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ABSTRACT 

III-Nitride based deep ultraviolet (UV) light emitting diodes (LEDs) are 

prospective candidates to replace the conventional bulky, expensive and environmentally 

harmful mercury lamp as new UV light sources, used in the applications of water and air 

purification, germicidal and biomedical instrumentation systems, etc. Due to the lack of 

native substrates and poor carrier injection, AlGaN-based deep UV LED is suffering 

from low optical power and low overall efficiency, which prevents the availability of low 

cost, high efficiency deep UV LED on the market.  

This dissertation is focused on improving the efficiency of deep UV LEDs, by 

improving the base template epilayers, specifically silicon doped n-type AlGaN electron 

cladding layer on which the subsequent quantum well and other device layers are grown. 

Approaches such as short period superlattice (SPSL) nAlGaN and silicon modulation 

doping nAlGaN are shown to effectively decrease the threading dislocation density(TDD) 

from 1.2  x  109  cm‐2 to 3×108  cm‐2, followed by the improvement of sheet resistance to 

53Ω/□. The improvement of crystal defect density is believed to contribute to the 

increase of internal quantum efficiency (IQE) and thus the overall device efficiency. 

Deep UV LED on a wafer device employing proposed silicon doping modulation 

technique shows light emission peak at 281nm and yields 25% improvement of the 

optical power due to the dramatic reduction of the dislocation density as well as the 

overall efficiency. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVER VIEW OF III NITRIDE LIGHT EMITTING DIODES 

1.1.1 III-Nitride Light Emitting diodes 

III-Nitride semiconductor materials, including GaN, InN, AlN and its alloys such 

as InGaN, AlGaN, AlInN and AlInGaN have been considered as promising materials for 

realizing electronic and optoelectronic devices, for general purpose, commercial, and 

military applications. Significant breakthroughs have been achieved in the last two 

decades for research and development in these materials and devices, leading to 

successful demonstration of high power visible light emitting diodes (LED), blue- violet 

laser diodes (LD) and high electron mobility transistors (HEMT) devices. The III-Nitride 

materials with the property of direct bandgap, indium nitride (InN, Eg=0.64eV), gallium 

nitride (GaN, Eg=3.4eV) and aluminum nitride (AlN, Eg=6.2eV), are suitable for 

optoelectrical applications covering from infrared to deep ultraviolet light spectrum 

regions by forming a III-nitride alloy system (AlInGaN) [1]. 

The principle of Light Emitting Diode is to form a p-n junction where electrons 

and holes will recombine radiatively and thus generate photons. The energy of photons is 

decided by the bandgap of the region where the recombination occurred. A more detailed 

process will be explained in the next section. The first demonstration of a III-Nitride light
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emitter was announced in 1971 by Pankove et al. Instead of forming a p-n junction, a 

device consisting of an unintentionally doped n-type GaN, a Zn doped insulating layer, 

and an indium surface contact to form a metal-insulator-semiconductor (MIS) was 

considered as the first current-injected GaN light emitter [2], where Zn was used as a p-

type dopant, and a year later, magnesium was also induced to form a p-type GaN [3], 

neither of the dopants were succeeded. In the 10 years after the research efforts of 

Pankove and his co-workers had ended, there is not much research focusing on GaN topic 

until two major breakthroughs. III-Nitride epitaxial layers, due to the lack of native 

substrate are usually deposited on foreign substrates, such as Sapphire, SiC, Si etc, and 

thus the lager lattice mismatch (~13.8%, in case of GaN on Sapphire) and the difference 

of thermal expansion coefficient [4] causes a degradation of crystal quality and thus the 

delay of their development. In the 1980s, the Akasaki group achieved a significant 

improvement in the crystal quality of GaN by the adoption of low temperature AlN 

nucleation layer [5] [6]. Then dramatically decreased the deep-level impurities and 

defects induced electron concentration to less than 1015 and further increased the electron 

mobility to several hundreds of cm2V-1s-1, indicating an improvement of the electrical and 

luminescence properties of GaN [7] [8]. The second breakthrough was the achievement 

of real p-type conductivity GaN, where Mg acceptors were first activated by electron-

beam irradiation and followed by a first GaN p-n junction blue LED [9]. More 

importantly, in 1991, Nakamura et al. proposed a high temperature post growth anneal 

technique to activate Mg-doped GaN, carrying out a higher activation efficiency p-type 

GaN [10]. The two major breakthroughs in high quality single crystal growth and 

efficient material doping has inspired scientists to put more research efforts in the III-
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Nitride based devices, resulting in marked progress in a short time frame, especially in 

the spectral regions of visible, such as the first demonstration of high brightness blue and 

green LED in 1995 [11], the first demonstration of blue laser diode [12], and the world`s 

first white LED, realized by applying a Y3Al5O12:Ce phosphor coating on a blue LED 

in 1996 [13] . The first demonstration of blue LED by Nakamura exploded the research 

and development in III-Nitride materials, due to huge potential applications and business 

opportunities, which also brought more research issues and challenges while pursuing a 

lower cost, higher efficiency. Many different structure designs, substrate selections, light 

extraction techniques have been adopted and have improved high power LED efficiency. 

Nowadays, applications of the III-Nitride LED are ubiquitous, and the LED efficiency 

has been pushed hard to reach its new record. In 2012, commercially available InGaN 

blue LEDs can offer a high external quantum efficiency of up to 50% at 350mA drive 

current, allowing the realization of a white LED performance of up to 85 lm/W [14]. 

1.1.2 Light Emitting Diode Efficiency 

The typical structure of a Light Emitting Diode is a p-n junction diode, mainly 

consisting of direct bandgap semiconductors such as GaAs, GaN, etc. Once the p-n 

junction has been created, a space charge layer and a built in voltage (or energy barrier) 

will automatically be formed due to the carrier balance process. By applying an external 

forward voltage to the diode, the electrons and holes in conduction band and valance 

band respectively see a lower energy barrier and start the minority injection process by 

injecting electrons and holes into the depletion region and the extended region where the 

diffusion length can reach. The electron and hole recombination occurs during the 

injection and diffusion processes and the regions that this recombination took place is 
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called active region. If all of the carriers from the power supply can be injected into the 

device, all of them undergo radiative recombination to create photons, and all the 

generated photons can successfully escape from the device to air, this LED will be 

considered as an ideal LED with 100% efficiency. The performance of an LED is usually 

characterized by its external quantum efficiency (EQE). Currently, the best EQE value is 

around 50%. There are many factors, such as material defects, current overflow, total 

internal reflection effect, etc., that prevent the LED reaching a high EQE efficiency. 

Many approaches and structure designs have been reported to improve LED efficiency; 

these approaches and designs, and their effects to the efficiency, will be briefly reviewed 

below. The definition of external quantum efficiency (EQE) is the ratio of the extracted 

photons emitted into free space to the injected electron- hole pairs, and is usually 

expressed in a product of the injection efficiency (ߟ ), the radiative recombination 

efficiency (ߟ) and the light extraction efficiency (ߟ௫ሻ as shown in Eq. (1.1).  

ாொாߟ ൌ ߟ ൈ ߟ ൈ ௫ (1.1)ߟ
 

1) Injection efficiency (ߟ) 

Injection efficiency is the fraction of injected current that can be captured in the 

active region for the recombination process. Figure 1.1 shows the comparison of normal 

LED structure and an injection efficiency improved LED structure. Figure 1.1(a) shows a 

p-n homojunction under forward bias, where minority carriers traveling in a large range 

until its diffusion length can reach and the concentration decreases during the diffusion 

process, causing a low efficiency for recombination. The injection efficiency improved 

design is exhibited in Figure 1.1(b), where several techniques are used in the structure for 

the injection improvement such as double heterostructure, multiple quantum well (MQW), 
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and electron blocking layer. Since the homojunction LED structure will cause the carrier 

to be distributed to a large region for recombination and decrease the efficiency, a double 

heterostructure design can provide a better confinement to the carriers, by adopting a 

higher bandgap material as barriers surrounding the quantum well, the larger the well size, 

the more the carriers can be confined in this region (active region). However, a larger 

well size in III-Nitride LED will typically cause the so called quantum-confined stark 

effect (QCSE), describing the existence of a built-in electric field, resulting from 

spontaneous polarization and piezoelectric polarization, will cause a separation of 

electron and hole wave-function and decrease the probability of recombination, and thus 

decrease the efficiency. The MQW design can decrease the QCSE phenomenon and 

provide a larger active region for carrier confinement and increase the current injection 

efficiency. The QCSE phenomenon can be more effectively decreased by forming the 

structure in semipolar or nonpolar crystal direction [15]. To further capture carriers in the 

active region, an electron blocking layer design is also frequently used to prevent current 

overflow and stop electrons in the active region. The electron blocking layer is usually p-

type doped to prevent a formation of barrier for holes. 
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Figure 1. 1 (a) Homojunction under forward bias (b) Design of Electron blocking layer.  
[16] 

 

2) Recombination efficiency (ߟ) 

Recombination efficiency is the fraction of injected carriers in the active region that 

recombine radiatively and generating photons. There are two fundamental recombination 

mechanisms in LED, namely radiatively recombination and non-radiative recombination. 

During a radiative recombination, electrons and holes recombine followed by the 

emission of photons, whereas in a non-radiative recombination process, the energy is 

converted to phonons, generating extra heat to the material. There are several physical 

mechanisms such as crystal defects, surface recombination, Auger recombination, etc. 

which cause non-radiative recombination. Among these mechanisms material defects, i.e. 

unwanted foreign atoms, native defects, dislocations, etc., are the most common reasons 

for non-radiative recombination by creating multiple trap centers or deep levels in the 

forbidden region of the LED. The mechanisms of radiative recombination and non-

radiative recombination are shown schematically in Fig 1.2. where part (a) shows a 
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radiative recombination, part(b) exhibits defects causing electron traps, hole traps and 

nonradiative recombination centers that result in the generation of phonons. Additionally, 

the non-radiative recombination via Auger processes are expressed in part (c).  

 

 

Figure 1. 2 Band Diagram illustrating recombination: (a) radiative (b) non-radiative via 
deep levels and (c) non-radiative via Auger processes. 

 

Defects are the most common factor causing a non-radiative recombination, and the 

majority of defects in III-Nitride LED are threading dislocations with a typical 

dislocation density of 108 ~ 1010 cm-2 [17] due to the large lattice mismatch (16%) and 

large difference in thermal expansion coefficients between GaN and its foreign substrates, 

where sapphire is mostly used [18]. More detailed mechanisms for the generation of 

defects in III-Nitride semiconductor and types of these defects will be discussed in the 

later section. Several approaches have been proposed to decrease the defects, i.e. deep 

levels/ traps, to further improve the recombination efficiency in III-Nitride LED, 

including the use of a nucleation layer, AlN buffer layers, superlattice techniques, 

patterned sapphire substrate(PSS) [19], epitaxial lateral overgrowth (ELOG) [20], free-

standing GaN substrates [21], misoriented sapphire substrate [22] [23] etc. The 
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production of the injection efficiency and the recombination efficiency is called internal 

quantum efficiency (IQE). Currently, the highest internal quantum efficiency is around 

65% [24].   

3) Light extraction efficiency (ߟ௫ሻ 

The extraction efficiency is defined by the ratio of photons able to escape from the 

semiconductor into free space to photons generated in the active region. Due to the large 

difference of refractive index between semiconductor (GaN, n= 2.4), substrate (sapphire 

n= 1.76) and air (n=1), light incident on any of the two above mentioned interfaces will 

be totally reflected, if the angle of incidence is larger than the critical angle (θC) from 

Snell`s Law, as illustrated in Figure 1.3, the reflected light can escape after several 

bounces or eventually become trapped in the semiconductor and be absorbed by substrate, 

cladding layer, active region or by contacts.  

 

 

Figure 1. 3 Light Extraction and Reflection. 
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In terms of light extraction, several schemes such as roughened or textured 

surface [25] [26], patterned sapphire substrate [27] [28] and shaped LED [29] to increase 

the critical angle and decrease the probability of light trapping in the LED, flip-chip 

packaging [30] [31] to prevent the metallic contact hindering the path of light extraction 

and to increase the critical angle by extracting light from sapphire to free space, photonic 

crystal structure [32] [33] to guild light to the air and some other approaches like thin 

film, laser lift-off process [34] etc. have been used to improve the light extraction 

efficiency. Currently, the best reported light extraction efficiency is around 80% [35], and 

the commercially available light extraction efficiency is around 60%. 

