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Abstract

In 1960, Sierpiński proved that there exist infinitely many odd positive integers k

such that k · 2n + 1 is composite for all positive integers n. Such integers are known

as Sierpiński numbers. Letting f(x) = axr + bx + c ∈ Z[x], Chapter 2 of this

document explores the existence of integers k such that f(k)2n + d is composite

for all positive integers n. Chapter 3 then looks into a polynomial variation of a

similar question. In particular, Chapter 3 addresses the question, for what integers

d does there exist a polynomial f(x) ∈ Z[x] with f(1) 6= −d such that f(x)xn + d

is reducible for all positive integers n. The last two chapters of the document then

explore the reducibility and factorization of polynomials taking on a prescribed form.

Specifically, Chapter 4 addresses the reducibility and factorization of polynomials

of the form xn + cxn−1 + d ∈ Z[x], while Chapter 5 addresses the reducibility and

factorization of polynomials of the more general form f(x)xn + g(x) ∈ Z[x].
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Chapter 1

An Introduction to Terminology

The work in each chapter of this document is intended to be independent of previous

chapters. As such, each chapter contains its own individual introduction and con-

cluding remarks. That being said, we present here some definitions and background

to help guide the reader.

A covering system (or covering) of the integers is a finite system of congruences

n ≡ ri (mod mi), such that every integer satisfies at least one of the congruences.

For example, it is easily checked that the system of congruences

n ≡ 0 (mod 3)

n ≡ 1 (mod 3)

n ≡ 2 (mod 3)

forms a covering of the integers. Perhaps a less trivial example of a covering system

is
n ≡ 0 (mod 2)

n ≡ 0 (mod 3)

n ≡ 1 (mod 4)

n ≡ 1 (mod 6)

n ≡ 11 (mod 12).

We define a Sierpiński number to be an odd integer k such that k · 2n + 1 is

composite for all positive integers n. The existence of such numbers was proven by

Sierpiński [23] in 1960. It was earlier shown by Riesel [19] in 1956 that there exists

infinitely many odd integers k such that k ·2n−1 is composite for all positive integers
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n. Letting f(x) = axr+bx+c for certain integers a, b, c, and r, in Chapter 2 we make

use of covering systems to show that for various values of d there exists infinitely

many integers k such that f(k) · 2n + d is composite for all positive integers n.

The last three chapters of the document will focus on the reducibility and factor-

ization of polynomials. We say that a polynomial f(x) ∈ Z[x] is irreducible in Z[x]

(or irreducible over Z) provided that f(x) 6≡ ±1 and if f(x) = g(x)h(x) with g(x) and

h(x) in Z[x], then either g(x) ≡ ±1 or h(x) ≡ ±1. If f(x) ∈ Z[x] is not irreducible

in Z[x] and f(x) 6≡ ±1, then we say that f(x) is reducible in Z[x]. Similarly, we say

that a polynomial f(x) ∈ Q[x] is irreducible in Q[x] (or irreducible over Q) provided

that f(x) is not constant and if f(x) = g(x)h(x) with g(x) and h(x) in Q[x], then

either g(x) or h(x) is constant. If f(x) ∈ Q[x] is not irreducible in Q[x] and f(x) is

not constant, then we say that f(x) is reducible in Q[x]. In Chapter 3 we investigate

the following question.

Question. For what integers d does there exist a polynomial f(x) ∈ Z[x] such that

f(1) 6= −d and f(x)xn + d is reducible in Q[x] for all integers n ≥ 0?

We include the restriction f(1) 6= −d to avoid trivial solutions. Let S be the set of

integers for which there exists a polynomial f(x) ∈ Z[x] such that f(1) 6= −d and

f(x)xn + d is reducible over the rationals for all integers n ≥ 0. It was shown by

Filaseta [8] that if d ≡ 0 (mod 4), then d ∈ S. Jones [17] later showed that there are

infinitely many d ∈ S with d ≡ 2 (mod 4). We will show in Chapter 3 that if d ≡ 0

(mod 2), then d ∈ S.

The last two chapters will address the reducibility and factorization of polynomials

in Z[x] taking on a prescribed form. Specifically, chapter 4 addresses the reducibility

and factorization of polynomials of the form xn + cxn−1 + d ∈ Z[x], while chapter 5

addresses the reducibility and factorization of polynomials of the more general form

f(x)xn + g(x) ∈ Z[x].
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Much of the work in this document was completed with various collaborators. All

but the last chapter appear as articles in professional journals. Chapter 2 is joint

work with Lenny Jones and Carrie Finch and is published in Journal of Number

Theory [13]. Chapter 3 is joint work with Michael Filaseta and is published in Acta

Arithmetica [11]. The fourth chapter is work solely of the author’s and is published

in International Journal of Number Theory [14]. Finally, Chapter 5 is joint work with

Andrew Vincent and Daniel White.
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Chapter 2

Nonlinear Sierpiński and Riesel Numbers

2.1 Introduction

The following concept, originally due to Erdős [7], is instrumental in establishing all

results in this article.

Definition 2.1. A covering of the integers is a finite system of congruences n ≡ zi

(mod mi) such that every integer satisfies at least one of the congruences.

Quite often when a covering is used to solve a problem, there is a set of prime

numbers associated with the covering. In the situations occurring in this article,

for each congruence n ≡ zi (mod mi) in the covering, there exists a corresponding

prime pi, such that 2mi ≡ 1 (mod pi), and pj 6= pi for all j 6= i. Because of this

correspondence, we indicate the covering using a set C of ordered triples (zi,mi, pi).

We abuse the definition of a covering slightly by referring to the set C as a “covering".

In 1960, using a particular covering, Sierpiński [23] published a proof of the fact

that there exist infinitely many odd positive integers k such that k · 2n + 1 is com-

posite for all natural numbers n. Any such value of k is called a Sierpiński number.

Since then, several authors [2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17] have investigated

generalizations and variations of this result. We should also mention a paper of Riesel

[19], which actually predates the paper of Sierpiński, in which Riesel proves a similar

result for the sequence of integers k ·2n−1. We include a proof of Sierpiński’s original

theorem since it provides an easy introduction to the techniques used in this paper.
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Theorem 2.1 (Sierpiński [23]). There exist infinitely many odd positive integers k

such that k · 2n + 1 is composite for all integers n ≥ 1.

Proof. Consider the covering

C = {(1, 2, 3), (2, 4, 5), (4, 8, 17), (8, 16, 257),

(16, 32, 65537), (32, 64, 641), (0, 64, 6700417)} .

To illustrate exactly how C is used to prove this result, start with the triple (1, 2, 3) ∈

C. We want k · 2n + 1 ≡ 0 (mod 3) when n ≡ 1 (mod 2). But k · 2n + 1 ≡ k · 2 + 1

(mod 3) when n ≡ 1 (mod 2), which tells us that k · 2n + 1 is divisible by 3 if k ≡ 1

(mod 3). Continuing in this manner gives us the system

k ≡ 1 (mod 3)

k ≡ 1 (mod 5)

k ≡ 1 (mod 17)

k ≡ 1 (mod 257)

k ≡ 1 (mod 65537)

k ≡ 1 (mod 641)

k ≡ −1 (mod 6700417).

Since we require that k be odd, we add the congruence k ≡ 1 (mod 2) to our system,

and then using the Chinese remainder theorem, we get the solution

k ≡ 15511380746462593381 (mod 2 · 3 · 5 · 17 · 257 · 65537 · 641 · 6700417).

Therefore, for any integer n ≥ 1 and any such k, we have that at least one prime

from the set {3, 5, 17, 257, 641, 65537, 6700417} is a divisor of k · 2n + 1.

In this article we are concerned with variations of Theorem 2.1 which are non-

linear in nature, replacing the variable k with a nonlinear polynomial in k. The

investigation into such nonlinear situations began with Chen [5], who showed that for
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any positive integer r 6≡ 0, 4, 6, 8 (mod 12), there exist infinitely many odd positive

integers k such that kr · 2n + d is composite for all integers n ≥ 1, where d ∈ {−1, 1}.

He conjectured that the result is true for all positive integers r. Recently, Filaseta,

Finch and Kozek [9] have been able to lift all restrictions on r when d = 1 to verify

Chen’s conjecture in this case, and they showed that the conjecture is also true for

r = 4 and r = 6 when d = −1. (More recently, Finch, Groth, Jones and Mugabe

have verified Chen’s conjecture for r = 8 and r = 12 when d = −1.) In their paper

[9], Filaseta, Finch and Kozek also asked if infinitely many positive integers k can

be found such that f(k) · 2n + 1 is composite for all integers n ≥ 1, where f(x) is

any nonconstant polynomial in Z[x]. In this article we focus on the situation when

f(x) = axr + bx + c ∈ Z[x], where a ≥ 1. If, for such a particular polynomial f(x)

and an integer d, we can prove there exist infinitely many positive integers k such

that f(k) · 2n + d is composite for all integers n ≥ 1, then we say that particular

value of r can be captured. The r-density for a particular polynomial f(x) is simply

the density of the set of captured values of r. Our main focus in this article is when

d ∈ {−1, 1}. For any nonlinear polynomial f(x), we call the integer k a nonlinear

Sierpiński number if f(k) · 2n + 1 is composite for all integers n ≥ 1, and a nonlinear

Riesel number if f(k) · 2n− 1 is composite for all integers n ≥ 1. A list of the results

established in this article follows.

Theorem 2.2. Let f(x) = xr + x+ c ∈ Z[x], where 0 ≤ c ≤ 100.

6



• (Nonlinear Sierpiński Numbers) For any positive integer r and any

c ∈{1, 3, 4, 5, 6, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 26,

27, 29, 31, 32, 34, 38, 40, 41, 45, 46, 47, 48, 50, 53,

55, 57, 59, 60, 62, 64, 67, 68, 71, 74, 76, 78, 81

82, 83, 85, 87, 88, 89, 92, 94, 95, 96, 97},

there exist infinitely many positive integers k such that f(k) ·2n+1 is composite

for all integers n ≥ 1.

• (Nonlinear Riesel Numbers) For any positive integer r, and any

c ∈{2, 5, 8, 9, 11, 12, 13, 14, 16, 17, 20, 21, 22, 23, 24

27, 29, 30, 32, 35, 36, 37, 38, 39, 40, 41, 44, 50, 51,

53, 56, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71,

72, 74, 77, 80, 81, 82, 83, 84, 85, 86, 87, 89,

92, 93, 95, 97, 98},

there exist infinitely many positive integers k such that f(k) ·2n−1 is composite

for all integers n ≥ 1.

Theorem 2.3. Let f(x) = axr + c ∈ Z[x], where a ≥ 1, and let d be an odd integer.

If a is not divisible by any element in the set of primes

{3, 5, 7, 11, 13, 17, 19, 37, 41, 73, 257, 641, 65537,

286721, 3602561, 96645260801, 67280421310721},

then there exist infinitely many positive integers k such that f(k) · 2n +d is composite

for all integers n ≥ 1, either when r ≡ ±1 (mod 6), or when both r ≡ 3 (mod 6) and

r is not divisible by any element in the set of primes

{5, 7, 11, 13, 29, 47, 373, 433, 23669, 2998279}.
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Theorem 2.4. Let f(x) = xr + 1.

• (Nonlinear Sierpiński Numbers) There exist infinitely many positive integers

k such that f(k) · 2n + 1 is composite for all integers n ≥ 1 when either

r 6≡ 0 (mod 8) and r 6≡ 0 (mod 17449), or when r 6≡ z (mod 30) where

z ∈ {0, 6, 12, 15, 18, 24}.

• (Nonlinear Riesel Numbers) There exist infinitely many positive integers k such

that f(k) · 2n − 1 is composite for all integers n ≥ 1 when r 6≡ 0 (mod 6).

Theorem 2.5.

• Let f(x) = xr + 1. There exists a set S of r-density 8/33, such that for each

r ∈ S, there exist infinitely many positive integers k for which f(k) is odd, and

both f(k) · 2n + 1 and f(k) · 2n − 1 are composite for all integers n ≥ 1.

• Let f(x) = xr + x + 1. There exists a set S with r-density approximately .47,

such that for each r ∈ S, there exist infinitely many positive integers k for which

f(k) is odd, and both f(k) ·2n+1 and f(k) ·2n−1 are composite for all integers

n ≥ 1.

For each positive integer c ≤ 100 not listed in the Sierpiński part of Theorem 2.2,

the r-density is no smaller than 2/3, and for each positive integer c ≤ 100 not listed

in the Riesel part, the r-density is no smaller than .749. Since the r-densities for the

Riesel part and Sierpiński part of Theorem 2.2 are similar, we provide in Table 2.1

the approximate r-densities only for the Sierpiński part. The value of c = 100 here is

simply an arbitrary stopping point. The methods used in the proof of Theorem 2.2

can be applied to larger values of c as well as other polynomials.

Theorem 2.3 is a more general theorem in that the values of the parameters a,

c and d are not fixed. In some sense, Theorem 2.3 generalizes the work of Filaseta,

Finch and Kozek [9] since their work is the special case of a = d = 1 and c = 0 in

8



Theorem 2.3. However, we are not able to achieve an r-density of 1 in this case using

our methods. In the specific case of a = c = d = 1 in Theorem 2.3, the r-density

is slightly less than .42. Applying the techniques used to prove Theorem 2.2 to this

special case, this density improves to 2/3. The proof of the first part of Theorem

2.4 uses a different approach and improves this density to slightly more than .94.

