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ABSTRACT 

Two-phase transport is widely used in energy conversion and storage, energy 

efficiency and thermal management. Surface roughness and interfacial wettability are two 

major impact factors for two-phase transport. Micro/nanostructures play important roles 

in varying the surface roughness and improving interfacial wettability. In this doctoral 

study, five types of micro/nanoengineered surfaces were developed to systematically 

study the impacts of interfacial wettability and flow structures on nucleate boiling and 

capillary evaporation. These surfaces include: 1) superhydrophilic atomic layer 

deposition (ALD) coatings; 2) partially hydrophobic and partially hydrophilic composite 

interfaces; 3) micromembrane-enhanced hybrid wicks; 4) superhydrophilic 

micromembrane-enhnaced hybrid wicks, and 5) functionalized carbon nanotube coated 

micromembrane-enhnaced hybrid wicks. 

Type 1 and 2 surfaces were developed to investigate the impacts of intrinsic 

superhydrophilicity and hydrophobic-hydrophilic composite wettability on nucleate 

boiling. Superhydrophilicity was achieved by depositing nano-thick ALD TiO2 coatings, 

which were used to enable intrinsically superhydrophilic boiling surfaces on the 

microscale copper woven meshes. Critical heat flux (CHF) was substantially increased 

because of the superwetting property and delayed local dryout. Carbon nanotube (CNT) 

enabled partially hydrophobic and partially hydrophilic interfaces were developed to 

form ideal cavities for nucleate boiling. The hydrophobic-hydrophilic composite 

interfaces were synthesized from functionalized multiwall carbon nanotubes (FMWCNTs) 
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by introducing hydrophilic functional groups on the surfaces of pristine MWCNTs. The 

nanoscale FMWCNTs with heterogeneous wettabilities were coated on the micromeshes 

to form hierarchical surfaces, which effectively increase the heat transfer coefficient 

(HTC) and CHF of pool boiling.  

To enhance capillary evaporation, micromembrane-enhanced capillary 

evaporating surfaces, i.e., type 3 surfaces, were developed to separate liquid flows and 

capillary pressure generation. This new type of surfaces consists of a microchannel array 

and a micromembrane made from a single layer of micromesh. The capillary evaporation 

CHF were substantially increased because of the increased capillary pressure provided by 

micromeshes and the reduced friction drag resulted from microchannels. Based on this 

newly developed hybrid wick, the effect of interfacial wettability on capillary evaporation 

was systematically studied. Firstly, superhydrophilic ALD SiO2 was deposited on this 

type of hybrid wick to create intrinsically superhydrophilic interfaces, i.e., type 4 surfaces, 

resulting in significantly increased HTC because of the enhanced thin film evaporation on 

micromeshes. Secondly, CNT-enabled hydrophobic-hydrophilic composite interfaces 

were deposited on the hybrid wicks to increase the nucleate site density, bubble departure 

frequency and reduce friction drag. Both nucleate boiling and thin film evaporation were 

improved, resulting in enhanced HTC and CHF. 

In conclusion, the interfacial wettability of micro/nanoengineered surfaces can 

significantly alter bubble dynamics such as nucleation site density, bubble departure 

diameter and frequency. Superhydrophilic surface can substantially increase the boiling 

CHF because of the superwetting property. In addition, more hydrophobic surfaces yield 

higher HTC, while more hydrophilic surfaces result in higher CHF. The partially 
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hydrophobic and partially hydrophilic surfaces perform better than both superhydrphobic 

and superhydrophilic surfaces. The separation of liquid flow and capillary pressure 

generation can be achieved using micromembranes, resulting in dramatically increased 

CHF. Improved wettability can result in better wettings and enhanced thin film 

evaporation. Hydrophobic and hydrophilic nanoporous coatings can improve the wetting 

and reduce the friction, resulting in enhanced HTC and CHF simultaneously. 
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CHAPTER 1 

INTRODUCTION 

Thermal management is critical for electronic devices [1], batteries [2], fuel cells [3], 

light-emitting diode lightings [4], Air Force systems [5], power plants [6], et al. Phase 

change heat transfer can achieve high heat transfer coefficient (HTC) and reduce 

pumping power by taking advantage of the latent heat [7]. Boling and evaporation are the 

primary two modes of two-phase heat transports, which exhibit promising perspectives 

for micro/nanoscale thermal management.  

1.1 BOILING HEAT TRANSFER 

According to the boiling heat transfer theory [8], h = q"/∆T , h is the HTC, q" is 

the heat flux and ∆T is the wall superheat. Here, q" = 1/6πDb
3ρghfgfbNA, and Db is the 

bubble departure diameter, ρg is the vapor density, hfg is the specific enthalpy, fb is the 

bubble departure frequency and NA is the number of active nucleation sites. According to 

this correlation, to enhance boiling heat transfer at the identical superheat, we can 

increase the number of active nucleation sites and augment surface areas using 

micro/nanostructures [9-10]. In addition, improving the interfacial wettability can 

increase bubble growth rate and reduce bubble departure force, resulting in increased 

bubble departure frequency [11]. To increase the critical heat flux (CHF) of boiling heat 

transfer, efforts have been spent to delay the transition to film boiling. Both surface 

roughness [10] and interfacial wettability [12] have shown significant impacts on the 

CHF. 
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1.1.1 MICROSTRUCTURES 

Microstructures have been widely used to enhance boiling and evaporation. Li et 

al. [13] investigated the boiling and evaporation on the copper woven meshes 

systematically, including the effects of thickness, mesh size and volumetric porosity. The 

maximum HTC and CHF for the sintered multiple layers of copper meshes were shown 

to be as high as 245.5 kW /m2·K and 367.9 W /cm2, respectively. Wei et al. [14] studied 

the effects of fin geometry on boiling heat transfer using silicon chips with micro-pin-

fins, and then Chu et al. [10] studied the surface roughness-augmented wettability on 

CHF systematically with well defined microstructures. Liter et al. [15] investigated the 

CHF enhancement by modulated porous-layer coating using experimental and theoretical 

methods. They found the modulation separated the liquid and vapor phases, thus reducing 

the liquid-vapor counterflow resistance adjacent to the surface. The completely separated 

liquid and vapor flow paths resulted in substantial enhancement of CHF. Subsequently, 

Min et al. [16] studied the two dimensional (2-D) and three dimensional (3-D) modulated 

porous coatings for enhanced boiling, respectively. They found 2-D coatings behaved 

similar to the 3-D coatings by carbon-molding in modulating the stability of the vapor-

liquid interface thus causing enhancement in the CHF. Li et al. [17] made different types 

of multiscale modulated porous structures and compared the liquid replenishing impacts 

on CHF and heat transfer coefficient of nucleate boiling. The modulated structures were 

shown to further enhance the CHF by delaying the onset of hydrodynamic instability 

when the vapor-liquid counterflow was separated by the pillars. 