Except the external quantum efficiency (EQE), wall plug efficiency (WPE) (or 

power efficiency), the ratio of the optical output power to the electrical power, is also 

used in determining LED performance. While a power supply connects to an LED device, 

there will be some unavoidable voltage drop across the whole LED device, which 

majorly comes from the parasitic resistance, such as metal contact resistance, or lateral 

resistance in n-type cladding layer. A high parasitic resistance will not only cause a high 

drive voltage, but also increase the device temperature and result in a degradation of LED 

life time and reliability. 

Some efficiency factors, other than the device respect, such as system engineering, 

packaging, etc. are needed to be considered as well, which are beyond the scope of this 

research and will not be discussed here. 
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1.2 REVIEW OF DEEP UVLED RESEARCH AND APPLICATIONS 

1.2.1 Deep UVLED Applications 

Optoelectronic devices emitting light in visible spectrum regions are approaching 

their maturity, with its implementation in many applications such as automotive lighting, 

residential and commercial lighting, illumination, displays, etc. Advantages, such as high 

efficient, compact, robust and reliability of visible solid-state optical sources are leading 

many groups to shift their research focus towards short wavelength ultraviolet, solid-state 

opto-electrical devices. The UV spectrum can be further divided into four distinct sub-

regions: UV-A (320–400nm); UV-B (290-320nm); UV-C or deep UV (200-290nm); and 

vacuum UV (10-200nm). UV radiations usually fulfill by using UV tube technology and 

are capable of producing higher power levels as compared to the existing UV LEDs. 

However, there are many shortcomings of traditional UV lamps, including fragility and 

susceptibility to break, short working life span (hundreds to thousands of hours), 

operating at high temperatures (600-900 ° C) and environmental harm. Due to the 

improvement of growth, high quality epilayer and of packaging design, brighter, more 

powerful and longer-life, UV LEDs can offer an alternative to traditional UV lamps. UV-

A and UV-B LEDs have seen some market available applications such as UV curing, 

currency counterfeit or counterfeit-sensitive documents identification, phototherapy, etc. 

It has been estimated that 90% of the UV LED applications are based in UV-A and UV-B 

regions. Also the market for UV LEDs is expected to be more than $150 million in 2016. 

While in the Deep UV (UV-C) spectral range, the primary LED applications are water, 

air and biomedical instrumentation systems sterilization. Deep UV LED (<280nm) has a 

germicidal effect on micro-organisms in water, air and surface by breaking- up the 
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chemical bonds within the DNA and RNA of organisms such as bacteria, viruses etc. and 

preventing their replication, as shown in Figure 1.4. DNA has an absorption peak at 

around 260nm, but the wavelength distribution will be dependent on the target organism 

such as 269nm is determined to be the most effective wavelength for Escherichia coli in 

water [36]. Some other applications such as Chemical and biological agent detectors [37] 

[38] and non-line of sight (NLOS) communications also work in this spectral range [39]. 

 

Figure 1. 4 Effect of UV radiation induced DNA bonds damage. [40] 
 

1.2.2 Review of Deep UVLED 

With a wide range of potential applications and several billion dollars in estimated 

market value, AlInGaN- based UV LEDs have attracted more research interest while the 

visible LEDs arrive at maturity, and many researchers from governments, industries and 

universities have shifted their research focus to a shorter spectrum wavelength UV and 

Deep UV regions.  
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AlGaN-based UV LED is considered as a light emitting diode with an emission 

wavelength shorter than around 360nm, while the emission wavelength above 360nm 

(near UV) typically has GaN or InGaN quantum wells (QWs) in the active region. The 

first AlGaN-based UV LEDs were reported by Sandia National Laboratory in 1998, with 

an emission peak at 353.6nm and an output power of 13uW at 20mA [41]. In the 

following years several groups published 360nm to 280nm UV LEDs in succession such 

as 352nm UV LED on bulk GaN by Nishida et al. [42], 340nm UV LED comprised of 

quaternary AlInGaN MQWs by Adivarahan et al. [43], 333nm UV LED with a Mg-

doped GaN/AlGaN superlattice hole injection assistance layer by Kinoshita et al. [44] 

and first UV-B LED(305nm) by using the pulse atomic layer epitaxy (PALE) approach 

for depositing quaternary AlInGaN MQWs by Khan et al [45]. Deep UV LED research is 

pioneered by Asif Khan and co-workers at the University of South Carolina, who first 

published deep UV LED with a peak emission of 285nm and light output power of 

0.25mW at a 650 mA pulsed current in 2002 [46]. Several groups have also shown their 

research efforts in AlGaN based Deep UV LEDs, such as 270nm - 280nm by Zhang et al. 

[47] [48] [49] [50], 250nm - 270nm by Hirayama et al. [51] [52], 220nm - 250nm by 

Grandusky et al. [53] [54], and the shortest wavelength UV LED with a light emission 

peak at 210nm by using an AlN emitting layer reported by NTT [55]. The maximum 

EQE of UV LED with emission wavelength from 290 to 360nm ranges from 2 ~7 % [56] 

[57] [58] [59] [60]; however, for the shorter wavelength UV-C LEDs of 290 nm and 

below, the EQE value is typically around 3% [61] [62]. Figure 1.5 illustrates a summary 

of recent works in EQE for near and deep UV LEDs. 
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Figure 1. 5 Summary of recent works in EQE for near and deep UV LEDs. [63] 
 

Numbers of factors account for the low EQE of deep UV LEDs. A major portion 

can be attributed to the relatively high defect densities. AlGaN-based deep UV LEDs 

typically fabricate on foreign substrate, such as sapphire (Al2O3), SiC, Si, ZnO, LiGaO2 

etc., and large lattice mismatch between the nitride films and the substrates (AlN/ 

Sapphire: 13.3%; GaN/sapphire: 16.1% [64]) results in high defect densities in AlGaN-

based MQW,  with around 60% Al composition, leading to a degradation of the 

recombination efficiency. Sergey et al. [65] proposed a model of the relation between 

nonradiative recombination and dislocation density, and suggested threading dislocation 

in the AlGaN material acting as trap centers [66] [67] in the forbidden region, where the 

nonrecombination occurrs by the approach of Shockley-Read [68] through the mid-gap 

traps. In order to get a recombination efficiency close to unity, it was suggested that the 
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dislocation density has to be reduced to around 107 cm-2. Due to the high lattice mismatch 

and the low surface mobility of Al atoms on the growth surface, causing a poor lateral 

growth, the threading dislocation densities of deep UV LEDs are typically around 1010 

cm-2. An epilayer structure of typical AlGaN-based deep UV LED is schematically 

shown in Figure 1.6, which can be divided into five different parts, namely, substrate, 

buffer layers, n-type barrier, active region, and p-type barrier. In the figure, the AlN 

buffer was first grown on the sapphire substrate, but due to the large lattice mismatch, 

tremendous dislocations were generated at the interface of the sapphire and AlN layers, 

and penetrated through the active region to reach the surface of the LED structure, 

causing a nonradiative recombination in the active region and thus a low recombination 

efficiency.  

 

Figure 1. 6 Schematic of a typical UV LED. 
 

Many approaches have been proposed to reduce the defect densities in AlGaN-

based deep UV LED structure, among them, approaches providing a high crystal quality, 

low dislocation density buffer template layer have mostly been reported. Many groups 
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adopted a two-step growth process by first depositing low temperature (LT) AlN 

nucleation layers, followed by a high temperature (HT) smoother AlN layer; they also  

suggested that this approache can increase two dimensional growth and the grain size, 

decreasing the formation of dislocation on the grain boundary dislocations can also be 

redirected by a subinterface between the LT-AlN and HT-AlN, which can be optimized 

by tuning the III/V ratio, carrier gas flow etc. growth conditions [69] [70] [71] [72]. A 

multiple interfaces AlN layer formed through an ammonia pulsed-flow multilayer growth 

technique [51]or multiple modulation of the III/V ratio technique [73] have been reported. 

Some others techniques such as bulk AlN layer, which provides a radical method to 

decrease the lattice and thermal expansion coefficient mismatch [74] [75] [76], and an 

epitaxial lateral overgrowth technique (ELOG) [77] [78], which provides a gate for 

releasing the lattice mismatch-induced strain and thus a decrease dislocation density as 

shown in Figure 1.7(a). In addition to the above-mentioned high quality AlN buffer layer, 

techniques like AlN/AlGaN and AlxGa1-xN/AlyGa1-yN short period superlattice lattice 

(SPSL) have been grown on the quality improved AlN buffer layer and worked as the 

threading dislocation filter layer, resulting in a crack free and smooth AlGaN suface as 

shown in Figure 1.7(b) [79] [80]. Other techniques like ELOG AlGaN [81] [82], 

pseudomorphic growth of AlGaN on bulk AlN [83] [84], rough/smooth AlGaN [85] etc. 

have been reported to be able to decrease the threading dislocations in the deep UV LED 

structure. Native AlN substrate has been adopted and mitigates the defects problems; 

however, the commercially available AlN substrates with a limited area around 1 inch are 

still cost prohibitive [86]. Although the above-mentioned efforts can provide an efficient 

way to decrease the dislocation density, currently available deep UV LEDs still have an 
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average dislocation density of around 5×108 to 109 cm-2, which corresponds to 50% to 

20% internal quantum efficiency from a simulated model [65], indicating further research 

in improving the crystal quality and decreasing the crystal dislocation is required. 

(a) (b) 

Figure 1. 7 (a) Cross-sectional SEM image of epitaxial lateral overgrowth AlN technique 
(b) Cross-section TEM image of PALE AlN/AlGaN superlattice. [77] [80] 
 

Apart from the high defects, another source of the low EQE of deep UV LEDs is 

the insufficient current injection efficiency. High Al content in the AlGaN layer raises the 

issue for n-type and p-type AlGaN for the purpose of electron cladding layer and electron 

blocking layer respectively. The reason for these challenges is believed to be attributed to 

an increase in donor activation energy [87], dislocation density and a compensation effect 

from acceptor-like defects [88]with increasing Al mole fraction. By improving the 

material quality and optimization of doping level, the sheet resistant of n-type AlGaN 

with Al content of 60% is around 250Ω/□, while p-type AlGaN with even higher Al 

content can easily reach hundred times higher sheet resistance, due to the existence of 

Mg-H complexes, where the hydrogen source may come from carrier gas, nitrogen 

precursor, NH3, and in the metalorganic sources, as well as increased ionization energy 
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for Mg acceptors with the increase of Al more fraction [89], resulting in a poor hole 

injection and a current leakage from the active region [90]. The activation energy of Mg 

acceptors of AlGaN with 70% Al content is around 400meV, while for Si-doped AlGaN, 

the activation energy is around 10 ~25meV [91], which is lower than room temperature 

thermal energy (~ 26meV). Currently, the p-AlGaN doping is still a challenge and major 

cause for poor injection efficiency. Other than the doping issues, several approaches have 

been reported to provide efficient electron blocking layers, such as composition graded p-

AlGaN for decreasing hole injection barrier [92], multiaqantum barrier electron blocking 

layer enhancing the effective barrier height and thus a 2.7 times improved efficiency [93],  

thin AlN insertion layer between p-AlGaN blocking layer and AlGaN  MQW to suppress 

the current overflow and diffusion of Mg into MQW [94], etc. ,providing a better electron 

confinement and thus improving the current injection efficiency.  

Other causes related to the poor EQE of deep UV LEDs is low light extraction 

efficiency. The average light extraction efficiency of deep UV LED is lower than 8%, 

due to (i) the total internal reflection (TIR), since a highly difference of refractive index 

from semiconductor to air, (ii) the absorption in p-GaN contact pad as well as the wire-

bonding pads and (iii) the lack of suitable encapsulation polymers for deep UV LEDs. To 

prevent light absorption by the p layers and the contact pads, a filp-chip is commonly 

used, which also provides a path for heat dissipation [95] [96]. Other proposed methods 

such as the use of vertical injection thin-film structure [97], nanopixel contact with Al 

reflector [98], microlens array [99], moth-eye structure of sapphire back-side surface [61] 

etc. have been reported to improve the light extraction efficiency. From most recently, 

Sharalov et al. published 278nm AlGaN-based deep UV LED with a light extraction 
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efficiency of around 30% by adopting UV transparent p-type cladding and contact layers, 

UV reflecting ohmic contact as well as an optimized encapsulation, and thus a record 

high EQE of 10.4% and a output power of 9.3mW at 20mA pump current [100]. 