Although we do not provide the details here, it can be shown that by combining all

of these results, the r-density in this case can be improved to slightly less than .96.

Theorem 2.5 addresses the following natural question. Given a specific polynomial

f(x), do there exist infinitely many positive integers k such that both f(k) ·2n+1 and

f(k) · 2n − 1 are simultaneously composite for all integers n ≥ 1? That is, are there

positive integers that are both nonlinear Sierpiński numbers and nonlinear Riesel

numbers? For certain polynomials and sets with positive r-density, this question is

answered affirmatively in Section 2.3 where the proof of Theorem 2.5 is given.

Remark 2.1. Computer computations in this article were done using either MAGMA,

Maple or a C++ program written by Professor Simon Levy in the computer science

department at Washington and Lee University.

2.2 Proofs of the Theorems

We begin with some preliminaries from finite group theory that are useful in estab-

lishing some of the main results in this paper.

Lemma 2.1. Let G be a finite abelian group, and suppose that r is a positive integer

such that gcd (|G|, r) = 1. Then the map θr : G −→ G defined by θr(x) = xr is an

automorphism of G.

Proof. Since G is abelian, θr is clearly a homomorphism. The kernel of θ is K = {x ∈

G | xr = 1}. Since the order of any x ∈ K divides both r and |G|, it follows that K

is trivial, which proves the lemma.

9



The following corollary is immediate from Lemma 2.1.

Corollary 2.1. Let p be a prime, and let (Zp)∗ denote the group of units modulo p.

For any positive integer r with gcd(r, p− 1) = 1, let θr be the automorphism of (Zp)∗

defined by θr(x) = xr, and let θ̂r be the extension of the map θr to the commutative

multiplicative monoid Zp by defining θ̂r(0) = 0. If gcd(r, p − 1) = 1, then θ̂r is a

bijection on Zp.

The next corollary extends the previous ideas to generate subsets S of Zp which

are fixed under θ̂r for certain values of r.

Corollary 2.2. Let p be a prime, and suppose that p− 1 = qzm, where q is a prime

such that m 6≡ 0 (mod q). Let

S = θ̂qz (Zp) =
(
θ̂q
)z

(Zp) .

Then θ̂q(S) = S. Moreover, each such set S is nonempty since 0 ∈ S.

Proof. The kernel of the homomorphism θq on θqz ((Zp)∗) is trivial.

The following lemma is used in the proofs of both Theorem 2.3 and Theorem 2.4.

Lemma 2.2. Let C = {(zi,mi, pi)} be a covering. Let r be a positive integer such

that gcd (r, pi − 1) = 1 for all i, and let a > 0 be an integer that is not divisible by

pi for all i. Then, for any integers c and d, with d odd, there exist infinitely many

positive integers k such that (a · kr + c) · 2n + d is composite for all integers n ≥ 1.

Proof. Let (zi,mi, pi) ∈ C. For each i, θ̂r is a bijection on Zpi
by Corollary 2.1, and

since a is invertible mod pi, we have that there exists vi ∈ Zpi
such that

vri ≡ a−1
(
−d · 2−n − c

)
≡ a−1

(
−d · 2−zi − c

)
(mod pi).

Then we use the Chinese remainder theorem to solve the system of congruences k ≡ vi

(mod pi). Since C is a covering, we have shown that, for any positive integer n, the

10



term (a · kr + c) · 2n + d is divisible by at least one prime pi, which completes the

proof of the lemma.

Theorem 2.2

We first outline in more generality the procedure used in the proof of Theorem 2.2.

Let C = {(zi,mi, pi)} be a covering, where pi is odd for all i. Recall that 2mi ≡ 1

(mod pi), and that no prime pi is repeated. Then 2n ≡ 2zi (mod pi) when n ≡ zi

(mod mi). Define LC := lcmi {pi − 1}. Note that LC is independent of the list of

residues in C. Let

f(x) = xr + xe + ae−1x
e−1 + · · ·+ a1x+ a0 (2.2.1)

be a nonconstant polynomial with integer coefficients, where e is a fixed nonnegative

integer. The coefficient on xe is 1 to exclude the possibility that f(x) ≡ 0 (mod pi)

for some i, when r ≤ e. We wish to determine the values of r for which there exist

infinitely many positive integers k such that sn := f(k) · 2n + d is composite for

all integers n ≥ 1, for a fixed d ∈ {−1, 1}. We use C to examine the behavior of

sn modulo each pi, and then piece together the results using the Chinese remainder

theorem. We only need to check values of r with 0 ≤ r ≤ LC − 1. We proceed

as follows. Let r be a fixed integer with 0 ≤ r ≤ LC − 1. Then, for each i, we

calculate the values f(k), with 0 ≤ k ≤ pi−1, to determine whether there is a k such

that f(k) ≡ −d2−zi (mod pi). If so, then we know there exists βi such that k ≡ βi

(mod pi) is a solution to sn ≡ 0 (mod pi) when n ≡ zi (mod mi). Continuing in this

manner, if βi exists for each i, then we can use the Chinese remainder theorem to

solve the resulting system of congruences in k. Thus, in this case, we have captured

that particular value of r, which contributes a value of 1/LC to the total density.

This process can be repeated for every list of residues for which a covering exists. In

addition, this process can be repeated for coverings with different lists of moduli. To
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combine all of these results in a sensible manner, one must take care since the values

of r captured using one list of moduli must be “meshed" with the values of r captured

using a different list of moduli. This can be done by examining values of r (mod L),

where L = lcmCLC, for all coverings C under consideration. Then the density of the

set of captured values of r will be the cardinality of the union of these various sets

divided by L. We call this density a Sierpiński r-density or Riesel r-density for this

particular polynomial f(x), depending on whether d = 1 or d = −1, respectively.

Remark 2.2. Note that if a0 ≡ 1 (mod 2) or ae−1 + · · · + a1 + a0 ≡ 1 (mod 2) in

(2.2.1), then adding, respectively, the additional congruence k ≡ 0 (mod 2) or k ≡ 1

(mod 2) to the system of congruences for k will ensure that f(k) is odd.

Proof of Theorem 2.2. Consider the following lists:

M1 = [2, 3, 4, 9, 12, 18, 36] P1 = [3, 7, 5, 73, 13, 19, 37]

M2 = [2, 3, 4, 8, 12, 24] P2 = [3, 7, 5, 17, 13, 241]

M3 = [2, 3, 4, 5, 10, 12, 15, 20, 60] P3 = [3, 7, 5, 31, 11, 13, 151, 41, 61],

where each Mj is a list of moduli to be used to construct a covering, and Pj is the list

of corresponding primes. Here L = 3600. Let Nj be the total number of coverings

having Mj as the list of moduli. Then N1 = 144, N2 = 48 and N3 = 2880. For each

d ∈ {−1, 1}, apply the procedure outlined above to the polynomials f(x) = xr+x+c,

with 0 ≤ c ≤ 100, using these 3072 coverings to get the results contained in the

statement of the theorem.
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It may be that not all lists of moduli Mj above, or all coverings for a particular

list of moduli, are needed to achieve the results for a certain value of c in Theorem

2.2. For example, it can be shown for c = 1 that only 24 of the coverings with the

moduli M1 are needed to prove that the Sierpiński r-density is 1.

Table 2.1 Approximate Sierpiński r-densities smaller than 1 using Theorem 2.2

c r-density c r-density c r-density c r-density
0 0.8247 27 0.9997 51 0.8333 72 0.8314
2 0.8333 28 0.8333 52 0.9164 73 0.9994
3 0.9997 30 0.8331 54 0.7500 75 0.9167
7 0.8333 33 0.9942 56 0.8333 77 0.8333
9 0.6667 34 0.9997 57 0.9997 79 0.8333
10 0.9997 35 0.8333 58 0.8331 80 0.9969
13 0.8314 36 0.9167 60 0.9997 81 0.9997
14 0.8331 37 0.8331 61 0.9942 84 0.6667
15 0.9997 38 0.9997 62 0.9997 86 0.8333
16 0.8333 39 0.7500 63 0.8333 87 0.9997
20 0.9997 40 0.9997 65 0.8331 90 0.9167
21 0.8333 42 0.7500 66 0.9167 91 0.8331
22 0.9997 43 0.9975 67 0.9997 93 0.8331
23 0.8333 44 0.8319 69 0.7494 98 0.8331
24 0.7478 49 0.8333 70 0.8317 99 0.7497
25 0.9769 100 0.8286
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Theorem 2.3

The strategy here is to use Lemma 2.2 exclusively to determine which values of r can

be captured in the general situation (a · kr + c) · 2n + d, where a, c, d ∈ Z, with a > 0

and d odd. However, since a corresponding odd prime pi in any covering is such that

pi− 1 ≡ 0 (mod 2), Lemma 2.2 alone is ineffective in addressing any even value of r.

Remark 2.3. Note that if c ≡ 1 (mod 2) or a + c ≡ 1 (mod 2), then adding, respec-

tively, the additional congruence k ≡ 0 (mod 2) or k ≡ 1 (mod 2) to the system of

congruences for k will ensure that f(k) = a · kr + c is odd.

Proof of Theorem 2.3. Suppose first that r ≡ ±1 (mod 6), and consider the covering

C1 = {(1, 2, 3), (0, 3, 7), (0, 4, 5), (5, 9, 73),

(10, 12, 13), (2, 18, 19), (26, 36, 37)} .

For each (zi,mi, pi) ∈ C1, note that a 6≡ 0 (mod pi) and that pi − 1 6≡ 0 (mod q) for

any prime q ≥ 5. Since gcd(r, 6) = 1, the first part of the theorem is established.

Now suppose that r ≡ 3 (mod 6), and consider the covering

C2 ={(1, 2, 3), (0, 4, 5), (2, 8, 17), (6, 10, 11), (14, 16, 257), (18, 20, 41),

(6, 32, 65537), (22, 64, 641), (118, 128, 67280421310721),

(310, 320, 3602561), (182, 640, 286721), (54, 640, 96645260801)}.

It is easy to check using a computer that C2 is indeed a covering. For each (zi,mi, pi) ∈

C2, note that a 6≡ 0 (mod pi). In addition, the union of the sets of odd prime divisors

of pi − 1 for all i is precisely

{5, 7, 11, 13, 29, 47, 373, 433, 23669, 2998279}.

Invoking Lemma 2.2 completes the proof.
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Theorem 2.4

While the hypotheses of Lemma 2.2 are sufficient in addressing a particular value of

r, they are not necessary, as we see in Theorem 2.4 where we consider the special

case of f(x) = xr + 1.

Proof of Theorem 2.4. We first prove the Sierpiński half of the theorem. Suppose

that r is not divisible by either 8 or 17449, and consider the covering

C ={(0, 2, 3), (1, 4, 5), (3, 8, 17), (7, 16, 257), (15, 32, 65537),

(31, 64, 641), (63, 64, 6700417)}.

The covering C gives rise to the system of congruences

kr ≡ 1 (mod 3)

kr ≡ 1 (mod 5)

kr ≡ 1 (mod 17)

kr ≡ 1 (mod 257)

kr ≡ 1 (mod 65537)

kr ≡ 1 (mod 641)

kr ≡ −3 (mod 6700417).

It is clear that k ≡ 1 (mod pi) is a solution to each of the first six congruences above.

To see that the last congruence has a solution, first note that

(−3) 6700416
12 ≡ 1 (mod 6700417).

Let d = gcd(r, 6700416). Since r 6≡ 0 (mod 8) and r 6≡ 0 (mod 17449), we have that

d divides 12. Thus,

1 ≡ 1 12
d ≡ (−3) 6700416

d (mod 6700417).

Hence, it follows from the generalization of Euler’s criterion for rth power residues

[18] that there exists a value k such that

kr ≡ −3 (mod 6700417).
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Using the Chinese remainder theorem completes the proof for these values of r.

To establish the second part of the Sierpiński half of Theorem 2.4, first consider

the covering

C1 = {(1, 2, 3), (1, 3, 7), (2, 4, 5), (3, 9, 73), (8, 12, 13), (0, 18, 19), (24, 36, 37)}.

Since pi − 1 ≡ 0 (mod 2) for each pi in C1, we see that θ2 is not an automorphism

of (Zpi
)∗. However, for each i, by Corollary 2.2, there exists a nonempty subset Si of

Zpi
such that (

θ̂2
)j

(Si) = θ̂2j (Si) = Si

for all positive integers j. That is, for any nonnegative integers j and n, there

exists ui ∈ Zpi
such that (u2j

i + 1) · 2n + 1 ≡ 0 (mod pi) provided that −2−n − 1

(mod pi) ∈ Si. The residues zi in the covering C1 have been chosen carefully so that

−2−n − 1 ≡ −2−zi − 1 (mod pi) is an element of Si for each value of i.

Now let r = 2jm, where gcd(m, 6) = 1 and j ≥ 0. Note that the set of all prime

divisors of pi − 1 for all pi in C1 is {2, 3}. Therefore, for each i, there exists, by

Corollary 2.1, vi ∈ Zpi
such that vmi ≡ ui (mod pi). Consequently,

vri = v2jm
i = (vmi )2j

≡ (ui)2j

≡ −2−zi − 1 (mod pi).

