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ABSTRACT

At the most basic level obesity is the result of a chronic imbalance between 

energy intake and energy expenditure. However, the exact etiology is considerably more 

complex and may involve a variety of physiological and behavioral factors. Metabolic 

disturbances, including reduced fat oxidation as measured by the respiratory quotient 

(RQ) and reduced resting metabolic rate (RMR), have been identified as possible 

predictors of changes in body weight and body composition. RMR represents the largest 

component (60-80%) of caloric expenditure that contributes to total daily energy 

expenditure in humans and has high inter-person variability (±25%) but not within 

individuals (<±5%). The cause of this variability between individuals and the exact role 

of RMR and RQ in determining body weight and body composition are uncertain.  

This dissertation consists of three studies that were designed to 1) Identify 

correlates of RMR among behavioral and physiological variables in a cohort of young 

adult men and women; 2) Examine racial differences in RMR, body weight, and body 

composition among young adult women; and 3) Explore the longitudinal effects of RMR, 

RQ, physical activity, and dietary intake on subsequent changes in body weight and body 

composition in young adults followed for nine months.  

Three manuscripts were composed by analyzing data collected from the Energy 

Balance Study, an observational research study involving young adults (N=430). We 

measured RQ and RMR using indirect calorimetry, along with body weight and body 
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composition using dual energy X-ray absorptiometery, energy expenditure and time spent 

in physical activity using an arm-based activity monitor, and energy intake using 

interviewer-administered dietary recalls.  

The results of study 1 found fit individuals had a higher RMR compared to unfit 

individuals after controlling for differences in body composition between the groups. 

However, the decrease in RMR from low levels fitness compared to moderate or high 

levels of fitness was modest and represented approximately 3% of RMR or 47 kcal/day. 

Time spent in moderate to vigorous physical activity was also significantly related to 

RMR, but this influence was also small and had little predictive value over adjustments 

for body composition.  

Study 2 confirmed previous research study finding young adult African-American 

women have a lower RMR compared to their white peers after statistical adjustments for 

differences in body composition (1400.3±9.1 kcal/day vs. 1299.8±18.9 kcal/day, 

P<0.0001). African-American women had higher levels of fat mass compared to white 

women which resulted in elevated RMR beyond the differences in fat free mass prior to 

statistical adjustment. Additionally, cardiorespiratory fitness was significantly positively 

associated with RMR, but time spent in moderate to very vigorous physical activity was 

not.  

Finally, individuals with a high RQ gained significantly more body weight 

(1.55±0.23 vs. 0.83±0.18 kg, P=0.0040) and fat mass (1.19±0.23 vs. 0.60±0.18 kg, 

P=0.0150) over a 9 month period compared to those with a low or moderate RQ, 

independent of changes in energy intake, energy expenditure, macronutrient composition 
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of the diet, and physical activity. Additionally, a low RMR was not associated with gains 

in body weight or fat mass over the same period. 
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CHAPTER 1 

OVERALL INTRODUCTION

Resting metabolic rate (RMR), the amount of calories burned from normal 

physiological functions (E.g. respiration, brain activity), represents the largest component 

(60-80%) of total daily energy expenditure (TDEE) in humans. Because of this, the 

relationship of RMR to body weight and body composition is of great interest given the 

current levels of overweight and obesity. While RMR is remarkably stable within 

individuals (less than ±5% day-to-day variability), RMR has high inter-person variability 

(±25%). The cause of this variability and the role of energy expended from RMR on 

changes in body weight and body composition over time is uncertain and controversial. 

This dissertation consists of three studies that have been developed to better understand 

1) the relationship of RMR with behavioral (levels of physical activity, dietary intake) 

and physiological variables (gender, age, fitness level, body composition) in a group of 

healthy young adults, 2) the racial differences in RMR among young adult women, and 3) 

the longitudinal effects of RMR, physical activity energy expenditure, and dietary intake 

on changes in body weight and body composition over 6 months in a group of healthy 

young adults.  

Statement of the Problem 

The average adult in the United States consumes approximately 1 million calories 

each year. Despite this large intake of energy, most healthy adults are able to achieve a 

balance of energy expenditure primarily through mechanisms required to sustain life 
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(resting metabolic rate), digest food (thermic effect of food), and perform activities 

(thermic effect of physical activity). It is a chronic mismatch over time in this energy 

balance which results in changes of body energy stores. Because the largest contributor to 

energy expenditure is resting metabolic rate, small changes in it could result in a large 

number of calories over time. RMR was once thought to be determined only by body size 

and thus easily estimated using prediction equations. However, it is now accepted that 

RMR is highly variable, with differences as much as 25% between individuals. Given the 

high volume of energy expended and the large variability between individuals, it is 

important to better understand the determinants of RMR and the subsequent effect on 

body weight and composition. 

SCOPE OF THE STUDY  

The overall goal of this dissertation is to 1) identify variables which explain the 

inter-individual variation of RMR, 2) determine if differences exist in RMR between AA 

and W women after adjustment for potentially confounding variables, and 3) explore the 

role of RMR, RQ, energy expenditure, and energy intake on subsequent changes in body 

weight and energy storage.  

SPECIFIC AIMS AND RESEARCH QUESTIONS 

 The specific aims and research questions that will be explored in this dissertation 

are as follows:  

Specific Aim 1: Identify correlates of RMR among behavioral and physiological 

variables in a cohort of young adult men and women.   
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Research Question 1.1 What is the nature of associations between RMR and 

behavioral variables associated with physical activity? 

Research Question 1.2 What is the nature of the associations between RMR and 

behavioral variables associated with dietary intake? 

Research Question 1.3 What is the nature of the associations between RMR and 

physiological variables?  

Specific Aim 2: Examine racial differences in RMR, body weight, and body composition 

among young adult women.  

Research Question 2.1 Do African-American women have a lower RMR 

compared to Caucasian women? 

Research Question 2.2 Are there differences in body weight, body composition, 

and body composition distributions among African-American and Caucasian 

women? 

Research Question 2.3 Are certain behavioral and physiological variables 

associated with diet and physical activity different among African-American and 

Caucasian women?  

Specific Aim 3: Explore the longitudinal effects of RMR, RQ, physical activity, and 

dietary intake on subsequent changes in body weight and body composition in young 

adults followed for nine months. 

Research Question 3.1 What is the longitudinal trend of RMR and RQ on body 

weight and body composition trajectory in young adults? 
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Research Question 3.2 Is volume or intensity of physical activity associated with 

changes in body weight and body composition?   

Research Question 3.3 Are there gender differences in the relationships described 

in research questions 3.1 and 3.2? 
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CHAPTER 2 

LITERATURE REVIEW

Components of energy expenditure  

There are three major components of energy expenditure: basal metabolic rate, 

thermic effect of a meal, and thermic effect of physical activity. Basal metabolic rate is 

the ‘minimal level of energy expended to sustain life’ in a neutrally temperate 

environment while in a post-absorptive state and includes the energy cost of 

physiological functions such as muscle contractions, respiration, and brain function 

(Goran, 2000; Henry, 2005). Measurement of basal metabolic rate can be complicated 

task, so measurement of resting metabolic rate (RMR) is typically utilized instead, with 

the only methodological difference being basal metabolic rate is measured shortly after 

waking (<45 minutes) but before arousal (Ravussin, Lillioja, Anderson, Christin, & 

Bogardus, 1986), while RMR is measured after arousal (Goran, 2000). Because the 

values are similar (RMR is approximately 3% higher), the two terms are frequently used 

interchangeably (Goran, 2000) and for simplicity RMR will be used for the remainder of 

this text. RMR constitutes between 60 to 80% of total daily energy expenditure 

(TDEE)(Goran, 2000). Meal-induced thermogenesis, also referred to as the thermic effect 

of food (TEF), is the energy that is expended to digest, metabolize, and store ingested 

macronutrients (Goran, 2000). TEF constitutes approximately 6-10% of TDEE (Goran, 

2000; Ravussin et al., 1986). Thermic effect of exercise, or as it is more widely called, 

physical activity energy expenditure (PAEE), describes the increase in metabolic rate that 
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is caused by contraction of skeletal muscles (Goran, 2000). PAEE constitutes between 10 

to 30% of total energy expenditure. Additionally, two minor components of energy 

expenditure also exist. The energy cost of growth contributes to energy expenditure, but 

is inconsequential beyond the first months of life (Goran, 2000). Energy expenditure 

from exposure to environmental temperatures or diet is referred to as adaptive 

thermogenesis, but also rarely occurs outside of the initial months of life, extreme 

temperature changes (humans have broad thermoneutral zone with relatively small 

changes in metabolic rate occurring over relatively wide temperature changes, primarily 

due to behavioral responses such as changes in clothing), or prolonged caloric restriction 

or overfeeding (Doucet et al., 2001; Goran, 2000; Lowell & Spiegelman, 2000).   

Resting Metabolic Rate  

Overview RMR is the largest contributor of TDEE, representing between 60-80% 

of calories burned (Goran, 2000; Ravussin et al., 1986; Shetty, 2005), with sedentary 

individuals displaying a higher relative contribution due to lower levels of PAEE. As 

mentioned previously, basal metabolic rate is the minimum level of energy expended to 

sustain life and is typically measured shortly after sleep but before arousal (Henry, 2005). 

Due to the difficulty of measuring basal metabolic rate in a laboratory setting, RMR is 

generally used instead and is only slightly higher (3%) due to the metabolic cost of 

arousal (Goran, 2000; Ravussin et al., 1986).  RMR is typically obtained soon after 

arousal, after 12 hours of fasting, and before any major physical activity (Ravussin et al., 

1986). 

 The concept of measuring the burning of fuel in the body was originally described 

by the classic experiments by Lavoisier, often referred to as the father of modern 
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chemistry, in the late 1700s (Goran, 2000). The term Grundumsatz or basal metabolism 

was first coined by Magnus-Levy in 1899 and his work gained popularity due to the 

emphasis placed on standardizing measurements, such as an absence of gross muscular 

activity, a post-absorptive state, minimal emotional disturbance, wakefulness, normal 

nutritive condition, an absence of disease or infection, and a thermo-neutral environment 

(Henry, 2005). In the first half of the 20th century RMR was most commonly measured to 

diagnose clinical diseases, particularly hypo- and hyperthyroidism. It is now more 

frequently used to understand the etiology of obesity and to calculate food energy 

requirements, particularly since the publication of a joint report by the Food and 

Agricultural Organization, World Health Organization, and United Nations University 

(Food and Agriculture Organization; Food and Agriculture Organization of the United 

Nations., United Nations University., & World Health Organization., 2004). 

Assessment Despite the attempts to standardize RMR methodology by Magnus-

Levy over 100 years ago, interpretation of the existing literature can be a challenging task 

due to the variety of measurement protocols, participant populations, and analysis 

techniques utilized. For example, a review of literature summarizing 10 studies exploring 

racial differences found RMR as low as 1267 kcals/day to as high as 1899 kcals/day, 

depending on if the RMR measurements were made fasted or on a controlled diet, if the 

setting was an inpatient unit or outpatient laboratory, if the method for assessing body 

composition was dual-energy X-ray absortiometry, skinfolds, or underwater weighing, 

whether the participants included children, adolescents, adults, or post-menopausal 

women, and if the population was normal weight, overweight, obese, or matched on body 

composition (Gannon, DiPietro, & Poehlman, 2000). Additionally, there are evolving 
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concepts for the proper adjustment RMR for body size, with emphasis shifting from the 

whole-body to individual tissues and organs to better reflect metabolically active mass 

(Gannon et al., 2000; Heymsfield et al., 2012). These irregularities in the existing 

literature represent both challenges in interpretation and opportunities for new 

discoveries.  

The origins of RMR measurement date back to the experiments of Lavoisier in 

the late 1700s after he observed a candle would burn only in the presence of oxygen, 

similar to how living organisms also required oxygen for life to produce heat as they 

combust food (Goran, 2000). The first direct calorimeter involved a small animal placed 

in a sealed chamber that was then surrounded by ice. As the animal expended energy and 

produced body heat, Lavoisier would measure the melted ice water and then calculate the 

amount of heat required to melt the ice.  

RMR can be quantified by directly measuring the amount of heat produced by the 

human body through metabolism direct calorimetry, as used by Lavoisier, or indirectly by 

measuring carbon dioxide production (indirect calorimetry).  Measurement of energy 

expenditure via direct calorimetry while a participant rests in a specialized chamber is 

technically complex, time intensive, and expensive, so indirect calorimetry is typically 

used in research settings (Branson & Johannigman, 2004; Manini, 2010; Ravussin et al., 

1986). Indirect calorimetry measures RMR not through heat production but instead 

assessment of respiratory gases using a mouthpiece or ventilated hood. This method is 

based on the volume of oxygen consumed and carbon dioxide produced from the 

combustion of carbohydrate, protein, fat, and alcohol. Two types of indirect calorimetry 

systems exist; open and closed circuit. Closed circuit systems were commonly used in the 
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early 20th century, and involved determining oxygen consumption by measuring the 

absorption of carbon dioxide within the system (e.g. by soda lime) (Branson & 

Johannigman, 2004; Henry, 2005). Open circuit systems are most commonly used today, 

with RMR measured by calculating the difference between oxygen consumption and 

carbon dioxide production collected via a mouthpiece or ventilated hood and sent to a 

mixing chamber (Branson & Johannigman, 2004). Closed circuit systems are prone to 

measurement error and have been shown to produce spuriously higher RMR values 

compared to open circuit system (Henry, 2005), so caution is advised when directly 

comparing values from these two different systems (E.g. historical trends in RMR). 

Regardless of the method used, RMR should be measured under conditions of 

immobility, fasted (>12 hours after a meal), and at least 24 hours since the last bout of 

strenuous activity in an environment with a temperature between 26 to 30 degrees 

centigrade (Henry, 2005; Shetty, 2005).  

As the name implies, RMR represents the rate of oxygen consumed over a period 

of time, typically one minute or one hour. It can be difficult contextually to interpret 

RMR in this form, so it is often more useful to express RMR as energy expenditure in 

terms of kilocalories per day. When expressed as kilocalories per day the term resting 

energy expenditure (REE) is often used interchangeably with RMR. For simplicity, RMR 

will be used throughout this document. Once the volume of oxygen (VO2) consumed and 

carbon dioxide (VCO2) produced are known, RMR can easily be calculated by 

application of the Weir equation (Weir, 1949):      
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where VO2 and VCO2 are expressed as L/min and 1440 is equal to the number of minutes 

in 24 hours. Also of interest when measuring RMR is respiratory quotient (RQ), which 

represents the oxidation of substrates such as carbohydrates and lipids. RQ is calculated 

by dividing VCO2 by VO2, with a value of 0.7 indicating pure lipid oxidation and 1.0 

indicating pure carbohydrate oxidation (Branson & Johannigman, 2004).  

Factors that influence resting metabolic rate 

 Fat free mass Body size is the primary determinant of RMR, a concept first 

systematically observed beginning in the 19th century by the French scientist Rameux 

(Heymsfield et al., 2012; Lusk, 1909). While initial hypotheses focused on the role of 

body surface area, it is now well-established that the fat free mass (FFM) component of 

the human body is the principal predictor of RMR (Heymsfield et al., 2012). FFM, which 

is predominantly composed of metabolically active tissues such as skeletal muscle and 

internal organs, explains 60-80% of the variation in RMR between individuals (Ravussin 

& Bogardus, 1989; Ravussin et al., 1986). This wide variance between individuals is due 

to heterogeneity of the non-fat components of the human body (i.e. FFM is not a single 

mass of metabolically identical tissue) (Heymsfield et al., 2002). For example, four 

organs (the brain, liver, heart, and kidneys) constitute <6% of body mass but are 

responsible for approximately 60% of RMR (Gallagher et al., 1998; Heymsfield et al., 

2012; Keys & Brozek, 1953), with a metabolic rate of 357.6 kcal/kg/day (Holliday, 

1971). Meanwhile, skeletal muscle represents approximately 40-50% of body mass in 

adults, but only approximately 18-36% of RMR (Gallagher et al., 1998; Goran, 2000), 

and has a metabolic rate of 17.6 kcal/kg/day (Holliday, 1971). Disproportional relative 

levels of skeletal muscle will result lower than expected levels of RMR due to the 
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discrepancy in size of other metabolically more active tissues such as the brain, liver, 

kidneys, and heart (Heymsfield et al., 2002). These and other components of FFM are not 

universally constant among humans, but vary in mass between individuals with body size 

(Gallagher, Allen, Wang, Heymsfield, & Krasnow, 2000), age (Gallagher et al., 2000), 

sex (Hayes et al., 2002), and race (Gallagher et al., 2006; A. Jones, Jr. et al., 2004).  

 Wiensier et al. combined RMR and FFM values from several studies involving 

individuals ranging in age from infants to adults to describe the contribution of 

metabolically active tissue across life (1992). During early life when internal organs 

comprise the highest relative amount of FFM, RMR from FFM is 79.0 kcal/kg/day. As 

skeletal muscle becomes the predominant component of FFM in adolescence and into 

adulthood, RMR resulting from FFM drops to 28.3 kcal/kg/day and 20.9 kcal/kg/day, 

respectively. This non-linear relationship between RMR and FFM in which the slope of 

the regression line decreases as FFM increases is critical to understanding the relationship 

between metabolism and body composition.   

 Fat mass Fat mass (FM) is also independently related to RMR despite often being 

incorrectly considered metabolically inert (Dionne, Despres, Bouchard, & Tremblay, 

1999; Ferraro et al., 1992; M. P. St-Onge, 2005; X. Wang, You, Lenchik, & Nicklas, 

2010). The contribution of FM to RMR is estimated to be between 5 kcal/kg/day (Elia, 

1992) to 10-13 kcal/kg/day (Goran, Kaskoun, & Johnson, 1994; M. P. St-Onge, 2005), 

explaining between 1-10% of the variability in young and middle aged adults (Nelson, 

Weinsier, Long, & Schutz, 1992; Sparti, DeLany, de la Bretonne, Sander, & Bray, 1997; 

Tataranni & Ravussin, 1995) and 2-3% in older adults (Lhrmann, Herbert, & Neuhuser-

Berthold, 2001). This range of variance across populations is due to the differences in FM 
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distribution across sexes and ages. Much like FFM, FM is not a metabolically 

homogenous substance; rather, there are regional variations in the physiological 

characteristics of adipose tissue. Specifically, abdominal fat has a higher metabolic rate 

than FM located in the gluteal-femoral region (Lhrmann et al., 2001; Weststrate et al., 

1990). This is likely due to the increased blood flow, greater responsiveness to 

norepinephrine, lower sensitivity to the antilipolytic effect of insulin, and higher rate of 

lipolysis of visceral fat compared to subcutaneous fat (Arner, 1995; Arner, Engfeldt, & 

Lithell, 1981; Hoffstedt, Arner, Hellers, & Lonnqvist, 1997; P. P. Jones, Snitker, Skinner, 

& Ravussin, 1996; Millet, Barbe, Lafontan, Berlan, & Galitzky, 1998).  

