are 

shown in Table 4.1. In this table, Δφ/φinitial is the fractional change in the volume fraction 

at the center (r < 2.5 mm) of the sample due to liquid-phase migration. Squeeze flow of 

suspensions with φ = 0.480, 0.520, 0.560, and 0.600 with constant forces, F, of 3.0 and 

0 1 2 3 4 5 

0.55 

0.56 

0.57 

0.58 

0.59 

0.60 

0.61 

0.62 

0.63 

S
o

li
d

 v
o

lu
m

e 
fr

ac
ti

o
n

 

r (mm) 

500 N, 23.7 s  

1000 N, 10.8 s 

2000 N, 5.5 s 

4000 N, 3.1 s 

h final = 2 mm 

 

500 N 

 
1000 N 

 2000 N 

 4000 N 

 



 

84 

6.0 kN were modeled. Liquid viscosities, μ, of 10 and 50 Pa·s and particle diameters, D, 

of 50 and 150 μm were considered in this study. In this simulation, the initial thickness 

was 8 mm and the final thickness was 1 mm. The permeability, k, was calculated from φ 

and D using the Carman-Kozeny correlation (Eq. 4.3). The yield stress τ0 was 

interpolated from the experimental measurements presented in Figure 3.5. The numerical 

model is used to calculate the squeeze time, t, and Δφ/φinitial. Other factors being the 

same, the results were very similar for the two forces used. The results indicate, however, 

that liquid-phase migration increases with increasing initial solid volume fraction, 

increasing particle size, and decreasing liquid viscosity. These points are illustrated in 

Figures 17 to 19. 
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Table 4.1 Parameters and results of the simulations 