Thus, we can use the Chinese remainder theorem to solve the system of seven

congruences k ≡ vi (mod pi) to get infinitely many positive integers k such that

(kr + 1) · 2n + 1 is composite for all integers n ≥ 1. The values of r (mod 30) cap-

tured in this stage are

{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29}.

Next, consider the covering

C2 ={(1, 2, 3), (0, 4, 5), (0, 5, 31), (2, 8, 17), (4, 10, 11), (10, 12, 13),

(6, 15, 151), (18, 20, 41), (14, 24, 241), (42, 60, 61)}.
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Here we have that pi − 1 ≡ 0 (mod 3) for some values of i so that θ3 is not an

automorphism of (Zpi
)∗ for these values of i. However, as was the case for θ2 above,

by Corollary 2.2 there exists a nonempty subset Si of Zpi
such that

(
θ̂3
)j

(Si) = θ̂3j (Si) = Si

for all positive integers j. That is, for any nonnegative integers j and n, there

exists ui ∈ Zpi
such that (u3j

i + 1) · 2n + 1 ≡ 0 (mod pi) provided that −2−n − 1

(mod pi) ∈ Si. Again, the residues zi here in the covering C2 are chosen carefully so

that −2−n − 1 ≡ −2−zi − 1 (mod pi) is an element of Si for each value of i.

Now let r = 3jm, where gcd(m, 30) = 1 and j ≥ 0. Note that the set of all prime

divisors of pi − 1 for all i is {2, 3, 5}. Hence, for each i, Corollary 2.1 implies the

existence of vi ∈ Zpi
such that vmi ≡ ui (mod pi). Therefore,

vri = v3jm
i = (vmi )3j

≡ (ui)3j

≡ −2−zi − 1 (mod pi).

Thus, we can apply the Chinese remainder theorem to solve the system of eleven

congruences k ≡ vi (mod pi) to get infinitely many positive integers k such that

(kr + 1) ·2n+1 is composite for all integers n ≥ 1. The values of r (mod 30) captured

in this stage are

{1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29}.

Combining the results from the two coverings used here completes the proof of

the Sierpiński part of the theorem.

Since the Riesel half of this theorem can be established using either the methods

used in the proof of Theorem 2.2 or the methods used in the proof of the second part

of the Sierpiński half of this theorem, we omit the details.

Remark 2.4. The techniques used in the proof of the first part of the Sierpiński half

of Theorem 2.4 do not improve the result in the Riesel half of Theorem 2.4.
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2.3 Simultaneous Nonlinear Sierpiński and Riesel Numbers

In this section we are concerned with determining a set of r values of positive density

for which infinitely many positive integers k exist such that both f(k) · 2n + 1 and

f(k) · 2n − 1 are composite for all integers n ≥ 1, where f(x) = xr + 1 or f(x) =

xr + x+ 1.

Proof of Theorem 2.5. First let f(x) = xr + 1. We use the following coverings:

CS ={(0, 2, 3), (1, 3, 7), (8, 9, 73), (11, 18, 19), (5, 36, 37),

(23, 36, 109), (4, 5, 31), (5, 10, 11), (12, 15, 151),

(21, 30, 331), (33, 60, 61), (3, 60, 1321)}

and CR ={(1, 2, 3), (0, 4, 5), (6, 8, 17), (10, 16, 257),

(6, 12, 13), (2, 24, 241), (34, 48, 97)}.

The covering CS is used to construct nonlinear Sierpiński numbers, while the covering

CR is used to construct nonlinear Riesel Numbers. Since kr ≡ 1 (mod 3) in both

cases, and no other prime in CS appears in CR, these two coverings are consistent,

and we can construct a single system of congruences in kr so that any solution k will

be simultaneously a nonlinear Sierpiński number and a nonlinear Riesel number. Let

P = {pi − 1|pi ∈ CS or pi ∈ CR}. Then, for a fixed value of r < lcm(P), we examine

the values of k with 0 ≤ k ≤ pi − 1 for each prime pi. This process produces the

conclusion of the theorem in this case.

Now, let f(x) = xr + x + 1. Using the sets of moduli in CS and CR above, we

construct a set of coverings for the Sierpiński case and a set of coverings for the

Riesel case, such that each of the 1592 pairs (S,R), where S is a Sierpiński covering

and R is a Riesel covering, is consistent as explained above. Let (S,R) be such a

consistent Sierpiński-Riesel covering pair. For each element (z,m, p) ∈ S, we first
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solve the congruence x = −2−z−1 (mod p). Then we determine the values of r, with

1 ≤ r ≤ p − 1 for which there exists a value of k, with 0 ≤ k ≤ p − 1, such that

kr + k = x (mod p). This process generates a set of “good" r-values for each prime

p. We repeat this procedure for each element (z′,m′, p′) ∈ R, with the modification

that in this case we solve the congruence x = 2−z′ − 1 (mod p′), and we get a set of

“good" r-values for each prime p′. Thus, we have sets

GS1, GS2, . . . , GSs, GR1, GR2, . . . , GRt,

where GSi is a set of “good" Sierpiński r-values, and GRj is a set of “good" Riesel

r-values. The next step is to find the intersection of all these sets. We start by finding

the intersection of GS1 and GS2. Suppose that p is the prime corresponding to the set

GS1 and q is the prime corresponding to the setGS2. For each pair (a, b) ∈ GS1×GS2,

if a ≡ b (mod g), where g = gcd(p−1, q−1), then we can use the generalized Chinese

remainder theorem to find a solution x to the system x ≡ a (mod p − 1) and x ≡ b

(mod q − 1), which gives an element in the intersection W = GS1 ∩ GS2. Next, we

find the intersection W ∩ GS3. We continue in this manner to determine the set of

all values of r captured using this particular pair (S,R). The union of these sets of

r-values for all pairs (S,R) in our collection yields the result of the theorem.

Remark 2.5. The technique of using multiple pairs of consistent coverings in the proof

of Theorem 2.5 for the case when f(x) = xr + x + 1 does not seem to improve the

r-density in the case when f(x) = xr + 1.

Remark 2.6. The two coverings CS and CR used in the proof of Theorem 2.5 were used

by Filaseta, Finch and Kozek [9] to determine the smallest known positive integer

that is simultaneously a Sierpiński number and a Riesel number.
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2.4 Concluding Remarks

The methods used in this paper differ from both the approach used previously by

Chen, and the approach used by Filaseta, Finch and Kozek. In fact, the techniques

used by Filaseta, Finch and Kozek to achieve r-density 1 are not applicable in The-

orem 2.2, Theorem 2.4 and the majority of cases in Theorem 2.3. We should point

out that both the paper of Chen [5] and the paper of Filaseta, Finch and Kozek [9]

contain the stronger result that each term in the sequence kr · 2n + 1 actually has at

least two distinct prime divisors. Unfortunately, their methods used to establish this

fact seem inapplicable here as well.
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Chapter 3

A Polynomial Investigation Inspired by Work

of Schinzel and Sierpiński

3.1 Introduction

Define a covering system (or covering) of the integers as a finite collection of congru-

ences x ≡ aj (mod mj), with 1 ≤ j ≤ r, such that every integer satisfies at least one

of these congruences. As an interesting application of coverings, W. Sierpiński [23]

showed that there are odd positive integers k for which k · 2n + 1 is composite for all

integers n ≥ 0. For d ∈ Z, Filaseta [8] considered the analogous problem of finding

f(x) ∈ Z[x] such that f(x) · xn + d is reducible over the rationals for all integers

n ≥ 0. To make the problem non-trivial, we also require here that f(1) 6= −d. This

problem was motivated by the work of A. Schinzel in [22]. Among the open problems

on covering systems is the problem of determining whether there is an odd covering,

that is a covering that consists of distinct odd moduli > 1. Schinzel showed that if

there is an f(x) ∈ Z[x] such that f(1) 6= −1 and f(x) · xn + 1 is reducible for all

integers n ≥ 0, then there must be an odd covering. In fact, he showed considerably

more than this, and the reader is directed to [22] for more details. For the general

problem concerning f(x)xn + d, the following is an easy consequence of the work of

Schinzel [22] (see also [8]).

Theorem 3.1. Let d be an odd integer. If there is an f(x) ∈ Z[x] satisfying f(1) 6=

−d and f(x) · xn + d is reducible over the rationals for all integers n ≥ 0, then there

is an odd covering of the integers.
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The polynomial

f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x+ 3,

motivated by an example given by Schinzel in [22], satisfies f(1) 6= −12 and f(x)xn+

12 is reducible for all n ≥ 0. To justify the latter, one can make use of the following

implications:

n ≡ 0 (mod 2) =⇒ f(x)xn + 12 ≡ 0 (mod x+ 1)

n ≡ 2 (mod 3) =⇒ f(x)xn + 12 ≡ 0 (mod x2 + x+ 1)

n ≡ 1 (mod 4) =⇒ f(x)xn + 12 ≡ 0 (mod x2 + 1)

n ≡ 1 (mod 6) =⇒ f(x)xn + 12 ≡ 0 (mod x2 − x+ 1)

n ≡ 3 (mod 12) =⇒ f(x)xn + 12 ≡ 0 (mod x4 − x2 + 1).

The congruences involving n on the left can be shown to form a covering of the in-

tegers; in other words, every integer n will satisfy at least one of these congruences.

Each implication can be justified by noting that the modulus on the right is a cy-

clotomic polynomial Φm(x) with m corresponding to the modulus used on n on the

left. We deduce from these implications that for each integer n ≥ 0, the polynomial

f(x)xn + 12 is divisible by Φm(x) for some m dividing 12 and, hence, reducible.

In [8], Filaseta showed that a similar example exists whenever d is an integer

divisible by 4. Thus, if 4|d, then there is an f(x) ∈ Z[x] such that f(1) 6= −d and

f(x) · xn + d is reducible over the rationals for all integers n ≥ 0. L. Jones [17] has

shown that there are also similar examples for infinitely many positive integers d ≡ 2

(mod 4). The smallest such d he gives with his method is d = 90.

The purpose of this paper is to improve on the work in [8] and [17] by showing that

examples similar to Schinzel’s example above exist for every even integer d. Thus,

examples exist for every d for which Theorem 3.1 does not apply. Specifically, we

show the following.

22



Theorem 3.2. Let d be an even integer. There is an f(x) ∈ Z[x] satisfying both

f(1) 6= −d and f(x) · xn + d is reducible over the rationals for all integers n ≥ 0.

3.2 Further Preliminaries

Our arguments begin with the following lemma which appears in [8].

Lemma 3.1. Let d be a positive integer. Suppose that S is a system of congruences

x ≡ 2j−1 (mod 2j) for j ∈ {1, 2, . . . , k} (3.2.1)

for some positive integer k together with

x ≡ aj (mod mj) for j ∈ {1, 2, . . . , r} (3.2.2)

for some positive integer r satisfying:

(i) The system S is a covering of the integers.

(ii) The moduli in (3.2.1) and (3.2.2) are all distinct and > 1.

(iii) For each j ∈ {1, 2, . . . , r},( ∏
1≤i≤r
i 6=j

a(i, j)
)(

k∏
i=1

b(i, j)
)

divides d

where

a(i, j) =


p if mi/mj = pt for some prime p and some integer t

1 otherwise

and

b(i, j) =


p if mj/2i = pt for some prime p and some integer t

1 otherwise.

(iv) The double product ∏k
i=1

∏r
j=1 b(i, j) divides d.
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Then there exists f(x) ∈ Z[x] with positive coefficients such that f(x)xn+d is reducible

over the rationals for all non-negative integers n.

We proceed now as follows. Next, we state a lemma establishing the existence

of a certain covering system. Then we will explain how this lemma will allow us to

obtain Theorem 3.2. Finally, we give a proof of the lemma by explicitly establishing

the needed covering.

Lemma 3.2. There is a covering of the integers consisting of moduli m1,m2, . . . ,mr

satisfying:

(i) Each m` is odd and > 1.

(ii) If m` is a prime number, then mj 6= m` for each j 6= `, with 1 ≤ j ≤ r.

(iii) If m` has at least two distinct prime factors, then there is at most one j 6= `,

with 1 ≤ j ≤ r, such that mj = m`.

We show that Lemma 3.2 implies that there is an f(x) ∈ Z[x] with positive

coefficients such that f(x)xn + 2 is reducible over the rationals for all non-negative

integers n. Observe that by simply multiplying through by an appropriate positive

integer, we can deduce that for every even integer d, there is an f(x) ∈ Z[x], depending

on d, with positive coefficients such that f(x)xn + d is reducible over the rationals

for all non-negative integers n. More interesting examples, where for example the

greatest common divisor of the coefficients of f(x) is 1, can be obtained for general

even d by adding a polynomial of the form xm +xm−1 + · · ·+x+ 1 for an appropriate

large positive integer m. In any case, f(1) 6= −d.

To obtain f(x) ∈ Z[x] with positive coefficients such that f(x)xn + 2 is reducible

over the rationals for all non-negative integers n, Lemma 3.1 implies that we need

only show the existence of a certain covering system. Our goal is to revise the covering

system in Lemma 3.2 to show that the covering system for Lemma 3.1 exists.
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Let x ≡ aj (mod mj) for j ∈ {1, 2, . . . , r} denote the r congruences given by

Lemma 3.2. Suppose that the first s of these congruences have prime moduli and the

remaining do not. We suppose as we may (from Lemma 3.2 (iii)) that if mi = mj for

some integers i and j with s+ 1 ≤ j < i ≤ r, then i = j + 1. Define

m′j =


mj for j ∈ {1, 2, . . . , s}

2j−smj for j ∈ {s+ 1, s+ 2, . . . , r}.