 Sex RMR is also influenced by sex, though few studies have directly explored the 

topic. Many studies have attributed sex differences in RMR to differences in FFM, 

though several with proper statistical analyses have shown an independent relationship. 

The largest study to examine sex differences in RMR was conducted on 328 males and 

194 females ranging in age from 17-81(Arciero, Goran, & Poehlman, 1993). After 

adjustments for FFM, FM, and CRF, males had a 3% (50 kcal/day) higher RMR 

compared to females. This difference persisted when the groups were divided into pre- 

(4% difference) and postmenopausal (5%) age categories. No difference was detected 

between the pre- and postmenopausal women, indicating gender differences were not 

related to menopausal status. Ferraro et al. (1992) found a similar lower RMR in females 

(44 kcal/day), though the difference was not statistically significant. However, the large 

standard deviation (314 kcals) and range of RMR among females (1038-2435 kcals) 

suggest possible measurement error, perhaps due to a relatively short measurement period 

(9-15 minutes). The mechanisms for a gender difference in RMR is unknown, though 
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hypotheses include differences in body cell mass operations (i.e. Na+-K+-ATPase 

activity), eating patterns, and skeletal muscle metabolism (Arciero et al., 1993; 

Poehlman, Toth, & Webb, 1993). 

 Age RMR decreases at a rate of 1-2% per decade of life beginning at age 20 (Elia, 

Ritz, & Stubbs, 2000) via numerous mechanisms (Manini, 2010). Declines in 

metabolically active FFM are responsible for most of the age-related decreases in RMR, 

but do not completely explain it (Krems, Luhrmann, Strassburg, Hartmann, & 

Neuhauser-Berthold, 2005; M. P. St-Onge & Gallagher, 2010). Instead, the likely cause 

of the declining RMR during aging is the combination of heterogeneous decreases in size 

and metabolic rate of the various tissues which make up FFM. For example, the brain, 

bones, and kidneys decline in mass at relatively the same rate between the ages of 20-80 

years (approximately 10-20%), but the spleen decreases much quicker (approximately 

38%)  while the heart increases in mass (approximately 10%) (Gallagher et al., 1997; He 

et al., 2009; Rico, Revilla, Villa, & Alvarez de Buergo, 1993). Likewise, there is 

evidence to suggest extracellular components that are not involved in metabolize 

activities increase with age, thus decreasing  the overall specific metabolic rate within an 

organ (Z. Wang, Heshka, Heymsfield, Shen, & Gallagher, 2005).  

Physical Activity It has been suggested ‘the factor that causes by far the most 

dramatic effect on metabolic rate is strenuous exercise’ (Guyton, 1997). Physical activity 

may have an effect on RMR via  two distinct pathways: 1) the growth of FFM (i.e. 

skeletal muscle), and 2) the effect on physiological processes that influence RMR 

(Speakman & Selman, 2003). The physiological effects of physical activity on RMR may 
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have both short (<48 hours post exercise) and long term (>48 hours post exercise) effects, 

while changes in FFM occur over much longer periods of time (> 4 weeks).  

It has been known for nearly a century that physical activity will produce acute 

elevations in RMR (Edwards, Thorndike, & Dill, 1935; Margaria, Edwards, & Dill, 1933) 

referred to as excess post-exercise oxygen consumption (EPOC); what is unclear is the 

exact duration of this elevation. Previous research has shown energy expenditure 

returning to baseline levels as quickly as 20 minutes post-exercise (Sedlock, Fissinger, & 

Melby, 1989) or as long as 48 hours post-exercise (Dolezal, Potteiger, Jacobsen, & 

Benedict, 2000; Edwards et al., 1935; Margaria et al., 1933) depending on the bout 

characteristics (type, intensity, and duration of the activity). In general, aerobic exercise 

at an intensity <70% of maximal capacity and <50 minutes do not have a prolonged 

effect (> 3 hours) on metabolic rate (LaForgia, Withers, & Gore, 2006; Poehlman, Melby, 

& Goran, 1991).  

The majority of cross-sectional studies indicate a 5-20% elevated RMR among 

individuals who participate in regular activity compared to sedentary controls, and 

cardiorespiratory fitness (CRF) is highly correlated with RMR (r=0.42, P<0.001)  

(Arciero et al., 1993; Ballor & Poehlman, 1992; Burke, Bullough, & Melby, 1993; Hill, 

Heymsfield, McMannus, & DiGirolamo, 1984; Poehlman et al., 1992; Poehlman, Melby, 

& Badylak, 1988; Poehlman, Melby, Badylak, & Calles, 1989; Ravussin & Bogardus, 

1989; Schulz, Nyomba, Alger, Anderson, & Ravussin, 1991; Sjodin et al., 1996; 

Tremblay, Coveney, Despres, Nadeau, & Prud'homme, 1992; Tremblay, Despres, & 

Bouchard, 1985; Tremblay et al., 1986; Tremblay et al., 1990; van Pelt, Dinneno, Seals, 

& Jones, 2001). An excellent example of this relationship is described by van Pelt et al. 
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(2001). Four groups of males where measured for RMR, CRF, and weekly exercise 

volume; those who were young and active, young and sedentary, old and active, and old 

and sedentary. The authors found RMR declined with age, but this decline was a result of 

age-related declines in weekly exercise and energy intake, and older individuals who 

maintained their exercise volume and dietary intake had a similar RMR compared to 

younger physically active men. 

The results from exercise interventions are not as clear due to wide variations in 

the sample size, the sample population, characteristics of the intervention, and time of 

RMR measurement following the last exercise bout. Several have shown increases in 

RMR (Berke, Gardner, Goran, & Poehlman, 1992; Goran & Poehlman, 1992; Lawson, 

Webster, Pacy, & Garrow, 1987; Poehlman, McAuliffe, Van Houten, & Danforth, 1990), 

while others have not (Bingham, Goldberg, Coward, Prentice, & Cummings, 1989; 

Blaak, Westerterp, Bar-Or, Wouters, & Saris, 1992; Broeder, Burrhus, Svanevik, & 

Wilmore, 1992b; Bullough, Gillette, Harris, & Melby, 1995; Westerterp, Meijer, Janssen, 

Saris, & Ten Hoor, 1992). Perhaps the study which best addressed whether physical 

activity may alter RMR was conducted by Byrne and Wilmore (2001). Participants were 

randomized into three groups for 9 weeks: 1) resistance training only, 2) resistance 

training plus aerobic training, and 3) control (no exercise). Importantly, RMR 

measurements were made 72 hours after the last bout of exercise, eliminating the acute 

effects of exercise on metabolic rate. Both exercise groups gained FFM as a result of the 

intervention (1.9 kg each). RMR increased in the resistance training group (44 kcals/day), 

but decreased in the combined group (53 kcal/day). When expressed as RMR/FFM, the 

resistance training group was not different post-intervention, and the combined group was 
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lower by 2.2 kcal/kg/day post-intervention. It is unclear the reason for the decline in 

RMR despite the increase in FFM in the combined group, but given that this group 

performed exercise each day of the week compared to four days/week of the resistance 

training group, perhaps compensatory responses to high exercise may be responsible.   

Insight into this compensation may be found in the study of energy flux (Bell et 

al., 2004; Bullough et al., 1995). Undereating has been shown to result in lower RMR 

(Poehlman et al., 1991; J. L. Thompson, Manore, Skinner, Ravussin, & Spraul, 1995; 

Warwick & Garrow, 1981), while overeating increases RMR (Mole, 1990). If highly 

active individuals match their EI to TDEE, they would be considered in energy balance at 

a high energy flux state (i.e. high EI and high TDEE), while sedentary individuals 

matching their EI to TDEE would be considered in energy balance at a low energy flux 

state (i.e. low EI and low TDEE). If exercise is stopped for 24-36 hours per the standard 

RMR measurement protocol (thus reducing TDEE), yet active individuals maintain a 

high level of EI they would be in a positive energy balance) and RMR may be elevated 

(Sjodin et al., 1996; Soares, Piers, & Shetty, 1989). Likewise, if highly active individuals 

are not matching their TDEE with EI (i.e. in a negative energy balance) their RMR 

measurement may be decreased (Bullough et al., 1995).  

Indeed, a cross-sectional study involving trained and untrained young adults 

exploring differences at least 48 hours after the last bout of exercise and consuming a 

weight-maintenance diet (i.e. low energy flux state) found no difference in RMR between 

the two groups (Schulz et al., 1991). This finding was replicated in a separate study, 

which also found elevations in RMR only when individuals were in a high energy flux 

state (Bullough et al., 1995). The mechanisms responsible for an increase RMR in high 
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flux conditions are purely speculative and have not been well-explored, but include likely 

include regulation of the sympathetic nervous system (SNS) (Bell et al., 2004; Bell et al., 

2001; Bullough et al., 1995; Ravussin, 1995). Reduced SNS activity has been identified 

in low energy flux state as expressed as decreases in norepinephrine (Cannon et al., 1991; 

Haahr et al., 1991) and muscle sympathetic nerve activity (Bell et al., 2004). Leptin, a 

hormone which regulates metabolism, is positively related to MSNA (Monroe, Van Pelt, 

Schiller, Seals, & Jones, 2000; Snitker, Pratley, Nicolson, Tataranni, & Ravussin, 1997), 

and leptin levels are associated with low energy flux states (Bell et al., 2004). Other 

mechanisms potentially responsible include changes in muscle cell structure (Hather, 

Tesch, Buchanan, & Dudley, 1991), immune systems responses (Cannon et al., 1991; 

Haahr et al., 1991), neuroendocrine function (Herring, Mole, Meredith, & Stern, 1992; 

Luger et al., 1987), and substrate cycling (Bahr, 1992; Wolfe, Klein, Carraro, & Weber, 

1990).  

Other physiological mechanisms responsible for increases in RMR related to CRF 

irrespective of energy flux are unclear. However, studies in both animals (Borsheim, 

Knardahl, Hostmark, & Bahr, 1998) and humans (Tremblay et al., 1992) suggest 

involvement of the sympathetic nervous system , particularly the β3 adrenoreceptors 

(Speakman & Selman, 2003). This relationship was assessed by giving trained and 

sedentary individuals a β-blocker or placebo following a bout of exercise. In the placebo 

condition, trained individuals had higher post-exercise (15-minutes) RMR values 

compared to controls. However, this difference disappeared when participants were given 

the β-blocker, suggesting the sympathetic nervous system plays a role in the effect of 

exercise on RMR, an idea supported by others (Spraul et al., 1993).  
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 Race  Current research is equivocal in regards to differences in RMR among 

adults due to variations in physiological variables (E.g. FFM) between races which makes 

direct comparisons difficult. A recent review of the literature found 10/15 studies 

examined reported lower levels of RMR between African Americans (AA) compared to 

Whites (W) ranging from 81-274 kcal/day (Gannon et al., 2000). The primary cause of 

this discrepancy appears to be due to higher levels of FFM in AA populations resulting 

from greater skeletal muscle and bone mineral density (Carpenter et al., 1998; Forman, 

Miller, Szymanski, & Fernhall, 1998; Foster, Wadden, & Vogt, 1997; Jakicic & Wing, 

1998; A. Jones, Jr. et al., 2004; Ortiz et al., 1992; Wagner & Heyward, 2000). 

Theoretically, since the metabolic activity of bone and, to a lesser extent, skeletal muscle, 

is low compared to internal organs (Elia, 1992; Gallagher et al., 1998; Holliday, Potter, 

Jarrah, & Bearg, 1967), analyses that do not independently account for these variables in 

FFM may spuriously overestimate FFM and thus indicate a lower RMR in AA based on 

their metabolic size (Gannon et al., 2000). In practice, few studies have accounted for 

differences in bone mineral content or skeletal muscle mass, but those which have 

reported similar RMR values with and without adjustments (Jakicic & Wing, 1998; 

Morrison, Alfaro, Khoury, Thornton, & Daniels, 1996; Yanovski, Reynolds, Boyle, & 

Yanovski, 1997), though two of these studies were in children and the assessment of 

RMR was after a three hour fast, not twelve hours as is the standard. Perhaps the most 

methodologically sound study to date found the difference in RMR between AA and 

Cauc increased from 119 kcal/day to 182 kcal/day when adjusted for bone mineral 

content (Jakicic & Wing, 1998).   



 

19 

 In addition to differences on bone mineral content and skeletal muscle, there may 

also be differences in the mass of high metabolically active organs between races (N. M. 

Byrne et al., 2003; Gallagher et al., 2006; Hunter, Weinsier, Darnell, Zuckerman, & 

Goran, 2000; A. Jones, Jr. et al., 2004). Perhaps the most thorough, though small, study 

to date used both magnetic resonance imaging and dual-energy X-ray absorptiometry to 

partition the body mass into four compartments: adipose tissue, skeletal muscle, bone, 

and residual mass (A. Jones, Jr. et al., 2004). Residual mass in this context represents the 

highly metabolically active organs of the brain, liver, kidneys, heart, gastrointestinal tract, 

and other organs/tissues. Among the sample of women matched for age, weight, and 

height, AA’s (n=22) had higher skeletal muscle (1.52±2.48 kg, P<0.01) and skeletal 

muscle + bone mass (1.72±2.66 kg,  P< 0.01) and lower residual mass (1.05±4.96 kg, 

NS) compared to W women (n=22). Additionally, measured RMR was also lower among 

AA women by 38 kcals/day, though the difference was not significant, potentially due to 

the small sample size. A similar study with FFM, FM, and regional lean tissue measured 

by DXA found a lower RMR (120 kcal/day) among AA women  cared to W women, but 

no difference after adjustment for trunk lean tissue (Hunter et al., 2000). The findings 

from these studies and others (N. M. Byrne et al., 2003; Gallagher et al., 2006; Yanovski 

et al., 1997) suggest smaller mass of metabolically active organs mediate the low RMR 

observed in AA women.  

 Menstrual Cycle As with many of the variables described earlier, the exact role 

of menstrual cycle on RMR remains unclear. Previous studies have shown RMR may 

differ between 5-10% from the luteal to follicular phase of the menstrual cycle, with a 

low point occurring 1 week prior to ovulation followed by a rise before the following 
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menstrual period (Hessemer & Bruck, 1985; Rubinstein, 1937; Solomon, Kurzer, & 

Calloway, 1982; Webb, 1986), while others have not (Blunt & Dye, 1921; Jakicic & 

Wing, 1998; Weststrate, 1993; Williams, 1943). The studies that have found variations 

have attributed the changes to progesterone secretion (Hessemer & Bruck, 1985; 

Rubinstein, 1937), though the exact mechanisms are unclear (McNeil, Bruce, Ross, & 

James, 1988).   

Other biological factors In addition to the mechanisms described previously, a 

host of other physiological and genetic factors have been posited to explain the individual 

variations in RMR (Speakman & Selman, 2003). This list includes: circulating leptin 

(Toth, Sites, & Poehlman, 1999) and ribosomal protein L3 levels (Allan, Nielsen, & 

Pomp, 2000), thyroid status (Freake & Oppenheimer, 1995) and circulating thyroid 

hormones (tri-iodothyronine and di-iodothyronine) levels (Moreno et al., 2002), thyroid 

receptor deficiencies (retinoic acid X-γ ) (Brown et al., 2000), protein turnover (Badaloo, 

Singhal, Forrester, Serjeant, & Jackson, 1996), mitochondrial proton leak (Rolfe & 

Brand, 1996), and polymorphisms of uncoupling proteins 2 and 3 (Astrup, Toubro, et al., 

1999; Barbe et al., 1998; Bouchard, Perusse, Chagnon, Warden, & Ricquier, 1997). 

Role of resting metabolic rate and respiratory quotient in obesity  

Given the large percentage of TDEE resulting from RMR, the relationship of it 

with body weight and body composition is of great interest (Katzmarzyk, Perusse, 

Tremblay, & Bouchard, 2000). However, the role RMR plays in the weight gain is not 

clear, both in terms of absolute involvement and also the direction of the relationship. For 

example, some prospective studies suggest RMR is predictive of subsequent weight gain 

(Astrup, Gotzsche, et al., 1999; Leibel, Rosenbaum, & Hirsch, 1995; Ravussin et al., 
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1986; Ravussin et al., 1988; Zurlo et al., 1990) while others do not (Katzmarzyk et al., 

2000; Marra, Scalfi, Covino, Esposito-Del Puente, & Contaldo, 1998; Seidell, Muller, 

Sorkin, & Andres, 1992). Even among those that suggest RMR is a factor in weight gain, 

some suggest low RMR is the predictor (Ravussin et al., 1988) while others state high 

RMR is the predictor (Leibel et al., 1995; Ravussin et al., 1986).  

Among the Pima Indians, low baseline RMR predicts subsequent weight gain 

(Ravussin et al., 1988). Perhaps the most advanced examination terms of assessment 

methods and statistical analyses, Ravussin et al. found negative relationship between 

baseline RMR and weight gain (e.g. participants in the lowest tertile of RMR had the 

highest incidence of weight gain) over 4 years. After adjustments for FFM, FM, age, and 

sex, RMR was 70 kcal/day lower in those who gained at least 10 kg compared to those 

who did not. Results were similar when RQ was examined; 24-hour adjusted RQ was an 

independent predictor of gains in both body weight (P<0.001) and fat mass (P=0.004), 

suggesting weight gain is a result of reduced rates of fat oxidation (Zurlo et al., 1990).  

These results are in direct contrast to the Quebec Family Study, which found no 

association between RMR or RQ on changes in body weight or fat during a 5.5 year 

follow-up (Katzmarzyk et al., 2000). The correlations were low between measures of 

body weight/fatness (E.g. weight, BMI, or sum of skinfolds) and RMR (R2= -0.03 to 

0.16, not significant) or RQ (R2= -0.05 to 0.12, not significant). Neither RMR nor RQ 

were significant predictors of increases in body weight or fatness from Cox regressions.  