Some other potential factors such as (i) carbon and oxygen incorporation in 

AlGaN acting as nonradiative recombination centers, which can be mitigate by 

preventing the leakage of MOCVD system as well as the system contamination (ii) 

quantum confined stark effect (QCSE) which is more sever in high Al content UV LED, 

due to the increase of polarization field, resulting a red shift and degrade recombination 

efficiency; approaches like thin quantum well structure and semipolar UVLED have 

shown an reduced QCSE phenomenon [15], (iii) thermal management for high power 

LEDs etc. require further studies and research efforts to pursue commercial available 

high efficiency AlGaN-baed deep UV LED. 

1.3 DISSERTATION SYNOPSIS 

This dissertation is focused on developing high-efficiency Deep UV 

optoelectronic devices, by improving the base template epilayer crystal quality 

specifically silicon doped n-type AlGaN electron cladding layer on which the subsequent 

quantum well and other epilayers are grown. The working principle and efficiency of III-

Nitride light emitting diode is first reviewed followed by an introduction of UV LED 

application and review of deep UV LEDs in Chapter1. In Chapter 2, the problem of 

developing high efficiency deep UV LEDs is explicated as well as the experiment 

methods employed in this work are explained. Chapter 3 focuses on the development of 

crack free, low dislocation, and high conductivity high Al content si-doped AlGaN layer 

by the adoption of proposed short period superlattice (SPSL) silicon doped AlGaN.  
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Another proposed technique for developing high crystal quality of silicon doped AlGaN, 

namely, silicon doping modulation AlGaN will be discussed in Chapter 4. In Chapter 5, 

AlGaN-based deep UV LED will be fabricated by adopting the quality improved silicon 

doping modulation AlGaN layer, and a study to compare the power raised deep UV LED 

with the conventional deep UV LED will be shown. Last, in Chapter 6, the conclusion of 

this work and the future works including a work of high quality semipolar AlN template 

on m-sapphire will be presented. 
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CHAPTER 2 

PROBLEM IDENTIFICATION AND EXPERIMENTAL METHODS 

2.1 PROBLEM IDENTIFICATION 

AlGaN-based deep UV LED is suffering from a low total efficiency, including 

external quantum efficiency (EQE) and wall plug efficiency (WPE). High crystal defect 

density in the LED structure, especially in the active region, bring a nonradiative 

recombination state and is one of the major reason contributing to low internal quantum 

efficiency (IQE) as well as the overall efficiency and thus methods to decrease the defects 

in the active region is imperative for pursuing a high efficiency deep UV LED. 

To decrease the crystal defects, some approaches have been proposed to produce 

a high quality base template on which the n-type AlGaN electron cladding layer, multiple 

quantum well, p-type AlGaN electron block layer and p-type GaN  are grown. Most of 

these approaches were focused on undoped buffer layers including aluminum nitride 

(AlN) layers. Many alternatives such as Rough/smooth AlN layers, AlN/AlGaN 

superlattice layers, etc. have been shown to reduce the dislocation densities to the order 

of 3×108 cm-2. 

Upon the template, the n-type AlGaN electron cladding layer is crucial in 

determining 1) the internal quantum efficiency (IQE), since it is the layer right below the 

active region, and the threading dislocations in this n-AlGaN layer will propagate through
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the active region to the surface of the LED structure. These dislocations in the active 

region act as the trap center to facilitate non-radiative recombination and thus degrade the 

internal quantum efficiency (IQE); 2) the current spreading, n-AlGaN layer plays an 

important role in deciding the uniformity of current spreading through the active region. 

A high resistance of n-AlGaN layer will result in a current crowding issue causing a non-

uniform light emission, also will increase the device series resistance leading to an 

increased operating voltage and thus degrade the WPE, and will raise the junction 

temperature and further influence the device reliability and life span.  

To decrease the defects in the n-AlGaN layer, this may also improve the electron 

mobility and thus decrease the resistivity, several groups have reported to improve the 

crystal quality of III-nitride layers and most of them are focused on producing a low 

defect density undoped buffer layer. Our group has been adopting a novel two-step 

pulsed atomic layer epitaxy grown high quality AlN nucleation layers, AlN/AlGaN 

superlattice, rough/smooth undoped-AlGaN [101] , etc. as template for the consequent 

deep UV LED epilayers. These optimized high quality templates have low dislocation 

density of 3×108 cm-2 and are expected to result in a low defect deep UV LED device 

structures and further improve the optical power efficiency. However, when silicon is 

doped in a high aluminum content AlGaN layer on such low defects template to achieve 

n-type conductivity, the dislocation density immediately increases to 1~5×109 cm-2. 

Figure 2.1 exhibits a 1µm×1µm AFM image of conventional n-AlGaN with the etch pit 

density of 1.2×109 cm-2, which is calculated by the number of counted defects (pits) 

within the scan area and is correspond to threading dislocation in the material, grown on a 

low defects template. Moreover, if we lower resistivity simply by increasing the silicon 
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doping, the defects go up. If silicon doping is kept low and the thickness is increased to 

achieve a low resistivity, the layers crack.  Approaches exert on low resistivity thick n-

type AlGaN layer itself are not much reported such as, indium doped nAlGaN[10], δ-

doping nAlGaN[11] etc. However, these methods have to sacrifice either surface 

roughness, layer thickness, or layer conductivity. 

As mentioned above, high quality n-type AlGaN layer is of tremendous 

importance to the device performance. It is necessary to prevent the increase in 

dislocation density in the n-type AlGaN layer. Thus, a high crystal quality n-AlGaN 

electron cladding layer, which can maintain a low dislocation density from template or 

acting as a dislocation filter and manage the strain to be capable of growing thick layer 

for achieving low resistivity is required. The n-AlGaN layer with highest conductivity for 

improving current crowding issues and large thickness to assist heat dissipation is 

essential for achieving a high efficiency deep UV LED.  
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Figure 2. 1 AFM image of conventional n-AlGaN (EPD~1.2×109 cm-2). 
 

2.2 EXPERIMENTAL METHODS 

2.2.1 Metal Organic Chemical Vapour Deposition (MOCVD) 

MOCVD is one of the most popular methods for depositing high quality thin 

films and has been widely used in fabricating electronic and optoelectronic devices, 

especially in III-Nitride based commercial devices. Several reasons make MOCVD the 

most adopted thin film deposition method in the market, such as (1) multiple metal-

organic sources are available and different materials can be grown in the same system, 

therefore a high flexibility (2) no ultra-high vacuum level needed (typically around 10-10 

torr for MBE), and can operate under atmosphere pressure (3) able to produce very high 

quality and smooth layers, due to the ability of controlling the growth rate and the 

uniformity of doping (4) able to grow sharp interfaces and thus facilitates the formation 
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of heterostructure, which is used in most of the optoelectronic devices like LED and 

Laser diode. 

In this dissertation, all the experiments were completed by using a homemade 

MOCVD system with a vertical design water-cool quartz reactor. Wafers were placed on 

a 2” SiC susceptor which was sitting on a ceramic tube and heated by using the RF 

induction heating system. The temperature was monitored by a thermocouple installed 

under the susceptor and protected by a thin quartz tube, and was controlled by changing 

the RF value of the RF generator. The reactor pressure was kept constant at 40 Torr 

during all the growth experiments, Hydrogen (H2) was used a carrier gas and 

trimethylaluminium (TMAl), trimethylgallium (TMGa), and ammonia (NH3) were used 

as the precursors for aluminum, gallium and nitrogen, respectively. For the doping 

purpose, Disilane (Si2H6) and Bis-cyclopentadienyl magnesium (Cp2Mg) was used for n-

type and p-type doping respectively. 

2.2.2 Characterization Techniques 

 To characterize the grown material qualities, including its surface morphology, 

structural properties, optical and electric performances, several well-established 

characterization methods were used. The extracted information is important for 

optimizing both single layer crystal quality and the overall structure performance. The 

working principle and how the measured data can be used in analyzing the material 

properties in different aspects will be briefly discussed.  
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a. Optical Microscopy 

Two different modes of optical microscopic images, namely, dark field and 

Nomarski mode can be used to characterize the macro-scale of the sample surface. 

Nomarski mode is capable of showing a three dimensional image, meaning particles exist 

on the surface or defects that make a rough surface will display as a 3D image, allowing 

the surface roughness and contamination condition to be examined. The concept of 

Nomarski mode also known as Differential interference contrast mode (DIC) is to show a 

phase contrast image by the recombination of interfered beams, which is accomplished 

by changing the path length of the incident polarized-beams when they pass through 

crystal defects or particles. Another frequently used mode is the dark field mode which is 

useful in exhibiting the pinholes and cracks that scatter the incident beams, showing a 

bright image, while for the un-scattered portion of the wafer, a dark image will be 

displayed. 

b. Atomic Forced Microscopy 

The surface morphology of the grown layers will be evaluated by Digital 

Instrument atomic force microscopy (AFM), which has a nano-scale resolution and 

operates in the tapping mode, which overcomes the problems such as distorted data and 

damaged sample in the contact mode and limited resolution in the non-contact mode. In 

the tapping mode (also known as intermittent-contact mode) AFM measurement, a micro-

cantilever oscillated near its resonant frequent of around 200Hz to 400 kHz, which was 

driven by a piezoelectric crystal material, approaches the surface until the tip contact the 

surface; the contact means an existence of repulsive force between the surface atom and 
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the atom comprising the tip. When the tip scans over the surface, instead of dragging it on 

the surface like contact mode does, the tip lifts off from the surface and will decrease the 

oscillating amplitude while passing a height due to a limited space for oscillating or 

increase the amplitude if there is a hollow. The oscillation amplitude of the tip is 

measured by the deflection of laser beam detected by a position detector; a feedback 

system adjusts the space between the sample surface and tip to maintain the amplitude 

and force on the sample. Figure 2.2 shows the correlation between interatomic force and 

their distance in different operating mode. For the tapping mode, when the distance 

between the tip and sample is close enough, the tip will locate in the repulsive force 

regime and will act like the contact mode and will be able to provide a better resolution, 

while the tip oscillates off from the surface, the tip will work like non-contact mode 

locating in the van der Waal attractive force regime, preventing the misinterpreted 

information.  

 

Figure 2. 2 Interatomic forces vs. distance curve.  [102] 
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AFM measurement can be implemented in ambient air and no need any sample 

preparation. In this work, AFM characterization technique will be used to exhibit the 

surface morphologies such as surface atomic steps, grains, grain boundaries, surface pits, 

also some numerical analysis such as the root mean square (RMS) of surface roughness, 

peak to peak distance etc. Figure 2.3 is a AFM image of AlGaN surface with a surface 

RMS value of 0.6nm, where the atomic steps have been clearly displayed; also from the 

shape of the crystal grains, which will be more common to be found on AlGaN layers or 

silicon-doped AlGaN layers as compare to AlN layer, the existence of screw type 

dislocations in the grains can be easily disclosed. On the other hand, AFM is one of the 

simplest methods to obtain the dislocation density data from a pre-etched thin film, and 

this method will be primarily employed to exhibit the dislocation density of the grown 

samples in this research. 

 

Figure 2. 3 AFM images of AlGaN sample. 
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c. Etch Pit Density 

It is of great interest to measure the dislocation density in thin film as a quality 

metric. Several destructive and nondestructive methods have been developed to reveal the 

dislocation density in the AlGaN-based materials. These methods include transmission 

electron microscopy (TEM), which though require extensive sample preparation time, 

can exhibit microstructure of dislocations and other defects in not only single layer but 

also whole LED structure, and is one of the most powerful tool for defects 

characterization; cathodoluminescence (CL), where the dislocation will be disclosed 

through a nonradiation process, showing spots on CL image and the dislocation density 

can be counted. Additionally, defect selective etching process studied with AFM, where 

the number of etched pits displayed on the AFM-scanned surface is used to find the etch 

pit density (EPD) by dividing these number by the scanned area, and this EPD is found to 

be positively correlated or the same to the dislocation density.  