Let bj = aj for 1 ≤ j ≤ s. For each j ∈ {s + 1, s + 2, . . . , r}, we define bj as the

nonnegative integer < 2j−smj satisfying

bj ≡ aj (mod mj) and bj ≡ 0 (mod 2j−s),

which exists by the Chinese Remainder Theorem. We consider the congruences

x ≡ 2j−1 (mod 2j) for j ∈ {1, 2, . . . , r − s} (3.2.3)

together with

x ≡ bj (mod m′j) for j ∈ {1, 2, . . . , r}. (3.2.4)

We show that these congruences form a system S of congruences satisfying the con-

ditions of Lemma 3.1 with d = 2, k = r − s and the mj there replaced by m′j.

Suppose n is an integer that does not satisfy one of the congruences in (3.2.3).

Observe that if j is the largest positive integer for which 2j−1 divides n, then n ≡ 2j−1

(mod 2j). Since n does not satisfy the congruences in (3.2.3), we deduce n ≡ 0

(mod 2r−s). Also, since the congruences x ≡ aj (mod mj) for j ∈ {1, 2, . . . , r} form

a covering of the integers, n ≡ aj (mod mj) for some j ∈ {1, 2, . . . , r}. By the

definition of bj, we have for that choice of j that x ≡ bj (mod m′j). Hence, n satisfies

one of the congruences in (3.2.4). Thus, S satisfies the condition (i) of Lemma 3.1.

Condition (ii) of Lemma 3.1 is easily checked for the congruences in (3.2.3) and

(3.2.4). To verify conditions (iii) and (iv) of Lemma 3.1 for the congruences in (3.2.3)
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and (3.2.4), we alter the definitions of a(i, j) and b(i, j) accordingly so thatmi andmj

are replaced by m′i and m′j. Note that the conditions in Lemma 3.2 and the definition

of s imply thatm′1,m′2, . . . ,m′s are distinct primes andm′s+1,m
′
s+2, . . . ,m

′
r are distinct

numbers each having ≥ 3 distinct prime factors. Further, the largest powers of

2 dividing the numbers m′s+1,m
′
s+2, . . . ,m

′
r, namely 2, 22, . . . , 2r−s, are distinct. It

follows that if the ratio m′j/m′i = pt for some prime p and some integer t, then p = 2

and, consequently, mj = mi. Recall that for j fixed, the conditions i 6= j andmj = mi

imply there is at most one possibility for i. We deduce that for each j ∈ {1, 2, . . . , r},

∏
1≤i≤r
i 6=j

a(i, j) divides 2.

The conditions in Lemma 3.2 imply that each mj with j > s and, hence, each even

m′j has at least two odd prime divisors. It follows that b(i, j) = 1 for every choice of

i and j in {1, 2, . . . , r}. Conditions (iii) and (iv) of Lemma 3.1 now easily follow.

3.3 Construction for Lemma 3.2

Given lists [b1, . . . , bt] and [n1, . . . , nt] with n1, . . . , nt pairwise relatively prime positive

integers, we denote by

([b1, . . . , bt], [n1, . . . , nt])

the congruence x ≡ b mod n where n = n1 · · ·nt and b ∈ {0, 1, . . . , n− 1} satisfies

b ≡ bj (mod nj) for 1 ≤ j ≤ t. That such a b exists follows from the Chinese

Remainder Theorem. Note that, with b and n so defined, the congruences represented

by ([b1, . . . , bt], [n1, . . . , nt]) and ([b], [n]) are identical. With this same notation, we

denote by

I([b1, . . . , bt], [n1, . . . , nt]) = I([b], [n])

the set of integers satisfying x ≡ b mod n. We say that a collection of congruences

covers a set of integers if every integer in the set satisfies at least one congruence in

the collection.
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In this section, we elaborate on the covering system, say S, satisfying the condi-

tions of Lemma 3.2. Noting that every integer belongs to one of the sets I([1], [3]),

I([2], [3]) and I([3], [3]) = I([0], [3]), we determine congruences for S by finding col-

lections S1, S2 and S3 of congruences that cover each of these three sets. The system

S, then, will be the union of the congruences given in S1, S2 and S3.

For I([1], [3]), we simply use the congruence ([1], [3]). For I([2], [3]), we consider

the integers in each of the five residue classes modulo 5. We cover the integers in

I([2], [3]) that are 1 modulo 5 by using the congruence ([1], [5]). For later purposes,

we note that this same congruence will cover the integers in I([3], [3]) that are 1

modulo 5. We cover the integers in I([2], [3]) that are 2 modulo 5 and 5 modulo

5 by using congruences modulo 15. Recall that the conditions in Lemma 3.2 allow

us to use the modulus 15 for two different congruences. Thus, we can use the two

congruences ([2, 2], [3, 5]) and ([2, 5], [3, 5]). So far our congruences S include the four

congruences given by

([1], [3]), ([1], [5]), ([2, 2], [3, 5]), ([2, 5], [3, 5]). (3.3.1)

With these, we have covered I([1], [3]) and three-fifths of I([2], [3]). We still need to

elaborate on the congruences of S that cover the integers in I([2], [3]) that are 3 and

4 modulo 5 and that cover the integers in I([3], [3]) (that are not 1 modulo 5).

We explain next the congruences used to cover I([2, 3], [3, 5]). We will make use

here of moduli of the form 3j+1 ·5 and moduli of the form 3j ·5 ·23 where j is a positive

integer. We keep in mind that each such modulus can be used for two congruences

in S, though we only take advantage of this fact for those of the form 3j+1 · 5. Each

integer in I([2], [3]) is either 2, 5 or 8 modulo 9. In the first two of these three cases,

the integers that are also 3 modulo 5 satisfy one of the congruences ([2, 3], [32, 5]) and

([5, 3], [32, 5]). The integers that are 8 modulo 9 are either 8, 17 or 26 modulo 27.

Those that are 8 or 17 modulo 27 satisfy one of the congruences ([8, 3], [33, 5]) and

([17, 3], [33, 5]). In general, for each positive integer j, the integers that are 3j − 1
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modulo 3j are either 3j − 1, 2 · 3j − 1 or 3 · 3j − 1 = 3j+1− 1 modulo 3j+1. Those that

are 3j−1 or 2 ·3j−1 modulo 3j+1 and 3 modulo 5 are covered by ([3j−1, 3], [3j+1, 5])

and ([2 · 3j − 1, 3], [3j+1, 5]). We deduce that the congruences

([3j − 1, 3], [3j+1, 5]), ([2 · 3j − 1, 3], [3j+1, 5]), for 1 ≤ j ≤ 22, (3.3.2)

cover all the integers in I([2], [3]) that are 3 modulo 5 except those that are 323 − 1

modulo 323. Since each such integer is also congruent to some positive integer ≤ 23

modulo 23, we deduce that these integers are covered by the congruences

([323 − 1, 3, j], [3j, 5, 23]), for 1 ≤ j ≤ 23. (3.3.3)

Thus, the congruences in (3.3.2) and (3.3.3) cover the integers in I([2], [3]) that are

3 modulo 5.

To finish covering the integers that are in I([2], [3]), we are left with finding

congruences that cover those that are also 4 modulo 5. In other words, we are

wanting now to cover I([2, 4], [3, 5]). We divide these integers into classes modulo 7,

covering each in turn. We start with the congruences

([1], [7]), ([2, 4, 2], [3, 5, 7]), ([2, 4, 3], [3, 5, 7]), ([4, 4], [5, 7]), (3.3.4)

to cover those integers in I([2, 4], [3, 5]) that are 1, 2, 3 or 4 modulo 7. Next, we mimic

what was done in (3.3.2) and (3.3.3) to cover I([2, 3], [3, 5]) by restricting these same

congruences to integers that are 5 modulo 7. Specifically, we include

([3j − 1, 4, 5], [3j+1, 5, 7]), ([2 · 3j − 1, 4, 5], [3j+1, 5, 7]), for 1 ≤ j ≤ 22, (3.3.5)

and

([323 − 1, 4, 5, j], [3j, 5, 7, 23]), for 1 ≤ j ≤ 23, (3.3.6)

in our system S to cover I([2, 4, 5], [3, 5, 7]). To finish covering I([2, 4], [3, 5]), we

consider separately those in I([2, 4, 6], [3, 5, 7]) and I([2, 4, 7], [3, 5, 7]).
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To cover I([2, 4, 6], [3, 5, 7]), we use that each is in one of 7 different residue classes

modulo 72. We keep in mind that, although our required system S for Lemma 3.2

can involve moduli divisible by pe where p is an odd prime and e an integer ≥ 2, it

cannot have moduli that are equal to these prime powers. For I([2, 4, 6], [3, 5, 7]), we

cover 6 of the needed residue classes modulo 72 using

([2, 6], [3, 72]), ([2, 13], [3, 72]), ([4, 20], [5, 72]), ([4, 27], [5, 72]),

([2, 4, 34], [3, 5, 72]), ([2, 4, 41], [3, 5, 72]).
(3.3.7)

For the final residue class modulo 72, we use congruences similar to (3.3.2) and (3.3.3).

This last class modulo 72 is covered by

([3j − 1, 4, 48],[3j+1, 5, 72]),

([2 · 3j − 1, 4, 48], [3j+1, 5, 72]), for 1 ≤ j ≤ 22,

([323 − 1, 4, 48, j], [3j, 5, 72, 23]), for 1 ≤ j ≤ 23.

(3.3.8)

To finish covering I([2], [3]), we need only cover I([2, 4, 7], [3, 5, 7]). This is a thin

enough set that we are able to get away with using the prime 19 to complete this

case. The idea then is to consider each of the 19 possible residue classes that each of

these integers can belong to. We cover 15 of these residue classes using

([1], [19]), ([2, 2], [3, 19]), ([2, 3], [3, 19]), ([4, 4], [5, 19]),

([4, 5], [5, 19]), ([2, 4, 6], [3, 5, 19]), ([2, 4, 7], [3, 5, 19]),

([7, 8], [7, 19]), ([7, 9], [7, 19]), ([2, 7, 10], [3, 7, 19]),

([2, 7, 11], [3, 7, 19]), ([4, 7, 12], [5, 7, 19]), ([4, 7, 13], [5, 7, 19]),

([2, 4, 7, 14], [3, 5, 7, 19]), ([2, 4, 7, 15], [3, 5, 7, 19]).

(3.3.9)

We make use of the idea in (3.3.2) and (3.3.3) to cover the remaining classes modulo

19, each class making use of such a list of congruences. Those integers congruent to
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16 modulo 19 in I([2, 4, 7], [3, 5, 7]) are covered by

([3j − 1, 16], [3j+1, 19]), ([2 · 3j − 1, 16], [3j+1, 19]), for 1 ≤ j ≤ 22,

([323 − 1, 16, j], [3j, 19, 23]), for 1 ≤ j ≤ 23;
(3.3.10)

those congruent to 17 modulo 19 by

([3j − 1, 4, 17],[3j+1, 5, 19]),

([2 · 3j − 1, 4, 17], [3j+1, 5, 19]), for 1 ≤ j ≤ 22,

([323 − 1, 4, 17, j], [3j, 5, 19, 23]), for 1 ≤ j ≤ 23;

(3.3.11)

those congruent to 18 modulo 19 by

([3j − 1, 7, 18],[3j+1, 7, 19]),

([2 · 3j − 1, 7, 18], [3j+1, 7, 19]), for 1 ≤ j ≤ 22,

([323 − 1, 7, 18, j], [3j, 7, 19, 23]), for 1 ≤ j ≤ 23;

(3.3.12)

those congruent to 19 (or 0) modulo 19 by

([3j − 1, 4,7, 19], [3j+1, 5, 7, 19]),

([2 · 3j − 1, 4, 7, 19], [3j+1, 5, 7, 19]), for 1 ≤ j ≤ 22,

([323 − 1, 4, 7, 19, j], [3j, 5, 7, 19, 23]), for 1 ≤ j ≤ 23.

(3.3.13)

The congruences above combine then to cover I([2], [3]).

Next, we use an approach similar to the case of I([2], [3]) and break up I([3], [3])

into the five residue classes modulo 5. The second congruence in (3.3.1) will cover

I([3, 1], [3, 5]). In each of the four remaining cases I([3, j], [3, 5]), with 2 ≤ j ≤ 5, we

will divide the integers up into their residue classes modulo 7. What is of particular

importance to us here is that the first congruence in (3.3.4) and the congruences

([3, 2], [3, 7]), ([3, 3], [3, 7]) (3.3.14)
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cover three of the seven residue classes modulo 7 for each I([3, j], [3, 5]). Further,

we can cover a fourth residue class modulo 7 in each I([3, j], [3, 5]) by using the

congruences

([3j, 5], [3j+1, 7]), ([2 · 3j, 5], [3j+1, 7]), for 1 ≤ j ≤ 22,

([323, 5, j], [3j, 7, 23]), for 1 ≤ j ≤ 23.
(3.3.15)

To finish covering I([3], [3]), we are left with covering the integers congruent to 4,

6 and 7 modulo 7 in each I([3, j], [3, 5]), with 2 ≤ j ≤ 5. We note that we have

deliberately covered the residue class 5 modulo 7 instead of 4 modulo 7 so that we

can make use of the last congruence in (3.3.4) when we consider I([3, 4], [3, 5]).