Other prospective studies also found similar conflicting results. The Baltimore 

Longitudinal Study on Aging is the largest study to examine the role of RMR and RQ on 
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weight gain in men (N=775) over 10.3 years of follow-up (Seidell et al., 1992). After 

multivariate adjustments for age, BMI, FFM, and RQ were all significantly associated 

with weight change at P<0.05, but RMR was significantly associated only at P<0.10. 

However, those with an RQ of >0.85 (individuals with low rates of fat oxidation) were 

2.42 times more likely to gain at least 5 kg compared to those with an RQ of <0.76 

(individuals with high rates of fat oxidation). A study of Italian women (N=58) found 

similar results, with those who gained >3kg over a three year follow-up period having an 

RQ of 0.91 vs. 0.84 of those who did not (Marra et al., 1998). Based on these studies, it is 

oxidation of energy stores not RMR that is predictive of weight gain.    

The variations in findings are likely due to many factors. The studies that have 

shown the relationships between RMR and weight gain have consisted of young adult 

populations, and this age group is more likely to gain weight (Sheehan, DuBrava, 

DeChello, & Fang, 2003). For example, the mean age of the Pima Indians was 26 years 

with 11.9% of participants gaining at least 10 kg over four years of follow-up, while the 

mean age of the BLSA was 49 years and weight gain was 0.07 kg over a mean follow-up 

of 10.3 years and the mean age in the Quebec Family Study was 39 years and mean 

weight gain was 2.8 kg for men and 3.5 kg for women over 5.5 years. There are also 

methodological differences across studies. For example, RMR was assessed in the Pima 

Indians over a 24-hour period in a respiratory chamber, while RMR in the BLSA was 

measured using multiple techniques over a 19 year period. Also, baseline values in the 

BLSA were not reported; instead mean RMR values from all visits over the 19 year 

follow-up were used for data analysis which may dilute the findings. Additionally, body 

composition assessment techniques varied in quality from hydrostatic weighing in the 
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Pima Indians, skinfolds in BLSA and QFS, and not reported in the study from Italy, 

which makes direct comparisons of adjusted RMR values difficult.  

Also adding to the confusion of determining the relationship of RMR on weight 

gain is the fact that RMR increases as body weight increases. For example, among Pima 

Indians, which have the largest gains in weight based on low RMR values, RMR values 

after weight gain are similar to those who did not gain weight (Ravussin et al., 1988). A 

tightly controlled study which involved measuring RMR during normal weight, a 10% 

weight gain, a return to baseline weight, a 10% weight loss, and finally a 20% weight loss 

among a single cohort, found compensatory matching based on weight status (Leibel et 

al., 1995). For example, weight gain resulted in increases in RMR, weight loss resulted in 

decreases in RMR, and a return to baseline weight resulted in a return to baseline RMR. 

These findings make it difficult to disassociate the role of RMR on weight gain if weight 

stability is not assured. In other words, is RMR a reflection of actual metabolic status, or 

is it a marker for biological regulation of an energy imbalance (Ravussin & Gautier, 

1999)?
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CHAPTER 3 

GENERAL METHODOLOGY

Participants and enrollment process The three studies which form this 

dissertation will be completed using data collected in The Energy Balance Study, a 

prospective observational study following young adults for 24 months (Hand et al., 

2013). All participants were recruited from the Columbia, South Carolina area between 

June 2011 and July 2012. Flow of contact with participants is described in Appendix 1.  

Interested individuals completed an online screener on the study website 

(http://energybalance.sc.edu/) followed by a telephone interview to exclude participants 

not meeting inclusion criteria. All participants were required to have a BMI ≥20 and ≤35 

kg/m2 and age ≥21 and ≤35 years, and recruitment was designed for an equal distribution 

of male and female participants across the age categories of ≥21 and <28, and ≥28 and 

≤35. Exclusion criteria included use of medications to lose weight, started or stopped 

smoking in the previous 6 months, or planned weight loss surgery. Further, individuals 

were excluded for resting blood pressure (BP) exceeding 150 mmHg systolic and/or 90 

mmHg diastolic, an ambulatory blood glucose level of greater than 145 mg/dl, or those 

currently diagnosed with/or taking medications for a major chronic health condition. 

Individuals with a history of depression, anxiety, or panic were excluded, as were those 

taking selective serotonin inhibitors for any reason. All women were eumenorrheic, and 

http://energybalance.sc.edu/�
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those who were planning to begin or stop birth control during the duration of the study 

also were excluded.  

Study design The Energy Balance Study involved of a period of baseline 

measurements consisting of three laboratory visits, followed by repeated measurements 

every three months for one year. Baseline visit #1 consisted of a thorough review of 

medical history and demographic information, completion of an extensive battery of 

demographic, psychometric, and activity recall questionnaires, followed by dietary 

assessment training to prepare them for interviewer administered dietary recalls later in 

the study. Baseline visit #2 included measurements of resting BP, height, weight, waist 

and hip circumference, body composition via dual-energy X-ray absortiometry (DXA) 

full body scan, as well as determination of CRF via a maximal fitness test using a 

modified Bruce protocol with 12-lead electrocardiogram (ECG) and BP measurements. 

Baseline visit #3 included measurements of RMR, height, weight, waist and hip 

circumferences, and a blood draw. Additionally, a 10 day assessment of energy 

expenditure and three random 24-hour dietary recalls began at the conclusion of Baseline 

visit #3. All measurements were repeated every three months for the following year, 

except for RMR which was measured every six months and CRF which was not repeated. 

All study protocols were approved by the University of South Carolina Institutional 

Review Board, and informed consent was obtained from each participant prior to data 

collection.  

Anthropometrics The DXA provided data on bone mineral density, FM, and 

FFM, for both individual body segments (head, arms, legs, trunk, ribs, pelvis, spine for 

bone mineral density; arms, legs, and trunk for FM and FFM) and the whole body. The 
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scan was completed with a Lunar DPX system (version 3.6; Lunar Radiation Corp, 

Madison, WI). All anthropomorphic measurements were performed with the participant 

dressed in surgical scrubs and in bare feet.  Body mass index (BMI; kg/m2) was 

calculated from the average of three height and weight measurements using a traditional 

standiometer and electronic scale and recorded to the nearest 0.1 centimeter and 0.1kg, 

respectively. Hip and waist circumferences were measured with a calibrated, spring-

loaded tape measure.  Waist circumference was determined at the point midway between 

the costal margin and iliac crest in the mid-axillary line approximately 2 inches above the 

umbilicus. Hip circumference was measured at the widest point around the greater 

trochanter. Circumferences recorded were the average of three measurements and were 

rounded to the nearest 0.1 cm. 

Cardiorespiratory fitness Fitness testing was conducted on a treadmill 

(Trackmaster 425, Carefusion, Newton, Kansas) with respiratory gases sampled using a 

True Max 2400 Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah). The 

metabolic cart was calibrated prior to each test using known gas concentrations and 

volumes as recommended by the manufacturer. A trained exercise physiologist prepared 

eligible subjects for the graded exercise test (GXT), and a standard 12-lead ECG was 

performed. Subjects sat quietly for examination of the real-time resting ECG, heart rate 

(HR), and BP.  All subjects exercised to volitional fatigue, followed by continued 

walking at a slow pace until HR and BP returned to near baseline levels.  HR, BP, and 

treadmill total time were recorded at each stage of the protocol.   

The Modified Bruce GXT begins at a speed of 1.7 mph at 0% grade for 3 minutes 

then progresses to 1.7 mph at 5% grade for 3 minutes. After this stage, the protocol is 



 

27 

identical to that of the Bruce Protocol. The Modified Bruce Protocol was used due to its 

lower initial intensity for this generally deconditioned population. Previous research has 

shown a high correlation between the Modified Bruce and Bruce protocols for HR 

responses (r=0.97) and peak VO2 measurements (r=0.72) (McInnis & Balady, 1994). 

Resting Metabolic Rate RMR was measured via indirect calorimetry using a 

ventilated hood and an open-circuit system, True Max 2400 Metabolic Measurement Cart 

(ParvoMedics, Salt Lake City, Utah),  over a 30 minute period with data collection 

beginning after a 15 minute resting period. The metabolic cart was calibrated prior to 

each test using known gas concentrations and volumes as recommended by the 

manufacturer. Participants arrived for a morning visit following in a 12 hour dietary 

fasting state and at least 24 hours after the last bout of structured exercise. RMR was 

calculated from O2 consumption and CO2 production as measured continuously during 

the testing period with a constant airflow rate into the hood (Branson & Johannigman, 

2004; Weir, 1949, 1990). Airflow rate was based approximately on body weight with the 

goal of maintaining the fraction of end tidal CO2 between 1.0 and 1.2% (L/min), and the 

flow rate was set to not exceed 33 L/min for a person weighing 68 kg or 40 L/min for a 

91 kg person. The ratio of the volume of carbon dioxide produced to the volume of 

oxygen consumed was used to compute the RQ for each minute. Participants remained 

quiet and still through the entire RMR procedure. The room was maintained in low light, 

noise was kept at a minimum, and the temperature remained between 26 to 30 degrees 

centigrade (Branson & Johannigman, 2004; Henry, 2005). Participants were kept awake 

with continuous monitoring. 
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Energy Expenditure Energy expenditure was measured using the SenseWear 

Mini Armband (BodyMedia Inc. Pittsburgh, PA), an arm-based activity monitor. This 

portable, multi-sensor device, worn on the upper arm, incorporates tri-axial 

accelerometry, heat flux, galvanic skin response, skin temperature, and near-body 

ambient temperature. These measures are entered in combination with demographic 

information into an algorithm to estimate TDEE, PAEE, and sleep. The armband has 

been shown to be a valid device to measure energy expenditure and activity (Johannsen et 

al., 2010; M. St-Onge, Mignault, Allison, & Rabasa-Lhoret, 2007; Welk, McClain, 

Eisenmann, & Wickel, 2007). Participants were trained for approximately 20 minutes on 

the care and use of the armband activity monitor. The individuals started wearing the 

monitor immediately and were asked to continue use of the monitor except during 

periods when the monitor could get wet. For most individuals, this only included periods 

of showering or bathing. The participants wore the armband for 10 days and recorded 

their activities during any period of that time that the armband was not worn. Participants 

were deemed compliant if they completed 7 days of wear (including two weekend days) 

with at least 23 hours of wear time on each of the days. 

Energy Intake Energy intake was measured using interviewer-administered 24 

hour dietary recalls. The Nutrient Data System for Research software (NDSR Version 

2012), licensed from the Nutrition Coordinating Center (NCC) at the University of 

Minnesota, was utilized to conduct the dietary interviews. NDSR is considered the state-

of-the-art research software for conducting dietary recalls (F. E. Thompson & Subar, 

2013).  The food database includes over 19,000 foods, is updated yearly, and provides 

nutrient composition information for over 120 nutrients. The quality of a dietary recalls 
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depends both on the ability of the subject to remember which foods were consumed 

(Novotny et al., 2001) as well as the skill of the interviewer in eliciting complete and 

accurate information (F. E. Thompson & Subar, 2013). In this study, the dietary recalls 

were collected by a team of experienced (> 6 years using NDSR), registered dietitians 

specifically trained in using the NCC protocol. This protocol employs the multi-pass 

approach which utilizes prompting to reduce omissions, and standardizes the interview 

methodology across interviewers (Dwyer, Ellwood, Leader, Moshfegh, & Johnson, 

2001). Portion estimation is facilitated with the use by the subject of a validated, 2-

dimensional, food portion visual (FPV) that is an integral part of the NDSR software 

(Posner et al., 1992) and which we have used successfully in multiple studies in adults 

and adolescents. Prior to data collection, study participants undergo a brief training (10-

15 minutes) on how to use the FPV to estimate portion sizes of commonly eaten foods. 

The training incorporates life-sized plates, glasses and utensils and food models, in a 

hands-on experiential interchange (Wilcox, Sharpe, Parra-Medina, Granner, & Hutto, 

2011). Interviews are assigned on randomly selected, non-consecutive days, and cold 

calls are made to the study subject to minimize preparation that could bias recall (Hebert 

et al., 2002). The sampling window was set at 14 days to be adequately large to allow 

multiple attempts on multiple days to maximize as much as possible, the likelihood of 

completing an interview. 

STUDY 1 METHODOLOGY 

Purpose This study will address Aim #1: Identify correlates of RMR among 

behavioral and physiological variables in a cohort of young adult men and women.   

Research Questions 
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Research Question 1.1 What is the nature of associations between RMR and 

behavioral variables associated with physical activity? 

Research Question 1.2 What is the nature of the associations between RMR and 

behavioral variables associated with dietary intake? 

Research Question 1.3 What is the nature of the associations between RMR and 

physiological variables?  

Study Design 

 This study will utilize a cross-sectional design.  

Study Population 

 The current analyses will include males and females between the ages of 21 to 35 

years who completed all baseline measurements for The Energy Balance Study (n=430).  

Study Measurements 

 For study #1, all participants completed the following measurements utilizing the 

methodology described earlier: height, weight, waist circumference, hip circumference, 

CRF, RMR, energy expenditure via the SenseWear Mini Armband, and energy intake via 

interviewer administered dietary recalls.  

Statistical Analyses 

Participant characteristics will be based on demographic and physiological 

measurements using means and standard deviations. Significance will be tested using t-

tests for continuous variables and chi-square for categorical variables. Univariate 
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correlations and regression analysis will be performed to determine relationships between 

variables. The dependent variable will be RMR expressed as L/min. All computations 

were performed using SAS 9.2 (Cary, N.C.).  

STUDY 2 METHODOLOGY 

Purpose This study will address Aim #2: Identify the racial differences in RMR 

among young adult women.   

Specific Aim 2: Examine racial differences in RMR, body weight, and body composition 

among young adult women.  

Research Question 2.1 Do African-American women have a lower RMR 

compared to Caucasian women? 

Research Question 2.2 Are there differences in body weight, body composition, 

and body composition distribution among African-American and Caucasian 

women? 

Research Question 2.3 Are certain behavioral and physiological variables 

associated with diet and physical activity different among African-American and 

Caucasian women?  

Study Design 

 This study will utilize a cross-sectional design.  

Study Population 
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 The current analyses will include AA and W females between the ages of 21 to 35 

years who completed all baseline measurements for The Energy Balance Study (N=120).  

Study Measurements 

 For study #2, all participants completed the following measurements utilizing the 

methodology described earlier: height, weight, waist circumference, hip circumference, 

CRF, RMR, energy expenditure via the SenseWear Mini Armband, and energy intake via 

interviewer administered dietary recalls.  

Statistical Analyses 

Participant characteristics will be based on demographic and physiological 

measurements using means and standard deviations. Significance will be tested using t-

tests for continuous variables and chi-square for categorical variables. Univariate 

correlations and regression analysis will be performed to determine relationships between 

variables. The dependent variable will be RMR expressed as L/min. All computations 

were performed using SAS 9.2 (Cary, N.C.).  

STUDY 3 METHODOLOGY 

Purpose This study will address Aim #3: the longitudinal effects of RMR, physical 

activity energy expenditure, and dietary intake on changes in body weight and body 

composition over 6 months in a group of healthy young adults.   

Specific Aim 3: Explore the longitudinal effects of RMR, respiratory quotient, and 

physical activity on subsequent changes in body weight and body composition in young 

adults followed for nine months. 
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Research Question 3.1 What is the longitudinal trend of RMR and RQ on body 

weight and body composition trajectory in young adults? 

Research Question 3.2 Is volume or intensity of physical activity associated with 

changes in body weight and body composition?   

Research Question 3.3 Are there gender differences in the relationships described 

in research questions 3.1 and 3.2? 

Study Design 

 This study will utilize a longitudinal observational design.  

Study Population 

 The current analyses will include males and females between the ages of 21 to 35 

years who completed all baseline and nine month measurements for The Energy Balance 

Study.  

Study Measurements 

 For study #3, all participants completed the following measurements utilizing the 

methodology described earlier: height, weight, waist circumference, hip circumference, 

CRF, RMR, energy expenditure via the SenseWear Mini Armband, and energy intake via 

interviewer administered dietary recalls.  

Statistical Analyses 

Participant characteristics will be based on demographic and physiological 

measurements using means and standard deviations. Significance will be tested using t-
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tests for continuous variables and chi-square for categorical variables. A linear mixed 

models (LMM) regression random intercept growth model will be used to analyze the 

longitudinal data (West, Welch, & Galecki, 2007). An advantage of LMM approach is it 

allows for unbalance, unequally spaced observations over time making it ideal to analyze 

longitudinal data. The dependent variable will be change in body weight and body 

composition over 6 months expressed in kg. All computations were performed using SAS 

9.2 (Cary, N.C.).  
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CHAPTER 4 

MANUSCRIPT 1: CARDIORESPIRATORY FITNESS IS ASSOCIATED WITH ELEVATIONS IN 

RESTING METABOLIC RATE AMONG YOUNG ADULTS 
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Abstract  

Introduction: Previous research suggests resting metabolic rate (RMR) is elevated in 

endurance athletes with high levels of cardiorespiratory fitness (CRF) compared to 

sedentary individuals. It is less clear whether moderate levels of fitness or regular 

physical activity are associated with similar elevations in RMR. 

Objective: The purpose of the present study is to examine the role of CRF and 

objectively measured physical activity in explaining interpersonal variance of RMR 

among a cohort of young adults across a broad range of activity, fitness, and adiposity 

levels. 

Methods: RMR, body composition, CRF, total daily energy expenditure, and energy 

intake were measured in 285 fit and 138 unfit young adults. 

Results: Unfit participants had higher body weight, body mass index, fat mass, and body 

fat percentage compared to fit participants. There were no differences in RMR expressed 

as kcals/day between the groups. However, after statistical adjustment for differences in 

body composition between the groups, fit individuals had a higher RMR compared to 

unfit individuals by 45 kcals/day.  

Conclusion: The primary finding of the present study is fit individuals have a higher 

RMR compared to those who are unfit. Differences in body composition, specifically 

skeletal muscle mass, residual mass, and fat mass, explained a large portion of the 

variability in RMR between fit and unfit individuals. Additionally, while time spent in 

moderate to vigorous physical activity was also significantly related to RMR and varied 
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considerably between the groups, the influence was small and had little predictive value 

over adjustments for body composition.  