The defect selective etching process facilitates the desire to obtain the epilayer 

crystal quality on the surface, providing a fast dislocation density and dislocation types 

feedback for the optimization of crystal growth. Several solutions have been used to carry 

out the defect selective etching or so called orthodox etching, such as molten salts 

(KOH+NaOH), hot acids (H2SO4, H3PO4), and vapor phase HCl; each of these solutions 

with a specific etching process and experiment setup has its pros and cons. In this 

dissertation defect selective etching by using hot H3PO4 acid will be used to evaluate the 

etch pit density. The etching procedure has been optimized with a series of systematic 

experiments and the total dislocation density of the experimental data has been confirmed 

with their TEM data to assure the accuracy of the experiment procedure and condition. A 
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typical procedure is first to heat the 85% phosphoric acid to around 150°C and slightly 

stirs the acid to make a uniform temperature, which is detected by an infrared laser 

thermometer, after the temperature is stable, then dips the sample for 5 minutes, which 

was cut to an area size of around 1cm× 2cm. After the 5 minutes etching, sample will be 

removed from the acid and clean with DI water and isopropanol. After the cleaning, 5 to 

10 minutes sample baking under a 150°C is need to make sure the sample is dry to 

prevent any inaccuracy while extracting the image and defects information from AFM. 

Figure 2.4 is the AFM image of an etched AlGaN sample, which is the same piece of 

sample shown in Figure 2.3. There are many additional dark spots/pits with different 

sizes showing on the surface as compare to the Fig 2.3, where no pits have been exposed. 

The larger size pits which are located at the termination of surface steps are 

corresponding to mixed or pure screw type dislocations. Also there are some smaller pits 

positioned within the terraces between steps are considered to be pure edge type 

dislocations. It is believed that the etching rate that results in the different size is related 

to the defects energy of each type dislocations. And these defects energies is inversely 

proportional to the ability of etching; which means the larger the defects energy, the 

easier the etching ability and rate. Screw type dislocation has larger defects energy than 

edge type dislocation and thus it is easier for the formation of pits and higher etching rate. 

To find the etch pit density (EPD), there are 42 pits, including all types dislocation, 

revealed on the 2μm×2μm (=4×10-8cm2) AFM image. Take the counted pits number 

divided by the area, an EPD of 1.5×109cm2 is obtained, which indicating the total 

dislocation density is around  1.5×109cm2. 
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Figure 2. 4 AFM image of defect selective etching. 
 

d. Transmission measurement 

The transmission measurement is used to determine the optical absorption edge and is 

capable of finding the thin film thickness.  Before the start of measurement, the 

background correction procedure is first completed by doing background scanning (or 

called blank scan) without placing the sample on the stage. During the measurement, 

light is incident on the tested sample and the transmitted light is expressed as the ratio of 

the incident light, and thus the percentage of the transmitted light is displayed as a 

function of the incident light wavelength. The principle of finding the absorption edge is 

simply adopting the theory of any incident light with a higher energy than the bandgap of 

the material will be absorbed. The transmission intensity will be greatly influenced by the 

defects, impurities in the tested sample, as well as the surface morphology; a rough 
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surface may result in an unclear absorption edge. On the other hand, the transmission 

measurement is also used to fast access the thin film thickness; the concept is depicted in 

Figure 2.5. Considering a light is incident to the sample, and will be transmitted, reflected, 

and absorbed partially at each interface of any two different refractive index media. Thus 

light is reflected back and forth, in the meantime, light transmission and absorption are 

occurred. From the basic constructive theory, one can easily find many transmission 

peaks and valleys in a widely scanned wavelength range, typically from 200nm to 800nm. 

The distance between any of these neighbor peaks or valleys is depend on the light path, 

i.e. the thickness, and thus by choosing two or more peak wavelength data, the thin film 

thickness is able to be determined. An optimized equation is used in this work to obtain 

the thickness information, due to the refractive index is slightly shift at different light 

energy and is also related to the material absorption edge. Figure 2.6 shows a 

transmission result of a AlGaN thin film with a absorption edge at 231nm, corresponding 

to a bandgap energy of 5.5eV and 75% Al content. The average transmission is around 

80% which can be calculated from Fresnel equation by using the refractive index of 

AlGaN about 2.3 and air refractive index of 1. The clear absorption edge indicating a 

good crystal quality, also clear fringing peaks, which can be used to find the epilayer 

thickness, indicate the thin film has good optical quality. 
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Figure 2. 5 Thin film interference effects. [103] 
 

 

Figure 2. 6 Transmission measurement of AlGaN thin film. 
 

e. Contactless Sheet Resistance 

The sheet resistance and its uniformity are obtained by Lehighton contactless 

sheet resistance mapping system which provides a fast and nondestructive measurement. 

The working principle is relied on the creation of eddy currents on the tested sample, 

which is first fixed by two vacuum pumped holes sitting below and then brought into a 

gap of ferrite cores. The oscillating magnetic field induces the eddy currents in the 
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sample. A feedback system is used to measure the absorption of power which is 

proportional to the sample conductivity or inversely proportional to its sheet resistance. 

f. Van der Pauw Measurement 

Van der Pauw method is a powerful tool for characterizing a thin film electronic 

properties, such as sheet resistance, resistivity, carrier type, electron and hole mobility, 

and carrier concentration. Based on Ohm`s law, the Van der Pauw measurement is 

implemented by making contacts on the corners of a 1cm×1cm square sample and 

measures the resistance between the contacts as depicted in the Figure 2.7(a). The 

resistivity is formulated in the equation 2.1, where F is a function of Q and equates to 1 

while in a symmetrical sample like samples used in this work, and thus the resistivity 

formula can be further simplified. 
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Combining this Van der Pauw method with the Hall measurement by passing the 

electromagnetic field through the sample as shown in Figure 2.7(b), the carrier mobility, 

concentration and carrier type can be found [104]. 
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(a) (b) 

Figure 2. 7 Schematic of Van der Pauw Hall Measurement.  [105] 
 

g. X-Ray Diffraction 

XRD is one of the most common tools used to analyze the crystal quality, due to 

the fact that it does not damage the sample, no need for sample preparation, and fast 

response. X-ray diffraction technique gives us information on the crystalline quality 

which is averaged over the X-ray irradiated area, more information such as stress type, 

dislocation density, epilayer thickness, chemical composition, lattice constants, lattice 

mismatch, and strain condition can be obtained by performing X-ray diffraction on the 

crystal. X-ray used in the diffraction have wavelength lying approximately in the range 

0.5-2.5Å. The wavelength of the x-ray source used in this work is 1.54056Å, conducted 

on a Philips Materials Research Diffractometer.  

The principle scheme of high resolution x-ray diffractometer is presented in 

Figure 2.8(a). The X-ray is first generated from the filament X-ray tube, and then passed 

through a primary four bounce Ge (022) monochromator to eliminate unwanted 

wavelengths hitting the sample mounted on the sample holder. The diffracted beams 
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passed through the sample enter the detector; this forms a “double axis” instrument. The 

measurement can also be done by adding an analyzer crystal before the detector to define 

the direction of 2theta (2θ) that gives a “triple-axis” instrument with good resolution in 

2θ, although this addition will cause a lower intensity output. X-ray diffractometer has 

four axes which can be scanned: Omega(ω), 2θ, Psi(φ) and Phi(Φ) as depicted in Figure 

2.8(b).  

X-ray diffraction condition is normally defined by Bragg`s Law, which is shown 

in equation (2.2), where d is the distance of the Bragg plane, θ is the incident angle, and λ 

is the wavelength of the incident x-ray wavelength. Figure 2.9(a) shows the Bragg planes 

and the diffracted beam and illustrates that any incident beam in accordance with Bragg`s 

law will cause a constructive interference and will be followed by a diffraction condition. 

Figure 2.9 (b) shows Ewald`s circle moves in the reciprocal space by changing the 

incident angle. During the movement, if there is any reciprocal lattice point locates on the 

circumference of the Ewald`s circle, which implicates the occurrence of diffraction at the 

lattice point or Bragg plane. In this example, the reciprocal lattice point 0004 is on the 

circumference of this Ewald`s circle; thus the diffraction happened at (0004) plane with a 

θ incident angle. 

ߠ݊݅ݏ2݀ ൌ ߣ݊ (2.2)
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(a) (b) 

Figure 2. 8 Scheme of high resolution X-ray diffractometer. [106] 
 

 

(a) Bragg`s Law (b)Reciprocal Space mapping 

Figure 2. 9 Mechanism of X-ray diffraction. [106] 
 

On-axis and off-axis ω rocking curve are most frequently used to characterization 

crystal mosaicity. The reason for the broadening of rocking curve is due to the existence 

of different orientation grains, or due to a grain masaicity. The mosaicity of a mosaic 

crystal or mosaic block is defined by four parameters: tilt, twist, lateral coherence length, 

and vertical coherence length. All these parameters are related to the threading 

dislocations: Screw and mixed type threading dislocations result in tilts of the lattice 
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planes, which can be evaluated by on-axis ω scan while edge and mixed type threading 

dislocation measured by off-axis ω scan is related to twists in the lattice planes.  

On the other hand, 2θ-ω scan is most employed to unveil the fluctuation in 

vertical lattice constant, the chemical composition and the thickness of single layer or 

periodic structures like superlattices or MWQs.  

Another type of XRD scan that is highly used to characterize strains in hetero-

structures is reciprocal space mapping (RSM), which is carried out by applying ω and ω -

2θ scans to fulfill an area scans or 2-axes scan. An ideal reciprocal lattice point should 

look like a tiny spot on reciprocal space mapping image, but the dimension and the 

imperfection of the crystal in the tested material will cause a broadening to the reciprocal 

lattice point. Figure 2.10 exhibits a reciprocal space mapping image of AlGaN layer, 

providing a fast path to access the structure strain condition. The AlGaN peak is 

positioned around the center between the fully strained line and the fully relaxed line 

which means the AlGaN layer is relaxed around 50% and another 50% of compressive 

strain remains in the layer. Details of the reciprocal space mapping can refer to the Ph.D. 

dissertation by previous student Dr. Joseph Dion [107]. 
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Figure 2. 10 Reciprocal space mapping showing partially relaxed AlGaN layer. 
 

h. Transmission Electron Microscopy (TEM) 

The previously mentioned characterization techniques are indirectly interpreting 

the material defects especially for threading dislocations which is the dominant defect in 

the III-Nitride based light emitting diode. Transmission Electron Microscopy (TEM) is a 

reliable technique for analyzing microstructure and dislocations in not only a single layer 

but also a whole LED structure, with a maximum resolution limit of 1Å. The types of 

dislocations, the behavior of generation, propagation and termination of dislocations, as 

well as the vanishing behavior of dislocations by the mechanism of forming dislocation 

loops can be observed through the technique of TEM. Figure 2.11 shows a TEM cross-
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sectional image of an AlN layer deposited on sapphire, where dislocations generated 

from the interface between the sapphire and the AlN nucleation layer, propagating to the 

sample surface. Some of the dislocations disappear at the dislocation terminations while 

some are stopped through the formation of dislocation loops.  

Though TEM is capable of disclosing the microstructure information, TEM 

specimens require extensive preparation time; the cross-sectional and plan-view TEM 

specimens in this study were thinned by mechanical polishing and precision ion milling. 

Two different High Resolution TEM microscopes were used for the investigation: 

Hitachi H8000 STEM200 kV (75-200 kV) was used to record lower resolution images, or 

images with multi-beam condition. For high resolution images that measured under 

specific diffraction vector or g-vector under two-beam condition were recorded by JEOL 

2000F 200 kV with CEOS GmbH with a hexa-pole STEM probe corrector (80-200 kV).  