We finish covering I([3, 2], [3, 5]) as follows. As noted above, the congruences

in (3.3.14) and (3.3.15) cover four residue classes modulo 7. We make use of this

momentarily, but for the time being we instead break up the integers in I([3, 2], [3, 5])

into their five residue classes modulo 52 with the goal of covering each of these five

classes in turn. The congruences corresponding to j = 1 in the list

([3, 5j + 2], [3, 5j+1]), ([3, 2 · 5j + 2], [3, 5j+1]), for 1 ≤ j ≤ 22, (3.3.16)

cover the residue classes 7 and 12 modulo 52. The collection of 2 ·22+23 congruences

corresponding to j = 1 in

([3i, 3 · 5j + 2], [3i+1, 5j+1]),

([2 · 3i, 3 · 5j + 2], [3i+1, 5j+1]), for 1 ≤ i, j ≤ 22,

([323, 3 · 5j + 2, i], [3i, 5j+1, 23]), for 1 ≤ i ≤ 23, 1 ≤ j ≤ 22

(3.3.17)

cover the integers that are 17 modulo 52. To cover the integers that are 22 modulo

52, we consider their residue classes modulo 7 and recall that we have already covered

the integers in I([3, 2], [3, 5]) that are 1, 2, 3 and 5 modulo 7. We use the case j = 1
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in

([4 · 5j + 2,4], [5j+1, 7]), ([4 · 5j + 2, 6], [5j+1, 7]),

([3, 4 · 5j + 2, 7], [3, 5j+1, 7]), for 1 ≤ j ≤ 23,
(3.3.18)

to finish covering the integers that are 22 modulo 52. We still need to cover I([3, 2], [3, 52]).

We divide these into five residue classes modulo 53 and use j = 2 in (3.3.16), (3.3.17)

and (3.3.18) to cover the four of these five classes that are not 2 modulo 53. Continu-

ing with 3 ≤ j ≤ 22 to cover residue classes modulo 5j+1, we see that the congruences

in (3.3.16), (3.3.17) and (3.3.18) cover all the integers in I([3, 2], [3, 52]) except those

that are in I([3, 2], [3, 523]). We cover these by using the congruences

([2, j], [5j, 23]), for 1 ≤ j ≤ 23, (3.3.19)

noting the jth congruence in this list covers those integers in I([3, 2], [3, 523]) that are

j modulo 23.

Next, we cover I([3, 3], [3, 5]). We break up these integers into their residue classes

modulo 7. Recall we only need to cover the residue classes modulo 4, 6 and 7 modulo

7. In (3.3.4), the modulus 5 · 7 was used once, and we use it again here to cover

I([3, 3, 4], [3, 5, 7]) with

([3, 4], [5, 7]). (3.3.20)

We cover all integers in I([3, 3, 6], [3, 5, 7]) except those congruent to 6 modulo 11

using

([1], [11]), ([3, 2], [3, 11]), ([3, 3], [3, 11]), ([3, 4], [5, 11]),

([3, 3, 5], [3, 5, 11]), ([3, 6, 7], [3, 7, 11]), ([3, 6, 8], [3, 7, 11]),

([6, 9], [7, 11]), ([6, 10], [7, 11]), ([3, 6, 11], [5, 7, 11]).

(3.3.21)
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For later purposes, note that we have only used some moduli dividing 3 · 5 · 7 · 11

above once. To cover I([3, 3, 6, 6], [3, 5, 7, 11]), we use

([3j, 6], [3j+1, 11]), ([2 · 3j, 6], [3j+1, 11]), for 1 ≤ j ≤ 22,

([323, 6, j], [3j, 11, 23]), for 1 ≤ j ≤ 23.
(3.3.22)

Next, we turn to I([3, 3, 7], [3, 5, 7]) and consider their residue classes modulo 13. We

cover all integers in I([3, 3, 7], [3, 5, 7]) except those congruent to 12 and 13 modulo

13 in a manner very similar to our approach for covering I([3, 3, 6], [3, 5, 7]) above but

with 11 replaced by 13. Specifically, we use

([1], [13]), ([3, 2], [3, 13]), ([3, 3], [3, 13]), ([3, 4], [5, 13]),

([3, 3, 5], [3, 5, 13]), ([3, 7, 7], [3, 7, 13]), ([3, 7, 8], [3, 7, 13]),

([7, 9], [7, 13]), ([7, 10], [7, 13]), ([3, 7, 11], [5, 7, 13]).

(3.3.23)

and

([3j, 6], [3j+1, 13]), ([2 · 3j, 6], [3j+1, 13]), for 1 ≤ j ≤ 22,

([323, 6, j], [3j, 13, 23]), for 1 ≤ j ≤ 23.
(3.3.24)

We use

([3, 3, 7, 12], [3, 5, 7, 13]) (3.3.25)

to cover I([3, 3, 7, 12], [3, 5, 7, 13]) and

([3j, 7, 13], [3j+1, 7, 13]), ([2 · 3j, 7, 13], [3j+1, 7, 13]), for 1 ≤ j ≤ 22,

([323, 7, 13, j], [3j, 7, 13, 23]), for 1 ≤ j ≤ 23.
(3.3.26)

to cover I([3, 3, 7, 13], [3, 5, 7, 13]). We deduce that the congruences (3.3.20) - (3.3.26)

cover I([3, 3], [3, 5]).

To cover I([3, 4], [3, 5]), we need only cover those integers that are in the residue

classes modulo 4, 6 and 7 modulo 7 (the other residue classes being covered already

above). The congruence ([4, 4], [5, 7]) in (3.3.4) covers the integers in I([3, 4, 4], [3, 5, 7]).
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To cover I([3, 4, 6], [3, 5, 7]), we can reuse several of the congruences in (3.3.21) and

(3.3.22) (those with moduli not divisible by 5) to cover the integers in certain residue

classes modulo 11. Specifically, the integers in I([3, 4, 6], [3, 5, 7]) that are 1, 2, 3, 6,

7, 8, 9 or 10 modulo 11 are covered by congruences in (3.3.21) and (3.3.22). We only

used the moduli 5 · 11, 3 · 5 · 11 and 5 · 7 · 11 once in (3.3.21), so we use now

([4, 4], [5, 11]), ([3, 4, 5], [3, 5, 11]), ([4, 6, 11], [5, 7, 11]) (3.3.27)

to cover the integers in I([3, 4, 6], [3, 5, 7]) that are 4, 5 or 11 modulo 11. This com-

pletes covering I([3, 4, 6], [3, 5, 7]). Turning to I([3, 4, 7], [3, 5, 7]), we can reuse con-

gruences in (3.3.23), (3.3.24) and (3.3.26) to cover those integers here that lie in the

residue classes 1, 2, 3, 6, 7, 8, 9, 10 or 13 modulo 13. We use

([4, 4], [5, 13]), ([3, 4, 5], [3, 5, 13]),

([4, 7, 11], [5, 7, 13]), ([3, 4, 7, 12], [3, 5, 7, 13])
(3.3.28)

to cover the remaining integers in I([3, 4, 7], [3, 5, 7]).

We are left with covering I([3, 5], [3, 5]). More precisely, we need only cover

I([3, 5, 4], [3, 5, 7]), I([3, 5, 6], [3, 5, 7]) and I([3, 5, 7], [3, 5, 7]). We split up the integers

in I([3, 5, 4], [3, 5, 7]) into residue classes modulo 17. Let a ∈ I([3, 5, 4], [3, 5, 7]), and

let m1,m2, . . . ,m7 be the divisors of 3 · 5 · 7 that are > 1. We use

([a, j], [mj, 17]), ([a, j + 7], [mj, 17]), for 1 ≤ j ≤ 7, (3.3.29)

to cover the integers in I([3, 5, 4], [3, 5, 7]) that are in the residue classes 1, 2, 3, . . . , 13

or 14 modulo 17. We cover the remaining integers using

([15], [17]), (3.3.30)

([3j, 16], [3j+1, 17]), ([2 · 3j, 16], [3j+1, 17]), for 1 ≤ j ≤ 22,

([323, 16, j], [3j, 17, 23]), for 1 ≤ j ≤ 23,
(3.3.31)
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and

([3j, 5, 17], [3j+1, 5, 17]), ([2 · 3j, 5, 17], [3j+1, 5, 17]), for 1 ≤ j ≤ 22,

([323, 5, 17, j], [3j, 5, 17, 23]), for 1 ≤ j ≤ 23.
(3.3.32)

We turn to covering I([3, 5, 6], [3, 5, 7]) and once again use the congruences in (3.3.21)

and (3.3.22). With these, we cover the integers in I([3, 5, 6], [3, 5, 7]) that are 1, 2, 3,

6, 7, 8, 9 or 10 modulo 11. We use

([3, 5, 6, 4], [3, 5, 7, 11]), ([3, 5, 6, 5], [3, 5, 7, 11]), (3.3.33)

to cover those integers in I([3, 5, 6], [3, 5, 7]) that are 4 or 5 modulo 11. We cover

those that are 11 modulo 11 using

([3j, 5, 11], [3j+1, 5, 11]), ([2 · 3j, 5, 11], [3j+1, 5, 11]), for 1 ≤ j ≤ 22,

([323, 5, 11, j], [3j, 5, 11, 23]), for 1 ≤ j ≤ 23.
(3.3.34)

For I([3, 5, 7], [3, 5, 7]), we use congruences in (3.3.23), (3.3.24) and (3.3.26) again to

cover integers in the residue classes 1, 2, 3, 6, 7, 8, 9, 10 or 13 modulo 13. The

congruences

([3j, 5, 4], [3j+1, 5, 13]), ([2 · 3j, 5, 4], [3j+1, 5, 13]), for 1 ≤ j ≤ 22,

([323, 5, 4, j], [3j, 5, 13, 23]), for 1 ≤ j ≤ 23.
(3.3.35)

and

([3j, 5, 7, 5], [3j+1, 5, 7, 13]),

([2 · 3j, 5, 7, 5], [3j+1, 5, 7, 13]), for 1 ≤ j ≤ 22,

([323, 5, 7, 5, j], [3j, 5, 7, 13, 23]), for 1 ≤ j ≤ 23.

(3.3.36)

cover the integers in I([3, 5, 7], [3, 5, 7]) that are in the residue classes 4 or 5 modulo

13. We can use the congruences in (3.3.21) and (3.3.22) to cover those integers in

each of I([3, 5, 7, 11], [3, 5, 7, 13]) and I([3, 5, 7, 12], [3, 5, 7, 13]) that are 1, 2, 3 or 6
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modulo 11. Recall m1,m2, . . . ,m7 are the divisors of 3 · 5 · 7 that are > 1. Let

b ∈ I([3, 5, 7], [3, 5, 7]). We cover the remaining integers using

([b, j + 3, 11], [mj, 11, 13]),

([b, j + 3, 12], [mj, 11, 13]), for 1 ≤ j ≤ 2,
(3.3.37)

and

([b, j + 4, 11], [mj, 11, 13]),

([b, j + 4, 12], [mj, 11, 13]), for 3 ≤ j ≤ 7.
(3.3.38)

We note that the modulus 11 · 13, which could have been used twice, was not used

here.

As just shown, the congruences in (3.3.1) - (3.3.38) form a covering of the integers.

We use these congruences to form the set S needed for Lemma 3.2. What is left is

to verify the conditions (i), (ii) and (iii) in Lemma 3.2, which can be done directly

going through the various moduli indicated above. This completes the proof.

3.4 Concluding Remarks

We made use of 2773 congruences for the construction given in the previous section,

that is to obtain a covering satisfying the conditions in Lemma 3.2. This corresponds

to 5539 congruences to construct a polynomial f(x) ∈ Z[x], based on Lemma 3.1,

such that f(1) 6= −2 and f(x)xn + 2 is reducible for all integers n ≥ 0. Although the

method used in [8] is similar to the approach here, the covering system obtained for

constructing an analogous f(x) with d = 4 there was more complicated due to the

fact that prime moduli were not used (i.e., Lemma 3.2 (ii) was not considered in [8]).

The approach given by L. Jones in [17] was to show first that there is an f(x) ∈

Z[x] such that f(1) 6= −d and f(x)xn + d is reducible for all integers n ≥ 0 if there

is a covering system with distinct moduli > 1 and with the least common multiple of

the moduli equal to d. Jones then uses this information to show that such an f(x)
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can be constructed for infinitely many d ≡ 2 (mod 4). In particular, he is able to

produce an explicit f(x) in the case d = 90. We note that, although the values of d

found by Jones in [17] were not found by Filaseta in [8], Lemma 3.1 (which appears

as Theorem 3 in [8]) can be used to produce them.
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Chapter 4

On the Factorization of the Trinomials

xn + cxn−1 + d

4.1 Introduction

The results in this chapter were inspired by curiosities about the factorization of

polynomials of the form

f(x) = xn + cxn−1 + cxn−2 + · · ·+ cx+ c ∈ Z[x].

In particular, we ask,

Question 4.1. For what positive integers n and non-zero integers c is f(x) irre-

ducible?

Question 4.2. If f(x) is reducible, then how does it factor?