Introduction 

Obesity, at the most basic level, is the end product of a chronic imbalance of 

energy intake and energy expenditure over an extended period of time. There is no 

consensus on the exact cause of the current levels of obesity seen in much of the 

developed world, but most of the research focuses on excess energy intake or deficient 

physical activity energy expenditure. However, resting metabolic rate (RMR) represents 

the largest contribution of total energy expenditure (60-80%) and has been hypothesized 

as potential predictor of weight gain, with some analyses finding a low RMR predictive 

(Griffiths, Payne, Stunkard, Rivers, & Cox, 1990; Ravussin et al., 1988), while others 

have not (Katzmarzyk et al., 2000), and others somewhat ambiguous (Seidell et al., 

1992).     

While RMR is relatively stable within individuals (<5% day-to-day variation), 

variability between individuals is much higher (±25%) (Murgatroyd, Davies, & Prentice, 

1987). RMR is primarily determined by fat-free mass (FFM, approximately 63%), fat 

mass (FM, 6.7%), and age (1.7%) leaving over 25% of the variability unexplained 

(Johnstone, Murison, Duncan, Rance, & Speakman, 2005; Nelson et al., 1992; Weinsier 

et al., 1992). Identifying other variables responsible for the variation in RMR is important 

in order to understand energy balance and the etiology of obesity (Scrimshaw, 1996).  

 It has been suggested ‘the factor that causes by far the most dramatic effect on 

metabolic rate is strenuous exercise’ (Guyton, 1997). The majority of studies indicate a 5-
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20% higher RMR among individuals who participate in regular activity compared to 

sedentary controls, and cardiorespiratory fitness (CRF) is highly correlated with RMR 

(r=0.42, P<0.001) (Arciero et al., 1993; Broeder, Burrhus, Svanevik, & Wilmore, 1992a; 

Ravussin & Bogardus, 1989; Tremblay et al., 1985). However, most studies have 

examined the role of physical activity on RMR in the context of highly fit individuals 

(e.g. endurance runners) studied cross-sectionally (Schulz et al., 1991; Sjodin et al., 1996) 

or in unfit individuals following a short-term (< 4 months) exercise intervention 

(Tremblay et al., 1986; Tremblay et al., 1990). It is unclear if moderate amounts of 

physical activity or fitness explain any of the interpersonal variance found in RMR.    

Given recent technical advancements, it is now possible to assess objectively 

assess daily physical activity with great specificity, in terms of both absolute total energy 

expenditure and by time spent at a given level of intensity (e.g. moderate intensity 

activity) (Johannsen et al., 2010). Pattern recognition monitors integrate information from 

multiple sensors to provide highly sensitive and valid assessment of both structured 

exercise and complex lifestyle tasks, such as carrying loads, walking up grades, and non-

ambulatory activities (Johannsen et al., 2010; Welk et al., 2007). These technical 

advances now permit the repeated assessments of physical activity energy expenditure 

among large samples of individuals over extended periods of time. 

 The purpose of the present study is to examine the role of CRF and objectively 

measured physical activity in explaining interpersonal variance of RMR among a cohort 

of young adults across a broad range of activity, fitness, and adiposity levels.  

Methods 
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Participants and enrollment process The design and rationale for this study 

have been described in detail previously (Hand et al., 2013). All participants were 

recruited between June 2011 and July 2012, and were required to have a BMI ≥20 and 

≤35 kg/m2 and age ≥21 and ≤35 years. Exclusion criteria included use of medications to 

lose weight, started or stopped smoking in the previous 6 months, or planned weight loss 

surgery. Further, individuals were excluded for resting blood pressure (BP) exceeding 

150 mmHg systolic and/or 90 mmHg diastolic, an ambulatory blood glucose level of 

greater than 145 mg/dl, or those currently diagnosed with/or taking medications for a 

major chronic health condition. Individuals with a history of depression, anxiety, or panic 

were excluded, as were those taking selective serotonin inhibitors for any reason. All 

women were eumenorrheic, and those who were planning to begin or stop birth control 

during the duration of the study also were excluded. All study protocols were approved 

by the University of South Carolina Institutional Review Board, and informed consent 

was obtained from each participant prior to data collection.  

Anthropometrics A dual energy X-ray absorptiometer (DXA) provided data on 

bone mineral density, fat mass (FM), and FFM, both overall and for various body regions 

(arms, legs, etc.). The scan was completed with a Lunar DPX system (version 3.6; Lunar 

Radiation Corp, Madison, WI). All anthropomorphic measurements were performed with 

the participant dressed in surgical scrubs and in bare feet. Body mass index (BMI; kg/m2) 

was calculated from the average of three height and weight measurements using a 

traditional stadiometer and electronic scale and recorded to the nearest 0.1 centimeter and 

0.1kg, respectively.  
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Skeletal muscle mass was calculated from appendicular lean soft tissue (ALST) 

mass using the following linear regression equation:  

Skeletal muscle mass= (1.13 x ALST) - (0.02 x age) + (0.61 x sex) + 0.97 

where sex= 0 for females and 1 for males (Kim, Wang, Heymsfield, Baumgartner, & 

Gallagher, 2002). This equation was developed and validated with groups of 321 and 93, 

respectively, ethnically diverse men and women using magnetic resonance imaging 

(MRI) and DXA. Correlations between skeletal mass derived from the equation and MRI 

were high (R2= 0.96, P< 0.0001) during the validation study (Kim et al., 2002). Residual 

mass, including brain, liver, kidneys, heart gastrointestinal tract, and other organs and 

tissues, was then calculated using the following equation:  

Residual mass= body weight – fat mass – skeletal mass – bone mass (A. Jones, Jr. et al., 

2004). 

Cardiorespiratory fitness Fitness testing was conducted on a treadmill 

(Trackmaster 425, Carefusion, Newton, Kansas) with respiratory gases sampled using a 

TrueOne  2400 Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah) using 

a Modified Bruce protocol. The metabolic cart was calibrated prior to each test using 

known gas concentrations and volumes as recommended by the manufacturer. A trained 

exercise physiologist prepared eligible participants for the graded exercise test (GXT), 

and a standard 12-lead ECG was performed. Participants sat quietly for examination of 

the real-time resting ECG, heart rate (HR), and BP.  All participants exercised to 

volitional fatigue, followed by continued walking at a slow pace until HR and BP 

returned to near baseline levels.  HR, BP, and treadmill total time were recorded at each 
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stage of the protocol. Given no widely accepted criteria exist to categorize fitness levels, 

participants were classified as ‘unfit’ if they were in the bottom tertile for CRF 

(mL/kg/min) among the entire cohort for each gender or ‘fit’ if they were in the upper 

two tertiles by gender. These cutoff points closely match a large a widely cited 

population-based fitness classification system (Sui, LaMonte, & Blair, 2007a, 2007b), 

with the ‘unfit’ group from the present study indicating ‘low fitness’ and the ‘fit’ group 

indicating ‘moderate’ and ‘high’ fitness levels.   

Resting Metabolic Rate RMR was measured via indirect calorimetry using a 

ventilated hood and an open-circuit system, True Max 2400 Metabolic Measurement Cart 

(ParvoMedics, Salt Lake City, Utah),  over a 30 minute period with data collection 

beginning after a 15 minute resting period. The metabolic cart was calibrated prior to 

each test using known gas concentrations and volumes as recommended by the 

manufacturer. Participants arrived for a morning visit following in a 12 hour dietary 

fasting state and at least 24 hours after the last bout of structured exercise. RMR was 

calculated from O2 consumption and CO2 production as measured continuously during 

the testing period with a constant airflow rate into the hood (Branson & Johannigman, 

2004; Weir, 1949, 1990). Airflow rate was based approximately on body weight with the 

goal of maintaining the fraction of end tidal CO2 between 1.0 and 1.2% (L/min), and the 

flow rate was set to not exceed 33 L/min for a person weighing 68 kg or 40 L/min for a 

91 kg person. Participants remained quiet and still through the entire RMR procedure. 

The room was maintained in low light, noise was kept at a minimum, and the temperature 

remained between 26 to 30 degrees centigrade (Branson & Johannigman, 2004; Henry, 

2005). Participants were kept awake with continuous monitoring. 
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Energy Expenditure Total daily energy expenditure (TDEE) was estimated 

using the SenseWear Mini Armband (BodyMedia Inc. Pittsburgh, PA), an arm-based 

activity monitor. This portable, multi-sensor device, worn on the upper arm, incorporates 

tri-axial accelerometry, heat flux, galvanic skin response, skin temperature, and near-

body ambient temperature. Data is processed using software which calculates energy 

expenditure using complex pattern recognition algorithms consisting of ‘activity 

classification’ and ‘energy expenditure estimation.’ A Naïve Bays classifier matches the 

armband data to an activity class that best describes the current bout (e.g walking, 

running stationary bike, road bike, rest resistance, other activity). Each activity class has 

a linear regression model which maps the sensor values and body parameters to energy 

expenditure (Johannsen et al., 2010). The armband has been shown to be a valid device to 

measure energy expenditure and activity (Johannsen et al., 2010; M. St-Onge et al., 2007; 

Welk et al., 2007). Participants were trained for approximately 20 minutes on the use and 

care of the armband activity monitor. The individuals began wearing the monitor 

immediately and were asked to continue use of the monitor except during periods when 

the monitor could get wet. For most individuals, this only included periods of showering 

or bathing. The participants wore the armband for 10 days and recorded their activities 

during any period of that time that the armband was not worn. Participants were deemed 

compliant if they completed 7 days of wear (including two weekend days) with at least 

23 hours of wear time on each of the days. 

Energy Intake Energy intake was measured using interviewer-administered 24 

hour dietary recalls. The Nutrient Data System for Research software (NDSR Version 

2012), licensed from the Nutrition Coordinating Center (NCC) at the University of 
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Minnesota, was utilized to conduct the dietary interviews. NDSR is considered the state-

of-the-art research software for conducting dietary recalls (F. E. Thompson & Subar, 

2013).  The food database includes over 19,000 foods, is updated yearly, and provides 

nutrient composition information for over 120 nutrients. The quality of a dietary recalls 

depends both on the ability of the subject to remember which foods were consumed 

(Novotny et al., 2001) as well as the skill of the interviewer in eliciting complete and 

accurate information (F. E. Thompson & Subar, 2013). In this study, the dietary recalls 

were collected by a team of experienced (> 6 years using NDSR) registered dietitians 

specifically trained in using the NCC protocol. This protocol employs the multi-pass 

approach, which utilizes prompting to reduce omissions, and standardizes the interview 

methodology across interviewers (Dwyer et al., 2001). Portion estimation is facilitated 

with the use by the subject of a validated, 2-dimensional, food portion visual (FPV) that 

is an integral part of the NDSR software (Posner et al., 1992) and which we have used 

successfully in multiple studies in adults and adolescents. Prior to data collection, study 

participants undergo a brief training (10-15 minutes) on how to use the FPV to estimate 

portion sizes of commonly eaten foods. The training incorporates life-sized plates, 

glasses and utensils and food models, in a hands-on experiential interchange (Wilcox et 

al., 2011). Interviews are assigned on randomly selected, non-consecutive days, and cold 

calls are made to the study subject to minimize preparation that could bias recall (Hebert 

et al., 2002). The sampling window was set at 14 days to be adequately large to allow 

multiple attempts on multiple days to maximize as much as possible, the likelihood of 

completing an interview. 
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Statistical analysis Participant characteristics are based on demographic and 

physiological measurements using means and standard deviations. Differences between 

fit and unfit groups were tested using t-tests for continuous variables . Univariate 

correlations and regression analysis was performed to determine relationships between 

variables. The dependent variable was RMR expressed as kcal/day. Analysis of 

covariance was used to compare the dependent variable between fit and unfit groups with 

adjustment of covariates. All computations were performed using SAS 9.2 (Cary, N.C.).  

Results 

Participant demographics are presented in Table 4.1 overall and by fitness level. 

Fit participants had higher levels of oxygen consumption compared to the unfit 

participants, both absolue (3.09±0.86 vs. 2.46±0.77 L/min, P<0.0001) and relative to 

body weight (3.08±3.0 vs. 2.73±2.7 mL/kg/min, P<0.0001). Unfit participants (defined as 

those in the bottom tertile for CRF in mL/kg/min by gender) had higher body weight, 

BMI, fat mass, and body fat percentage compared to fit participants (defined as those in 

the top two tertiles for CRF in mL/kg/min by gender). Table 4.2 displays body 

composition compartmentalized by tissue. There were no differences in skeletal muscle 

mass, residual mass, or bone mass between the groups when expressed in kg. However, 

unfit participants were lower in each variable compared to fit participants when expressed 

relative to body weight. There were no differences in RMR expressed as kcals/day 

between the groups (1524.8±262.1), but fit participants had higher RMR when expressed 

relative to body weight (3.08±3.0 vs. 2.73±2.7, P<0.0001, Table 4.3).  
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Table 4.4 describes energy expenditure and energy intake information for 

participants. Compliance with the armband was excellent, with mean wear time of 23 

hours and 14 minutes per day (no difference between groups). There were no differences 

in TDEE between the groups when expressed as kcal/day, but Fit individuals had a high 

energy expenditure when expressed per kg of body weight (38.9±5.2 vs. 33.1±4.3 

kcal/kg/day, P<0.0001). Unfit participants spent more time each day in sedentary 

activities compared to fit participants and less in moderate, vigorous, or very vigorous 

activities. Compliance with dietary recalls was excellent as well, with 2.8 recalls 

completed per participant (no difference between groups). Fit participants reported 

consuming more kcals/day than unfit participants, with a lower percent of their kcals 

from carbohydrates, more from alcohol, and no difference in fat and protein.  

Table 4.5 displays the Pearson product-moment correlation coefficients among 

RMR (kcals/day) and physiological and physical activity variables in the full cohort and 

by group. As expected, fat free mass (r=0.85, P<0.0001), skeletal mass (r=0.82, 

P<0.0001), and residual mass (r=0.84, P<0.0001) were most highly correlated with RMR 

and by group. CRF, in L/min and mL/kg/min, was significantly correlated with RMR in 

each group, though time spent in physical activity was not. The relationship between fat 

free mass and RMR is displayed in Figure 4.1. The slope of the regression line between 

RMR and FFM is the same for unfit and fit groups (P=0.7882), but the Y-intercept is 

higher for the unfit group (532.1±63.13 vs. 518.5±34.5, P=0.0294) suggesting a modestly 

higher RMR at a given FFM.  

As described earlier, unadjusted RMR was higher in unfit participants compared 

to fit participants. However, this is misleading given the large differences in body size 
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and composition between the groups. To statistically adjust for these differences, linear 

regression models were created to adjust RMR and the results are presented in Table 4.6. 

The base model adjusted RMR by the variables race, age, and gender which have been 

described previously in the literature as being predictive of RMR, and accounted for 45% 

of the variability in the present study. The four body compartments (fat mass, skeletal 

muscle mass, residual mass, and bone mass) were added in subsequent models. The 

model which included race, age, gender, and skeletal muscle mass explained 69% of the 

variance in RMR, and adding residual mass explained 74%. After these statistical 

adjustments, RMR remained higher in the unfit group (1554.1±11.7 vs. 1510.6±8.1, 

P=0.0027). The addition of FM explained 79% of RMR, and the adjusted mean RMR 

was now significantly higher for the fit group compared to the unfit group (1539.4±7.9 

vs. 1494.7±12.3, P=0.0054). Adding bone mass to the model did not significantly 

improve the model. The RMR values adjusted for skeletal, residual, fat, and bone mass 

are displayed in Figure 4.2.  

To determine the influence of aerobic capacity on RMR, CRF (L/min) was added 

to the model described previously. After statistical adjustment for all of the other 

covariates in the model, CRF was significantly related to RMR (P=0.0261) though it did 

not improve the model (R2=0.79), and the adjusted RMR was no longer different between 

fit and unfit groups (P=0.3949). This approach was repeated to determine the influence of 

moderate to vigorous physical activity on RMR, with time spent in physical activity 

replacing CRF in the model. Despite the non-significant univariate correlation described 

in Table 4.5, time spent in moderate to vigorous physical activity was statistically related 

to RMR, though the significance was small, after adjustment for the body composition 
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covariates in the model (β coefficient= 0.2427, F value= 5.30, P=0.0218), and the 

adjusted RMR value was statistically higher in the fit group (1537.8±7.9 vs. 1498.0±12.4, 

P=0.0137). The individual components of energy expenditure related to physical intensity 

(time spent in sedentary, light, moderate, vigorous, and very vigorous activity) were also 

entered into the model both separately and together, but none were statistically related to 

RMR (results not shown). Neither energy intake nor any of the diet composition variables 

were statistically related to RMR (results not shown).   

Discussion 

The primary finding of the present study is that fit individuals have a higher RMR 

compared to those who are unfit. Differences in body composition, specifically skeletal 

muscle mass, residual mass, and fat mass, explained a large portion of the variability in 

RMR between fit and unfit individuals. Additionally, while time spent in moderate to 

vigorous physical activity was also significantly related to RMR and varied considerably 

between the groups, the influence was small and had little predictive value beyond 

adjustments for body composition.  

Previous research suggests a 5-20% elevated RMR among those who are highly 

fit or participate in regular physical activity (Arciero et al., 1993; Burke et al., 1993; Hill 

et al., 1984; Ravussin & Bogardus, 1989; Schulz et al., 1991; Sjodin et al., 1996; 

Tremblay et al., 1992; Tremblay et al., 1985; Tremblay et al., 1986; Tremblay et al., 

1990; van Pelt et al., 2001). However, nearly all of these previous studies have explored 

differences between highly fit (e.g. endurance athletes) and sedentary individuals, and 

none have explored patterns of regular physical activity using accelerometer-based 
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monitors. By objectively measuring activity intensity we are able to specifically examine 

regular physical activity over an extended period of time independent of cardiorespiratory 

fitness. Since fitness is partially determined by genetic factors (Bouchard et al., 2011), 

this approach allows the examination specifically of physical activity. 