 

 

Figure 2. 11 TEM cross section image of AlN on sapphire. [108] 
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CHAPTER3 

SHORT PERIOD SUPERLATTICE SILICON DOPED HIGH ALUMINUM 

CONTENT ALGAN 

In III-nitride materials, silicon is the most common dopant source for n-type 

semiconductors where silicon ion is induced to substitute either Al or Ga atomic sites. In 

the case of n-type III-nitride layers deposited by metalorganic chemical vapor deposition 

of, silane (SiH4) or disilane (Si2H6) is commonly used as a precursor source for silicon 

doping. N-type silicon dopant is easily incorporated in low Al content (< 40%) AlGaN 

layer. However doping in high Al composition AlGaN layer (Al > 40%) remains a 

challenge. It is well known that silicon doping efficiency decreases with increasing Al 

content. The difficulty is mainly due to the increase in dislocation density, donor 

activation energy, and compensation effect as silicon dopant transforms into a deep level 

[109] [110]. 

In case of deep UV optoelectronic devices, it is essential to achieve successful 

doping and high conductivity in high Al content AlGaN layers buffer layers. The n-

AlGaN layer for deep UVLED is grown on a higher aluminum content AlGaN template 

for a lesser light absorption, since the light is extract from the substrate side. A higher 

aluminum content template (Al composition more than 70%) possess a smaller lattice 

constant, thus the n-AlGaN layer used for deep UV optoelectronic devices is grown under 

compressively stress. For AlGaN layers with aluminum composition of 60%, theoretical
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critical thickness is around 40nm [111]. Once the thickness of n-AlGaN layer crosses the 

critical thickness limit, the compressively stress will be relaxed by forming dislocations 

in the material thereby increasing the total dislocation density in this n-AlGaN layer.  

Silicon doping also easily induces edge type dislocation and will lead to a 

decrease in compressive stress or an increase in tensile stress for tensely stressed layers 

[112]. This results in a higher surface roughness as well as cracks in the epilayer.  

Combining the above mentioned silicon doping effects with the typically optoelectronic 

device crystal structure of nAlGaN, silicon doped AlGaN have been showed a reduction 

of compressively strain, which was achieved by the inclination of edge threading 

dislocation. The inclination angle is related to the doping level and was induced by 

surface roughness during growth [113]. To achieve low dislocation density, and high 

conductivity in the high Al content crack free AlGaN layer, the methods of controlling 

strains and creating interface to bend the dislocation for further decreasing dislocation 

density is proposed in this work and the results are discussed in this and next chapter. 

3.1 TEMPLATE PREPARATION FOR N-ALGAN 

It is widely known that the threading dislocation, generated from the interface of 

heterostructures especially in those high lattice mismatch structures, tend to propagate 

from the base to the surface of the structure and thus low defects and smooth bottom 

layer is crucial to achieve a low overall defects structure while pursuing high efficient 

optoelectronic devices. The use of bottom buffer layer can be traced back to 1986, when 

Amano et al. proposed an AlN buffer layer to improve the crystal quality of GaN film on 

sapphire. Nowadays, most of the III-Nitride base devices are exerting this bottom layer in 

order to obtain a high crystal quality structure, including those Nitride-based devices 
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grown on Silicon substrate. This AlN buffer layer is also critical in determine the overall 

efficiency in deep UVLED, not only because of it can help to improve the crystal quality, 

but also it is the only III-Nitride material will not absorb light emitted in the deep UV 

region. Scores of approaches have been reported to further gain the material quality of 

this AlN buffer layer such as the growth high temperature AlN, multi- III/V ratio 

modification, atomic layer epitaxy (ALE) etc.. The influence of low temperature 

nucleation layer to the material quality of AlN buffer has been studied in my master 

thesis [108]. The growth of thick AlN buffer layer has also shown effectively in decrease 

the dislocation density. High quality thick AlN buffer layer has also been published in a 

PhD dissertation by a previous student by adopting a rough/smooth technique [107]. The 

AlN buffer layer used in the work will be based on the rough/smooth technique and the 

material characterization date shown in Figure 3.1, where XRD (102) rocking curve scan 

relating to the major dislocation in the crystal is as low as 310 arcsec exhibiting a highly 

crystalline quality, also the 2μm×2μm AFM image shows a smooth surface with RMS 

value of 0.084nm as shown in Figure 3.2, and a sharp transmission edge at 203nm 

indicating a good optical transmission in the material, has successfully demonstrated that 

the AlN buffer layer is suitable in developing high efficiency deep UV LED. 
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Figure 3. 1 XRD(102) scan of AlN template. 

 

 

Figure 3. 2 AFM image of AlN template. 
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Beside the high quality AlN buffer layer, the technique of short period 

superlattice is also used for preparing high quality template for the subsequent growth of 

silicon doped AlGaN. Concepts of superlattice layers has been widely used and analyzed 

in improving crystal quality and strain management in the epitaxial layers. It acts as 

dislocation filters by the formation of dislocation loops to annihilate threading 

dislocations, also the design of AlN/AlGaN can effectively release partial of the 

compressive strain, resulting in crystal quality improved on grown layer and smoother 

surface. Figure 3.3 shows TEM image of conventional growth nAlGaN layer, where 5-

periods of AlN/AlGaN superlattice was mainly acting as screw type dislocation filter by 

forming the dislocation loops, indicated by white arrows.   

 

Figure 3. 3 Reduction of threading dislocation by using superlattice layers.  [80] 

 

In this study, two kinds of superlattice were used. The first type superlattice is 

AlN/AlGaN superlattice with the periods of 150 Å AlN layer followed by 80 Å AlGaN. 

Another type superlattice deposited on the first AlN/AlGaN superlattice is AlxGa1-

xN/AlyGa1-yN superlattce where the absorption edge was designed to be lower than 
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250nm for prevention the absorption of deep UV light. By adopting these two-step 

superlattice techniques on the previously optimized AlN buffer layer, we are able to 

provide a low defects SL template for exploiting high crystalline quality silicon doped 

AlGaN. Figure 3.4 shows the transmission data of our SL template with a sharp 

absorption edge at 235nm indicating the material is suitable for the use of template where 

deep UV light will pass through. Figure 3.5 exhibits the XRD (002) and (102) scans of 

the low defects SL template with the FWHM value of 280 arcsec and 370 arcsec 

respectively. The template surface morphology is shown in Figure 3.6, where many spiral 

hillocks can been seen on the 5μm×5um AFM scan with a RMS roughness of 0.7nm, 

indicating the existence of screw dislocations, and is commonly seen in the Ga doped III-

nitride layers. The dislocation density of the SL template is characterized by etching pit 

density (EPD) as shown in Figure 3.7, where the black circles pointed out the etch pits 

with a number of 13 on this 2μm×2μm AFM scan, giving a EPD of 3×108 cm-2. 

Figure 3. 4 Transmission measurement of SL template. 
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Figure 3. 5 XRD (002) and (102) scans of SL template. 

 

 

Figure 3. 6 AFM image of SL template. 
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Figure 3. 7 AFM image of superlattice template (EPD~3×108 cm-2). 

 

3.2 SHORT PERIOD SUPERLATTICE SILICON DOPED ALGAN 

In order to achieve a low defect, high conductivity silicon doped high Al content 

AlGaN, though many reports point out that increase of Al content will raise the difficulty 

of silicon doping and limit the crystal quality, a short period superlattice(SPSL) silicon 

doped AlGaN technique will be employed. Most of the reports use the superlattice 

technique in the un-doped buffer layers in order to produce a high crystal quality template. 

Our group first published that the use of superlattice structure can improve the crystal 

quality, the electronic properties, and thus the optical power in deep UV LED, due to its 

capability of effectively relaxing stress induced by the lattice mismatch from the 

heterostructure. In this research, short period superlattice technique is not only used in 
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fabricating a high quality template, but is also used in producing low defect silicon doped 

AlGaN for implementing the high efficiency deep UV LED.  

3.2.1 Superlattice n-AlGaN on undoped superlattice template 

In this work n-AlxGa1-xN/n-AlyGa1-yN superlattice will be adopted in forming the 

nAlGaN, since the conventional used AlN/AlGaN is difficult in silicon doping. In order 

to get a suitable n-AlGaN layer for a deep UV optoelectronic, both the x and y of the 

aluminum composition have to be well designed to target an absorption edge less than 

245nm. In order to maximize the impact of superlattice technique, the lattice constant of 

the two interlayers for forming the superlattice period have to be designed with as large a 

difference as possible, namely AlN(x=1) and GaN(y=0). However, AlN layer is difficult 

in doping, and the growth condition for growing smooth AlN and GaN has a large 

difference, thus a compromised solution has been proposed. Instead of using AlN/GaN 

superlattice, n-AlxGa1-xN layer with 35% of Al composition and AlyGa1-yN layer with 

80% of Al composition are introduced to compose the superlattice n-AlGaN, also the 

growth condition of both nAlGaN layers has been pre-optimized for getting a smooth 

surface. In order to prevent the deep UV light absorption especially from the low Al 

content layer, the thickness of each layer is designed by the theoretical absorption 

equation (Beer–Lambert law) as shown in Eq 3.1, as well as the experimental setup, 

where AlN/AlGaN was used to provide a more accurate absorption edge, giving an 

optimized thickness of around 20A with an average absorption edge of 237nm. Figure 3.8 

exhibits a quasi-sharp absorption edge of the calibrated AlN/AlGaN layer, indicating the 

design of nAlGaN layer with 35% Al content with a thickness of 20A is suitable for use 

in forming deep UV light absorption free n-AlxGa1-xN/n-AlyGa1-yN superlattice.  
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ܫ ൌ ܫ ൈ ݁ିఈ௫ (3.1)
 

, where α is the absorption coefficient, x is the layer thickness. 

 

Figure 3. 8 Absorption edge calibration of AlN/AlGaN superlattice. 
 

The n-AlxGa1-xN/n-AlyGa1-yN superlattice is accomplished by using the above 

pre-optimized, calibrated AlGaN layers with the period thickness of around 40A and the 

same doping level as the conventional nAlGaN. The total superlattice nAlGaN thickness 

is preposely engineered to be half as thick as the conventional nAlGaN, due to the fact 

that our custom built MOCVD system is adopting a single metalorganic loop, which 

require longer stabilization time as compares to double or multiple loop design for the 

mass flow controller (MFC) and pressure controller to prevent the damage of the device 

itself while changing the metalorganic source flow and pressure condition. Whereas the 

longer stabilization time will increase the total growth time, it also may influence the 

epilayer surface, due to surface decomposition and diffusion, which is crucial for 

developing short period interlayers requiring sharp interface. In the experiment results, 
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the comparison data to the conventional nAlGaN and superlattice template, as well as the 

mechanism of decreasing defects will be discussed below. 

Figure 3.9 first reveals the transmission characteristic of the superlattice n-AlGaN 

where a clear absorption edge of 251nm is shown. The results agree with our design by 

using 40A thick of n-AlxGa1-xN/n-AlyGa1-yN superlattice, where x=35% and y=80%, and 

meeting our requirement of the targeted nAlGaN layer with about a 250nm absorption 

edge. The surface morphology is characterized by 2μm×2μm AFM scan as shown in 

Figure 3.10 with a RMS roughness of around 0.34nm. The smooth surface consists of 

many two dimensional steps and no surface pits or large opening was seen. Moreover, 

unlike the surface of conventional nAlGaN (Figure 2.3), this superlattice n-AlGaN did 

not show spiral hillock on the surface, though a small portion of steps intersection were 

seen, indicating larger crystal grains and thus improved surface morphology. The sheet 

resistance of the sample is approximately 273Ω⁄□, which is higher than the conventional 

nAlGaN due to the decreased thickness, and can still be used in deep UV LED fabrication. 

Figure 3. 9 Transmission measurement of superlattice nAlGaN. 
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Figure 3. 10 AFM image of superlattice nAlGaN. 