φ F (kN) μ (Pa·s) D (μm) k (m
2
) τ0 (Pa) t (s) Δφ/φinitial 

0.48 3.0 50 50 8.48×10
-6

 36.5 3.37 0.0402 

0.48 6.0 50 50 8.48×10
-6

 36.5 2.20 0.0403 

0.48 3.0 10 50 8.48×10
-6

 36.5 1.60 0.0404 

0.48 6.0 10 50 8.48×10
-6

 36.5 1.45 0.0406 

0.48 3.0 50 150 7.63×10
-6

 36.5 3.42 0.0645 

0.48 6.0 50 150 7.63×10
-6

 36.5 2.20 0.0670 

0.48 3.0 10 150 7.63×10
-6

 36.5 1.63 0.0839 

0.48 6.0 10 150 7.63×10
-6

 36.5 1.45 0.0962 

0.52 3.0 50 50 5.68×10
-6

 59.5 4.55 0.0424 

0.52 6.0 50 50 5.68×10
-6

 59.5 2.75 0.0411 

0.52 3.0 10 50 5.68×10
-6

 59.5 1.79 0.0416 

0.52 6.0 10 50 5.68×10
-6

 59.5 1.52 0.0449 

0.52 3.0 50 150 5.11 ×10
-6

 59.5 4.60 0.0765 

0.52 6.0 50 150 5.11 ×10
-6

 59.5 2.75 0.1008 

0.52 3.0 10 150 5.11 ×10
-6

 59.5 1.80 0.1026 

0.52 6.0 10 150 5.11 ×10
-6

 59.5 1.53 0.1127 

0.56 3.0 50 50 3.77×10
-6

 82.5 7.55 0.0536 

0.56 6.0 50 50 3.77×10
-6

 82.5 3.94 0.0540 

0.56 3.0 10 50 3.77×10
-6

 82.5 2.16 0.0561 

0.56 6.0 10 50 3.77×10
-6

 82.5 1.69 0.0561 

0.56 3.0 50 150 3.40×10
-5

 82.5 7.50 0.0762 

0.56 6.0 50 150 3.40×10
-5

 82.5 3.94 0.1129 

0.56 3.0 10 150 3.40×10
-5

 82.5 2.28 0.1204 

0.56 6.0 10 150 3.40×10
-5

 82.5 1.70 0.1328 

0.60 3.0 50 50 2.47×10
-6

 105.4 17.26 0.0630 

0.60 6.0 50 50 2.47×10
-6

 105.4 7.57 0.0570 

0.60 3.0 10 50 2.47×10
-6

 105.4 4.50 0.0847 

0.60 6.0 10 50 2.47×10
-6

 105.4 2.31 0.1019 

0.60 3.0 50 150 2.22×10
-5

 105.4 17.35 0.1520 

0.60 6.0 50 150 2.22×10
-5

 105.4 7.77 0.1471 

0.60 3.0 10 150 2.22×10
-5

 105.4 4.20 0.1650 

0.60 6.0 10 150 2.22×10
-5

 105.4 2.33 0.1678 
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Figure 4.17 Model predictions of the effect of initial solid volume fraction 

on fractional changes in solid volume fraction 
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Figure 4.18 Model predictions of the effect of particles diameter on 

fractional changes in solid volume fraction 
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Figure 4.19 Model predictions of the effect of suspending fluid viscosity 

on fractional changes in solid volume fraction 

 

Figure 4.20 and Table 4.2 compare the model predictions with the measured fractional 

changes in solid volume fraction for a suspension with φ = 0.586 at different squeeze 
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The model predictions are in good agreement with the experimental results. 
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Figure 4.20 Comparison of model predictions to measured fractional 

changes in solid volume fraction for a suspension with φ = 0.586 for 

squeeze times of 5, 25, and 40 s with a squeeze force of 13.3 kN, and for 

squeeze times of 15, 25, and 35 s with a squeeze force of 4.45 kN. 
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CHAPTER 5 

CONCLUSION 

 
Properly calibrated pressure-sensitive films were used to measure the normal stress 

distribution in materials undergoing squeeze flow. The technique was validated by 

squeezing a highly viscous Newtonian fluid with a constant force between a circular disk 

and a large parallel flat surface. As predicted, the normal stress distribution was found to 

be parabolic with a maximum at the center and atmospheric pressure at the edge. The 

technique was then used for measurements on suspensions of glass spheres in that fluid. 

Although suspensions are expected to deviate from Newtonian behavior as their 

volume fraction of solids increases, the normal stress distribution in our suspensions with 

volume fractions of solids up to 0.55 was found to be, within experimental error, very 

similar to that for Newtonian fluids. Thus, up to these volume fractions, the normal stress 

distribution in squeeze flow seems to provide very little information on the rheological 

character of these suspensions. 

At higher volume fractions, the normal stress distribution was qualitatively different, 

exhibiting very high normal stresses in the central region and low normal stresses beyond 

that. Slip tests showed that the boundary condition on the surface of the plates was 

intermediate between perfect slip and no slip. Since this normal stress distribution was 

very similar to that obtained when particles without fluid were subjected to squeeze flow, 

it is apparent that the normal stress distribution at volume fractions above 0.55 reflects 
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jamming of the solid particles. The normal stress distribution can thus be used as an 

indicator of the occurrence of jamming in suspensions subjected to squeeze flow, and 

may serve as a guide to the improvement of compression molded parts. 

Replacing, at intervals during the squeeze test, the pressure-sensitive films used to 

measure the normal stress distribution, showed that the normal stress distribution changes 

for highly concentrated suspensions as the test proceeds: the normal stress in the central 

region increases dramatically while the normal stress in the outer regions decreases. 

Examination of these suspensions after they had been subjected to squeeze flow revealed 

that fluid had migrated away from the central region, thus contributing to jamming.  The 

concentration gradient that results from this liquid phase migration requires that the 

analysis of squeeze flow for highly concentrated suspensions take into account the time 

and position dependence of the rheological properties of the material. 