In the current study unfit individuals had higher RMR in kcals/day compared to 

fit individuals prior to adjustment for the differences in body composition between the 

groups. After accounting for higher levels of fat mass (both absolute and relative to body 

weight) and lower levels of skeletal muscle mass, residual mass, and bone mass (all 

relative to body weight) compared to fit individuals, unfit individuals had a lower RMR 

by approximately 45 kcals/day or 2.7%. After further statistical adjustment for CRF, this 

difference disappeared. This difference between fitness groups is modest and less than 

other researchers have found, likely due to the population studied. The fit participants in 

the present study were not elite endurance athletes as often studied (Broeder et al., 

1992a), but instead their mean CRF was at approximately the 80th percentile of a widely 

cited population-based fitness classification system (Sui et al., 2007a, 2007b) (males= 

48.6±5.7 mL/kg/min, females= 37.0±5.8 mL/kg/min). Thus, this study extended the 

finding by showing that even those who are not endurance athletes, relatively fit 

individuals had greater RMR than unfit individuals after adjustment for body 

composition. 

Physical activity may have an effect on RMR via two distinct pathways: 1) the 

growth of FFM (i.e. skeletal muscle), and 2) the effect on physiological processes that 

influence RMR (Speakman & Selman, 2003). Since the results of the linear modeling in 

Table 4.6 shows CRF predicts RMR independent of FFM, this relationship is mediated 
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by physiological processes. The mechanisms have not been well-explored, but likely 

include regulation of the sympathetic nervous system (SNS) (Bell et al., 2004; Bell et al., 

2001; Bullough et al., 1995; Ravussin, 1995), changes in muscle cell structure (Hather et 

al., 1991), immune systems responses (Cannon et al., 1991; Haahr et al., 1991), 

neuroendocrine function (Herring et al., 1992; Luger et al., 1987), and substrate cycling 

(Bahr, 1992; Wolfe et al., 1990).  

Given the complexities of normalizing RMR to body size (Heymsfield et al., 

2002; Heymsfield, Gallagher, Mayer, Beetsch, & Pietrobelli, 2007; Heymsfield et al., 

2012) the appropriate analysis technique is linear modeling in which differences in body 

composition are statistically accounted for and adjusted mean RMR values are calculated 

(Ravussin & Bogardus, 1989). For example, Figure 4.1 indicates unfit individuals have a 

higher RMR compared to fit individuals at each level of FFM. However, this difference is 

spurious due to the differences between the groups for each body compartment. We thus 

attempted to segment the body into tissues based on metabolic rate using DXA and 

validated regression equations, then statistically adjusted absolute RMR (kcals/day) by 

each compartment (skeletal muscle, residual, fat, and bone mass, each in kg) using 

general linear modeling. The result is adjusted mean values indicating a statistically 

significantly elevated RMR in fit individuals compared to their unfit peers (Table 4.6, 

Figure 4.2).  

There is evidence to suggest that lower levels of RMR result in weight gain over 

time (Astrup, Gotzsche, et al., 1999; Leibel et al., 1995; Ravussin et al., 1986; Ravussin 

et al., 1988; Zurlo et al., 1990), though the literature is equivocal on the topic 

(Katzmarzyk et al., 2000; Marra et al., 1998; Seidell et al., 1992). The hypothesis for this 
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theory is that lower levels of expected RMR, the largest contributor to TDEE, result in 

lower levels of TDEE, and individuals with a lower than expected TDEE are more likely 

to be in energy imbalance (Ravussin et al., 1988). In the present study those with lower 

levels of RMR (the unfit group) did have significantly higher levels of fat mass compared 

to age matched peers (35.0±9.4% vs 24.8±10.2%, respectively). However, given the 

cross-sectional nature of the study design we cannot determine causation. Future research 

should explore the role of the RMR on weight gain. 

The strength of the present study includes a large sample size with nearly equal 

numbers of men and women with a wide range of fitness levels. Our body composition 

measurement technique (DXA) allows for the quantification of body mass into segments 

by metabolic properties (lean tissue mass, adipose tissue, bone mass),. The use of 

validated multi-sensor technology allowed us to accurately assess energy expenditure 

cumulatively over a 24 hour period and by intensity of activity. To our knowledge, this is 

the first examination of the relationship between objectively determined physical activity 

intensity and RMR. This study is limited by the cross-sectional design which does not 

allow the determination of causal pathways. The present study also does not allow 

exploration of potential mechanisms for the role physical activity may play in altering 

RMR.     

In conclusion, after controlling for differences in body composition fit individuals 

had a higher RMR compared to unfit individuals. Time spent in moderate to vigorous 

physical activity was also significantly related to RMR, but this influence was small and 

had little predictive value over adjustments for body composition.  
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Table 4.1. Participant characteristics overall and by fitness level. 

 All 

(N=423) 

(mean±SD) 

Unfit 

(n=138) 

(mean±SD) 

Fit 

(n=285) 

(mean±SD) 

P value 

between 
group 

differences 

Female (%) 51.3 51.5 51.2 0.9660 

Age (years)  27.6±3.8 28.3±3.8 27.3±3.7 0.0075 

Height (cm)  171.1±9.4 170.4±9.2 171.3±9.5 0.3520 

Weight (kg)  75.2±13.9 82.3±14.9 72.0±12.1 <0.0001 

Body Mass Index (kg/m2)  25.6±3.9 28.1±4.1 24.4±3.1 <0.0001 

Fat mass (kg) 21.3±10.0 28.8±9.7 17.7±7.9 <0.0001 

Fat free mass (kg) 53.9±12.1 53.1±11.5 54.1±12.2 0.4165 

Body fat (%)  28.1±11.0 35.0±9.4 24.8±10.2 <0.0001 
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Table 4.2. Body composition of participants by fitness level. 

 
 All 

(N=423) 

(mean±SD) 

Unfit 

(n=138) 

(mean±SD) 

Fit 

(n=285) 

(mean±SD) 

P value 

between 
group 

differences 

Fat mass (kg) 21.3±10.0 28.8±9.7 17.7±7.9 <0.0001 

    Fat mass (%) 28.1±11.0 35.0±9.4 24.8±10.2 <0.0001 

Fat free mass (kg) 53.9±12.1 53.1±11.5 54.1±12.2 0.4165 

    Skeletal mass (kg) 27.0±7.5 26.6±7.1 27.2±7.7 0.4115 

    Skeletal mass (%) 36.0±7.3 32.5±6.5 37.7±7.1 <0.0001 

    Residual mass (kg) 50.9±11.7 23.4±4.5 23.9±4.4 0.3176 

    Residual mass (%) 23.8±4.2 28.8±3.6 33.4±3.8 <0.0001 

    Bone mass (kg) 2.99±0.5 3.05±0.5 2.96±0.5 0.1164 

    Bone mass (%) 4.0±0.5 3.8±0.6 4.1±0.4 <0.0001 
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Table 4.3. Oxygen consumption at rest and peak exercise. 

 
 All 

(N=423) 

(mean±SD) 

Unfit 

(n=138) 

(mean±SD) 

Fit 

(n=285) 

(mean±SD) 

P value 

between 
group 

differences 

Resting energy expenditure (kcals/day)  1524.8±262.1 1533.2±266.2 1520.8±260.5 0.6486 

Resting metabolic rate (mL/kg/min)  2.96±0.4 2.73±2.7 3.08±3.0 <0.0001 

REE/FFM ratio (kcals/kg/day) 28.8±3.5 29.4±3.8 28.6±3.3 0.0357 

Respiratory quotient  0.79±0.05 0.80±0.05 0.79±0.04 0.0019 

Cardiorespiratory fitness (mL/kg/min)  38.5±9.8 29.7±6.5 42.7±8.2 <0.0001 

Cardiorespiratory fitness (L/min)  2.88±0.88 2.46±0.77 3.09±0.86 <0.0001 
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Table 4.4. Time spent in physical activity and energy intake by macronutrients. 

 All 

(N=423) 

(mean±SD) 

Unfit 

(n=138) 

(mean±SD) 

Fit 

(n=285) 

(mean±SD) 

P value 

between group 
differences 

Total daily energy expenditure (kcal/day) 2740.1±511.0 2676.2±474.5 2771.0±525.7 0.0737 

Total daily energy expenditure (kcal/kg/day) 37.0±5.6 33.1±4.3 38.9±5.2 <0.0001 

    Sedentary (min/day) 1086.9±88.0 1135.5±76.3 1063.5±83.8 <0.0001 

    Light (min/day) 216.1±58.5 213.8±61.2 217.1±57.2 0.5854 

    Moderate (min/day) 127.6±71.4 86.7±50.5 147.4±71.6 <0.0001 

    Vigorous (min/day) 6.0±7.4 2.4±3.0 7.7±8.2 <0.0001 

    Very Vigorous (min/day) 2.4±6.9 0.4±1.7 3.3±8.2 <0.0001 

Physical Activity (min/day) 136.0±77.4 89.4±52.1 158.5±77.6 <0.0001 

Energy intake (kcal/day) 2078.4±670.7 1912.3±608.1 2158.9±685.7 0.0004 

    Carbohydrates (% of total kcals) 47.2±9.9 49.1±9.3 46.3±10.1 0.0059 

     Fat (% of total kcals) 32.9±7.5 32.0±7.0 33.3±7.7 0.0838 

    Protein (% of total kcals) 17.2±5.0 17.3±4.9 17.2±5.0 0.8631 

    Alcohol (% of total kcals) 2.8±4.5 1.7±3.6 3.3±4.8 0.0002 

Sedentary, 1.0 to ≤1.5 METs; Light, >1.5 to ≤3.0 METs; Moderate, >3.0 to ≤6.0 METs;  
Vigorous, >6.0 to ≤9.0 METs; Very Vigorous, >9.0 METs. 
Physical Activity, cumulative minutes spent at >3.0 METS. 
Mean armband wear time= 23.24±0.8 hours/day; Mean dietary recalls completed= 2.76±0.5 
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Table 4.5. Pearson correlation coefficients between RMR (kcals/day) and selected 
variables. 

 Resting metabolic rate (kcal/day) 

 All 

(N=423) 

Unfit 

(N=138) 

Fit 

(N=285) 

Weight (kg)  0.76** 0.78** 0.82** 

Fat mass (kg) 0.03 0.22* -0.11 

Fat free mass (kg) 0.85** 0.81** 0.87** 

    Bone mass (kg) 0.69** 0.54** 0.77** 

    Skeletal mass (kg) 0.82** 0.78** 0.84** 

    Residual mass (kg) 0.84** 0.78** 0.87** 

Physical activity (min/day) 0.08 0.12 0.09 

Cardiorespiratory fitness (mL/kg/min) 0.38** 0.50** 0.51** 

Cardiorespiratory fitness (L/min) 0.76** 0.79** 0.83** 

*Significantly correlated with RMR, P<0.05 
**Significantly correlated with RMR, P<0.01 
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Table 4.6. Analysis of covariance assessing resting metabolic rate between sexes controlling for body compartments (kg), 
cardiorespiratory fitness (CRF, L/min) and time spent in physical activity (minutes/day) (mean±standard error). 

 Unfit Fit R2 P value 

Unadjusted  1533.2±22.7 1520.8±15.4 NA 0.6486 

Race* + age +  gender* 1545.6±16.9 1514.8±11.7 0.45 0.1392 

Race* + age +  gender + skeletal muscle* 1551.8±12.8 1511.7±8.8 0.69 0.0110 

Race* + age +  gender + skeletal muscle* + residual mass* 1554.1±11.7 1510.6±8.1 0.74 0.0027 

Race* + age +  gender + skeletal muscle* + residual mass* 
+ fat mass* 1494.7±12.3 1539.4±7.9 0.79 0.0054 

Race + age +  gender + skeletal muscle* + residual mass* + 
fat mass* + bone mass 1494.6±12.3 1539.5±7.9 0.79 0.0053 

Race + age +  gender + skeletal muscle* + residual mass* + 
fat mass* + bone mass + CRF* 1513.2±14.9 1530.4±8.9 0.79 0.3949 

Race + age +  gender + skeletal muscle* + residual mass* + 
fat mass* + bone mass + physical activity minutes* 1498.0±12.4 1537.8±7.9 0.79 0.0137 
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Figure 4.1. RMR was highly correlated with FFM (R2= 0.85), with unfit individuals 
having a higher unadjusted RMR at each level of FFM compared to fit individuals 
(Difference for slopes between groups:P=0.7882, difference for y-intercepts between 
groups: P=0.0294). 
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Figure 4.2. After adjusting for differences in body composition, fit individuals had a 
higher RMR compared to unfit individuals (Difference for slopes between groups: P= 
0.0034). 

 

 



 

60 

 

CHAPTER 5 

MANUSCRIPT 2: RACIAL DIFFERENCES IN RESTING METABOLIC RATE, 

CARDIORESPIRATORY FITNESS, AND PHYSICAL ACTIVITY AMONG YOUNG 

WOMEN 
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Abstract  

Objective: It has been hypothesized that high levels of obesity among African American 

women may be in part due to a lower resting metabolic rate (RMR) compared to white 

women. Using state of the art measurement techniques and a large sample, the aim of the 

current study is to evaluate associations between race, body composition, aerobic fitness, 

and physical activity with RMR in a group of free living young adult African American 

(AA) and white (W) women.  

Methods: A total of 179 individuals participated in the present study, including 141 W 

women and 38 AA women with a mean age of 27.7 years. We measured RQ and RMR 

using indirect calorimetry, along with body weight and body composition using dual 

energy X-ray absorptiometery, energy expenditure and time spent in physical activity 

using an arm-based activity monitor, and energy intake using interviewer-administered 

dietary recalls.  

Results: AA women had higher BMI, body weight, body fat percentage, and levels of fat 

mass and fat free mass compared to white women. There was no difference between AA 

and W women in RMR when expressed as kcal/day (1378.9±178.4 kcal/day), but AA had 

a lower RMR when expressed relative to body weight (2.56±0.30 vs. 2.95±0.33 

mL/kg/min, P<0.0001). After statistical adjustment for differences in body composition 

between groups using linear regression models, AA women had a lower RMR compared 

to W women (1400.3±9.1 kcal/day vs. 1299.8±18.9 kcal/day, P<0.0001). The addition of 

peak fitness explained additional variance in the model, though the improvement was 

modest. The addition of time spent in physical activity did not improve the model. 
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Conclusion: The present study confirms young adult African-American women have a 

lower RMR compared to their white peers after statistical adjustments for differences in 

body composition. Higher levels of fat mass in AA compared to W resulted in elevated 

RMR beyond the differences in fat free mass. Additionally, CRF was significantly 

associated with RMR in the present study, but time spent in moderate to very vigorous 

physical activity was not. 

Introduction 

The average adult in the United States consumes approximately 1 million calories 

each year (Food and Agriculture Organization). Despite this large intake of energy, most 

healthy adults are able to achieve a balance between energy intake and expenditure 

primarily through mechanisms required to sustain life (resting metabolic rate [RMR]), 

digest food (thermic effect of food), and perform activities (thermic effect of physical 

activity). It is a chronic mismatch over time in this energy balance which results in 

changes of body energy stores. Because the largest contributor to energy expenditure is 

RMR (60-80%) (Goran, 2000), small changes in it could result in a large number of 

calories over time (Ravussin & Bogardus, 1989). Given the high volume of energy 

expended and the large variability between individuals (±25%) (Murgatroyd et al., 1987), 

it is important to better understand the determinants of RMR and the subsequent effect on 

body weight and composition.  

African American (AA) females have the highest prevalence of overweight 

(82.1%) and obesity (58.6%) of any racial group in the United States (Flegal, Carroll, Kit, 

& Ogden, 2012). It is hypothesized that AA females have a harder time losing and 
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maintaining weight loss (Darga, Holden, Olson, & Lucas, 1994; Kumanyika, Obarzanek, 

Stevens, Hebert, & Whelton, 1991), and an existing hypothesis suggest a lower RMR 

may explain part of this problem. A recent review of the literature found 10 out of 15 

studies reported lower levels of RMR in AA compared to Whites (W) ranging from 81-

274 kcal/day (Gannon et al., 2000). The primary cause of this discrepancy appears to be 

due to different levels of fat free mass (FFM) in AA populations compared to whites, 

including greater skeletal muscle mass and bone mineral density and lower residual mass 

which includes internal organs (Carpenter et al., 1998; Forman et al., 1998; Foster et al., 

1997; Jakicic & Wing, 1998; A. Jones, Jr. et al., 2004; Ortiz et al., 1992; Wagner & 

Heyward, 2000). Since the metabolic activity of bone and skeletal muscle is lower 

compared to internal organs (Elia, 1992; Gallagher et al., 1998; Holliday et al., 1967), 

analyses that do not independently account for these variables in FFM may incorrectly 

find a lower RMR in AA, when in fact it is an appropriate value given the size of 

metabolically active tissues (Gannon et al., 2000). In practice, few studies have accounted 

for differences in bone mineral content or skeletal muscle mass when comparing 

differences between groups. 

Previous studies suggest that regular physical activity or high levels of 

cardiorespiratory fitness (CRF) may also have an effect on RMR via  two distinct 

pathways: 1) the growth of FFM (i.e. skeletal muscle), and 2) the effect on physiological 

processes that influence RMR (Speakman & Selman, 2003). The physiological effects of 

physical activity on RMR may have both short (<48 hours post exercise) (Sedlock et al., 

1989) and long term (>48 hours post exercise) (Margaria et al., 1933) (Dolezal et al., 

2000; Edwards et al., 1935) effects while changes in FFM occur over much longer 
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periods of time (> 4 weeks). However, the existing research is unclear with some studies 

showing an independent positive relationship between CRF and RMR and others not.  

Using state of the art measurement techniques and a large sample, the aim of the 

current study is to evaluate associations between race, body composition, aerobic fitness, 

and physical activity with RMR in a group of free living young adult African American 

and white women.  

Methods 

Participants and enrollment process The design and rationale for this study 

have been described in detail previously (Hand et al., 2013). All study protocols were 

approved by the University of South Carolina Institutional Review Board, and informed 

consent was obtained from each participant prior to data collection. Participants were 

required to have a body mass index (BMI) ≥20 and ≤35 kg/m2 and age ≥21 and ≤35 

years. Individuals were excluded if they had or were taking medication for a major 

medical condition, or for reasons that might influence body weight (taking medications to 

lose weight, started or stopped smoking in the previous 6 months, planned weight loss 

surgery, etc.). Individuals with a history of depression, anxiety, or panic were also 

excluded, as were those taking selective serotonin inhibitors for any reason. All women 

were eumenorrheic, and those who were planning to begin or stop birth control during the 

duration of the study also were excluded.  

Anthropometrics Dual-energy X-ray absorptiometry (DXA) provided 

measurements on bone mineral density, fat mass (FM), and FFM, both whole body and 

for various body regions (arms, legs, etc.). The scan was completed with a Lunar DPX 
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system (version 3.6; Lunar Radiation Corp, Madison, WI). All anthropomorphic 

measurements were performed with the participant dressed in surgical scrubs and in bare 

feet.  