 

The crystal quality characterization has been carried out by XRD (002) symmetric 

scans and (102) asymmetric scans, which related to the screw-type dislocation and edge-

type dislocation, respectively. A comparison diagram of XRD (002) scans of the SL 

template, conventional nAlGaN, and superlattice nAlGaN is shown in Figure 3.11. The 

FWHM value has dramatically decrease from 847 arcsec for conventional nAlGaN, to 

257 acesec for the proposed method, namely, superlattice nAlGaN, while the value 

doesn’t differ much between the SL template and the SL nAlGaN layer. XRD on-axis 

rocking curve scan is related to the tilt of crystal grains and thus the screw type 

dislocation. The on-axis XRD scan suggests that the screw type dislocation has been 

largely decreased by adopting the superlattice nAlGaN. The XRD (102) asymmetric scan, 

revealing the grain twist as well as the edge type dislocation, in Figure 3.12 exhibits 
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higher FWHM values for both nAlGaN structure than the superlattice template. This 

indicates that silicon doping degrades the material crystal quality and corresponds with 

the literature reports that the superlattice technique is effective in filtering screw type 

dislocation and not sensitive to the edge type dislocation.  

 

Figure 3. 11 XRD (002) scan of superlattice nAlGaN. 
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Figure 3. 12 XRD (102) scan of superlattice nAlGaN. 

 

The dislocation density of the superlattice nAlGaN layer is characterized by the 

etch pit density (EPD) on the 2μm×2μm AFM image as shown in the Figure 3.13. The 

dislocation density has decreased by a factor of four to around 2.5 ൈ 10଼ܿ݉ିଶ  as 

compared to the conventional nAlGaN layer, whose dislocation density is around 

1 ൈ 10ଽܿ݉ିଶ  to 5 ൈ 10ଽܿ݉ିଶ . A Decrease of the screw type dislocation may be the 

main reason leading to the improvement of crystal quality, as predicted by the XRD on-

axis scan, which may attribute to strain relaxation by adopting superlattice technique in 

the nAlGaN layer. Figure 3.14 introduces XRD reciprocal space mapping on (105) plane 

for the SL nAlGaN and conventional nAlGaN, the lateral correlation length and mosaic 

spread of the SL nAlGaN is 2724Å and 224s, respectively, also 1332Å and 276s for the 
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conventional nAlGaN. The results suggest a larger grain size and a lower tilt of the 

crystal grain. A schematic for both nAlGaN strained lines based on the RSM is depicted 

in Figure 3.15, where the dot red straight line represents the fully strained line. The more 

the strained relaxation occurs, the larger the angle between the stained line and the fully 

strain line. The SL nAlGaN is showing 20% more strain relaxation than the conventional 

one, which may explain the decreased screw dislocation and thus improved material 

quality, since fewer defects will be generated to release the strain in the layer. A high 

quality n-type AlGaN layer on SL template has been achieved by adopting n-AlxGa1-

xN/n-AlyGa1-yN superlattice technique, reaching a low dislocation density of 2.5 ൈ

10଼ܿ݉ିଶ, RMS roughness of 0.34nm, and sheet resistance of 273Ω⁄□. 

 

Figure 3. 13 AFM image of superlattice nAlGaN (EPD~2.5×108 cm-2). 
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(a) SL nAlGaN (b) Conv. nAlGaN 

Figure 3. 14 XRD Reciprocal space mapping. 

 

 

Figure 3. 15 Strain relaxation of superlattice nAlGaN. 
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3.2.2 Developing Superlattice n-AlGaN on AlN template 

Instead of growing the SL n-AlGaN on SL template, in this section, the SL n-

AlGaN will be directly deposited on a high quality AlN template. Most of the reports are 

adopting an un-doped superlattice template as a dislocation filter layer by the mechanism 

of strain relaxation. However, the extra superlattice layer will dramatically increase the 

overall growth time, and thus the unit cost of deep UV LED wafer will be increased. It is 

possible to develop the SL n-AlGaN on AlN template, since the proposed approach of SL 

n-AlGaN has combined the superlattice concept in the n-AlGaN and is able to show an 

improved crystal quality through a further strain relaxation. The growth conditions of the 

SL nAlGaN on AlN template remain the same as the previous SL nAlGaN growth 

conditions described 3.2.1, except 25% increased layer thickness for the purpose of 

lowering the sheet resistance. 

The transmission characterization is shown in the Figure 3.16 with a slightly 

higher absorption edge of 255nm, where the transmission fraction has decreased from 

around 80% to 70%. Both phenomenon may be caused by more incorporated Ga atoms 

and increased growth rate due to the removal of the SL template. The SL nAlGaN with 

this absorption edge and transmission is still capable of use in developing deep UV LED. 

Because of the 25% increased thickness, the sheet resistance of the SL nAlGaN layer has 

dropped to an average of 212Ω⁄□ as shown in the Figure 3.17 studied by the sheet 

resistance mapping, showing a high uniformity of doping in the layer. The sheet 

resistance value also shows a 22% decrease as compared to the nAlGaN sample in 3.2.1, 

revealing a well match with the resistance formula (ܴ ൌ ߩ 

௧ൈ௪
). The small error between 

25% and 22%, may attribute to a small change of electron mobility in the layer. 
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Figure 3. 16 Transmission measurement of superlattice nAlGaN on AlN template. 
 

 

Figure 3. 17 Sheet resistance mapping of superlattice nAlGaN on AlN template. 
 

The crystal quality has been carried out by the XRD (002) scan and (102) scan for 

revealing the information of screw type dislocation and edge type dislocation, 

respectively. The comparison diagram of the XRD (002) scans of the SL nAlGaN on AlN, 
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SL nAlGaN on SL template and the conventional nAlGaN is shown in the Figure 3.18. 

Although the removal of the SL template did cause a 15% increase of the FWHM value 

to the SL nAlGaN, the FWHM value of 294arcsec is still three times lower than the 

conventional one. Strong evidence of the concept of combining the superlattice technique 

in the nAlGaN is shown from this comparison diagram. It is predictable that the XRD 

(102) scan should not show much improvement, since the superlattice technique is 

reported not effective in filtering edge-type dislocation as shown in Figure 3.19, where 

the FWHM values are not much different from the three samples. 

 

Figure 3. 18 XRD (002) scan of superlattice nAlGaN on AlN template. 
 

17.0 17.2 17.4 17.6 17.8 18.0 18.2
0.1

1

10

100

1000

10000

 nAlGaN on AlN-294arcsec
 SL nAlGaN-250arcsec
 Conv. nAlGaN-847arcsec

In
te

ns
ity

(A
.U

.)

Omega (Degree)



59 
 

 

Figure 3. 19 XRD (102) scan of superlattice nAlGaN on AlN template. 
 

Figure 3.20 exhibits the 2μm×2μm AFM image of the etched SL nAlGaN. 

Around 15 etched pits are found on the 2μm×2μm scan area, representing an EPD 

of	3.75 ൈ 10଼ܿ݉ିଶ, which is close to the previously reported EPD of the SL nAlGaN 

(2.5 ൈ 10଼ܿ݉ିଶ) on SL template and is dramatically decreased from the conventional 

nAlGaN (1.2 ൈ 10ଽܿ݉ିଶ). The EPD data degree with the XRD data and again show that 

the design of combining the superlattice concept in the nAlGaN and removing the 

commonly used superlattice template is promising in developing low cost, high efficient 

deep UV LED. Like other superlattice buffer reports, we attribute this improvement of 

the crystal quality to the relaxed strain in the crystal structure. The XRD RSM scan is 

shown in Figure 3.21(a), where the lateral correlated length is 1872Å and the mosaic 

spread is 226s. A comparison diagram in Figure 3.21(b) is used to explain the relaxed 
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strain in the SL nAlGaN directly on AlN. It is reasonable that the SL nAlGaN on AlN has 

more strain as compared to the SL nAlGaN on SL template since the SL buffer was 

working as a strain relief layer. Particularly, the conventional nAlGaN relaxation line is 

only used as a baseline to express a close relaxation degree of the SL nAlGaN on AlN, 

proving the superlattice nAlGaN is effective in combining the function of strain 

relaxation, and cannot be used to compare the influence of the defects inside the layers 

due to the different structure of the two samples.  

 

Figure 3. 20 AFM image of superlattice nAlGaN on AlN template (EPD~3.75×108 cm-2). 
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(a) (b) 

Figure 3. 21 XRD Reciprocal space mapping. 
 

To conclude, the approach of n-AlxGa1-xN/n-AlyGa1-yN superlattice has been 

proposed to replace the conventional nAlGaN as an electron cladding layer for 

developing high efficiency deep UV LED. The proposed method is showing a dramatic 

improvement of the crystal quality with an EPD as low as 2.5 ൈ 10଼ܿ݉ିଶ. Additionally, 

the same approach is used to directly deposit on the AlN template, instead of SL template, 

to reduce the unit cost of the wafer. A low defects SL nAlGaN on AlN was achieved with 

an EPD of 	3.75 ൈ 10଼ܿ݉ିଶ, indicating this approach is promising in fabricating high 

efficiency, low cost deep UV LED. Table 3.1 summarizes the XRD and EPD 

characterization data of the proposed approach on different template and the conventional 

nAlGaN. 
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Table 3.1 Comparison of SL nAlGaN and Conv. nAlGaN 
 

 Conv. nAlGaN SL nAlGaN SL nAlGaN on AlN

XRD (002) scan (arcsec) 847 250 294 

XRD (102) scan (arcsec) 440 465 458 

Lateral Correlation Length (Å) 1332 2724 1872 

Mosaic Spread (s) 276 224 226 

EPD (cm-2) 1.2 ൈ 10ଽ 2.5 ൈ 10଼ 3.75 ൈ 10଼ 
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CHAPTER 4  

SILICON DOPING MODULATION ALGAN 

In this chapter, a new approach, silicon doping modulation technique, will be 

demonstrated to form low defect and high conductivity nAlGaN layer. In the problem 

identification section, silicon doping is the major problem causing degradation to the 

epitaxial crystal quality as well as the increased roughness of the layer surface due to the 

extra impurities introduced into the atomic structure generating additional defects or 

energies to the lattice. It is inevitable in inducing the silicon impurities to the structure, 

since silicon ion is the most effective doping source for forming n-type III-Nitrdie 

semiconductor. However, some reports have shown that the roughen surface resulted by 

silicon doping may be the major reason causing inclination of treading dislocations. The 

inclination angle may be influenced by the growth condition such as the growth 

temperature, the growth rate, the lattice mismatch degree as well as silicon doping level. 

The larger the bending angle of the threading dislocation, the higher the possibility of the 

dislocation to cancel each other by forming a dislocation loop or to bend to the basal plan 

preventing its propagation to the on grown layer.  

The silicon doping modulation technique is carried out by simultaneously flowing 

NH3, TMA, TMG into the reactor for the growth of AlGaN layer, the growth conditions 

such as metal organic flow, carrier gas flow, growth temperature and reactor pressure are 

kept the same as the condition mentioned the conventional nAlGaN, except a pulsed flow
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of silane precursor is used instead of constantly flowing of silane source. A schematic 

diagram is shown in Figure 4.1. Since the silicon doping has shown to bend the threading 

dislocation by roughing the surface, a pulsed silicon doping is expected to bring multiple 

interfaces to the structure, increasing the inclination angle and thus increasing the 

probability of dislocation annihilation by forming dislocation loops. A series of 

experiments are designed to optimize the crystal quality and the conductivity of the 

nAlGaN layer. The effects of different silicon doping pulse cycle (On and Off), silicon 

doping level and the nAlGaN thinkness on the material properties such as dislocation 

density, sheet resistance, surface morphology etc. will be investigated.  

 

Figure 4. 1 Precursor flow time for silicon doping modulation AlGaN. 

 

4.1 OPTIMIZATION OF SILICON DOPING PULSE CYCLE 

To understand the effect of silicon pulse cycle, two n-type Al0.60Ga0.40N samples 

were grown. The growth time, temperature, pressure and precursor flows were 

intentionally kept same to get a similar thickness and cutoff wavelength and the n-AlGaN 
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samples were grown on optimized high quality undoped superlattice template with a low 

dislocation density of 3×108 cm-2 the same SL template prepared in the previous to 

decrease the experiment error. Sample A was grown with a si-pulsed cycle of 12 seconds, 

where the silane ‘ON’ time is 6 seconds and ‘OFF’ time is 6 seconds. Sample B was 

having a 9 second pulsed cycle with silane ‘ON’ time of 6 seconds and ‘OFF’ time of 3 

seconds. The thickness of all the n-AlGaN samples are around 1um and cutoff 

wavelength is around 250nm. Transmission spectra of sample A is shown in Figure 6, 

where a high wafer transparency of 80% was reached and the clear fringing peaks 

indicate a good optical quality, a similar absorption edge and transparency for sample B.  