The solid volume fraction profile in highly concentrated suspensions after constant-

force squeeze flow clearly demonstrates that the liquid phase filtrates through the solid 

matrix. This liquid-phase migration can be attributed to the pressure gradient that 

develops between the center and the edges of the disks during squeeze flow. Considering 

the normal stress distribution and solid volume fraction profile simultaneously showed 

that the phase separation and increasing the solid volume content at the center of the 

disks led to the jamming of the particles at the center region and increasing the normal 

stress at this region. The jamming of the particles in the central region hinders the 

squeezing of the suspensions causing the squeeze time required to reach a desired 

thickness to increase or and even making it impossible to reach the desired thickness. 
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These experiments suggest that liquid-phase migration can be avoided in principle by 

increasing the squeeze velocity, increasing the liquid viscosity, or using smaller particles. 

The effect of these parameters can be seen in the filterability number. Results indicated 

that in order to limit the percent change in volume fraction at the center, the filterability 

number has to be small. Suspensions with same initial solid volume fraction exhibited 

phase separation at larger filterability numbers which may lead to jamming and drastic 

changes in the normal stress distribution. In these cases, assuming that the material is 

characterized by a rheological model with constant parameters is not sufficient. A more 

complete analysis would need by taking into account the time and position dependence of 

the rheological properties of the material due to the change in the volume fraction of 

solids. This can be done by pairing the equation of motion with a continuity equation that 

includes diffusive flux such as Darcy’s law for motion of liquid relative to solids.  

Coupling the equation of motion for a non-Newtonian material that approximates a 

Bingham plastic with a continuity equation that includes a diffusive flux based on 

Darcy’s law resulted in a numerical model that accounts well for the pressure-induced 

liquid-phase migration during squeeze flow of highly concentrated suspensions. The 

constitutive equation includes a yield stress and a viscosity at high shear rates, both of 

which were obtained experimentally. The permeability was estimated from the particle 

diameter and the volume fraction using the Carman-Kozeny correlation. A slip 

parameter, δ, was introduced in order to account for the degree of slip at the surfaces, and 

it was assumed to be the same throughout the surface. The slip parameter was determined 

by fitting the experimentally-measured force as a function of time in the first stage (the 

constant-velocity stage) of the squeeze flow experiments; it was zero (no slip) for all but 
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the suspensions with the highest volume fractions. The predictions of the model required 

no other adjustable parameters. 

The volume fraction distributions predicted by the numerical model for suspensions of 

various volume fractions subjected to squeeze flow agreed well with the experimental 

measurements. For suspensions with φ < 0.5 the solid volume fraction remains constant 

during the squeeze test. At higher volume fractions, the volume fraction everywhere in 

the squeezed suspension, but more markedly near the center, is higher than the initial 

volume fraction. The numerical model also predicted fairly well the effect of the squeeze 

time and the viscosity of the suspending liquid on the volume fraction distribution of 

suspensions subjected to squeeze flow. 

The numerical model was also used to predict the effect of various parameters on the 

volume fraction distribution of the squeezed suspensions. The yield stress, which causes 

the formation of an unyielded region close to the central region of the suspension (near r 

= 0), was the key parameter controlling liquid-phase migration. In the central region, 

when the yield stress increased, the radial velocity of the suspension as a whole decreased 

sharply, while the fluid velocity, which depends mostly on the pressure gradient remained 

high. Therefore, the velocity of the liquid relative to that of the suspension increased with 

yield stress, leading to enhanced liquid-phase migration. The magnitude of the applied 

force was found critical on boosting the liquid phase migration only when the final 

thickness was very thin. The model predicted that increasing the slip velocity at the 

surface reduces the liquid-phase migration and also shortens the squeeze time. 
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APPENDIX A: PRESSURE SENSITIVE FILMS CALIBRATION 

Pressure-x pressure-sensitive films are used as to measure pressure in a variety of 

applications including the aerospace, electronics, automotive, and medical industries.  A 

film can be placed between two surfaces that exert a pressure and will turn red according 

to the amount of the applied pressure. A darker red film indicates a higher applied 

pressure. The films come in 7 sensitivities to accommodate a wide range of pressures but 

we used 3 varieties, Super Low 70-350 psi (480-2,400 kPa), Low 350-1,400 psi (2,400-

9,700 kPa), and Medium 1,400-7,100 psi (9,700-49,000 kPa). 