1.1.2 NANOSTRUCTURES 

It has been indicated that nano-scale surface may not improve the nucleate boiling 

heat transfer, because the bubble nucleation process is hardly expected to be initiated in 
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nano-sized cavities based on the conventional theory [18-19]. However, silicon and 

copper nanowires were investigated to be superior to increase the nucleate site density 

and thus enhance the heat transfer rate [9]. Chen et al. claimed that the CHF could also be 

enhanced by the Si/Cu nanowires due to the superhydrophilicity and enhanced capillary 

effect [20]. Ahn et al. [21] reported the enhanced boiling heat transfer on the 

nanostructured surface made by carbon nanotube arrays. The "nano-fin″ effect was taken 

as the primary enhancement mechanisms.  

1.1.3 HIERARCHICAL STRUCTURES 

Hierarchical or hybrid structures combined the advantages of both microscale and 

nanoscale structures, resulting in robust superiorities to enhance the boiling heat transfer. 

Launay et al. [22] developed the hybrid micro-nano structured thermal interfaces for pool 

boiling. The conventional Si-etched microstructures performed better than the CNTs-

based surfaces in all cases examined. This was mainly due to the change in the nature of 

surface-fluid interactions (i.e., rendering surface non-wetting) when pristine CNTs were 

used as the interface. McHale et al. [23] deposited the carbon nanotubes on the sintered 

microscale copper particles and rendered the hydrophobic CNTs to hydrophilic by E-

beam evaporative deposition of pure copper. The CHF and heat transfer rate were both 

enhanced significantly. Ahn et al. [24] studied the micro, nano and micro/nano duplicated 

structures and demonstrated that the CHF enhancement on the modified surfaces was a 

consequence of both the improved surface wettability and the liquid spreading ability. 

The micro/nanostructured surface had the greatest liquid spreading ability and the 

maximum CHF. 
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1.1.4 INTERFACIAL WETTABILITY 

The mechanism of the micro/nanostructure enhanced boiling heat transfer 

attributes to the augmented surface areas, increased nucleate site density and enhanced 

capillary effects. The superhydrophilicity of the micro/nano structured surface primarily 

results from the Wenzel′s effect [25]. Hence, those structured interfaces are just 

apparently superhydrophilic. Increasing the intrinsic interfacial wettability is able to 

promote the evaporative rate of the thin film liquid layer inside the bubble. Phan et al. 

[26] studied the influences of the surface wettability on nucleate boiling. They made 

nanocoatings to vary the water contact angle from 20o to 110o by modifying the 

nanoscale surface topography. The more hydrophobic interfaces were found to have a 

smaller bubble departure diameter and larger bubble departure frequency. Bourdon et al. 

[27] concluded that significant reduction of the superheat at the onset of incipient boiling 

due to the enhanced wettability. Jo et al. [28] compared the nucleate boiling on 

hydrophilic SiO2 and hydrophobic Teflon nanostructured surfaces, respectively. The SiO2 

coated interface could reach a higher CHF but a lower HTC. The improved surface 

wettability and capillary effect contributed to the CHF enhancement, while the decreased 

nucleate site density determined the deteriorative heat transfer performance. Moreover, 

the SiO2 obtained by the plasma treatment was not reliable. Takata et al. [29] coated the 

plain copper with TiO2 and maintain the superhydrophilicity with UV light. The CHF 

was promoted by approximately 200% and heat transfer rate was improved as well. 

However, Feng et al. [30] reported that the CHF was promoted by 200% on the alumina 

coated Pt wire using atomic layer deposition but without apparent change in heat transfer 

rate.  
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1.1.5 MY WORK ON BOILING HEAT TRANSFER 

Base on the brief literature review of the previous work, we can see that the 

effects of interfacial wettability in the porous and hierarchical structures have barely been 

reported due to the difficulty in depositing conformal hydrophilic coatings on the high 

aspect ratio surfaces. Further investigations on the fundamental issues of the interfacial 

effects on bubble dynamics and thin film evaporation still need to be done.  

To distinguish the effects of surface roughness and interfacial wettability, this 

work systematically studied the intrinsic wettability on heat transfer enhancement. First, 

intrinsically superhydrophilic porous structures were obtained by depositing conformal 

Titania (TiO2) on microscale copper woven meshes using atomic layer deposition (ALD) 

technique. Second, partially hydrophobic and partially hydrophilic composite interfaces 

were synthesized from functionalized multiwall carbon nanotubes (FMWCNTs) by 

introducing hydrophilic functional groups on the surfaces of pristine multiwall carbon 

nanotubes (MWCNTs). The synthesized FMWCNTs with composite wettability were 

then coated on the microscale copper woven meshes to form hierarchical structures with 

heterogeneous wettabilities. The intrinsically superhydrophilic TiO2 coated porous 

structures and FMWCNTs enabled hierarchical structures were superior to pool boiling 

enhancement.  

1.2 EVAPORATION HEAT TRANSFER 

Capillary evaporation [31] is one of the most efficient heat transfer modes and has 

been widely used in heat exchangers [32] and heat pipes [33-35]. Evaporators with high 

HTC and CHF are highly desirable for compact heat exchangers for high heat flux 

applications [36-37]. To increase the evaporative HTC, we can augment the surface area 
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using porous structures [13] or improve intrinsic interfacial wettability to achieve 

enhanced thin film evaporation  as indicated in the theoretical model [38]. To increase the 

evaporative CHF, high capillary pressure and simultaneous low flow resistance are 

required to maintain sufficient liquid supply to avoid the dryout. 

1.2.1 LITERATURE REVIEW OF CAPILLARY EVAPORATION  

Most of porous coatings used in enhancing capillary evaporation are usually 

mono-porous structures [39]. For example, sintered particles and powders were 

developed to substantially enhance thin film evaporation HTC [39-40]. The effects of 

porosity, wick thickness and other factors on the optimal design of the wicking structures 

were also examined [39-40]. Copper woven mesh laminates [41-44] were extensively 

studied to enhance the capillary evaporation HTC due to the augmented surface areas and 

increased capillary forces. However, the flow resistances in these microscale mono-

porous structures remain high, resulting in low CHFs due to the liquid supply crisis. 