The answers to these questions are well known for certain values of c. For example,

if p is a prime such that p ‖ c then f(x) is irreducible for all positive integers n since

such an f(x) satisfies the well known Eisenstein Criterion. The questions are also

answered easily whenever c = 1 with the use of cyclotomic polynomials. To answer

the questions for values of c with |c| > 1 we first establish the following theorem.

Theorem 4.1. Let n, c, and d be positive integers with n ≥ 3, d 6= c, d ≤ 2(c − 1),

and (n, c) 6= (3, 3). If the trinomial f(x) = xn ± cxn−1 ± d is reducible in Z[x], then

f(x) = (x± 1)g(x) for some irreducible g(x) ∈ Z[x].
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Using Theorem 4.1 we then answer the opening questions for |c| > 1 with the

following theorem.

Theorem 4.2. Let n and c be positive integers with c ≥ 2. Then the polynomials

f(x) = xn +
n−1∑
j=0

cxj g(x) = xn +
n−1∑
j=0

(−1)n−jcxj

h(x) = xn −
n−1∑
j=0

cxj k(x) = xn −
n−1∑
j=0

(−1)n−jcxj

are irreducible in Z[x] with the exceptions of f(x) = x2 + 4x + 4 = (x + 2)2 and

g(x) = x2 − 4x+ 4 = (x− 2)2.

We note here that the special case of h(x) in Theorem 4.2 follows from a result

due to Alfred Brauer in [1]. Brauer’s theorem also handles the case c = 1 in the

special case of h(x). In particular, Brauer proved

Theorem 4.3. Let f(x) = xn − (a1x
n−1 + a2x

n−2 + · · · + an) ∈ Z[x]. If a1 ≥ a2 ≥

· · · ≥ an > 0 then f(x) is irreducible in Z[x].

4.2 Preliminaries

In this section we present some general results about the irreducibility of polynomials

as well as some notation. Throughout the paper we use C to represent the set {z ∈

C : |z| < 1} and C = {z ∈ C : |z| ≤ 1}. Using this notation we now present the

first two lemmas. We note that while these lemmas follow from the work of Perron

in [20], we provide proofs for completeness and accessibility.

Lemma 4.1. Let f(x) ∈ Z[x] be a monic polynomial with f(0) 6= 0. If f(x) has only

one root (counting multiplicity) in C \ C, then f(x) is irreducible in Z[x].

Proof. Let f(x) be as in the statement of the lemma and let f(α) = 0 for some α ∈ C

with |α| ≥ 1. Assume by way of contradiction that f(x) is not irreducible. Since f(x)
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is monic we can then write f(x) = g(x)h(x) for some monic g(x) ∈ Z[x] and monic

h(x) ∈ Z[x], each having positive degree. Without loss of generality we may assume

that g(α) = 0. Now let r be the degree of h(x) and let α1, · · · , αr be the roots of

h(x). Since f(0) 6= 0, this then implies that

0 < |h(0)| =
r∏
j=1
|αj| < 1.

This is a contradiction since h(x) ∈ Z[x]. Hence, f(x) must be irreducible.

Lemma 4.2. Let f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a0 ∈ Q[x] with n ≥ 1

and a0 6= 0. If |an−1| > 1 + ∑n−2
j=0 |aj|, then f(x) has exactly one root (counting

multiplicity) in C \ C.

Proof. Let f(x) be as in the statement of the lemma and let g(x) = −an−1x
n−1. Then

for z ∈ C with |z| = 1 we have that

|f(z) + g(z)| =

∣∣∣∣∣∣zn +
n−2∑
j=0

ajz
j

∣∣∣∣∣∣ ≤ |zn|+
n−2∑
j=0

∣∣∣ajzj∣∣∣

= 1 +
n−2∑
j=0
|aj| < |an−1| =

∣∣∣an−1z
n−1

∣∣∣ = |g(z)| .

Hence, the lemma follows from Rouché’s Theorem.

Remark 4.1. In [20], Perron shows that if f(x) ∈ Z[x] is as in the statement of

Lemma 4.2, then f(x) is irreducible in Z[x].

Now using Lemma 4.2 we can establish the following corollary.

Corollary 4.1. Let n be a positive integer and let

f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0 ∈ Q[x]

with a0 6= 0. If |an−1| = 1 +∑n−2
j=0 |aj|, then f(x) has at most one root in C \ C.
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Proof. Let f(x) be as in the statement of the corollary and let {Gk(x)} be a sequence

of polynomials in Q[x] defined by Gk(x) = f(x) − a0 · 1
k
. Notice that Lemma 4.2

implies for k > 1 that Gk(x) has exactly n− 1 roots in C. With the use of Rouché’s

Theorem this then implies that f(x) has at most one root in C \ C.

4.3 Main Results

To prove Theorem 4.1 and Theorem 4.2 we first establish three lemmas.

Lemma 4.3. Let n,m, c, and d be positive integers with n > m and d ≥ c+ 1. Then

the trinomial f(x) = xn± cxm± d has no roots in C. Furthermore, if d > c+ 1, then

f(x) has no roots in C. Lastly, if d = c+ 1 and f(α) = 0 for some α ∈ {z ∈ C : |z| =

1}, then α2gcd(m,n) = 1 and f(x) is reducible in Z[x].

Proof. Let n,m, c, and d be positive integers with n > m and let α ∈ C with |α| ≤ 1.

Suppose that d ≥ c+ 1 and αn ± cαm ± d = 0. Then

d = |αn ± cαm| ≤ |αn|+ |cαm| ≤ 1 + c ≤ d.

Clearly each of the inequalities above can be replaced by an equality. Hence, we

deduce that |α| = 1 and d = c + 1. Thus the first two parts of the lemma are true.

So, suppose that d = c+ 1 and |α| = 1. The equality

|αn ± cαm| = |αn|+ |cαm|

implies that αn and αm lie on the same line passing through the origin. Since αn ±

cαm = ∓d ∈ Z∗, it must be the case that αn = ±1 and αm = ±1. Thus, α2gcd(n,m) = 1.

This implies that α is a root of a cyclotomic polynomial. Since d > 1 we know that

f(x) is not cyclotomic. Hence, f(x) must be reducible. With this, the lemma is

proven.

Lemma 4.4. Let n, c, and d be positive integers with n ≥ 2 and d < (c−1)n−1. Then

the trinomial f(x) = xn ± cxn−1 ± d has a root α ∈ R with |α| > c− 1.
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Proof. Let n, c, and d be positive integers with n ≥ 2 and d < (c − 1)n−1. We will

prove the result in its entirety for f(x) = xn + cxn−1 + d and mention how to prove

it for the other three cases. So first let f(x) = xn + cxn−1 + d. Write

f(x) = (−1)n−1(−x)n−1(x+ c) + d

and consider

f(−c+ 1) = (−1)n−1(c− 1)n−1 + d

and

f(−c− 1) = −(−1)n−1(c+ 1)n−1 + d.

Notice that if n is odd then f(−c−1) < 0 since d < (c+1)n−1. On the other hand,

if n is even then f(−c+ 1) < 0 since d < (c− 1)n−1. In either case the result follows

by the Intermediate Value Theorem since f(−c) = d > 0 . If f(x) = xn + cxn−1 − d

then the result follows similarly since f(−c) < 0 while f(−c + 1) > 0 when n is odd

and f(−c− 1) > 0 when n is even. The result then follows for the last two cases by

considering f(c), f(c− 1), and f(c+ 1).

Lemma 4.5. Let K be a positive integer and let f(x) ∈ Z[x] be a monic polynomial

with no roots in the set {z ∈ C : |z| ≤ K}. If f(x) has a root α with |α| > |f(0)|
K+1 , then

f(x) is irreducible in Z[x].

Proof. Let K be a positive integer, let f(x) ∈ Z[x] be a monic polynomial with

no roots in the set {z ∈ C : |z| ≤ K}, and let f(α) = 0 for some α ∈ C with

|α| > |f(0)|
K+1 . Suppose that f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x] with g(x) 6≡ ±1

and h(x) 6≡ ±1. Since f(x) is monic it must be the case that the degree of each g(x)

and h(x) is non-zero. We may assume without loss of generality that g(α) = 0. Now

let r be the degree of h(x) and write h(x) = ∏r
i=1(x−αi). Since f(x) has no roots in

the set {z ∈ C : |z| ≤ K} we know that |αi| > K for 1 ≤ i ≤ r. Since h(x) ∈ Z[x],

we deduce that |h(0)| = ∏r
i=1 |αi| ≥ K + 1. Similarly, we have that |g(0)| > |f(0)|

K+1 .

42



Hence,

|f(0)| = |g(0)| |h(0)| > |f(0)|
K + 1 · (K + 1) = |f(0)| .

This contradiction proves the lemma.

With these lemmas established we can now prove the main results.

Proof of Theorem 4.1. Let n, c, and d be positive integers with n ≥ 3. If d < c − 1,

then the theorem follows from Lemma 4.1 and Lemma 4.2. If c + 1 < d ≤ 2(c − 1),

then c > 3 and the irreducibility of f(x) = xn ± cxn−1 ± d follows from Lemma 4.3,

Lemma 4.4, and Lemma 4.5 since d
2 ≤ c− 1 .

This leaves the cases d = c−1 and d = c+1 to consider. So suppose that d = c−1.

Notice that Corollary 4.1 implies that f(x) = xn ± cxn−1 ± (c − 1) has at most one

root in C \ C. Thus, if f(x) has no roots α ∈ C with |α| = 1 then f(x) is irreducible

by Lemma 4.1. So suppose that f(α) = 0 for some α ∈ {z ∈ C : |z| = 1}. Write

α = a+ bi for some a, b ∈ R. Then

|αn−1(α± c)| = c− 1 ⇒ |a± c+ bi| = c− 1

⇒ (a± c)2 + b2 = (c− 1)2

⇒ a2 + b2 + c2 ± 2ac = c2 − 2c+ 1

⇒ a = ±1 and b = 0.

Hence, α = ±1. Notice that 1 and −1 cannot both be roots of f(x). So we can

write f(x) = (x − α)g(x) for some g(x) ∈ Z[x] for which g(−α) 6= 0. Furthermore,

since f ′(x) = nxn−1± c(n− 1)xn−2 does not have ±1 as root we know that g(α) 6= 0.

Hence, since f(x) has at most one root in C\C, this shows that g(x) has at most one

root in C \ C. So g(x) is irreducible by Lemma 4.1.
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Now suppose that c + 1 = d ≤ 2(c− 1) and c 6= 3 when n = 3. Notice that with

these assumptions c ≥ 3 and 2(c − 1) < (c − 1)n−1. We know from Lemma 4.3 that

f(x) has no roots in C and if f(x) has a root α ∈ {z ∈ C : |z| = 1} then α = ±1.

Notice that 1 and −1 cannot both be roots of f(x). So suppose that α = ±1 is a

root of f(x). Then we can write f(x) = (x− α)g(x) for some g(x) ∈ Z[x] for which

g(−α) 6= 0. Notice however that f ′(x) = nxn−1 ± c(n− 1)xn−2 does not have ±1 as

a root. Hence, g(α) 6= 0. Since f(x) has no roots in C, this shows that g(x) has no

roots in C. Hence, g(x) is irreducible by Lemma 4.4 and Lemma 4.5.

Proof of Theorem 4.2. Let f(x), g(x), h(x), and k(x) be as in the statement of the

theorem. If n = 1 then the theorem holds trivially. If c = 2 or c = 3 then the f(x),

g(x), h(x), and k(x) all meet Eisenstein’s Criterion, and are therefore irreducible. So

assume that c ≥ 4. Notice that

xn+1 + (c− 1)xn − c = (x− 1)f(x), for all positive integers n,

xn+1 − (c− 1)xn + c = (x+ 1)g(x), whenever n is even,

xn+1 − (c− 1)xn − c = (x+ 1)g(x), whenever n is odd,

xn+1 − (c+ 1)xn + c = (x− 1)h(x) , for all positive integers n,

xn+1 + (c+ 1)xn + c = (x+ 1)k(x), whenever n is odd, and

xn+1 + (c+ 1)xn − c = (x+ 1)k(x), whenever n is even.

With this we see that Theorem 4.1 implies the Theorem 4.2 for n ≥ 2 and c ≥ 4 as long

as c 6= 4 whenever n = 2. In the case c = 4 when n = 2 we have x2 +4x+4 = (x+2)2

and x2 − 4x + 4 = (x − 2)2. While it’s clear that x2 − 4x − 4 and x2 + 4x − 4 are

irreducible, we note here that the irreducibility of these polynomials also follows from

Theorem 4.1.
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4.4 Concluding Remarks

In answering the opening questions of this paper we ended up proving a result about

trinomials of the form f(x) = xn ± cxn−1 ± d ∈ Z[x]. This result now leads us to

more questions.

Question 4.3. Let n and c be positive integers. For what values of d > 2(c − 1) is

f(x) = xn ± cxn−1 ± d ∈ Z[x] irreducible in Z[x]?

As a remark toward Question 4.3, it is not difficult to show that if n and c are

positive integers with n odd, then there are infinitely many positive integers d for

which f(x) = xn ± cxn−1 ± d has a linear factor. This is of course not the case when

n is even since d can be chosen large enough so that f(x) has no real roots. This

brings us to our next question.