Though pressure-x films are a good indication of pressure distribution over an 

area, they are not, as sold, meant to accurately measure pressure. Pressure-x Inc. includes 

in their manual some curves to measure pressure by comparing the intensity of the 

pressed film visually. These curves provide an insufficient amount of information to 

effectively be used as pressure readings, and the act of comparing the used film to a scale 

is far too subjective. To effectively use pressure-x films to quantitatively measure 

pressure distribution, an independent calibration of these films is necessary. According to 

Pressure-x, the darkening of the film is a function of pressure, humidity, temperature, and 

time. Pressure of course, plays the largest role, but the latter three conditions significantly 

affect the reddening of the film. Theoretically, the film becomes darker with time until it 

reaches a limit for that pressure for which it will not become darker no matter how long it 

is subjected to that pressure. At a higher temperature or humidity, the film will become 
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darker under the same pressure than at a lower temperature or humidity. Because of these 

variations, it is necessary to generate a large number of calibration curves for the pressure 

film.  

In order to effectively measure pressure distribution, a calibration must be 

performed on the pressure-x pressure film. Calibrations were to be carried out for the 

Super Low, Low, Medium, and High pressure films. A number of pressures ranging from 

the lower to the upper limit of pressure for each film are to be used. One range of 

pressures constitutes a run, and can be used to make a calibration curve.  Each of these 

runs was to be done for a time of 5, 15, and 35, seconds and at temperatures of 20ºC, 

35ºC, and 45ºC. Humidity was to be measured for each run but not manipulated. 

Calibration curves had developed using a known area of post-it sticky notes to cover a 

known area of pressure film. The sticky portions left on and used to keep the film aligned 

with the paper for the pressing. Approximately ten sheets of sticky notes placed on top of 

the film which was placed on top of a circular metal disk. The disk, film, and paper were 

pressed for a known amount of time and at varying pressures. The films then scanned and 

the image saved as a bitmap file. Matlab Image toolbox was used to convert the image 

into a matrix of grayscale intensity values which were averaged in Microsoft Excel to 

obtain an average intensity value for a film. A series of films could be analyzed in this 

way and plotted to yield a calibration curve.  
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Figure A.1 Calibration Curve for RH=34.8% at 15s and 5s Press Time 

To show procedure of calibration the result for calibration of low pressure-

sensitive films is presented. Figure A.1 is a plot of gray scale intensity versus applied 

pressure for a relative humidity of 34.8% for low pressure-sensitive film. The 15s curve 

is consistently below the 5s curve. This means that it is a darker shade of red. The color 

scale ranges from 255 (pure white) to 0 (pure black).However, it should be noted that 

time press time makes little difference in the intensity of the film at a given pressure. For 

pressure higher than 1200 psi, the two curves flatten out, and there is a much larger 

difference in measured pressure at a given intensity. That the slope of the curve flattens 

out and appears to approach zero as the pressure increases. This means that the there is an 
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ultimate intensity at which the pressure film no longer changes in color no matter how 

much pressure is applied. The data for three films showed that for the majority of 

pressures, the press time makes little difference in the measured gray scale intensity and 

thus little difference in the corresponding pressure at a measured intensity on the other 

hand humidity was found to have a significant effect on the measured intensity.  

 
Figure A.2 Measured normal stress distribution of suspensions with volume 

fraction of 0.586 squeezed for 35 s with constant force of 13.3 kN using three 

different pressure sensitive films 

For each squeeze test of suspensions, the calibration with the same temperature 

and time and the closest humidity used to convert the gray scale to pressure values. 

Figure A.2 shows the result of measuring the normal stress distribution of suspension 

with volume fraction of 0.586 squeezed for 35 s using three calibrated pressure sensitive 

films. 
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