Micro-grooves [45-46] or channels [47] were superior for liquid supply because of the 

attributed low flow resistance, but the capillary forces induced by the disjoining pressure 

differences in grooves [46] were still too low to reach high CHFs.  

This brief review shows that both the microscale mono-porous structures (such as 

sintered meshes or particles/powders) and micro-grooves or channels cannot meet the 

needs of high heat flux applications. To solve this dilemma, various types of bi-porous 

surfaces were proposed and developed [35, 48-52]. Semenic et al. [49, 51] found that 

biporous surface of sintered powders performed better than the mono-porous copper 

wicks because the working fluid can be supplied to the hot spots through micropores 

inside the clusters even though the voids were filled with vapor. Cao et al. [53] reported 



 

7 

that when a mono-dispersed wick was replaced by bi-dispersed wicks with the same 

small pore diameter, both HTC and CHF were increased significantly. Cai et al. [36] 

studied the heat transfer performance on the carbon nanotube bi-porous structures, which 

consisted of carbon nanotube (CNT) array separated by microchannels. The nanoscale 

pores in the CNT bi-porous structure provided ultrahigh capillary pressure and 

augmented surface areas, which significantly reduced the menisci radii and increased 

thin-film evaporation area and evaporation efficiency. Ćoso et al. [54] examined a type of 

bi-porous media consisting of microscale pin fins periodically separated by 

microchannels to simultaneously increase the heat dissipation capacity as well as the 

HTC of the evaporator wick. Some of the bi-porous wicks have also been integrated in 

heat pipes [50, 55-57] to decrease the thermal resistance and increase working heat 

fluxes. Heat pipe performance was found to be greatly enhanced by applying modulated 

wick because of enhanced axial capillary liquid flows and extra evaporation surface area 

resulting from the cross-sectional area [35]. In these reported bi-porous structures, the 

main fluid passages were still through the micro or nanoscale mono-porous structures 

(such as microscale powders or CNTs). As a result, the overall liquid flow resistances 

still remain high.  

1.2.2 MY WORK ON EVAPORATION HEAT TRANSFER 

Inspired from tree transpirations and water transport processes, a 

micromembrane-enhanced hybrid wick, which consisted of a microchannel array covered 

by a single layer copper mesh screen, was developed to increase evaporation HTC and 

CHF. In this structures, micromeshes provide high capillary forces and microchannels 

can reduce the flow resistance, resulting in sufficient liquid supply to reach high heat flux. 
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In addition, the micromesh can not be flooded since the liquid flows through the 

microchannels, resulting in thin film evaporation on micromeshes.  

The interfacial wettability of this newly developed hybrid wick was tuned to study 

the effect of wettability on liquid supply and thin film evaporation. Two types of 

nanocoatings, superhydrophilic ALD SiO2 and partially hydrophobic and partially 

hydrophilic FMWCNTs, were utilized to enhance capillary evaporation. The intrinsically 

superhydrophilic ALD SiO2 coated hybrid wick was demonstrated to significantly 

enhance the HTC. In addition, hydrophobic-hydrophilic FMWCNTs coated hierarchical 

hybrid wicks with heterogeneous wettability were superior to enhance capillary 

evaporation HTC and CHF in this study.  

1.3 SUMMARY OF THE INTRODUCTION 

Surface roughness and interfacial wettability are the two critical impact factors for 

boiling and evaporation. Since many people studied various types of structures, this study 

focused more on the effect of wettability. Using two layer sintered copper meshes as the 

base, superhydrophilic ALD TiO2 and hydrophobic and hydrophilic FMWCNTs were 

employed to enhance nucleate boiling. Then the micromembrane-enhanced hybrid wicks 

were developed to enhance capillary evaporation. Based on this structure, 

superhydrophilic ALD SiO2 and hydrophobic and hydrophilic FMWCNTs were used to 

enhance capillary evaporation. 
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CHAPTER 2 

CONFORMAL NANO-TITANIA COATINGS FOR ENHANCED NUCLEATE BOILING 

Conformal nano-thick titania (TiO2) was deposited on two layer copper woven meshes by 

atomic layer deposition (ALD) technique. The surface morphologies were maintained 

without taking big surface roughness on each copper wire. The intrinsic surface 

wettabilities were significantly improved. Nucleate boiling CHF was dramatically 

increased from 141.8 W/cm2 on bare two layer meshes to 194.5 W/cm2 on ALD TiO2 

coated two layer meshes. The improved wettability substantially enhanced the wetting of 

the "microlayers″, resulting in delayed local dryout and increased CHF.  

2.1 INTRODUCTION OF NUCLEATE BOILING ENHANCEMENT TECHNIQUES  

Nucleate boiling, as one of the most efficient heat transfer modes, is critical for 

energy conversion and thermal management [1, 3, 58-62]. Many approaches have been 

developed to enhance boiling heat transfer, such as increasing the nucleate site density, 

e.g. nanowires [9] and carbon nanotubes [23]; augmenting the surface areas, e.g. sintered 

particles[37, 63], copper woven meshes [13] and pin-fin structures [14], which can 

introduce more cavities as well; improving surface wettability, e.g. superhydrophilic 

coatings [30] and nanofluids [64-65], which is able to promote the rewetting of the "hot 

spot″ and delay the dryout; partially hydrophilic and partially hydrophobic interfaces [66-

67], which proved ideal cavities for nucleate boiling. Most of the aforementioned 
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methods are based on surface modifications, which may introduce big roughnesses, 

create nucleate sites, increase surface areas, or improve surface wettabilities. To study a 

single impact factor of surface wettability, several intrinsically hydrophilic metal oxides, 

such as alumina (Al2O3) [30], silica (SiO2) [68] and titania (TiO2) [69], have been 

investigated to enhance nucleate boiling. Al2O3 coated platinum (Pt) wire was tested in 

de-ionized water and over 100% enhancement of CHF in pool boiling has been 

demonstrated in Peterson′s group [30]. TiO2 coated plain surface was tested in pure water 

and the priority in increasing the HTC and CHF has been observed as well [69]. 