Question 4.4. Given positive integers c and n with n even, is there a positive integer

K so that g(x) = xn ± cxn−1 ± d ∈ Z[x] is irreducible in Z[x] for all integers d ≥ K?

Finally, we leave the reader with the following conjecture.

Conjecture 4.1. Let n and c be positive integers with c ≥ 2 and let f(x) = xn ±

cxn−1 ± c. If f(x) 6= x2 + 4x+ 4 and f(x) 6= x2 − 4x+ 4, then f(x) is irreducible in

Z[x].

This conjecture has been verified computationally for 1 ≤ n ≤ 500 with 2 ≤ c ≤

1000.

45



Chapter 5

On the Factorization of f (x)xn + g(x) when

deg f ≤ 2

5.1 Introduction

Factorization of polynomials of the form f(x)xn+g(x), where f(x) and g(x) are fixed

and n is large, has been considered by Schinzel in [21] and [22], and later by Filaseta,

Ford, and Konyagin in [10]. In this paper we consider the special case f(x) = x2+bx+

c ∈ Z[x] with c ≥ 2 and |b| < 2
√
c− 1. We additionally impose certain restrictions

on g(x). All of the polynomials throughout the chapter are monic polynomials. As

such, when we say that a polynomial is reducible, we mean irreducible over Z. In

this chapter we prove the following two main theorems.

Theorem 5.1. Let f(x) = x2 + bx+ c ∈ Z[x] with c ≥ 2 and |b| < 2
√
c− 1. Let ε be

such that 0 < ε <
√
c− 1 and ε ≤ 1. If g(x) = ∑t

j=0 ajx
j ∈ Z[x] with

1 + |b|+ c+
t∑

j=1
|aj| < |a0| < 2(

√
c− ε)2,

then the polynomial f(x)xn + g(x) is irreducible for all

n > max

t, t log(
√
c+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)− log

∣∣∣√4c− b2 − ε
∣∣∣

log(
√
c− ε)

 .
For the second theorem we need the following definition.

Definition 5.1. We define the non-cyclotomic part of a non-zero polynomial w(x) ∈

Z[x] to be w(x) with all of its cyclotomic factors removed. That is, k(x) is the non-
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cyclotomic part of w(x) if we can write w(x) = h(x)k(x) where h(x) is identically 1

or a product of cyclotomic polynomials and k(x) has no cyclotomic factors.

Theorem 5.2. Let f(x) = x2 + bx+ c ∈ Z[x] with c ≥ 2 and |b| < 2
√
c− 1. Let ε be

such that 0 < ε <
√
c− 1 and ε ≤ 1. Let g(x) = ∑t

j=0 ajx
j ∈ Z[x] with

1 + |b|+ c+
t∑

j=1
|aj| = |a0| < 2(

√
c− ε)2.

Then for any integer n ≥ t+ 1, any cyclotomic factor of P (x) = f(x)xn + g(x) must

be in {x+ 1, x− 1}. Furthermore, if

n > max
{
t,
t log(

√
c+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)− log(

√
4c− b2 − ε)

log(
√
c− ε)

}
,

then the non-cyclotomic part of the polynomial P (x) = f(x)xn + g(x) is irreducible.

We follow up each of these results with several corollaries. Similar results in the

case that f(x) is monic and linear are mentioned in the concluding remarks of the

paper.

5.2 Three Preliminary Lemmas

Before proving Theorems 5.1 and 5.2 we first establish 3 lemmas.

Lemma 5.1. Let f(x) and g(x) be non-zero polynomials in Z[x] of degrees r and t

respectively. Let a be the leading coefficient of f(x), and let α1, . . . , αr be the roots

of f(x). Let H(g) be the height of g(x); in other words, H(g) is the maximum

of the absolute values of the coefficients of g(x). Fix ε > 0 and j ∈ {1, . . . , r}. If

|αj| > 1+ε and f(x) has no roots in the set {z ∈ C : |z − αj| = ε}, then the polynomial

P (x) = f(x)xn + g(x) has at least one root in the set {z ∈ C : |z − αj| < ε} for all

n >

t log(|αj|+ ε) + log(H(g)) + log(t+ 1)− log |aε| − log

 ∏
1≤i≤r
i 6=j

||αj − αi| − ε|


log(|αj| − ε)

.
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Proof. Let f(x) and g(x) be as in the statement of the lemma and let ε > 0. For

1 ≤ j ≤ r, suppose that f(x) has no roots in the set {z ∈ C : |z − αj| = ε}. Then for

0 ≤ θ < 2π, ∣∣∣f(αj + εeiθ)
∣∣∣ =

∣∣∣∣∣a
r∏
i=1

(αj + εeiθ − αi)
∣∣∣∣∣

= |aε|
∏

1≤i≤r
i 6=j

∣∣∣αj − αi + εeiθ
∣∣∣

≥ |aε|
∏

1≤i≤r
i 6=j

||αj − αi| − ε| .

We also know that for 0 ≤ θ < 2π,

∣∣∣g(αj + εeiθ)
∣∣∣ ≤ (t+ 1)H(g)(|αj|+ ε)t.

So let

n >

t log(|αj|+ ε) + log(H(g)) + log(t+ 1)− log |aε| − log

 ∏
1≤i≤r
i 6=j

||αj − αi| − ε|


log(|αj| − ε)

.

Then the result follows from Rouché’s Theorem since

|P (z0)− f(z0)zn0 | = |g(z0)| < |f(z0)| |z0|n

for all z0 ∈ {z ∈ C : |z − αj| = ε}.

Remark 5.1. If g(x) = ∑t
k=0 akx

k, then theorems in this paper require ∑t
k=1 |ak| <
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|a0|. Notice then that under the assumptions of Lemma 5.1

∣∣∣g(αj + εeiθ)
∣∣∣ ≤ t∑

k=0
|ak| (|αj|+ ε)k

≤
t∑

k=0
|ak| (|αj|+ ε)t

= (|αj|+ ε)t
(
H(g) +

t∑
k=1
|ak|

)

< (|αj|+ ε)t(H(g) +H(g))

= 2H(g)(|αj|+ ε)t.

Thus, for the purposes of the theorems in this paper we may take

n >

t log(|αj|+ ε) + log(H(g)) + log (min{t+ 1, 2})− log |aε| − log

 ∏
1≤i≤r
i 6=j

||αj − αi| − ε|


log(|αj| − ε)

in the statement of Lemma 5.1.

Lemma 5.2. Let f(x) = ∑n
k=0 akx

k ∈ Q[x] and suppose that ai 6= 0 and aj 6= 0 for

some 0 ≤ i < j ≤ n. Suppose further that

∑
0≤k≤n
k 6=t

|ak| ≤ qt · |at|

for some 0 ≤ t ≤ n with t 6= i and t 6= j and q ∈ R with 0 < q ≤ 1. If f(x) has a

root α in the set {z ∈ C : q ≤ |z| ≤ 1}, then it must be the case that

∑
0≤k≤n
k 6=t

|ak| = qt · |at|

and |α| = 1 with α2(j−i) − 1 = 0.
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Proof. Let f(x) be as in the statement of the theorem. Suppose α ∈ C is a root of

f(x) with q ≤ |α| ≤ 1. Then

qt · |at| ≤
∣∣∣atαt∣∣∣

=

∣∣∣∣∣∣∣∣ajα
j + aiα

i +
∑

0≤k≤n
k 6=i,k 6=j,k 6=t

akα
k

∣∣∣∣∣∣∣∣

≤
∣∣∣ajαj + aiα

i
∣∣∣+ ∑

0≤k≤n
k 6=i,k 6=j,k 6=t

∣∣∣akαk∣∣∣

≤
∑

0≤k≤n
k 6=t

∣∣∣akαk∣∣∣

≤
∑

0≤k≤n
k 6=t

|ak|

≤ qt · |at| .

Thus, we see immediately that

∑
0≤k≤n
k 6=t

|ak| = qt · |at|

and |α| = 1. It also follows that α2(j−i) − 1 = 0 since
∣∣∣ajαj−i + ai

∣∣∣ =
∣∣∣ajαj + aiα

i
∣∣∣ =

∣∣∣ajαj∣∣∣+ ∣∣∣aiαi∣∣∣ .
This completes the proof.

Remark 5.2. The lemma implies that if i 6= 0, j 6= 0, and t = 0, then f has no roots

in {z ∈ C : 0 ≤ |z| < 1}. To see this, let 0 < q < 1 get arbitrarily close to 0. This

shows that f(x) has no roots in {z ∈ C : 0 < |z| < 1}. Now by assumption, ai 6= 0,

aj 6= 0, and a0 = at ≥ |ai|+ |aj|. Thus, f(0) 6= 0.
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Lemma 5.3. Let f(x) ∈ Z[x] be monic with no roots in {z ∈ C : |z| ≤ 1}. If f(x)

has a root α ∈ C \ R with |α| >
√
|f(0)|

2 , then f(x) is irreducible.

Proof. Let f(x) ∈ Z[x] be monic with no roots in {z ∈ C : |z| ≤ 1} and let f(α) = 0

for some α ∈ C \R with |α| >
√
|f(0)|

2 . Suppose that f(x) is not irreducible. Then we

can write f(x) = h(x)k(x) for some monic h(x) ∈ Z[x] and monic k(x) ∈ Z[x], each

of positive degree. Since f(α) = 0 we may assume without loss of generality that

k(α) = 0. Since α ∈ C\R, this then implies k(α) = 0. Now let r be the degree of h(x)

and let α1, . . . , αr be the roots of h(x). Since f(x) has no roots in {z ∈ C : |z| ≤ 1},

we know that |αi| > 1 for 1 ≤ i ≤ r. Thus, |h(0)| ≥ 2, since h(x) ∈ Z[x]. Similarly,

we see that |k(0)| ≥ |αα| > |f(0)|
2 . Hence, |f(0)| = |h(0)| |k(0)| > 2 · |f(0)|

2 = |f(0)|.

This contradiction proves the lemma.

5.3 Theorem 5.1 and its Corollaries

With the lemmas in the previous section established, we now prove Theorem 5.1 and

provide several corollaries illustrating how the theorem can be used.

Proof of Theorem 5.1. Let f(x) = x2 + bx + c ∈ Z[x] with c ≥ 2 and |b| < 2
√
c− 1.

Then the two roots of f(x) are

α1 = −b+
√
b2 − 4c

2 and α2 = −b−
√
b2 − 4c

2 .

Since |b| < 2
√
c− 1 we see that b2− 4c < −4. Thus, α1 and α2 are non-real and have

absolute value
√
c. Now let ε be such that 0 < ε <

√
c− 1 and ε ≤ 1. Then

|αj| =
√
c > 1 + ε for j ∈ {1, 2}

and

|α1 − α2| =
∣∣∣√b2 − 4c

∣∣∣ > 2 > ε.

Thus, by Lemma 5.1 and the remark after, for g(x) = ∑t
j=0 ajx

j ∈ Z[x], if

n > max

t, t log(
√
c+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)− log

∣∣∣√4c− b2 − ε
∣∣∣

log(
√
c− ε)

 ,
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then the polynomial P (x) = f(x)xn + g(x) has a root α with |α− αj| < ε for each

j ∈ {1, 2}. Notice that such an α must be non-real since b2 − 4c < −4 implies that

|Im(α)| = |Im(α1 + α− α1)| ≥ |Im(α1)| − |Im(α− α1)|

≥

∣∣∣√b2 − 4c
∣∣∣

2 − |α− α2| > 1− ε ≥ 0

.

Now let

1 + |b|+ c+
t∑

j=1
|aj| < |a0| < 2(

√
c− ε)2.

Since |αj| =
√
c, we see that

|α| > |α1 + α− α1| ≥ |α1| − |α− α1| >
√
c− ε >

√
|a0|
2 =

√
|P (0)|

2 .

Also, we deduce from Lemma 5.2 that P (x) has no roots in {z ∈ C : |z| ≤ 1}. Hence,

P (x) is irreducible by Lemma 5.3.

Remark 5.3. Let ε = 1, c ≥ 16, |b| < 2
√
c− 1, and |a0| < 2(

√
c− ε)2. Then

t log(
√
c+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)− log

∣∣∣√4c− b2 − ε
∣∣∣

log(
√
c− ε)

≤ t log(
√
c+ 1) + log(2(

√
c− 1)2) + log(2)

log(
√
c− 1)

= 2 + log(2) + log(2) + t log(
√
c+ 1)

log(
√
c− 1)

< 4 + t log(
√
c+ 1)

log(
√
c− 1) .

Letting

A(c) = log(
√
c+ 1)

log(
√
c− 1)

it can be checked that A(c) is a decreasing function of c and A(c) = 1.46 . . . < 3
2 .

Thus, if c ≥ 16 in Theorem 5.1, then one can take ε = 1 and the result holds for

n ≥ 4 + 3t
2 .
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Now, letting ε = 1 we use Theorem 5.1 to prove the following four corollaries.

We note here that the results in these corollaries can be improved slightly by letting

0 < ε < 1.

Corollary 5.1. Let n and c be positive integers, and let d ∈ Z such that c+1 < |d| <

2(
√
c− 1)2. Then the trinomial xn+2 + cxn + d is irreducible.