Skeletal muscle mass was calculated from appendicular lean soft tissue (ALST) 

mass using the following linear regression equation:  

Skeletal mass= (1.13 x ALST) - (0.02 x age) + (0.61 x sex) + 0.97 

where sex= 0 for females (Kim et al., 2002). This equation was developed and validated 

with groups of 321 and 93, respectively, ethnically diverse men and women using 

magnetic resonance imaging (MRI) and DXA. Correlation between skeletal mass derived 

from the equation and MRI were high (R2= 0.96, P< 0.0001) during the validation study 

(Kim et al., 2002). Residual mass was then calculated using the following equation:  

Residual mass= body weight – fat mass – skeletal mass – bone mass (A. Jones, Jr. et al., 

2004). 

Cardiorespiratory fitness All participants completed a maximal fitness test 

using a Modified Bruce protocol, with respiratory gases sampled using a TrueOne 2400 

Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah) throughout the 

duration of the test.  

Resting Metabolic Rate RMR was measured via indirect calorimetry using a 

ventilated hood and an open-circuit system, TrueOne 2400 Metabolic Measurement Cart 

(ParvoMedics, Salt Lake City, Utah).  An initial stabilization period of 15 minutes was 

followed by a 30 minute data collection period. Participants arrived for a morning visit 
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(<9:00am) following a 12 hour dietary fast and at least 24 hours after the last bout of 

structured exercise. RMR was calculated from O2 consumption and CO2 production as 

measured continuously during the testing period with a constant airflow rate into the 

hood (Branson & Johannigman, 2004; Weir, 1949, 1990). Participants remained quiet 

and still through the entire RMR procedure and were kept awake with continuous 

monitoring. The room was maintained in low light, noise was kept at a minimum, and the 

temperature remained between 26 to 30 degrees centigrade (Branson & Johannigman, 

2004; Henry, 2005).  

Energy Expenditure Total daily energy expenditure (TDEE) was measured 

using a validated arm-based activity monitor (SenseWear Mini Armband, BodyMedia 

Inc. Pittsburgh, PA) (Johannsen et al., 2010; M. St-Onge et al., 2007; Welk et al., 2007). 

The monitor incorporates tri-axial accelerometry, heat flux, galvanic skin response, skin 

temperature, and near-body ambient temperature and demographic information to 

estimate TDEE and time spent in physical activity. The individuals were asked to use the 

monitor at all times except during periods when the monitor could get wet, and for most 

individuals this only included periods of showering or bathing. The participants wore the 

armband for 10 days and compliance criteria for adequate wear time was set at 7 days 

(including two weekend days) with at least 23 hours of wear time on each of the days. 

Energy Intake Energy intake was measured using interviewer-administered 24 

hour dietary recalls using the Nutrient Data System for Research software (NDSR, 

Version 2012). Dietary recalls were collected by a team of experienced (> 6 years using 

NDSR) registered dietitians employing a multi-pass approach which utilizes prompting to 

reduce omissions, and standardizes the interview methodology across interviewers 
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(Dwyer et al., 2001). Prior to data collection, study participants undergo a brief training 

(10-15 minutes) to estimate portion sizes of commonly eaten foods. Interviews were 

conducted on randomly selected, non-consecutive days over a 14 day sampling window. 

Results 

Participant characteristics are presented in Table 5.1, both overall and by race. A 

total of 179 individuals participated in the present study, including 141 W women and 38 

AA women with a mean age of 27.7 years. AA women had higher BMI, body weight, 

body fat percentage, and levels of fat mass and fat free mass compared to white women. 

Fat free mass was then compartmentalized into bone mass, skeletal mass, and residual 

mass, with the later representing internal organs, which have higher rates of metabolic 

activity compared to fat, bone, and skeletal muscle. AA women had higher bone mass, 

but there was no statistically significant difference when expressed relative to body 

weight (Table5. 2). For residual mass, there was no statistical difference when expressed 

absolutely but AA women had a lower percent when expressed relative to body weight. 

Skeletal mass was significantly higher in AA compared to W in kg, but lower relative to 

body weight. Table 5.3 describes oxygen consumption at rest (RMR) and at peak exercise 

(CRF). There was no difference in RMR between groups of women when expressed as 

kcal/day, but when expressed relative to body weight white women were significantly 

higher. There was no difference between groups for respiratory quotients at rest. Oxygen 

consumption at peak exercise was also higher among white women, both absolutely and 

relative to body weight.  
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Detailed information was collected from the arm-based activity monitor regarding 

energy expenditure and time spent at various intensities of activity (Table 5.4). 

Compliance with armband was excellent, with 23.2±0.75 hours of daily wear time and no 

significant difference between groups. There was no difference in total daily energy 

expenditure between the groups. AA women spent significantly more time in sedentary 

and light activity, and white women spent significantly more time in moderate, vigorous, 

and very vigorous activities. Energy intake and diet composition also did not differ 

between groups, except for percent of kcals from alcohol (Table 5.4).   

Univariate correlations between relevant variables and RMR by group are 

displayed in Table 5.5. As expected, RMR was highly correlated with FFM (r=0.71, 

P<0.0001) and this relationship is displayed in Figure 5.1. There was no difference in the 

slope of the lines relating RMR and FFM between the two groups (P=0.8789) indicating 

no difference between AA and W in the relationship between the two variables. 

However, there was a nearly significant difference for higher RMR relative to FFM 

among W women compared to AA women (P=0.0607 for Y intercepts).    

To explore the relationship between oxygen consumption at rest (RMR) and peak 

exercise (CRF), the correlation between RMR and CRF by group is displayed in Figure 

5.2. The top panel which displays oxygen consumption relative to body weight indicates 

an attenuated response to peak exercise among AA (R2=0.37, P=0.0238 ) compared to 

whites (R2=0.60, P<0.0001) as indicated by different slopes among the groups 

(P=0.01495). However, these findings can be misleading due to the differences in body 

composition between the groups, and when RMR was normalized to FFM (Figure 5.2, 
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bottom panel) there was no relationship between RMR and CRF among AA (r=-0.13, 

P=0.4544) and significant but small negative relationship for W (r=-0.23, P=0.0064).  

Due to statistically significant differences in body composition parameters, linear 

models were created to adjust RMR (Table 5.6). All models included the covariates race 

and age, which have previously been shown to influence RMR, and the four body 

compartments (fat mass, skeletal muscle mass, residual mass, and bone mass) were added 

in subsequent models. Adjusted RMR values were calculated for each group from each 

model. The initial model which included race, age, and skeletal muscle mass explained 

51% of the variance in RMR, and adding residual mass explained 52%. The addition of 

FM explained 66% of RMR, and the adjusted mean RMR was now significantly higher 

for W women compared to AA women (1400.3±9.1 kcal/day vs. 1299.8±18.9 kcal/day, 

P<0.0001). Adding bone mass to the model did not significantly improve the model. 

To determine the role of aerobic capacity on RMR, CRF (L/min) was added to the 

model described previously. After statistical adjustment for all of the other covariates in 

the model, CRF was significantly related to RMR (P=0.0115) though the improvement 

was modest (R2=0.67). This approach was repeated to determine the influence of 

moderate to vigorous physical activity on RMR, with time spent in physical activity 

replacing CRF in the model. Despite the negative univariate correlation described in 

Table 5.5, time spent in moderate to vigorous physical activity was not statistically 

significantly related to RMR after adjustment for the body composition covariates in the 

model (P=0.3917). The individual components of energy expenditure related to physical 

intensity (time spent in sedentary, light, moderate, vigorous, and very vigorous activity) 

were also entered into the model both separately and together, but none were statistically 
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related to RMR (results not shown). Energy intake nor any of the diet composition 

variables were statistically related to RMR (results not shown).   

Conclusions 

The primary finding of the present study confirms young adult African-American 

women have a lower RMR compared to their white peers after statistical adjustments to 

account for differences in body composition. While often incorrectly considered 

metabolically inert, the higher levels of fat mass in AA compared to W resulted in 

elevated RMR beyond the differences in fat free mass. Additionally, CRF was 

significantly associated with RMR in the present study, but time spent in moderate to 

very vigorous physical activity was not. As a whole these findings support previous 

research, but are novel given the characteristics of the population and the assessment 

techniques utilized.  

Unadjusted RMR values presented in Table 5.1 show no statistically significant 

differences between AA and W women. However, since RMR is primarily determined by 

the quantity of metabolically active tissues, these values are misleading given the large 

differences in body size and composition between the two groups. By using DXA, we 

were able to compartmentalize the body by metabolically active tissues: lean mass, fat 

mass, bone mass. We further segmented lean mass into skeletal muscle mass and residual 

mass, the latter representing highly metabolically internal organs, using a validated 

equation originally derived from magnetic resonance imaging (Kim et al., 2002). After 

statistically adjusting for the differences in the various body compartments between the 

two groups, AA women were found to have a lower RMR compared to W women by 
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approximately 7.2% (100 kcals/day, Table 5.6). This finding is similar to those found 

elsewhere, though there is wide variability ranging from 87-274 kcals/day due to 

differences in participant characteristics and rigor of the assessment techniques 

(Carpenter et al., 1998; Forman et al., 1998; Foster et al., 1997; Gannon et al., 2000; 

Jakicic & Wing, 1998; A. Jones, Jr. et al., 2004; Ortiz et al., 1992; Wagner & Heyward, 

2000).  

The hypothesized reason for lower RMR in AA women at a given body weight is 

differing levels of body composition compared to whites, particularly FFM. Despite often 

being treated scientifically as metabolically homogenous tissue, fat free mass is 

composed of multiple components varying in size and metabolic rates. For example, the 

brain, heart, liver, and kidneys make up just over 5% of total body mass but account for 

nearly 60% of RMR with a metabolic rate of 330 kcal/kg/day (Elia, 1992). Meanwhile, 

skeletal muscle is estimated to have a metabolic rate of 13 kcal/kg/day, and bone 12 

kcal/kg/day (Elia, 1992). Given this wide range of metabolic properties of fat free mass, 

it is important to compartmentalize this tissue in order to explain differences in RMR 

between various groups (Heymsfield et al., 2007; Heymsfield et al., 2012). AA are 

thought to have higher levels of low-metabolically active bone and skeletal muscle mass, 

and lower levels of highly metabolically active internal organs. The AA group in the 

present study had higher levels of bone mass, but when expressed relative to body weight 

was not different than the W group. FM was higher in AA, both in total mass and relative 

to body weight, whereas skeletal muscle mass was higher in total mass, but lower relative 

to body weight. Total residual mass was not higher in AA compared to W, but was 
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significantly lower relative to body weight. Thus, any differences in RMR would be 

attributed to differences in skeletal muscle and residual mass and not bone mass.  

FM is often overlooked when examining RMR, which was once considered 

metabolically inert tissue. In the present study FM independently predicted RMR and 

explained approximately 14% of the variance. The contribution of FM to RMR is 

estimated to be between 5 kcal/kg/day (Elia, 1992) to 10-13 kcal/kg/day (Goran et al., 

1994; M. P. St-Onge, 2005), explaining between 1-10% of the variability in young and 

middle aged adults (Nelson et al., 1992; Sparti et al., 1997; Tataranni & Ravussin, 1995). 

The contribution of FM on RMR is slightly higher here than previous studies, likely due 

to the large differences in FM between the two groups. Of the four body compartments 

studied here, fat mass differed the most between AA and W women, with W women 

lower in both absolute (23.7kg vs 31.7 kg) and relative to total body weight (33.8% vs. 

39.8%).    

It has been suggested ‘the factor that causes by far the most dramatic effect on 

metabolic rate is strenuous exercise’ (Guyton, 1997). Physical activity may have an effect 

on RMR via  two distinct pathways: 1) the growth of FFM (i.e. skeletal muscle), and 2) 

the effect on physiological processes that influence RMR (Speakman & Selman, 2003). It 

has been known for nearly a century that physical activity will produce acute elevations 

in RMR (Edwards et al., 1935; Margaria et al., 1933) referred to as excess post-exercise 

oxygen consumption (EPOC). Much less clear is if regular physical activity results in 

sustained elevations of RMR. The majority of cross-sectional studies indicate a 5-20% 

elevated RMR among individuals who participate in regular activity compared to 

sedentary controls, and CRF(L/min) is highly correlated with RMR in the present study 
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(r=0.52, P<0.001)  (Arciero et al., 1993; Burke et al., 1993; Hill et al., 1984; Ravussin & 

Bogardus, 1989; Schulz et al., 1991; Sjodin et al., 1996; Tremblay et al., 1992; Tremblay 

et al., 1985; Tremblay et al., 1986; Tremblay et al., 1990; van Pelt et al., 2001). However, 

others have failed to find a positive relationship between CRF and RMR, likely due to 

differences in sample size and statistical power (Broeder et al., 1992a; Hill et al., 1984; 

LeBlanc, Diamond, Cote, & Labrie, 1984; Ravussin & Bogardus, 1989).  

In the present study, CRF was a significant predictor of RMR independent of 

FFM, though the effect was small (model R2 increased from 0.66 to 0.67). Figure 5.2 

displays the relationship between CRF and RMR, and particularly the role of body 

composition in this relationship. In the top panel, a positive linear relationship exists 

between CRF and RMR when RMR is referenced to body weight similar to others (Miller 

et al., 2011), with a statistically significant blunted response among AA compared to W. 

However, expressing RMR relative to body weight when comparing to CRF has 

previously been shown to falsely suggest a positive relationship due to differences in 

body composition and in particular FM (Broeder et al., 1992a) and this is reflected by 

lack of association with RMR and CRF when indexed to FFM (Figure5. 2, bottom panel). 

The results of the linear modeling in Table 5.6 shows CRF predicts RMR independent of 

FFM, suggesting this relationship is mediated by physiological processes. The 

mechanisms have not been well-explored, but likely include regulation of the sympathetic 

nervous system (SNS) (Bell et al., 2004; Bell et al., 2001; Bullough et al., 1995; 

Ravussin, 1995), changes in muscle cell structure (Hather et al., 1991), immune systems 

responses (Cannon et al., 1991; Haahr et al., 1991), neuroendocrine function (Herring et 

al., 1992; Luger et al., 1987), and substrate cycling (Bahr, 1992; Wolfe et al., 1990).  
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Time spent in moderate to very vigorous physical activity was not related RMR. 

The current study was the first to explore the role of regular physical activity on RMR 

using an objective measure rather than self-report. The SensorWear armband has been 

shown to be highly valid and reliable at assessing both total energy expenditure and the 

intensity of physical activity and the participants here had excellent compliance, with a 

mean daily wear time of 23 hours and 15 minutes. Univariate correlations showed low a 

low association between time spent in physical activity (minutes/day) and CRF (L/min) 

(r=0.2035, P=0.0063), so any expected relationship with RMR would have been 

independent of aerobic fitness effects. However, although we instructed the participants 

to maintain their normal lifestyle during EE and EI assessment their behavior during this 

time may not be reflective of their normal lifestyle.  

The present study is one of the largest and most thorough examinations of racial 

differences in RMR to be completed in women. We used state of the art measurement 

techniques and sound methodology including RMR via indirect calorimetry following a 

12 hour dietary fast and >24 hour cessation of strenuous activity. We also had direct 

measures of maximal CRF and objective measures of physical activity and energy 

expenditure. Given the cross-sectional study design we cannot identify causality. By 

compartmentalizing tissue by metabolic rates, we have properly controlled for differences 

in body composition between the groups. However, despite the use of valid and reliable 

regression equations, the values for skeletal and residual mass are estimations and not 

direct measurements. 

In summary, after adjustment for differences in body composition, particularly a 

higher residual mass and lower FM among W, AA had a lower RMR. Additionally, CRF 
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was independently associated with RMR after adjustment for body composition, but time 

spent in moderate to very vigorous activity was not. Future research is needed to 

longitudinally assess the role of low levels on RMR on body composition and weight 

gain.  
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Table 5.1. Participant anthropometric characteristics overall and by group. 

 All 

(N=179) 

(mean±SD) 

White 

(N=141) 

(mean±SD) 

AA 

(N=38) 

(mean±SD) 

P value 

between 
group 

differences 

Age (years)  27.7±3.8 27.3±3.4 29.0±4.8 0.0571 

Body Mass Index (kg/m2)  25.5±4.3 24.6±3.9 28.8±4.1 <0.0001 

Height (cm)  165.8±6.2 166.2±5.8 164.6±7.3 0.1669 

Weight (kg)  70.2±12.4 68.0±11.3 78.3±13.0 <0.0001 

   Fat free mass (kg) 45.0±5.6 44.5±5.1 47.0±6.9 0.0439 

   Fat mass (kg) 25.4±9.6 23.7±9.1 31.7±8.7 <0.0001 

Body fat (%)  35.0±8.1 33.8±8.2 39.8±6.0 <0.0001 
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Table 5.2. Participant body compartment characteristics overall and by group. 

 All 

(N=179) 

(mean±SD) 

White 

(N=141) 

(mean±SD) 

AA 

(N=38) 

(mean±SD) 

P value 

between 
group 

differences 

Bone mass (kg) 2.7±0.4 2.7±0.4 3.0±0.5 <0.0001 

   Bone (%) 3.9±0.5 4.0±0.5 3.9±0.6 0.7006 

Fat mass (kg) 25.4±9.6 23.7±9.1 31.7±8.7 <0.0001 

   Fat mass (%)  35.0±8.1 33.8±8.2 39.8±6.0 <0.0001 

Skeletal mass (kg) 21.3±3.1 20.9±2.7 22.6±3.8 0.0133 

   Skeletal mass (%) 30.7±4.3 31.1±4.4 28.9±3.4 0.0042 

Residual mass (kg) 21.0±2.7 20.9±2.5 21.3±3.3 0.4773 

   Residual mass (%) 30.4±4.2 31.2±4.0 27.4±3.2 <0.0001 
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Table 5.3. Oxygen consumption at rest and peak exercise overall and by group. 