Johnathan [70] compared the heat transfer performance of both plain copper surface with 

hydrophilic coating in water and bare copper surface in Al2O3/water nanofluids. 

Interestingly, similar CHF enhancement was achieved because the nanoparticles 

deposited on the tested sample and dramatically improved the wettability, which was 

similar to the effect of hydrophilic coatings. Thus, investigating the effect of surface 

wettability is also very helpful to understand the mechanisms of those nanofluids with 

hydrophilic particles. Bare NiCr wire was tested in SiO2/water nanofluids [71] and plain 

copper surface was tested in Al2O3/water nanofluids [72], and both investigations found a 

dramatic CHF enhancement with no appreciable change in heat transfer. These were 

consistent with Feng′s observations [73] and again verified that the improved surface 

wettability contributed significantly to the CHF enhancement [70]. Whereas, a stainless 

steel disc was investigated in gamma phase Al2O3/water nanofluids [74] and a heating 

wire was tested in Al2O3/water nanofluids [75] and both of them demonstrated a dramatic 

heat transfer enhancement.  
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The aforementioned techniques substantially improved the interfacial wettability 

and surface energy. However, the TiO2 coatings deposited on plain surface [69] using 

sputtering were not reliable. The Al2O3 coated single Pt wire did not show obvious HTC 

enhancement [30] and Al2O3 coating was not superior to prevent water corrosions [76]. 

Atomic layer deposition is able to grow conformal nano-thick coatings on the porous 

structures. Most recently, ALD TiO2 has shown great capabilities in water corrosion 

resistance for copper protection [76]. The aging test has demonstrated that a 200 Å TiO2 

thin film is able to prevent the copper from corrosion in water for more than 80 days [76]. 

Intrinsically superhydrophilic ALD coated porous structures have not yet been reported 

due to the difficulty in coating high aspect ratio surfaces. In this study, conformal ALD 

TiO2 coated copper woven meshes have been experimentally investigated in highly 

purified water to show the effects of improved wettability on heat transfer performances.  

2.2 POOL BOILING TESTING AND DATA REDUCTION 

A closed system was established for experimental study (Figure 2.1). The 

aluminum chamber was made as a reservoir. The inner walls were coated with high 

temperature polyester to reduce contamination. Two side walls of the chamber were 

covered by quartz glass as observation windows and the bottom of the chamber was used 

for sample assembly. The temperature was accurately controlled by a proportional-

integral-derivative (PID) temperature controller. A compact water heat exchanger was 

used to condense and recycle the vapor to keep a constant water level. A pressure gauge 

was installed to monitor the vapor pressure in the chamber. Additionally, the water and 

vapor temperature inside the chamber were monitored by two T-type thermocouples. 
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Figure 2.1 Experimental setup of pool boiling. TC-thermocouple; 1, 2, 3 and 4 are four 
heaters. 

High purity water was degassed for at least two hours at approximately 99.9 oC to remove 

non-condensable gases prior to tests. Four cartridge heaters were installed in the corners 

of the aluminum chamber to maintain the water temperature between 99.8 ± 0.2 oC and 

100.2 ± 0.2 oC to ensure saturated work condition. 

Copper woven meshes were sintered on a TC block (Figure 2.2) by diffusion 

bonding technique to achieve good contact conditions. The whole structure was sintered 

in high temperature furnace at 1000 oC in hydrogen (H2) atmosphere for 150 min. A 

copper heating block with 1 cm2 cross-section area was used to generate one-dimensional 

(1-D) heat flux. In order to reach high heat flux, a pure copper heating block was made 
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Figure 2.2 Schematic of the test sample assembly. (a) 1. 120V-500W 3/8" diameter × 4" 
long cartridge heater, 2. 1" square copper heating block with 4 holes on the bottom side 
for heaters and 1 hole on the top side, 3. 1 cm × 1 cm square copper block with holes for 
thermocouple (TC block) 4. 0.02″ diameter × 6″ long K type thermocouple, 5. Screw, 6. 
G-7 fiberglass, 7. High temperature RTV silicone . 8. 10 mm × 10 mm sintered copper 
woven meshes. (b) Two layer copper woven meshes sintered on TC block. (c) Scanning 
electron microscope (SEM) image of the two layer woven meshes. (d) Three dimensional 
atomic force microscopy (AFM) images of TiO2 coated mesh surface. 

with 4 holes for heaters on one side and a hole on the other side for the TC block. 

Thermal grease was used to enhance the contact conditions between the heating and TC 

blocks. The whole heating elements were finally insulated in an aluminum housing by 

Nelson Firestop Ceramic Fiber. G-7 Fiberglass was used to insulate the TC bock to 

ensure the 1-D heat conduction. Power supply was used to control the input power and 

five K type thermocouples (diameter 0.61mm) with linear temperature distribution were 

used to estimate the input heat flux (Figure 2.2). High temperature RTV silicone was 

used to seal the gaps between fiberglass and copper block. High temperature silicone was 
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Figure 2.3 Thermocouple arrangement and parameters for data reduction. 

 

Table 2.1 Dimensions of two layer meshes. 

Samples Parameters 
2 layer Mesh Thickness: 0.16 mm Wire diameter: 0.56 mm Porosity: 0.72 

 

also used to insulate the TC block inside the chamber, the thermocouple inside the 

chamber and the edge of the copper woven meshes, leaving only the woven mesh 

surfaces in the chamber for boiling. 

Data reduction was conducted according to the parameters shown in Figure 2.3. 
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The uncertainties of the temperature measurements, the length or width are ± 0.5 

K, 0.01 mm, respectively. The Kline and McClintock method was used to estimate the 

uncertainties [77]: 2 2 2 1/2
1 2

1 2

[( ) ( ) ( ) ]n
n

y y yy x x x
x x x
∂ ∂ ∂

∆ = ∆ + ∆ + + ∆
∂ ∂ ∂

 . Estimations of uncertainties 

are: the heat flux was less than ± 3.2 W/cm2; the heat transfer coefficient was less than ± 

1.2 W/(cm2·K); the superheat ∆T = Tw - Tsat was less than ± 0.8 °C.  

2.3 ALD DEPOSITION OF TIO2 

The deposition of active material TiO2 on the conducting copper surface was 

carried out in a viscous-flow, hot-wall type ALD reactor as shown in Figure 2.4 [78]. The 

deposition was performed in static mode in order to conformal coat the high surface area 

copper woven meshes (made by Belleville Wire Cloth). Ultra high purity (UHP) grade N2 

was used as the carrier gas during the deposition. Base pressure of the reactor was kept at 

one Torr. Prior to the ALD coating process, two layer copper meshes were sintered on a 