 

Figure 4. 2 Transmission spectrum of silicon doping modulation AlGaN for Sample A. 
 

Figure 4.3 shows the X-ray (002) ω-scan rocking curve of the superlattice 

template and both sample A and B. Both of the samples shows an increment of X-ray 

FWHM from 257 arc-seconds to 356 and 358 arc-seconds for Sample A and Sample B 

respectively. The small difference of the XRD 002 scan for sample A and sample B can 

be ignored and considered as instrument caused error. The X-ray (102) ω-scan FWHM 

values of the superlattice template is 360 arc-seconds, 413 arc-seconds for Sample A and 
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421 arc-seconds for Sample B, as shown in Figure 4.4, a very small difference has been 

shown, however, the difference may not be able to tell whether the change of pulse cycle 

cause any tremendous effect to the material quality or not.  

 

Figure 4. 3 X-ray (002) ω-scan rocking curve. 
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Figure 4. 4 X-ray (102) ω-scan rocking curve 
 

To access the average dislocation density including pure edge, pure screw and 

mixed type dislocation, etch pits density (EPD) method is approved to be a easiest way, 

since EPD method doesn`t need long sample preparation time as compare to TEM sample 

preparation and the etching process can be easily done by dipping the sample in suitable 

etching solutions. The EPD images for sample A and sample B are showing in Figure 4.5 

and Fig 4.6, respectively. Sample B has a smaller EPD than sample A and a smoother 

surface morphology is shown on the sample B. Both of the images showing a slightly 

increment in dislocation density as compare to its SL template (EPD~ 3 ൈ 10଼ܿ݉ିଶ), 

however the dislocation density values have significantly decreased comparing to the 

conventional n-AlGaN (EPD~ 1.2 ൈ 10ଽܿ݉ିଶ), which shows one order of magnitude 
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higher dislocation density. The concept of pulsed silicon doping is initially proved able to 

improve the crystal quality, and a series of experiments will optimize the nAlGaN by 

suppressing the propagation of the dislocation.  

 

Figure 4. 5 AFM image of sample A (EPD~4×108 cm-2). 
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Figure 4. 6 AFM image of sample B (EPD~3.5×108 cm-2). 
 

Figure 4.7 shows the relation of sheet resistance and the si-doping pulse time, 

where sample A with 6 seconds si-doping off time having a sheet resistance value of 499 

Ω/□, while sample B with 3seconds si-doping off time showing a lower sheet resistance 

value of 391 Ω/□.  Since sample B has lower sheet resistance value and slightly lower 

EPD, also there is not much difference of the crystal quality characterized from the XRD 

scans, the si-pulse condition in sample B, consisting 3 seconds si-doping OFF time and 6 

seconds si-doping ON time will be adopted as the base condition for the following silicon 

doping experiments. 
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Figure 4. 7 Sheet Resistance with increasing of si-doping off time. 
 

4.2 THICKNESS AND DOPING EFFECT 

In this section, a series of experiments will be used to optimize the growth 

condition of the pulsed silicon doping for developing low defect, high conductivity and 

thick nAlGaN. The silicon pulse cycle will be kept the same for all the experiments, 

while the silicon doping level and the nAlGaN layer total thickness will be tuned. To get 

a comprehensive understanding of the effects from various growth condition to facilitate 

the optimization, cross-comparison of the characterization data including nomarski image, 

surface morphology, XRD on-axis and off-axis scans, XRD reciprocal space mapping, 

sheet resistance etc. will be applied.  

4.2.1 Thickness effect with constant doping level  

Two different experiment setups will be used to find the effect of thickness to the 

nAlGaN material properties. For the first setup, four different thickness nAlGaN will be 

compared, while the silicon doping level of 40 sccm flowing constantly during the silicon 
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pulse ON time. To differentiate these four samples based on the thickness, the sample has 

the same thickness as the conventional nAlGaN will be called 1X-40, where the 40 

indicating the doing level, similarly sample with double thickness as compare to the 

conventional nAlGaN will be named 2X-40, thus four samples, 1/2X-40; 1X-40, 2X-40, 

4X-40 will be first compared here. Transmission spectrum of 2X-40 is shown in Figure 

4.8 with a sharp absorption edge of 250nm, the other three samples have a similar 

transparency and absorption edge and thus no need to show all the result here. The 

thickness of the nAlGaN layer for sample 2X-40 with a value of 6.4 μm was determined 

by SEM cross-section image as shown in the Figure 4.9. The surface macro-morphology 

of the samples are exhibited by Nomarski mode optical microscopy as shown in Figure 

4.10. Smooth surface is shown on both 1/2X-40 and 1X-40 samples, however, as the 

thickness increase some hexagonal sharp shallows with a pit at the center can be seen, 

this phenomenon becomes severe while the thickness further increase as shown in the 

4X-40 case, which may be too rough for the consequent layers. The micro-scale surface 

morphology is carried by AFM for the samples, for the two thinner layers, the surface is 

smooth with RMS values of 0.85nm and 0.96nm respectively. While the thickness 

increases, as suggested from the previous Nomarski images, the surface is getting rougher 

for both of the samples as shown in the Figure 4.11, and the roughness increases to 

0.63nm and 0.85nm for 2X-40 and 4X-40 respectively. This trend should be able to be 

modified through the growth condition. However, the surface morphology cannot provide 

the crystal quality information of the sample and thus XRD scans and EPD will be used. 
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Figure 4. 8 Transmission spectrum of silicon doping modulation AlGaN. 
 

 

Figure 4. 9 SEM cross-section image of 2X-40. 
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Figure 4. 10 Nomarski images of silicon doping modulation AlGaN samples. 

 

Figure 4. 11 AFM images of silicon doping modulation AlGaN samples. 
 

1/2X‐40  1X‐40 

2X‐40  4X‐40 

2X‐40  4X‐40 
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Figure 4.12 reveals the XRD on-axis scans and off-axis scans of the samples, both of 

the scans showing a trend of increased FWHM values while the nAlGaN thickness were 

increased. From the experiences, we may conclude that the crystal quality of the thicker 

silicon pulsed nAlGaN must be poorer than the thin one, however this result is contradict 

to the etching pits experiments as shown in Figure 4.13, where the 1X-40sample and the 

4X-40 samples are showing the same EPD value (4×108cm-2), while 1/2X-40 and 2X-40 

are getting EPD value of 3.5×108cm-2 and 3.75×108cm-2, respectively. This disagreement 

maybe because the XRD scans are measuring the entire nAlGaN layer including the 

bottom portion and surface, any defects within this nAlGaN layer no matter before or 

after bending or whether forming loops or not will contribute to the broadening of the 

XRD rocking curve and thus the FWHM value, whereas the EPD value will only related 

to the threading dislocations propagating to the surface. It is understandable that a thicker 

sample will have more roughened interfaces caused by the pulsed silicon doping 

technique and thus a higher FWHM value; on the other hand, these roughened interfaces 

may be the driven sources bending the threading dislocation, however the EPD value did 

not further decrease with the increasing interface, it is possible that there are additional 

dislocation generated during the thickening process when the thickness pass the critical 

value.  
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Figure 4. 12 XRD (002) and (102) scans of silicon doping modulation AlGaN samples. 
 

1X-40(EPD~4×108cm-2) 4X-40(EPD~4×108cm-2) 

Figure 4. 13 AFM images of etched silicon doping modulation AlGaN samples. 
 

The Sheet resistance values of the samples are plotted in the Figure 4.14, where he 

sheet resistance values are reciprocally corresponding to the thickness, and a lowest sheet 

resistance value of 38Ω/□ is achieved. 
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Figure 4. 14 Sheet resistance of silicon doping modulation AlGaN samples. 
 

The second experiment setup is increasing the silicon doping level to 80 sccm, 

samples 1X-80 and 2X-80 will be compared. The transmission data of both samples 

showing sharp absorption edge around 250nm. AFM roughness showing slightly rougher 

surface on the thicker sample with a RMS value of 1.3nm, same phenomenon has been 

seen on their Nomarski images as shown in Figure 4.15 where the 2X-80 sample showing 

a more undulate feature as compare to the 1X-80, these increased roughness along with 

the thicker deposition is following the same trend from the previous experiment setup. 

The XRD on-axis and off-axis scan also showing the same tendency for these samples, 

namely the thicker has higher FWHM values on both scans as shown in the Figure 4.16.  
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Figure 4. 15 Nomarski images of silicon doping modulation AlGaN samples. 

 

Figure 4. 16 XRD (002) and (102) scans of silicon doping modulation AlGaN samples. 
 

As mentioned above this trend cannot accurately tell the material defects density, 

instead the EPD method will be adopted as shown in the Figure 4.17, though the XRD 

scans showing a wider peak, the EPD of the 2X-80 sample has reach a low EPD value of 

2.5×108cm-2. Also sheet resistance value of the 2X-80 sample is as low as 50Ω/□. The 

strain relaxation relation of the above samples in both experiment setup 1 and 2 is 

depicted in the Figure 4.18 extracted from the XRD reciprocal space mapping on (105) 

plane. When the doping is 40 sccm, the more strain relaxed with the increased thickness, 

and in the 4X-40 sample the layer is totally relaxed, whereas for the case of 80 sccm the 
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strain did not change at all with thickness. The phenomenon may because the heavily 

doping is the dominant factor in the strain relaxation process, and thus the increased 

thickness did not affect the strain relaxation, however, a further increase thickness may 

induce more relaxation. Since the 2X-80 sample possess low EPD density of 2.5×108cm-2 

indicating a high crystal quality, a low sheet resistance of 50Ω/□ implicating a high 

conductivity, as well as a smooth surface with AFM RMS value of 1.3nm, a full LED 

structure will be developed by adopting this silicon pulsed nAlGaN. 

 

1X-80(EPD~3.75×108cm-2) 2X-80(EPD~2.5×108cm-2) 

Figure 4. 17 AFM images of etched silicon doping modulation AlGaN samples. 
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Figure 4. 18 Strain relaxation of silicon doping modulation nAlGaN samples. 
 

4.3 SILICON DOPING MODULATION ALGAN ON ALN 

The pulsed si doping technique also is employed to deposit nAlGaN directly on 

AlN, two samples having exactly the same growth condition as 2X-40 and 2X-80 named 

2X-40-AlN and 2X-80-AlN were studied. In the Figure 4.19 dramatic cracks are showing 

on the 2X-80-AlN sample, while for the same thickness sample, 2X-40-AlN showing a 

more smooth surface. Comparing the 2X-80-AlN sample to the 2X-80 one (Figure 4.14), 

which was deposited on the superlattice template, one can deduce that the removal of 

superlattice template attribute to the cracking. However, there are no cracks revealed on 

the 2X-40-AlN sample, which may because the two different growth condition samples 

have different stress system from each other. When the stress pass a critical value in the 

2X-80-AlN sample due to the removal of superlattice template, which impacting its stress 
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system, cracks were triggered to release these stress. The impact of the nAlGaN crystal 

quality by the removal of superlattice template is characterized by XRD scans and EPD. 

The increase of silicon doing showing an increase of XRD FWHM values on both scans, 

this increase may be related to the cracks on the heavily doped sample. 

Figure 4. 19 Nomarski images of silicon doping modulation nAlGaN samples on AlN 
template. 

 

Figure 4. 20 XRD (002) and (102) scans of silicon doping modulation AlGaN samples on 
AlN template. 

 

The EPD results is showing in the Figure 4.21, both of the samples showing huge 

degradation of their crystal quality, the EPD value is 1.1×109cm-2 and 1.2×109cm-2 for 
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2X-40-AlN and 2X-80-AlN respectively, while the value is 3.75×108cm-2 for 2X-40 and 

2.5×108cm-2 for 2X-80. Dramatic difference results have been shown between pulsed 

silicon doing nAlGaN technique to the superlattice nAlGaN, in which the EPD only 

increased from 2.5×108cm-2  to 3.75×108cm-2 as shown in the Figure 4.22. This can be 

strong evidence that the superlattice nAlGaN technique is able to successfully combine 

the function of superlattice template into the nAlGaN and demonstrate relief of strains. 