 All 

(N=179) 

(mean±SD) 

White 

(N=141) 

(mean±SD) 

AA 

(N=38) 

(mean±SD) 

P value 

between 
group 

differences 

Resting energy expenditure (kcals/day)  1378.9±178.4 1375.7±173.6 1390.8±197.5 0.6443 

Resting metabolic rate (mL/kg/min)  2.87±0.36 2.95±0.33 2.59±0.30 <0.0001 

Resting metabolic rate (mL/kg of 
FFM/min) 

4.43±0.41 4.47±0.42 4.28±0.36 0.0128 

Respiratory quotient 0.79±0.05 0.79±0.4 0.79±0.06 0.7887 

Cardiorespiratory fitness (mL/kg/min)  33.4±7.8 35.3±7.4 26.2±4.2 <0.0001 

Cardiorespiratory fitness (L/min)  2.30±0.48 2.37±0.48 2.05±0.41 0.0002 
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Table 5.4. Energy expended by physical activity intensity. 

 All 

(N=179) 

(mean±SD) 

White 

(N=141) 

(mean±SD) 

AA 

(N=38) 

(mean±SD) 

P value 

between 
group 

differences 

Total daily energy expenditure (kcal/day) 2419.7±291.1 2413.6±296.0 2442.5±274.7 0.5887 

    Sedentary (min/day) 1086.0±80.7 1080.4±85.0 1106.7±58.7 0.0302 

    Light (min/day) 242.0±58.3 237.1±57.9 260.0±56.8 0.0313 

    Moderate (min/day) 104.0±57.3 113.4±59.5 67.2±25.6 <0.0001 

    Vigorous (min/day) 4.7±5.5 5.2±5.7 2.7±4.5 0.0112 

    Very Vigorous (min/day) 2.4±8.1 2.9±9.0 0.7±3.0 0.0142 

Physical Activity (min/day) 110.7±62.8 121.5±110.6 70.6±25.7 <0.0001 

Energy intake (kcal/day) 1801.9±457.3 1827.6±450.7 1706.6±475.0 0.1483 

    Carbohydrates (% of total kcals) 48.1±8.4 47.9±8.6 48.6±8.0 0.6567 

     Fat (% of total kcals) 32.7±6.7 32.3±6.8 33.9±6.3 0.2014 

    Protein (% of total kcals) 16.7±3.5 16.6±3.5 17.0±3.5 0.4988 

    Alcohol (% of total kcals) 2.7±4.3 3.3±4.6 0.5±1.1 <0.0001 

Sedentary, 1.0 to ≤1.5 METs; Light, >1.5 to ≤3.0 METs; Moderate, >3.0 to ≤6.0 METs;  
Vigorous, >6.0 to ≤9.0 METs; Very Vigorous, >9.0 METs. 
Physical Activity= cumulative minutes spent at >3.0 METS. 
P value represents differences between races 
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Table 5.5. Pearson correlations coefficients between RMR (kcals/day) and selected variables. 

 Resting metabolic rate (kcal/day) 

 All 

(N=179) 

W 

(N=141) 

AA 

(N=38) 

Weight (kg)  0.70** 0.73** 0.78** 

Fat mass (kg) 0.49** 0.52** 0.49* 

Fat free mass (kg) 0.71** 0.69** 0.83** 

    Bone mass (kg) 0.51** 0.55** 0.46* 

    Skeletal mass (kg) 0.70** 0.65** 0.86** 

    Residual mass (kg) 0.63** 0.61** 0.69** 

Physical activity (min/day) -0.26* -0.30* -0.06 

Cardiorespiratory fitness (mL/kg/min) -0.04 -0.03 -0.01 

Cardiorespiratory fitness (L/min) 0.52** 0.53** 0.64** 

Physical Activity = cumulative minutes spent at >3.0 METS. 
*Significantly correlated with RMR, P<0.05 
**Significantly correlated with RMR, P<0.0001 
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Table 5.6. Analysis of covariance assessing resting metabolic rate between sexes controlling for body compartments (kg), 
cardiorespiratory fitness (CRF, L/min) and time spent in physical activity (minutes/day) (mean±standard error). 

 White AA R2 P value 

Unadjusted  1375.7±14.6 1390.8±32.0 NA 0.6443 

Race + age + skeletal muscle 1391.5±10.8 1332.4±21.3 0.51 0.156 
Race + age + skeletal muscle + residual mass 1388.5±10.6 1343.5±21.2 0.52 0.0649 

Race + age + skeletal muscle + residual mass + 
fat mass 1400.3±9.1 1299.8±18.9 0.66 <0.0001 

Race + age + skeletal muscle + residual mass + 
fat mass + bone mass 1400.4±9.2 1299.4±19.2 0.66 <0.0001 

Race + age + skeletal muscle + residual mass + 
fat mass + bone mass + CRF 1395.1±9.3 1318.9±20.3 0.67 0.0017 

Race + age + skeletal muscle + residual mass + 
fat mass + bone mass + physical activity 
minutes 

1399.9±9.2 1301.3±19.3 0.66 <0.0001 
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Figure 5.1. The relationship between RMR (kcals/day) and FFM (kg) in 141 white (W) 
and 38 African-American (AA) women. There is no statistical differences in either the 
slopes (P=0.8789) or Y-intercepts (P=0.0607) between the groups.  
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Figure 5.2. Resting oxygen consumption was directly associated with cardiorespiratory 
fitness (top panel) when referenced to total body weight, though the relationship was 
different for white women (R2=0.60, P<0.0001) compared to African American women 
(R2=0.37, P=0.0238). However, when resting oxygen consumption was referenced to fat 
free mass (bottom panel) there was no relationship for African American women r=-0.13, 
P=0.45) and a small negative relationship for white women (r=-0.23, P=0.0064). 
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CHAPTER 6 

MANUSCRIPT 3: HIGH RESPIRATORY QUOTIENT IS ASSOCIATED WITH 

INCREASES IN BODY WEIGHT AND FAT MASS IN YOUNG ADULTS 
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Abstract  

Objective: It has been hypothesized metabolic disturbances such as reduced rates of fat 

oxidation as demonstrated by a high respiratory quotient (RQ) or low levels of energy 

expenditure resulting from a low resting metabolic rate (RMR) may contribute to 

increasing levels of obesity. The purpose of the present study was to determine the role of 

a high RQ or RMR on subsequent changes in body weight and body composition over a 9 

month period.  

Methods: We measured RQ and RMR in 317 young adults using indirect calorimetry, 

along with body weight and body composition using dual energy X-ray absorptiometery, 

energy expenditure using an arm-based activity monitor, and energy intake using 

interviewer-administered dietary recalls. Follow up measurements were completed every 

three months for the duration of the study on all measures except RQ and RMR. Linear 

mixed modeling was performed to determine the role of RQ and RMR on changes in 

body weight and fat mass after adjustment for age, race, and changes in energy 

expenditure and energy intake. 

Results: There were no differences in unadjusted changes in body weight or fat mass 

between individuals with a high RQ or low RMR. Following statistical adjustment for 

covariates (age, race, and changes in energy expenditure and energy intake), individuals 

in the highest tertile of RQ had larger gains in body weight and fat mass compared to 

individuals in the bottom two tertiles after 3 months, which continued through the 

remainder of the 9 month follow up period. Individuals in the lowest tertile for RMR did 
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not gain more body weight compared to individuals in the bottom two tertiles, and 

actually gained less fat mass during the follow up period.  

Conclusion: The primary finding of the current study is a high RQ is predictive of gains 

in body weight and fat mass over a 9 month period among young adults. Additionally, a 

low RMR was not associated with gains in body weight or fat mass over the same period. 

These findings suggest reduced levels of fat oxidation may result in obesity over time 

Introduction 

At the most basic level, obesity is the result of a chronic imbalance between 

energy intake and energy expenditure. However, the exact etiology is considerably more 

complex and may involve a variety of physiological and behavioral factors. Metabolic 

disturbances, including reduced fat oxidation and reduced resting metabolic rate (RMR), 

have been identified as possible predictors of changes in body weight and body 

composition.  

Respiratory quotient (RQ) reflects the ratio of carbohydrate to fat oxidation, and 

when measured in a fasting state stored fat is the primary fuel source. If an individual has 

a low RQ they oxidize more stored fat compared to an individual with a high RQ, and 

theoretically are protected against future fat accumulation. A high RQ among Pima 

Indians has previously been shown to be correlated with increased body weight after 

more than two years of follow up (Zurlo et al., 1990). Additionally, high RQ was found 

to be a weak but significant predictor of weight gain among 775 adults in the Baltimore 

Longitudinal of Aging Study (Seidell et al., 1992). However, there was no association 
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between RQ and weight gain over 5 ½ years in the Quebec Family Study (Katzmarzyk et 

al., 2000). 

RMR, the amount of calories burned from normal physiological functions (E.g. 

respiration, brain activity), represents the largest contributor (60-80%) of total energy 

expenditure in humans. Given the intricate balance of energy intake and expenditure in 

the regulation of body weight, it is hypothesized that small changes in RMR could result 

in a large reduction in the number of calories burned over time (Ravussin & Bogardus, 

1989), but this relationship is uncertain. For example, some prospective studies suggest 

low RMR is predictive of subsequent weight gain (Astrup, Gotzsche, et al., 1999; Leibel 

et al., 1995; Ravussin et al., 1986; Ravussin et al., 1988; Zurlo et al., 1990) while others 

do not (Katzmarzyk et al., 2000; Marra et al., 1998; Seidell et al., 1992). 

Thus, the purpose of the present study is to explore the longitudinal associations 

of RQ and RMR on changes in body weight and body composition over 9 months in a 

group of healthy young adults.   

Methods 

Participants and enrollment process A full description of the study design has 

been described in detail previously (Hand et al., 2013). Briefly, participants were young 

adults age ≥21 and ≤35 and had a BMI ≥20 and ≤35 kg/m2. Individuals were excluded for 

any of the following reasons: use of medications to lose weight, started or stopped 

smoking in the previous 6 months, or planned weight loss surgery. Individuals were also 

excluded for resting blood pressure >150 mmHg systolic and/or >90 mmHg diastolic, an 

ambulatory blood glucose level of greater than 145 mg/dl, current diagnosis or taking 
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medications for a major chronic health condition. Additionally, individuals with a history 

of depression, anxiety, or panic were excluded, as were those taking selective serotonin 

inhibitors for any reason. All women were eumenorrheic, and those who were planning to 

begin or stop birth control during the study also were excluded. All study protocols were 

approved by the University of South Carolina Institutional Review Board, and informed 

consent was obtained from each participant prior to data collection.  

Anthropometrics A dual energy X-ray absorptiometer (DXA) was used to 

measure bone mineral density, fat mass, and fat free mass. The scan was completed with 

a Lunar DPX system (version 3.6; Lunar Radiation Corp, Madison, WI). All 

anthropomorphic measurements were performed with the participant dressed in surgical 

scrubs and in bare feet. Body mass index (BMI; kg/m2) was calculated from the average 

of three height and weight measurements using a traditional standiometer and electronic 

scale and recorded to the nearest 0.1 centimeter and 0.1kg, respectively. All 

anthropometric measurements were completed once every three months for the duration 

of the study.  

Metabolic measurements RQ and RMR were measured at baseline via indirect 

calorimetry using a ventilated hood and an open-circuit system, TrueOne 2400 Metabolic 

Measurement Cart (ParvoMedics, Salt Lake City, Utah).  A 15 minute resting period 

preceded a 30 minute data collection period, and the metabolic cart was calibrated prior 

to each test using known gas concentrations and volumes as recommended by the 

manufacturer. All measurements occurred in the morning (<9:00am) following a 12 hour 

dietary fasting state and at least 24 hours after the last bout of structured exercise. 

Participants remained quiet and still through the entire RMR procedure and were kept 
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awake with continuous monitoring. The room was maintained in low light, noise was 

kept at a minimum, and the temperature remained between 26 to 30 degrees centigrade 

(Branson & Johannigman, 2004; Henry, 2005). RMR was calculated from O2 

consumption and CO2 production as measured continuously during the testing period 

with a constant airflow rate into the hood, and RQ was calculated as VCO2/VO2 (Branson 

& Johannigman, 2004; Weir, 1949, 1990). Given no widely accepted criteria exist to 

categorize RQ levels, participants were classified with a ‘High’ if they were in the upper 

tertile for RQ among the entire cohort for each gender or ‘Low/Moderate’ if they were in 

the bottom two tertiles.  

Cardiorespiratory fitness Fitness testing was conducted at baseline on a 

treadmill (Trackmaster 425, Carefusion, Newton, Kansas) with respiratory gases sampled 

using a TrueOne 2400 Metabolic Measurement Cart (ParvoMedics, Salt Lake City, Utah) 

using a Modified Bruce protocol, and all participants exercised to volitional fatigue.   

Energy Expenditure Energy expenditure was measured using an arm-based 

activity monitor (SenseWear Mini Armband, BodyMedia Inc. Pittsburgh, PA). The 

monitor is a portable, multi-sensor device worn on the upper arm, incorporating tri-axial 

accelerometry and measures of heat flux, galvanic skin response, skin temperature, and 

near-body ambient temperature. These measures are entered in combination with 

demographic information into an algorithm to estimate total energy expenditure and time 

spent in physical activity (> 3 metabolic equivalents or METs). The armband has been 

shown to be a valid device to measure energy expenditure and activity (Johannsen et al., 

2010; M. St-Onge et al., 2007; Welk et al., 2007). The participants wore the armband for 

10 days and were deemed compliant if they completed 7 days of wear (including two 



 

90 

weekend days) with at least 23 hours of wear time on each of the days. Measurement of 

energy expenditure and time spent in physical activity were completed once every three 

months for the duration of the study. 

Energy Intake Energy intake was measured using interviewer-administered 24 

hour dietary recalls. The Nutrient Data System for Research software (NDSR, Version 

2012), a state-of-the-art research software for conducting dietary recalls (F. E. Thompson 

& Subar, 2013), was utilized to conduct the dietary interviews. The dietary recalls were 

collected by a team of experienced (> 6 years using NDSR) registered dietitians 

employing a multi-pass approach which utilizes prompting to reduce food omissions, and 

standardizes the interview methodology across interviewers (Dwyer et al., 2001). 

Interviews occurred on randomly selected non-consecutive days over 14 days to 

minimize preparation that could bias recall by the participants (Hebert et al., 2002). 

Measurement of energy intake was completed once every three months for the duration 

of the study. 

Statistical Analyses Participant characteristics were based on demographic and 

physiological measurements using means and standard deviations for continuous 

variables and percentages for categorical variables. Statistical significance for 

comparison between groups were tested using t-tests for continuous variables and chi-

square for categorical variables. A linear mixed models (LMM) regression random 

intercept growth model was used to analyze the longitudinal data (West et al., 2007). An 

advantage of the LMM approach is it allows for unbalanced observations over time 

making it ideal to analyze longitudinal data. The dependent variable was change in body 

weight and fat mass over 9 months expressed in kg. The LLM was repeated multiple 
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times using various covariance structures, unstructured, first-order autoregressive, and 

compound symmetry. The unstructured covariance structure did not converge, and the 

results presented here utilized the first-order autoregressive structure due to lower Akaike 

Information Criteria (AIC) value compared to compound symmetry covariance structure. 

All analyses were initially completed using groups based on tertiles of RQ and repeated 

using groups based on tertiles of RMR. Data presented here display the RQ grouping 

findings and the results from RMR grouping are presented only when appropriate. All 

computations were performed using SAS 9.2 (Cary, N.C.).  

Results 

 Selected demographic and anthropometric variables are reported overall and for 

each group in Table 1. Overall, our participants (n=317) were young adults (27.7±3.8 

years) with nearly equal numbers of males (50.8%) and females (49.2%). The percentage 

of female in low/moderate and high RQ groups was similar. There were no differences at 

baseline between the low/moderate and high RQ groups for body weight, fat free mass, 

fat mass, BMI or body fat percentage. In terms of race, the low/moderate RQ group 

primarily consisted of 68.5% whites, 11.7% African Americans, and 7% Asians, and the 

high RQ group primarily consisted of 58.7% whites, 12.5% African Americans, and 

19.2% Asians.   

 The RQ was significantly elevated for the high RQ group (0.838±0.030 vs. 

0.766±0.024, P<0.0001) and is displayed in Table 2. Resting energy expenditure 

(kcals/day) was not different between the groups, but resting metabolic rate was higher in 

the low/moderate RQ compared to the high RQ group (3.01±0.36 vs. 2.90±0.36 
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mL/kg/min, P=0.0096). There was no difference in total energy intake or in diet 

composition between the groups. Likewise, there was no difference total energy 

expenditure or time spent in physical activity between the groups.  

 At the end of the 9 month follow-up period, the average weight gain was 1.0±3.4 

kg with no significant differences between the groups (Table 3). The average gain in fat 

mass was 0.7±3.2 kg with no significant differences between the groups. Likewise, there 

were no significant differences between baseline and 9 months in the change of variables 

potentially predictive of weight change between the groups (energy intake, diet 

composition, energy expenditure, time spent in physical activity). However, there were 

significant differences in change of body weight and fat mass at three and six months, 

with the high RQ group gaining more at each time point compared to the low/moderate 

RQ group (Figure 1). In terms of RMR, the only change when comparing the low group 

to moderate/high group was a higher change in fat mass at 9 months (1.08±2.77 vs. 

0.09±3.74 kg, P=0.0156).  

Despite no difference at baseline and no change from baseline at 9 months for 

energy expenditure, physical activity, and percent of kilocalories from carbohydrates, 

there were significant differences at 9 months and various time points in between (Figure 

2). Individuals in the high RQ group expended fewer total kcals (2638±419 vs. 2755±516 

kcals/day, P=0.0324), spent less time in moderate to vigorous activity (113±72 vs. 

133±76 min/day, P=0.0270), and consumed a higher percent of their diet in 

carbohydrates (47±9 vs. 45±9 percent, P=0.0490) at 9 months. There were no significant 

differences between groups during any of the follow up periods for energy intake or 

percent of kcals from fat, protein, or alcohol (results not shown).  
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Given the differences between groups among covariates that could potentially 

influence body weight and composition changes, linear mixed modeling was completed 

to describe the role of RQ in the process. After adjustment for differences in gender, age, 

race, and change in physical activity level, energy intake, and energy expenditure from 

baseline between the low/moderate and high RQ groups, the high RQ group had gained 

more weight at each time point (Figure 3, 9 month weight gain difference 1.545±0.232 

vs. 0.829±0.1819 kg, P=0.0040). The high RQ also gained more fat mass at each time 

point compared to the low/moderate RQ group (Figure 3, 9 month weight gain difference 

1.193±0.226 vs. 0.603±0.178 kg, P=0.0150). In terms of RMR, there were no differences 

in changes in body weight between the low and moderate/high groups after adjustment 

for the previously mentioned covariates. Interestingly, the moderate/high RMR group 

gained more fat mass compared to the low group (1.04±0.1871 vs. 0.44±0.2182 kg, 

P=0.0141) following the same statistical adjustments.   