1×1 cm2 copper block to achieve nearly perfect contact conditions. The whole structures 

were sintered in a high temperature furnace at approximately 1000 oC in hydrogen (H2) 

atmosphere. Thereafter, ALD thin film was deposited at 150°C in a viscous-flow, hot-

wall type ALD reactor [78]. The reactor was operated in flow/static mode for conformal 

growth of oxides on copper woven meshes. Ultra high purity nitrogen was used to 

maintain the reactor pressure at 0.9 Torr. Prior to the TiO2 deposition, ALD Al2O3 was 

pre-deposited as a seed layer to facilitate the TiO2 nucleation. The sequential dosing of 

titanium tetrachloride (TiCl4) and water were used as the deposition technique [76, 78]: 

TiCl4 + 2H2O → TiO2 + 4HCl. Trimethylaluminum (TMA) and water chemistry were 

used for ALD Al2O3 [79]: 2Al(CH3)3 + 3H2O → Al2O3 + 3CH4. The chemistries used for 

ALD have been well studied and have been demonstrated to obtain high quality film  
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Figure 2.4 Schematic view of viscous flow reactor for ALD TiO2 [78]. 

 

Figure 2.5 Characterization of the TiO2 coated interfaces. (a) Two layer copper woven 
meshes. (b) SEM image of the surface morphology of the conformal TiO2 coated mesh 
wire. (c) SEM image of the surface morphology of the rough TiO2 coated mesh wire. (d) 
3-D AFM image of the bare mesh wire. (e) 3-D AFM image of the conformal TiO2 
coated mesh wire. (f) 3-D AFM image of the rough TiO2 coated mesh wire. (g, h and i) 
Contact angle measurement. 

deposition [79-81]. 

2.4 CHARACTERIZATION OF THE CONFORMAL ALD TIO2 COATING 

The three dimensional (3-D) atomic force microscopy (AFM) surface morphology 

analysis of the ALD TiO2 coated mesh wires (Figure 2.5a) illustrated that the ALD TiO2 

coatings could keep the original surface morphology of individual copper mesh wire 

(Figures 2.5b, c). The root mean square (RMS) roughness increased from 1.2 nm on bare 

copper wire (Figure 2.5d) to 3.1 nm after the conformal ALD Al2O3 and TiO2 depositions 
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in the flow mode (Figure 2.5e). In the static mode, the chemicals stayed in the reactor for 

a longer time and the chemical vapor deposition (CVD) occurred. Thus the RMS 

roughness increased to 13.2 nm (Figure 2.5f). Compared with reported surface 

modification techniques [9, 82], the conformal ALD TiO2 coating showed great 

conformality and hence the surface area augmentation can be neglected. However, the 

wettability was improved significantly according to the contact angle measurement. The 

contact angle on a plain copper sheet, 51.2o (Figure 2.5g), was reduced to 4.9o (Figure 

2.5h) on the ALD TiO2 coatings, which indicated that the intrinsic water affinity of TiO2 

could significantly improve the hydrophilicity of individual copper mesh wire. This was 

different from the apparent superhydrophilicity induced by structure effect [9]. Moreover, 

the ALD TiO2 coated two-layer meshes showed a reduced contact angle (Figure 2.5i), 

which was consistent with Wenzel′s law [25]. 

2.5 ENHANCED BOILING HEAT TRANSFER 

Experimental study was conducted to characterize the pool boiling on the 

conformal ALD TiO2 coated copper woven meshes. The bare two layer meshes, which 

performed better than the bare plain copper, were tested as the baseline. The test system 

was calibrated by the plain copper (Figure 2.6a) [13]. According to the nucleate boiling 

theory [83], the mesh wires have smaller nucleate cavities than the plain copper surface, 

thus the boiling incipience is delayed as show in Figure 2.6a. Since the copper meshes 

have a much larger surface areas than the plain copper surface, the CHF is promoted from 

63.7 W/cm2 on bare two layer meshes to 141.8 W/cm2. Whereas, TiO2 coated meshes 

were not superior in the low heat flux regime because on the more hydrophilic TiO2 

coated surfaces cavities were easier to be flooded and loose the activities for bubble  
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Figure 2.6 Heat transfer performances (a) ∆T-q" (∆T = Twall - Tsat) curves of the nano-
thick TiO2 coated two copper layer woven meshes. (b) Characterization of the ALD 
coating thickness. (c) Microlayer and partial dryout on the bare surface. (d) Heat transfer 
enhancement mechanism on the TiO2 coated surface 

growth. However, CHF was significantly increased from 141.8 W/cm2 to 194.5 W/cm2 

on the conformal ALD coatings. The ALD TiO2 coating with the surface roughness of 

13.2 nm reached the CHF of 183.3 W/cm2, which was slightly increased to 194.5 W/cm2 

when the surface roughness decreased to 3.1 nm. This indicates the augmented nanoscale 

surface rougheness could not increase the CHF. Therefore, the CHF enhancement results 

from the improved interfacial wettability. 

To quantitatively characterize the thickness of TiO2 coatings, copper nanowires 

were deposited in the same working conditions and was cut by focused ion beam (FIB) 

(Figure 2.6b). The number of deposition cycles of Al2O3 was 50 and the typical growth 

rate was 0.12 nm/cycle. Subsequently, TiO2 was coated for 320 cycles with the growth 

rate of 0.05 nm/cycle. Therefore, the total film thickness was approximately 22 nm (6 nm  
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Figure 2.7 Heat transfer mechanisms. (a) Macrolayer & microlayer for nucleate boiling. 
(b) Fluid supply for the macrolayers in porous structures. (c) Macrolayer formation in 
two layer meshes.  

ALD Al2O3 and 16 nm for ALD TiO2). This was directly shown in Figure 2.6b. 

The CHF enhancement mechanism resulted primarily from the improved 

wettability, instead of the surface roughness as shown in Figures 2.6c and d. The 

temperature distribution inside the bubble was measured by Gerardi [84]. It indicated that 

the thin film evaporation of microlayer was the primary phase change mechanism and the 

center of the bubble might be partially dry (Fig. 2.6c). The superwetting property of the 

TiO2 coating was able to rewet the dryout areas inside the bubbles and reduced the 

thickness of the microlayer. Thus, in the high heat flux regime, the thin film evaporation 

inside the bubble was dramatically enhanced and the superheat was significantly reduced. 