2X-40-AlN(EPD~1.1×109cm-2) 2X-80-AlN(EPD~1.2×109cm-2) 

Figure 4. 21 AFM images of etched silicon doping modulation AlGaN samples on AlN 
template. 
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Figure 4. 22 Dislocation densities of nAlGaN samples on different template. 

 

XRD reciprocal space mapping is carried out for revealing the strain relaxation 

information for the samples in this chapter as depicted in the Figure 4.23. The heavily 

doping 2X-80-AlN sample is showing more relaxation than the light doping 2X-40-AlN 

sample through the generation of heavily cracking. Comparing all these samples to the 

conventional one, the effective strain relaxation has been shown, and thus the material 

quality has been dramatically improved. 
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Figure 4. 23 Strain relaxation of nAlGaN samples. 
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CHAPTER 5 

HIGH EFFICIENCY DEEP UV LED 

In this chapter, the growth, characterization and fabrication of high efficiency of 

deep UV LEDs will be demonstrated. All the LEDs will employ identical epitaxial 

structures, except the buffer layers and electron cladding layers, which will be applied 

based on the previously optimized nAlGaN techniques, specifically, short period 

superlattice nAlGaN, pulsed silicon doping nAlGaN and conventional nAlGaN. The 

comparison of the optical power and the light spectrum of the LEDs will be carried out 

by electroluminescence on the as grown DUV LED wafer. 

5.1 DEVELOP OF HIGH EFFICIENCY DEEP UV LED 

To develop the high efficiency deep UV LED, the low defects, high conductivity 

nAlGaN has been demonstrated by using the short period superlattice nAlGaN(SPSL 

nAlGaN) and silicon doping modulation nAlGaN in the chapter 3 and chapter 4 

respectively. In this section, deep UV LED structure carried out by growing the standard 

active region and p-type layers on two different proposed nAlGaN layers are used to 

compare with the deep UV LED developed on the conventional nAlGaN, which is 

depicted in the Figure 5.1. The LED structure is deposited on 2” c-plane sapphire 

substrate, then the high temperature AlN and superlattice template were used as template 

for the growth of nAlGan electron cladding layer. On top of the nAlGaN layer, five 

periods of multiple quantum wells (MQWs) are grown as active region and designed to
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emit light with emission peak at around 280nm. A 70% aluminum content AlGaN is then 

grown on the MQWs as electron blocking layer to improve the injection efficiency by 

preventing the electron overflow, followed by a hole cladding layer and p-type contact 

layer for making ohmic contact, assisting holes injection. A more detail growth condition 

can refer to reference [114]. 

 

Figure 5. 1 Deep UV LED structure. 
 

The influence of the nAlGaN layers to the LED optical power and light spectrum 

are characterized by electroluminescence (EL) by spectrometer. To prevent the confusion, 

the LED adopting conventional nAlGaN is noted as conventional LED(Conv. LED), 

while the LED employing silicon doping modulation technique in the nAlGaN and the 

LED applying short period superlattice nAlGaN layer are noted as Si:modulation LED 

and SPSL LED respectively. The epitaxial structure of each LED is illustrated in the 

Figure 5.2, where both of the conventional LED and the Si: modulation LED were grown 
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on superlattice template, whereas the SPSL LED was directly deposited on the AlN 

template without the additional strain-relief superllatice layer. 

   

(a)Conventional LED (b)Si: modulation LED (c)SPSL LED 

Figure 5. 2 Development of Deep UV LED structure with different nAlGaN techniques. 
 

Figure 5.3 is showing the sheet resistance of these LED samples. High sheet 

resistance uniformity is seen on both Si: modulation LED and SPSL LED. The sheet 

resistance value is corresponding to the previously reported nAlGaN techniques, with the 

average value of 200.7 Ω/□ for SPSL LED, 108.9 Ω/□ for conventional LED and a 

lowest value of 53.57 Ω/□ for Si: modulation LED. 
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(a)Conventional LED (b)Si: modulation LED (c)SPSL LED 

Figure 5. 3 Sheet resistance mapping of DUV LED samples. 
 

Figure 5.4 exhibit the as grown LED wafer spectrum of the conventional LED 

with a sharp band to band emission peak at 280nm and a long wavelength parasitic 

emission peak at 345nm, where the primary to parasitic peak emission ratio is around 250. 

The long wavelength parasitic peak usually arises from the radiative recombination 

involving deep levels, namely from conduction band to deep level recombination in 

either barrier layer or most likely p-AlGaN layer. The inset picture in the Figure 5.4 

shows a schematic of the band to band and band to deep level processes [115]. The 

parasitic emission can be improved by the adoption of electron blocking layer and 

improving the epitaxial layers crystalline quality. The light spectrum of the Si: 

modulation LED and SPSL LED are shown in the Figure 5.5 (a) and (b) respectively. 

Since both of the Si: modulation nAlGaN and SPSL nAlGaN have shown the decrease of 

dislocation density in the previous chapters, the LED spectrums based on these two 

nAlGaN techniques show the reduction of the long wavelength parasitic peak, resulting 

in the main to parasitic peak emission ratio larger than 1000. Beside the shrink of the 

345nm parasitic peak, a longer wavelength side peak center at 410nm has revealed, 

which is possibly due to the radiative recombination of overflowed electron to the deep 
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level at p-GaN and may be mitigated by further design of the electron blocking layer. It is 

noticeable that an existence of short-wavelength emission shoulder at 260nm, which may 

result from the recombination of AlGaN barrier. 

 

Figure 5. 4 EL emission spectrum of DUV LED on conventional nAlGaN layer. 
 

(a) Si: modulation LED (5.5 ~ 5.7uw)  (b) SPSL LED (4.8 ~ 5.5uw) 

Figure 5. 5 EL emission spectrum of DUV LED. 
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The Relation of the LED optical power to the LED nAlGaN dislocation density is 

depicted in the Figure 5.6, where the obvious trend is showing that the decrease of 

dislocation density results in an increase of the DUV LED optical power to around 32%, 

and it is believed that this improvement is due to the reduce of the dislocation density 

assists the process of radiative recombination, namely the probability for the occurrence 

of radiative recombination has increased. 

Figure 5. 6 Comparison of dislocation densities and optical power of DUV LEDs with 
different nAlGaN techniques. 

 

5.2 DEEP UV LED DEVICE 

In this section, UV LED device is carried out on the Si: modulation LED wafer by 

using the conventional LED fabrication process, where the mesa size is 200μm×200μm. 

The Deep UV LED device spectrum is shown in the Figure 5.7, where the main emission 

peak is centered at 281nm. Parasitic peaks, such as the short wavelength 260nm side peak 
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and longer wavelength 350nm and 440nm side peaks with higher main to parasitic 

emission peak can are also shown on the LED device light emission spectrum.     

 

Figure 5. 7 Silicon doping moduation Deep UV LED light spectrum. 
 

Figure 5.8 exhibits the comparison of LED devices optical power between 

conventional structure LED and si: modulcation structure LED. By adopting the silicon 

modulation technique, the LED optical power has increase around 25% from 0.48mW to 

0.61mW, since the device fabrication factors, including the dimension are intently kept 

the same, indicating the light extraction efficiency for both of the devices are the same. 

Thus the improvement of the optical power can be attributed to the improvement of the 

international quantum efficiency, due to the dramatically decrease of the dislocation 

density by adopting the si doping modulation technique. Apart from the improvement of 

the optical power performance, the use of the si doping modulation technique can help to 
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achieve crack free n-AlGaN with thickness up to 10μm, resulting the sheet resistance as 

low as 38Ω/□.  Considering the surface morphology and the smoothness, the thickness of 

the nAlGaN was designed around 6um with a sheet resistance of 53 Ω/□ for the si: 

modulation LED, while the conventional LED has a higher sheet resistance of 109 Ω/□. 

The decrease of the nAlGaN sheet resistance results in the increase of the slope of the I-V 

curve as shown in the Figure 5.9. 

 

Figure 5. 8 L-I characteristics of DUV LEDs. 
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Figure 5. 9 I-V characteristics of DUV LEDs. 
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CHAPTER 6 

FUTURE WORKS AND CONCLUSION 

6.1 CONCLUSION 

This research is focused on improving the efficiency of deep UV optoelectronic 

devices, by improving the base template epilayers specifically silicon doped n-type 

AlGaN electron cladding layer on which the subsequent quantum well and other device 

layers are grown.  The n-type AlGaN electron cladding layer is crucial in determining the 

internal quantum efficiency (IQE), current spreading issues and junction heat dissipating 

performance for optoelectronic devices. This dissertation focused on developing methods 

to reduce dislocation in the silicon doped n-type AlGaN which is currently the limiting 

factor in achieving high power, robust and stable Deep UV optoelectronic devices.  

Two key approaches have been investigated to mitigate the defect generation 

namely; a) Silicon doping modulation AlGaN, b) short period Superlattice (SPSL) silicon 

doped AlGaN. This research has shown that the optimized silicon doping modulation 

technique was able to create multiple rough interfaces to decrease the density of 

threading dislocation from 1.2×109cm-2 to 3×108 cm-2 as compared to the conventional n-

AlGaN. Furthermore, by adopting this technique, a 12nm thick, crack free silicon doped 

AlxGa1-xN (x=60%) layer is able to achieved with a low sheet resistance of 38Ω/□. 

Another proposed short period superlattice silicon doped AlGaN technique showed the 

ability of stain relaxation investigated by XRD reciprocal lattice mapping and is able to
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filter screw type threading dislocation from 1.2×109cm-2 to 2.5×108cm-2. One of the 

major contribution of this technique is not only the ability in effectively decreasing 

dislocation density but also combining the function of un-doped superlattice template into 

this technique, which facilitate the development of low cost and low defects DUV LED 

directly on AlN template instead of on the additional un-doped superlattice template. Our 

result showed a threading dislocation density of 3.5×108cm-2 was achieved by direct 

depositing the SPSL silicon doped AlGaN layer on AlN template. 

Deep UV LEDs developed by adopting conventional nAlGaN, silicon doping 

modulation nAlGaN and SPSL silicon doped AlGaN on AlN with dislocation density of 

1.2×109cm-2, 3×108cm-2 and 3.5×108cm-2 respectively were characterized by on wafer 

electroluminescence to investigate the influence of the dislocation density on the optical 

power. The results showed that both of the LEDs adopting proposed nAlGaN techniques 

with threading dislocation of around 3×108cm-2 show dramatic (>30%) improvement in 

optical power. Deep UV LED device fabricated on the silicon doping modulation LED 

shows a 25% increase of it optical power (from 0.48mW to 0.61mW) as compared to the 

conventional LED, which attributes to the reduction of the dislocation density. The 

results also exhibit a slightly drop of device driving voltage due to the improvement of 

nAlGaN sheet resistance.  

6.2 FUTURE WORK 

This work propose Silicon doping modulation technique and short period 

superlattice technique to improve the layer quality and control the layer sheet resistance 

in the high aluminum content (> 50%) electron cladding AlGaN layer. Both of the 

concepts will be adopted in the p-type layer to decrease dislocations generated due to the 
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lattice mismatch between high aluminum content electron blocking layer and the p-GaN 

layer. Furthermore, since the experiments have shown that the short period superlattice 

silicon doped AlGaN technique is able to maintain crystal quality or defect level on AlN 

template. This will help to dramatically reduce the unit cost of Deep UV LED, since the 

superlattice template requires long preparation time and large amount of metal organic 

sources, carrier gases, Ammonia, etc. 

There are some other issues that cause the degradation of the recombination 

efficiency. Currently, most of the Nitride-based LED devices with crystal structures 

grown along c-orientation exhibit spontaneous and strain- induced piezoelectric fields 

which can cause degradation in device performance, especially the combination 

efficiency, due to the reduced recombination probability of the electrons cloud and holes 

cloud in the active region, which is also known as quantum confine stark effect (QCSE). 

We have demonstrated that the use of semipolar or nonpolar sapphire substrate is 

effective in reducing the QCSE phenomenon; however, the device optical power was low, 

due to the existence of high threading dislocation in the active layer. To further reduce 

the defects density, a high quality AlN template is prerequisite for the development of the 

high power Deep UV LED on semipolar or nonpolar sapphire substrate and will be 

studied in the future. 
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