Conclusions 

The primary finding of the current study is that a high baseline RQ was predictive 

of gains in body weight and fat mass over a 9 month period among young adults. 

Additionally, a low RMR was not associated with gains in body weight over the same 

period, and gains in fat mass were smaller when compared to individuals with a moderate 

or high RMR. These findings suggest that lower levels of fat oxidation, independent of 

changes in energy intake, energy expenditure, macronutrient composition of the diet, and 

physical activity, contribute to changes in body weight and fat mass, while lower energy 

expenditure from RMR does not.  



 

94 

Previous research has been ambiguous regarding the role of fasting substrate 

oxidation on subsequent weight gain. In the current study, we found that individuals in 

the top tertile for RQ (mean RQ=0.838±0.030) had larger gains in body weight and fat 

mass after 9 months compared to individuals in the bottom two tertiles (Figure 3). Studies 

involving Pima Indians found RQ to be an independent predictor of gains in both body 

weight (P<0.001) and fat mass (P=0.004) at 25 months, suggesting weight gain is a result 

of reduced rates of fat oxidation (Zurlo et al., 1990). The Baltimore Longitudinal Study 

of Aging is the largest study to examine the role of RMR and RQ on weight gain in men 

(N=775) over 10.3 years of follow-up (Seidell et al., 1992). After multivariate 

adjustments for age, BMI, and FFM, RQ was significantly associated with weight change 

at P<0.05, and RMR was significantly associated at P<0.10. Additionally, those with an 

RQ of >0.85 (individuals with low rates of fat oxidation) were 2.42 times more likely to 

gain at least 5 kg compared to those with an RQ of <0.76 (individuals with high rates of 

fat oxidation). A study of Italian women (N=58) found similar results, with those who 

gained >3kg over a three year follow-up period having an RQ of 0.91 vs. 0.84 of those 

who did not (Marra et al., 1998). Based on these studies, it is oxidation of energy stores, 

not RMR, which is predictive of weight gain. These results are in direct contrast to the 

Quebec Family Study, which found no association between RMR or RQ on changes in 

body weight or fat during a 5.5 year follow-up (Katzmarzyk et al., 2000). In that study, 

the correlations were low between measures of body weight/fatness (E.g. weight, BMI, or 

sum of skinfolds) and RMR (r= -0.03 to 0.16, not significant) or RQ (r= -0.05 to 0.12, not 

significant). Neither RMR nor RQ were significant predictors of increases in body weight 

or fatness from Cox regressions.  
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The variations in findings are likely due to many factors. The studies that have 

shown significant relationships between RMR and weight gain have consisted of young 

adult populations, and likely because this age group is more likely to gain weight 

compared to older adults (Sheehan et al., 2003). For example, the mean age of the Pima 

Indians in a separate study was 26 years with 11.9% of participants gaining at least 10 kg 

over four years of follow-up (Ravussin et al., 1988), while the mean age of the Baltimore 

Longitudinal Study of Aging was 49 years and weight gain was 0.07 kg over a mean 

follow-up of 10.3 years and the mean age in the Quebec Family Study was 39 years and 

mean weight gain was 2.8 kg for men and 3.5 kg for women over 5.5 years. In the current 

study of young adults (mean age=27.7±3.8 years), the mean weight gain for all 

participants was 1.0±3.4 kg after 9 months. There are also methodological differences 

across studies. For example, RMR was assessed in the Pima Indians over a 24-hour 

period in a respiratory chamber, while RMR in the Baltimore Longitudinal Study of 

Aging was measured using multiple techniques over a 19 year period. Also, baseline 

values in the Baltimore Longitudinal Study of Aging were not reported; instead mean 

RMR values from all visits over the 19 year follow-up were used for data analysis which 

may dilute the findings. Additionally, body composition assessment techniques varied in 

quality from hydrostatic weighing in the Pima Indians, skinfolds in Baltimore 

Longitudinal Study of Aging and Quebec Family Study, and not reported in the study 

from Italy, which makes direct comparisons of adjusted RMR values difficult. 

The determinants of elevated RQ are not well understood. The studies involving 

Pima Indians found approximately 28% of the variability in RQ values was due to family 

membership and 18% was due to prior change in weight, energy balance, body fat, and 
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sex (Zurlo et al., 1990). More recent studies support the genetic influence on RQ levels 

(Loos et al., 2007) and perhaps fitness and fat mass (Astrup et al., 1994; Colberg, 

Simoneau, Thaete, & Kelley, 1995; Kelley, 2005; Kunz, Schorr, Rommling, Klaus, & 

Sharma, 2002; Ukropcova et al., 2005). Individuals with high levels of CRF and low 

levels of fat mass have been shown to be ‘metabolically flexible’, meaning their skeletal 

muscle possesses the ability to switch between glucose and fat oxidation in response to 

homeostatic signals, such as after a meal or during a dietary fast (Kelley, 2005). When 

glucose is not present (i.e. following an overnight fast), a transition to reliance on fat 

oxidation occurs in metabolically flexible individuals as seen in low RQ values 

(Henriksson, 1995). Among obese and unfit individuals with low metabolic flexibility, 

this transition in fuel source is less robust and there is a blunted preference on fat 

oxidation as seen in high RQ values (Kelley, 2005). In the current study it is possible 

individuals in the low/moderate RQ group were more metabolically flexible due to higher 

levels of CRF and physical activity at baseline (significant at P=0.0578 and P=0.0667, 

respectively, Table 2).  

It is worth noting the significant differences between groups in changes body 

weight and fat mass observed as soon as the third month of follow up (Figure 3). 

Additionally, differences in body weight and fat mass observed at 3 months became 

smaller at 6 and 9 months. Zurlo et al. noted that of all variables studied, RQ was most 

highly correlated with acute (<3 days) changes in body weight (r=0.32, P<0.00.1) (1990). 

Additionally, among a subsample of their population who returned for follow up 

metabolic assessments, RQ was negatively associated with changes in body weight (r=-

0.42, P=0.07). This suggests that an elevated RQ may be associated with relatively short 



 

97 

term gains in weight, and after this weight gain reductions in RQ values occur. While all 

studies to date have focused on long term (>24 months) changes in weight and body 

composition, further research should explore the role of RQ on short term changes, in 

addition to changes in RQ following changes in weight.  

A limitation of the current study is the relatively short follow up period (9 

months) for assessing changes in body weight and fat mass. Other studies that have 

examined this topic have ranged from 25 months (Zurlo et al., 1990) to an average of 10 

years (Seidell et al., 1992). We did find statistically significant differences in weight 

change, but further follow up is needed to assess longer term changes.  

In summary, the current study has found a high RQ is predictive of gains in body 

weight and fat mass over a 9 month period among young adults when compared to 

individuals with a low/moderate or low RQ value. A low RMR was not associated with 

gains in body weight or fat mass over the same period. These findings support previous 

research which suggests that lower levels of fat oxidation, independent of changes in 

energy intake, energy expenditure, macronutrient composition of the diet, and physical 

activity, contribute to changes in body weight and fat mass.  
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Table 6.1. Participant anthropometric characteristics overall and by group. 

 All 

(N=317) 

(mean±SD) 

Low/Mod RQ 

(N=213) 

(mean±SD) 

High RQ 

(N=104) 

(mean±SD) 

P value 

between 
group 

differences  

Percent female (%) 49.2 49.3 49.0 0.9657 

Percent white (%) 65.3 68.5 58.7 0.0374 

Age (years)  27.7±3.8 27.4±4.0 28.1±3.6 0.1321 

Body Mass Index (kg/m2)  25.6±3.9 25.5±3.8 25.8±4.1 0.6187 

Height (cm)  171.3±9.4 171.6±9.8 170.7±8.3 0.4155 

Weight (kg)  75.3±13.9 75.4±13.9 75.2±13.7 0.8990 

   Fat free mass (kg) 54.0±12.1 54.7±12.5 52.8±11.3 0.2116 

   Fat mass (kg) 21.3±10.3 20.7±10.2 22.3±10.4 0.1908 

Body fat (%)  27.9±11.3 27.3±11.2 29.3±11.4 0.1375 

 

 



 

 
 

99 

Table 6.2. Descriptive statistics overall and by group. 

 All 

(N=317) 

(mean±SD) 

Low/Mod RQ 

(N=213) 

(mean±SD) 

High RQ 

(N=104) 

(mean±SD) 

P value 

between 
group 

differences  

Respiratory quotient  0.790±0.045 0.766±0.024 0.838±0.030 <0.0001 

Resting energy expenditure (kcals/day)  1533.2±260.5 1544.1±271.0 1510.9±237.1 0.2868 

Resting metabolic rate (mL/kg/min)  2.97±0.36 3.01±0.36 2.90±0.36 0.0096 

Cardiorespiratory fitness (mL/kg/min) 38.4±9.7 39.1±9.6 36.9±9.8 0.0578 

Energy intake (kcals/day) 2114±678 2141±735 2058±542 0.2611 

   Carbohydrates (% of total kcals) 47.1±9.7 46.6±9.9 48.3±9.3 0.1380 

   Fat (% of total kcals) 33.3±7.3 33.5±7.5 32.7±7.2 0.3386 

   Protein (% of total kcals) 17.1±4.7 17.4±5.0 16.5±4.0 0.0861 

   Alcohol (% of total kcals) 2.6±4.0 2.6±4.0 2.6±4.0 0.9851 

Energy expenditure (kcals/day) 2754±495 2785±512 2689±456 0.1050 

   Physical activity (minutes/day) 138±79 143±79 126±79 0.0667 

Physical activity= cumulative minutes spent at >3.0 METS/day. 
Mean armband wear time= 23.24±0.8 hours/day; Mean dietary recalls completed= 2.76±0.5 
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Table 6.3. Changes in key variables between baseline and 9 months both overall and by group. 

 All 

(N=317) 

(mean±SD) 

Low/Mod RQ 

 (N=213) 

(mean±SD) 

High RQ 

(N=104) 

(mean±SD) 

P value 

between 
group 

differences  

Weight (kg) 1.0±3.4 0.9±3.4 1.4±3.2 0.1651 

Fat mass (kg) 0.7±3.2 0.6±3.4 1.1±2.7 0.1796 

Body fat (%)  0.6±3.1 0.4±3.3 0.8±2.6 0.3343 

Energy intake (kcals/day) -5±19 -27±648 40±707 0.4066 

   Carbohydrates (% of total kcals) -1.4±8.8 -1.5±8.4 -1.1±9.7 0.6787 

   Fat (% of total kcals) -0.3±7.7 -0.5±7.6 0.1±8.1 0.4633 

   Protein (% of total kcals) 0.8±5.0 0.9±5.3 0.7±4.6 0.8004 

   Alcohol (% of total kcals) 0.9±4.5 1.2±4.4 0.2±4.7 0.0803 

Energy expenditure (kcals/day) -37±232 -30±243 -51±207 0.4586 

Physical activity (minutes/day) -11.0±52.2 -10.1±56.4 -12.7±42.6 0.6839 

Physical activity= cumulative minutes spent at >3.0 METS/day. 
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 Figure 6.1. Unadjusted changes in body weight and fat mass at each time point for each 
group. Between group differences for each time point: * P<0.05, ** P<0.001. 
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Figure 6.2.  Changes in energy expenditure, physical activity, and carbohydrate 
composition of the diet at each time point for each group. Between group differences for 
each time point: + P<0.10, * P<0.05, ** P<0.001. 
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Figure 6.3. Adjusted changes in body weight and fat mass at each time point for each group. Between group differences for each time 
point: + P<0.10, * P<0.05, ** P<0.001. 
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CHAPTER 7 

OVERALL DISCUSSION

 While the current high levels of obesity and their associated health consequences 

are well documented, specific causes of the epidemic are subject to debate with most 

research focusing on increasing levels of energy intake or decreasing levels of energy 

expenditure through sedentary behavior. However, the causes of obesity are likely 

multifactorial and there is some evidence metabolic disturbances, such as low resting 

metabolic rate or reduced rates of fat oxidation, also are involved. The cause of these 

metabolic disturbances is not well established and the extent of their role in weight gain 

is unclear.   

The purpose of this dissertation was to 1) Identify correlates of RMR among 

behavioral and physiological variables in a cohort of young adult men and women; 2) 

Examine racial differences in RMR, body weight, and body composition among young 

adult women; and 3) Explore the longitudinal effects of RMR, RQ, physical activity, and 

dietary intake on subsequent changes in body weight and body composition in young 

adults followed for nine months.  

 The three studies that form this dissertation were completed using data collected 

in The Energy Balance Study, a prospective observational study following young adults 

(N=430) for 24 months. The purpose of The Energy Balance Study is to examine the 

extent to which variation in total energy expenditure and variation in total energy intake 
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contribute to changes in body weight and fat among young adults. Extensive assessments 

of anthropometric and metabolic variables, in addition to estimations of energy intake 

and expenditure, were completed at baseline and every three months for the duration of 

the study.  

 Studies 1 and 2 consisted of cross-sectional analyses of baseline data. Univariate 

correlations were used to identify relationships between dependent variables and 

candidate independent variables. Generalized linear modeling was then conducted in 

which differences in body composition were statistically accounted for and adjusted 

mean values were calculated. Study 3 included baseline assessments of RMR and RQ 

followed by longitudinal monitoring of changes in body weight and body composition. A 

linear mixed models (LLM) regression random intercept growth model which allowed for 

unbalanced observations overtime was used to analyze the changes in body weight and 

fat from baseline through 9 months of follow up.  

 The primary results from this dissertation are the following:  

1. Fit individuals have a higher RMR compared to those who are unfit. Differences 

in body composition, specifically skeletal muscle mass, residual mass, and fat 

mass, explained a large portion of the variability in RMR between fit and unfit 

individuals. Additionally, while time spent in moderate to vigorous physical 

activity was also significantly related to RMR and varied considerably between 

the groups, the influence was small and had little predictive value over 

adjustments for body composition. 

2. Young adult African-American women have a lower RMR compared to their 

white peers after statistical adjustments for differences in body composition. 
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Higher levels of fat mass in AA compared to W resulted in elevated RMR beyond 

the differences in fat free mass. Additionally, CRF was significantly associated 

with RMR in the present study, but time spent in moderate to very vigorous 

physical activity was not. 

3. High RQ is predictive of gains in body weight and fat mass over a 9 month period 

among young adults. Additionally, a low RMR was not associated with gains in 

body weight or fat mass over the same period. These findings support previous 

research which suggests that lower levels of fat oxidation, independent of changes 

in energy intake, energy expenditure, macronutrient composition of the diet, and 

physical activity, contribute to changes in body weight and fat mass. 

 

These findings of this dissertation are important because they provide important 

information about the correlates of RMR, levels of RMR in a population at a high risk of 

obesity, and the role of RMR and RQ on longitudinal changes in body weight and body 

composition. Additionally, the role of CRF, physical activity, energy intake, and diet 

composition were explored in each study. The results from studies 1 and 2 suggest high 

CRF and physical activity play a statistically significant but modest role in elevating 

RMR. Findings from study 3 also low CRF and physical activity may be associated with 

reductions fat oxidation, ultimately resulting in gains in body weight and fat mass. 

Several potential research questions have arisen based on the findings presented 

here. During studies 1 and 2 attempts were made to explain the inter-individual variance 

in RMR values, specifically by exploring CRF and physical activity levels. The influence 

of each of these variables on RMR was modest at best, but future research should explore 
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this relationship with more specificity, examining different levels of CRF and doses of 

physical activity rather simply high or low fitness or high or low physical activity. Of 

specific interest is the duration and intensity of physical activity on RMR. All studies 

included in this dissertation analyzed cumulative minutes of activity at moderate intensity 

or higher regardless of the duration of the bout. Future research should impose bout 

criteria (E.g. ten consecutive minutes of activity at >3.0 METs and ≤6.0 METs) to better 

answer questions regarding physical activity dose on RMR values. 

Second, studies 1 and 2 were cross sectional in design so no causal effects can be 

determined from the findings, and study 3 was limited by a relatively short follow up 

period. Future research should include not only longitudinal assessment of body weight 

and composition but also measure trajectories of change in RMR, RQ, CRF, physical 

activity, and diet. For example, while it is thought that RMR and RQ is relatively stable 

within individuals with ±5% day to day variability, there is limited evidence suggesting 

wider variability long term, particularly in response to changes in diet, energy 

expenditure, and weight change. By assessing the trajectory of RMR and RQ in relation 

to changes in weight and other covariates we can better understand the dynamic and 

multifactorial etiology of obesity. 

In conclusion, low levels of CRF are associated with lower levels of RMR in a 

population of young adults independent of levels of FFM. However, the decrease in RMR 

from low levels fitness compared to moderate or high levels of fitness is modest and 

represents approximately 3%. Young adult African-American women have a lower RMR 

compared to their white peers after statistical adjustments for differences in body 

composition. High levels of fat mass, often considered to be metabolically inactive, 
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resulted in elevated RMR beyond the differences in fat free mass. Finally, high RQ at 

baseline is predictive of gains in body weight and fat mass over a 9 month period among 

young adults, while low RMR was not.  
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APPENDIX A 

Participant Screening Chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1. Participant screening chart.  

Total screened 
1831 

Eligible based on online 
screener 

866 

Attended orientation 
474 

Attended baseline 1 
446 

Attended baseline 2 
436 

Attended baseline 3 
430 

Ineligible based on online screen   965 
     Age <21 or >35   143 
 BMI< 20 or >35   281 
 Moving within 12 months  115 
 Pregnant/Birth Control  93 
 Not weight stable   4 
 Smoking    41 
 Other    288 

 

Ineligible based on phone screen   128 
 Medical condition  55 
 Depression/Anxiety  39 
 Moving within 12 months  19 

Pregnant/Birth Control  9 
Other    6 

Declined    61 
Unable to contact    153 

Ineligible after orientation   14 
 Medical condition  7 
 Depression/Anxiety  1 
 Other    6 
Lost /Dropped out       9 
Declined consent    5 

Ineligible after baseline 1   7 
 Medical condition  5 
 Other    2 
Lost/Dropped out    3 

Ineligible after baseline 2   2 
Lost/Dropped out    4 
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