The superwetting property of the TiO2 coating was superior to improve the local 

wettability to form the microlayer liquid film, which could maintain the wetting of 

sufficient areas on the mesh wires for evaporative heat transfer and hence delayed local 

dryout. 

In previous investigations, structured or hierarchical surfaces were able to 

increase the CHF due to the augmented surface roughness [10, 20, 23, 85]. Improved 

wettabilities have been demonstrated to be able to promote the CHF in terms of single Pt 

wire [30]. The CHF is sensitive to the surface wettability in the macrolayer dryout theory 
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[86] and the hot/dry spot theory [87], while the hydrodynamic instability theory excludes 

the impact of surface wettability on CHF [88]. According to the macrolayer dryout theory 

(Figure 2.7a) [86], CHF is limited by the fluid supply to form the macrolayers trapped 

under the vapor bubbles [89]. On a Pt wire or plain surface, the formation of the 

macrolayer is primarily governed by the surface wettability. However, in microporous 

meshes, it is primarily determined by capillary flow and liquid spreading as the liquid 

needs to go through the microscale pores and enter into the bottom surface (Figure 2.7b). 

Furthermore, the bubble growth and collapse result in local oscillation and mixing, which 

may significantly affect the local liquid supply. Although the capillarity was enhanced 

due to the improved hydrophilicity, it could not govern the formation of the macrolayers 

because the expansion force induced by bubble growth and vacuum induced by bubble 

collapse were the dominated forces. The fluid oscillations governed the liquid supply to 

form the macrolayers inside the porous structures. The conformal ALD TiO2 coating 

maintained the surface morphologies and cavities. Hence, the bubble growth and collapse 

motions are similar on the coated and non-coated surfaces. In the high heat flux regime, 

the liquid motions were governed by the high frequency bubble growth and collapse 

oscillations (Figure 2.7c). Therefore, the superwetting property can not contribute to the 

liquid supply of macrolayers. Consequently, the improved wettability induced by the 

nano-thick conformal ALD TiO2 coating can significantly enhance the CHF. 
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CHAPTER 3 

CARBON NANOTUBE ENABLED HYDROPHOBIC-HYDROPHILIC COMPOSITE 

INTERFACES TO ENHANCE NUCLEATE BOILING 

Ideal hydrophobic-hydrophilic composite cavities are highly desired to enhance nucleate 

boiling. However, it is challenging and costly to fabricate this type of cavities by 

conventional micro/nano fabrication techniques. In this study, a hydrophobic-hydrophilic 

composite interface was synthesized from functionalized multiwall carbon nanotubes by 

introducing hydrophilic functional groups on the pristine multiwall carbon nanotubes. 

This type of carbon nanotube enabled hydrophobic-hydrophilic composite interface was 

systematically characterized. Ideal cavities created by the new interfaces were 

experimentally demontrated to be the primary reason resulting in substantially enhanced 

nucleate boiling. 

Nucleate boiling is widely used in a variety of heat transfer and chemical reaction 

applications. The state-of-the-art techniques in enhancing nucleate boiling have focused 

on using micro/nanoscale structures [9] as well as applying hydrophilic coatings [30]. 

Guided by nucleate boiling theory [90] and the most recent study [91], ideal boiling 

surfaces should be hydrophilic to delay flimwise tranistion and contain hydrophobic 

cavities to trap gases or vapor by taking advantages of both of the hydrophilic and 

hydrophobic properties [91].  

3.1 INTRODUCTION OF NUCLEATE BOILING 

Enhanced transport phenomena have been reported on partially hydrophobic and 
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partially hydrophilic interfaces [92-93]. For examples, Daniel [94] reported that the 

interfaces with hydrophobic-hydrophilic composite wettabilities were able to accelerate 

drop motion [95], and thus significantly enhance the condensation heat transfer. 

Miljkovic [96] observed that partially wetting droplets exhibited a much higher growth 

rate than suspended droplets during dropwise condensation. Martines [93] confirmed that 

a forest of hydrophilic/hydrophobic slender pillars was shown to be the most effective 

superwettable/water-repellent configuration. Cottin-Bizonne [97] found that partial 

dewetting on a composite interface was superior in producing a "water repellent″ effect 

and thus in reducing the surface friction. In addition, a superhydrophobic and sticky 

interface was found to be exceptional in transporting small volumes of liquids without 

loss [98-99]. Enhanced nucleate boiling was experimentally demonstrated on micro-

fabricated techniques [100]. However, the enhanced nucleate boiling on CNT-enabled 

hydrophobic hydrophilic interfaces was not reported. Additionally, the conventional 

micro/nano-fabricated hydrophobic-hydrophilic composite interfaces [93, 100-101] are 

usually costly and challenging to tune the wettability in a controlled manner.  

In this study, hydrophobic-hydrophilic composite interfaces were synthesized 

from FMWCNTs by introducing hydrophilic functional groups on the pristine MWCNT 

surfaces. The ideal boiling surfaces created by the CNT enabled hydrophobic-hydrophilic 

composite interfaces were experimentally demonstrated to effectively enhance nucleate 

boiling.  

3.2 SYNTHESIS OF HYDROPHOBIC-HYDROPHILIC COMPOSITE INTERFACES 

CNTs [102] with defects, which were generally regarded to have mechanical 

[103], electrical [104] and thermal disadvantages [105], were shown to exhibit intriguing 
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Figure 3.1 Synthesis and characterization of the hydrophobic-hydrophilic FMWCNTs. (a) 
Pristine MWCNTs. (b) Aqua regia oxidized MWCNTs. (c) Plasma treated FMWCNTs. 
(d) Pristine MWCNT without defect. (e) Defects on slightly functionalized FMWCNT 
indicated by Pt ions. (f) Defects on deeply functionalized FMWCNT indicated by Pt ions. 
(g) Hydrophobic and hydrophilic areas on FMWCNT coated interfaces. (h) 
Interconnected cavities formed by partially hydrophobic and partially hydrophilic 
FMWCNTs. 

properties for many emerging applications such as nano-sensors [106], super conductors 