Proof. Let n and c be positive integers, and let d ∈ Z such that c + 1 < |d| <

2(
√
c − 1)2. Notice then that c ≥ 16. Now we write P (x) = f(x)xn + g(x) where

f(x) = x2 + c and g(x) = d. Since t = deg g = 0, we deduce from Theorem 5.1 that

if
log |d| − log(2

√
c− 1)

log(
√
c− 1) <

log(2(
√
c− 1)2)− log(2

√
c− 1)

log(
√
c− 1) < 1 ≤ n,

then P (x) is irreducible.

Corollary 5.2. Let n and c be positive integers with n ≥ 3, and let d and ` 6=

0 be integers such that 1 + c + |`| < |d| < 2(
√
c − 1)2. Then the quadrinomial

xn+2 + cxn + `x+ d is irreducible.

Proof. Let n and c be positive integers with n ≥ 3, and let d and ` 6= 0 be integers

such that 1 + c+ |`| < |d| < 2(
√
c− 1)2. Since 1 + c+ |`| < |d| < 2(

√
c− 1)2 it must

be the case that c ≥ 17. Now we write P (x) = f(x)xn + g(x) where f(x) = x2 + c

and g(x) = `x+ d. Since t = deg g = 1, we deduce from Theorem 5.1 that if

log(
√
c+ 1) + log(2) + log(2(

√
c− 1)2)− log(2

√
c− 1)

log(
√
c− 1) < 3 ≤ n,

then P (x) is irreducible.

Corollary 5.3. Let n and c be positive integers with n ≥ 3, and let d and b be integers

such that 0 < |b| ≤ 2
√
c− 1 and 1+c+ |b| < |d| < 2(

√
c−1)2. Then the quadrinomial

xn+2 + bxn+1 + cxn + d is irreducible.
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Proof. Let n and c be positive integers with n ≥ 3 and let d and b be integers such

that 0 < |b| ≤ 2
√
c− 1 and 1 + c + |b| < |d| < 2(

√
c − 1)2. Since 1 + c + |b| < |d| <

2(
√
c−1)2 it must be the case that c ≥ 17. Now we write P (x) = f(x)xn+g(x) where

f(x) = x2 + bx+ c and g(x) = d. Since t = deg g = 0, we deduce from Theorem 5.1

that if
log |d| − log(

√
4c− b2 − 1)

log(
√
c− 1) <

log(2(
√
c− 1)2)

log(
√
c− 1) < 3 ≤ n,

then P (x) is irreducible.

Corollary 5.4. Let b and t be integers with t ≥ 1 and let g(x) = ∑t
j=1 ajx

j ∈ Z[x].

There exists a positive integer λ so that for all integers c ≥ λ and all integers n ≥ t+3,

if d is an integer with 1 + |b|+ |c|+∑t
j=1 |aj| < |d| < 2(

√
c− 1)2, then the polynomial

(x2 + bx+ c)xn + g(x) + d is irreducible.

Proof. Let b and t be integers with t ≥ 1 and let g(x) = ∑t
j=1 ajx

j ∈ Z[x]. Choose

λ1 so that max
{

5, b2

4 + 1
}
< λ1. Then for any integers c and d with c ≥ λ1 and

|d| < 2(
√
c− 1)2,

t log(
√
c+ 1) + log(min{t+ 1, 2}) + log |d| − log

∣∣∣√4c− b2 − 1
∣∣∣

log(
√
c− 1)

<
t log(

√
c+ 1) + log(2) + log(2(

√
c− 1)2)

log(
√
c− 1) .

Now notice that

lim
c→∞

t log(
√
c+ 1) + log(2) + log(2(

√
c− 1)2)

log(
√
c− 1) = t+ 2.

Thus, λ2 can be chosen so that for all c ≥ λ2,

t log(
√
c+ 1) + log(2) + log(2(

√
c− 1)2)

log(
√
c− 1) < t+ 3.

Now by Theorem 5.1, letting ε = 1 and λ = max{λ1, λ2} proves the result.
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5.4 Theorem 5.2 and its Corollaries

Next we prove Theorem 5.2 and provide several corollaries illustrating how the the-

orem can be used.

Proof of Theorem 5.2. Let f(x) = x2 + bx + c ∈ Z[x] with c ≥ 2 and |b| < 2
√
c− 1.

Let g(x) = ∑t
j=0 ajx

j ∈ Z[x] with |a0| < 2(
√
c − ε)2. Now choose ε so that 0 < ε <

√
c− 1 and ε ≤ 1. Following the proof of Theorem 5.1 we see that if

n > max

t, t log(
√
c+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)− log

∣∣∣√4c− b2 − ε
∣∣∣

log(
√
c− ε)

 ,
then the polynomial P (x) = f(x)xn + g(x) has a root α ∈ C \R with |α| >

√
c− ε >√

|a0|
2 .

Now suppose that

1 + |b|+ c+
t∑

j=1
|aj| = |a0| .

Then for n ≥ t+1 we deduce from Lemma 5.2 that P (x) has no roots in {z ∈ C : |z| <

1}. Furthermore, Lemma 5.2 implies that if P (x) has a root β ∈ {z ∈ C : |z| = 1},

then β4 = 1 since c 6= 0. Lemma 5.2 further implies that if b 6= 0, then β2 = 1. Notice

however that in the case b = 0,∣∣∣∣∣∣(−1 + c)in +
t∑

j=1
aji

j

∣∣∣∣∣∣ ≤ |c− 1|+
t∑

j=1
|aj| < c+ 1 +

t∑
j=1
|aj| = |a0| .

From this we deduce that P (i) 6= 0. Thus, β is a root of some cyclotomic polynomial

in {x+ 1, x− 1}. This proves the first implication of the theorem.

Now write P (x) = h(x)k(x) so that h(x) is a product of cyclotomic polynomials

and k(x) has no cyclotomic factors. It then follows that |k(0)| = |a0| and k(x) has no

roots in {z ∈ C : |z| ≤ 1}. Also, since h(x) is the product of cyclotomic polynomials

and |α| >
√
c− ε > 1, we know that k(α) = 0. Since

|α| >
√
|a0|
2 =

√
|k(0)|

2 ,

we deduce from Lemma 5.3 that k(x) must be irreducible.
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Remark 5.4. Notice that Theorem 5.2 implies that P (x) is reducible if and only if

P (x) has a root in {−1, 1}.

Corollary 5.5. Let n and c be positive integers with c ≥ 2. Then for ν ∈ {−1, 1},

the following are true for the trinomial P (x) = xn+2 + cxn + ν · (c+ 1):

1. If n is odd and ν = 1, then P (x) = (x+1)k(x) for some irreducible k(x) ∈ Z[x].

2. If n is even and ν = 1, then P (x) is irreducible unless P (x) = x4 + 3x2 + 4 or

P (x) = x4 + 5x2 + 6.

3. If n is odd and ν = −1, then P (x) = (x − 1)k(x) for some irreducible k(x) ∈

Z[x].

4. If n is even and ν = −1, then P (x) = (x + 1)(x − 1)k(x) for some irreducible

k(x) ∈ Z[x] unless P (x) = x6 + 3x4 − 4.

Proof. Let n and c be positive integers with c ≥ 2 and let ν ∈ {−1, 1}. It follows from

Theorem 5.2 that if P (x) = xn+2+cxn+ν ·(c+1) has a cyclotomic factor, then it must

be in the set {x+ 1, x− 1}. Furthermore, since P ′(x) = (n+ 2)xn+1 + cnxn−1, we see

that any roots of P (x) in {−1, 1} must be of multiplicity one. Hence, if c ≥ 16, then

the result follows from Theorem 5.2 by letting ε = 1. Now suppose that 2 ≤ c ≤ 15.

Let

ε =
√
c−

√
c+1

2

2 <
√
c− 1

so that c+ 1 < 2(
√
c− ε)2 and ε ≤ 1. A computation gives that

log(c+ 1)− log(ε)− log(2
√
c− ε)

log(
√
c− ε) < 9.

Thus, the result follows from Theorem 5.2 with ε =
√
c−
√

c+1
2

2 for 2 ≤ c ≤ 15 and

n ≥ 9. The remaining cases can easily be checked computationally.
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Corollary 5.6. Let n and c be positive integers with c ≥ 2. Then the polynomials

f(x) = x2n − x2n−1 + c(x2n−2 − x2n−3 + x2n−4 − · · · − x+ 1)

g(x) = x2n + x2n−1 + c(x2n−2 + x2n−3 + · · ·+ x+ 1)

and h(x) = x2n + c(x2(n−1) + x2(n−2) + · · ·+ x2 + 1)

are all irreducible, with the exception h(x) = x4 + 4x2 + 4.

Proof. Let k and c be positive integers with c ≥ 2. The result follows by observing

that

xk+2 + cxk + (c+ 1) = (x+ 1)f(x), whenever k = 2n− 1,

xk+2 + cxk − (c+ 1) = (x− 1)g(x), whenever k = 2n− 1,

xk+2 + cxk − (c+ 1) = (x+ 1)(x− 1)h(x), whenever k = 2n

and applying Corollary 5.5.

Corollary 5.7. Let n, c, and ` be integers with n ≥ 4, c ≥ 3, and 0 < |`| ≤ c − 2.

Then for ν ∈ {−1, 1}, the following are true for the quadrinomial P (x) = xn+2 +

cxn + `x+ ν · (c+ 1 + |`|):

1. If n is odd, ` > 0, and ν = 1, then P (x) = (x + 1)k(x) for some irreducible

k(x) ∈ Z[x].

2. If n is even, ` > 0, and ν = 1, then P (x) is irreducible.

3. If n is even, ` < 0, and ν = −1, then P (x) = (x + 1)k(x) for some irreducible

k(x) ∈ Z[x].

4. If n is odd, ` < 0, and ν = −1, then P (x) is irreducible.

5. If ` > 0 and ν = −1, then P (x) = (x− 1)k(x) for some irreducible k(x) ∈ Z[x].

6. If ` < 0 and ν = 1, then P (x) is irreducible.
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Proof. Let n ≥ 4, c ≥ 3 and 0 < |`| ≤ c − 2. It follows from Theorem 5.2 that if

P (x) = xn+2 + cxn+ `x+ν · (c+ 1) has a cyclotomic factor, then it must be in the set

{x+ 1, x− 1}. Furthermore, since P ′(x) = (n+ 2)xn+1 + cnxn−1 + ` and |`| ≤ c− 2,

we see that any roots of P (x) in {−1, 1} must be of multiplicity one. Now let ε = 1
4
√
c

so that 0 < ε <
√
c− 1 and ε ≤ 1. Notice then that c+ |`|+ 1 ≤ 2c− 1 < 2(

√
c− ε)2.

Also notice that

log(
√
c+ ε) + log(c+ |`|+ 1) + log(2)− log(ε)− log(2

√
c− ε)

log(
√
c− ε)

≤ log(
√
c+ ε) + log(2(

√
c− ε)2) + log(2)− log(ε)− log(2(

√
c− ε))

log(
√
c− ε)

≤ 1 + log(
√
c+ ε)

log(
√
c− ε) + log(2)

log(
√
c− ε) −

log(ε)
log(
√
c− ε)

≤ 1 + log(8c+ 2)
log

(√
c− 1

2
√

3

) .
Letting

A(c) = 1 + log(8c+ 2)
log

(√
c− 1

2
√

3

) ,
one can check that A(c) is a decreasing function of c. Thus, when c ≥ 79 the result

follows from Theorem 5.2 since A(c) < 4. We then check computationally that A(c) <

10 for c ∈ {3, . . . , 78}. With this the result follows from Theorem 5.2 for n ≥ 10 and

c ∈ {3, . . . , 78}. The remaining cases can then be checked computationally.

5.5 Concluding Remarks

The methods used to prove Theorems 5.1 and 5.2 are similar to methods found in

Chapter 3 of this document. There we investigated the factorization of trinomials of

the form xn+1 + cxn + d = (x+ c)xn + d ∈ Z[x] with certain restrictions on n, c, and

d. The following is a result given in that chapter.
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Lemma 5.4. Let K be a positive integer and let f(x) ∈ Z[x] be a monic polynomial

with no roots in the set {z ∈ C : |z| ≤ K}. If f(x) has a root α with |α| > |f(0)|
K+1 , then

f(x) is irreducible in Z[x].

Using this lemma with K = 1 along with Lemma 5.1 and the remark after, as

well as Lemma 5.2, one can prove the following two theorems. We omit proofs here,

as the results follow similarly to the proofs of Theorems 5.1 and 5.2.

Theorem 5.3. Let |c| ≥ 2 and let 0 < ε < |c| − 1. If g(x) = ∑t
j=0 ajk

j ∈ Z[x] with

1 + |c|+
t∑

j=1
|aj| < |a0| < 2(|c| − ε),

then the polynomial (x+ c)xn + g(x) is irreducible for all

n > max
{
t,
t log(|c|+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)

log(|c| − ε)

}
.

Theorem 5.4. Let |c| ≥ 2 and let 0 < ε < |c| − 1. Let g(x) = ∑t
j=0 ajk

j ∈ Z[x] with

1 + |c|+
t∑

j=1
|aj| = |a0| < 2(|c| − ε).

For

n > max
{
t,
t log(|c|+ ε) + log |a0|+ log(min{t+ 1, 2})− log(ε)

log(|c| − ε)

}
,

the non-cyclotomic part of the polynomial P (x) = (x + c)xn + g(x) is irreducible.

Furthermore, any cyclotomic factor of P (x) must be in {x+ 1, x− 1}.
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