[107], catalysts [108] and field effect transistors [109]. In this study, the hydrophobic-

hydrophilic composite interfaces were synthesized by partially oxidizing pristine 

MWCNT surfaces to form hydrophilic carboxylic and hydroxylic functional groups on 

the defect sites of MWCNTs [108]. The commercially available MWCNTs were initially 
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oxidized in aqua regia solutions (Figures 3.1a and b). Then, 5 mg of synthesized 

FMWCNTs with 20 mg of 5% Nafion solution were ultrasonically dispersed in the 

isopropyl alcohol to form "inks″. Great er dispersions of FMWCNTs were obtained by 

ultrasonically mixing with isopropyl alcohol, and adding amphiphilic Nafion [110]. The 

well-dispersed FMWCNT "inks″ were deposited on a copper substrate by an ultrasonic 

spray coater. Oxygen plasma was used to further functionalize the FMWCNT coated 

samples, which added more hydrophilic functional groups [111] (Figure 3.1c). The extent 

of functionalization can be conveniently tuned by varying the reaction time and the 

oxygen flow rate. Here, Nafion was also used to strengthen the bonding of the FMWCNT 

coatings with the substrate, introduce the additional hydrophobic functional groups (-

CF2-) and hydrophilic sulfuric acid groups (-SO3H) and improve the dispersion. 

In this study, the distribution and concentration of hydrophilic groups were 

approximately indicated by tracer particles (Figures 3.1d and e) due to the challenge in 

directly visualizing the hydrophobic-hydrophilic network on FMWCNTs. Positively 

charged platinum ions (Pt4+) from chloroplatinic acid (H2PtCl6) were used to locate the 

functional groups on the FMWCNT wires and bundles since the reduced platinum 

particles tend to nucleate on the defects of FMWCNTs [108]. Since the functional groups 

grow preferentially in the defect sites [112]. Pt loaded areas were taken favorably as 

functionalized regions.  

3.3 CONTACT ANGLE MEASUREMENT 

The hydrophilic functional groups grown on the defected areas are at the 

nanoscale. Thus, it is challenging to quantify the ratio of the hydrophilic surface areas in 

the porous coatings. In this study, the macroscopic contact angle measurements were 
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Figure 3.2 Characterization of the wettability of hydrophobic-hydrophilic FMWCNTs 
interfaces. (a) On pristine CNT coated interface with a tilt angle of 7o. (b) On FMWCNT 
coated interface with a tilt angle of 180o. (c) On dry FMWCNT coated interface. (d) On 
wet FMWCNT coated interface. (e) Contact angle as a function of Raman ID/IG ratio and 
plasma treatment time (on FMWCNT coated flat copper surface). (f) Contact angle as a 
function of plasma treatment time on pristine MWCNT coated flat copper surface. 

employed to characterize the wettability of the hydrophilic-hydrophobic composite 

interfaces. The pristine MWCNT coatings are hydrophobic [113] and non-adhesive  

(Figure 3.2a). The straw-like pristine MWCNT coated interface is superhydrophobic 

[114] and is non-wettable even totally immersed in water. In contrast, the dry FMWCNT 

coatings on a flat copper substrate were apparently hydrophobic, but adhesive, which was 

evidenced by a water droplet adhering to the coatings with a tilt angle of 180o (Figures 

3.2b and c). Although having almost the same surface morphologies as the non-adhesive 

pristine MWCNT coatings, the FMWCNT coatings show stickiness, which is believed to 

be induced by the hydrophilic functional groups on the defect areas (Figure 3.1e). This 

indicates that the Van der Waals [99] and/or the capillary force between the 

nanostructured interfaces and water are introduced by the partial wetting [115]. Therefore, 

transitions between the Cassie-Baxter and Wenzel [25] states can be induced by 

enhancing stickiness [116]. When the wetting behavior changes from the Cassie mode to 
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the Wenzel mode, the liquid droplet can at least partially fill the cavities of the rough 

substrates with a reduced apparent contact angle [115]. The characterization of sticky 

property clearly indicated the effect of partial hydrophilicity on surface wettabilities 

(Figures 3.1d and e). FMWCNT interfaces were shown to be wettable (Figure 3.2d). The 

reason could be the capillary flow induced at the solid-liquid-gas interfaces. As a result, 

the majority of pores can be filled with water, causing the interfaces to lose its water-

repellent properties [116] as shown in Figure 3.2d. These observations are consistent with 

the hydrophobic-hydrophilic wettability of FMWCNTs as shown in the TEM images 

(Figures 3.1g, h). In contrast to the non-wettable MWCNT coating, this wettable 

FMWCNT coated interface can improve the local liquid supply during the boiling 

process as the whole interfaces are immersed in the liquids.  

Regular FMWCNT wires or bundles, i.e., those only treated by aqua regia, 

contain fewer hydrophilic functional groups (Figure 3.1e) than oxygen plasma treated 

FMWCNTs (Figure 3.1f). This observation implies the superior tunability of 

hydrophobic-hydrophilic composite wettability enabled by the enhanced FMWCNTs. In 

this study, the relative hydrophilicity of individual FMWCNT wires and coatings was 

found to be conveniently tuned by controlling the plasma treatment time. Figure 3.2e 

quantitatively shows that the apparent contact angle of FMWCNT interfaces decreased 

with increasing plasma treatment time at a given oxygen flow rate. Raman analysis 

showed that more defects were introduced by longer plasma treatment time [117], e.g. 

with more C=O, O-C=O and O-H groups [111], which were indicated by an increasing 

ID/IG ratio [117] (refer to the Supplement Information). To better understand the effects 

of plasma treatment on the wetting property of CNTs, variation of contact angle on 
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Figure 3.3 Characterization of the bonding. (a) Scratches on the pure MWCNT coated 
interface (b) Scratches on the FMWCNT coated interface (c) Scratches on the FMWCNT-
Nafion mixture coated interface. 

pristine MWCNTs coatings without Nafion was studied. Longer plasma treatment time 

resulted in a higher hydrophilicity, which was indicated by the reduced contact angle  

(Figure 3.2f). It was found that the required time of plasma treatment was much less than 

that of FMWCNTs coatings with Nafion. This could be a result of protection effects from 

Nafion wrapping. 

3.4 CHARACTERIZATION OF THE BONDING FORCES 

Microscratch tests were carried out on a CETR microtribometer to examine the 

bonding strength of the FMWCNT coatings on copper substrates, as well as the 

interactions between individual FMWCNT wires (Figure 3.3). Pristine CNTs peeled off 

the copper substrate near the scratch edge (Figure 3.3a), which indicated hydrophobic 

pristine CNTs were not bonding with the copper substrate. However, the bonding 

between the FMWCNT coating and the copper substrate was improved by inducing 

hydrophilic functional groups (Figure 3.3b). The reason could be the superhydrophicility 

of the functional groups that enhanced the bonding to the hydrophilic copper substrates. 

Additionally, amphiphilic Nafion served as a gluing media to further strengthen the 

bonding after thermally curing, which was indicated by the residual FMWCNTs wrapped 

by polymer near the scratch edge (Figure 3.3c). Superhydrophobic CNTs have poor 
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bonding forces with hydrophilic copper substrates as the hydrophobic interaction is a type 

of enthalpic or entropic forces [118], which are weak Van der Waal based forces acting 

through limited contacts. The microscratch tests showed that the bonding was greatly 

strengthened by introducing hydrophilic functional groups and amphiphilic Nafion. 

Moreover, further enhancement of bonding can be achieved by thermally curing the 

coating at approximately 130 oC, above the glass transition temperature of Nafion for five 

minutes. This occurred because the polymer chain inter-diffuses, allowing a greater 

degree of interlocking and Van der Waals interactions.   

3.5 BOILING EXPERIMENT ON THE HYDROPHOBIC-HYDROPHILIC SURFACES 

Ideal boiling surfaces to achieve high HTC and CHF should simultaneously have 

a combination of features: high active nucleating site density, optimized cavities 

favorable for bubble growth and departure and in reducing superheat, minimized flow 

resistance to improve liquid supply, and an evenly distributed liquid film to induce and 

promote thin film evaporation. The straw-like FMWCNT coatings, which can randomly 

form a large number of interconnected pores or cavities (Figure 3.1h) with partially 

hydrophobic and partially hydrophilic areas (Figure 3.1g), could create ideal nucleate 

boiling surfaces. 

In general, there are four typical types of boiling surfaces as schematically shown 

in Figure 4a. The type I boiling surfaces with superhydrophilic cavities, can substantially 

reduce superheat, delay the transition boiling, and hence enhance HTC as guided by the 

nucleate boiling theory [90], but they greatly suffered from flooding. Additionally, the 

type II boiling surfaces with superhydrophobic cavities, can accelerate bubble departure 

processes, but result in extremely high superheat. According to the most recent study [91], 
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Figure 3.4 Cavity types and characterization of nucleate boiling on supernucleating 
interfaces. (a) Four types of cavities for nucleate boiling. (b) Two-layer copper meshes 
sintered on smooth copper. (c) FMWCNTs coated mesh wires. (d) Pool boiling curves, 
where FMWCNT meshes denote "regular FMWCNT coated two-layer meshes″; Plasma-
FMWCNT1 – "intermediately functionalized FMWCNT coated two-layer meshes (8 min 
plasma treatment)″; and Plasma-FMWCNT2 – "deeply functionalized FMWCNTs coated 
two-layer meshes (15 minutes plasma treatment)″. 

the type III boiling surfaces with superhydrophobic-superhydrophilic surfaces are ideal 

for nucleate boiling by taking advantages of both hydrophilic and hydrophobic properties. 

However, it is challenging to fabricate type III boiling surfaces by traditional micro/nano 

fabrication techniques [100]. In this study, the type IV boiling surfaces (right in Figure 

3.4a), which were created by the novel FMWCNTs, intrinsically include a large amount  

of submicro/nanoscale interconnected cavities with unique hydrophobic- hydrophilic 

composite wettability. 

An experimental pool boiling study was performed to evaluate type IV boiling 

surfaces. In order to take full advantages of the supernucleating interfaces, the mixture of 

Nafion and FMWCNT (NFMWCNT) was coated on two-layer copper mesh screens to 
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form hierarchical structures. The hierarchical structures contained microscale pores 

(Figure 3.4b) and nanopores (Figure 3.4c) created by copper meshes and NFMWCNT 

coatings, respectively. Microscale pores were designed to reduce the liquid flow 

resistance. In total, five samples were experimentally studied (refer to the Supplement 

Information). Flat copper surfaces were used to calibrate the test apparatus, and two-layer 

sintered copper woven mesh screens were used as the baseline. Three two-layer mesh 

screens coated with approximately 800 nm thick NFMWCNTs were tested to determine 

the effects of the hydrophobic-hydrophilic composite interfaces on nucleate boiling.  

From the five boiling curves presented in Figure 3.4d, the overall nucleate boiling 

HTC on NFMWCNT coatings with and without oxygen plasma treatments has been 

significantly enhanced, compared to the bare two-layer copper mesh screens. However, 

such an enhancement was found to decrease with an increasing amount of hydrophilic 

groups. Specifically, for a given heat flux 135 W/cm2, the HTC on the regular 

NFMWCNT coated sample was dramatically enhanced by 46.5%, but the enhancement 

was reduced to approximately 32.7% and 20.8% on two plasma treated samples, i.e., 

plasma-NFMWCNT 1 and 2, respectively. Additionally, CHF was significantly reduced 

from 181.1 to 135.5 W/cm2 on the regular NFMWCNT coated sample, because the 

amount of functional groups on the regular NFMWCNTs was limited and degraded the 

local wettability and, hence, the liquid supply, as indicated in Figure 3.1e. This 

observation is consistent with two oxygen plasma-treated NFMWCNTs coatings, where 

CHFs were found to increase from 181.1 W/cm2 to 187.2 W/cm2 and 210.5 W/cm2, 

respectively. It was experimentally validated that more hydrophilic functional groups 

lead to the improvement of local liquid supply and, therefore, the delay of transition 
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Figure 3.5 Bubble dynamics. (a) Comparison of the nucleation site density. (b) 
Comparison of the bubble growth rate. (c) Comparison of the bubble departure frequency. 
(d) Comparison of the average bubble departure size. (e) The effects of hydrophilicity 
and defect density on boiling heat transfer. 

boiling. The onset of nucleate boiling (Figure 3.4d) on regular NFMWCNTs or plasma-

treated NFMWCNTs was significantly delayed compared with the bare meshes. That 

could be caused by the reduced cavity opening size formed by NFMWCNTs, as indicated 

by nucleate boiling theory [90]. 

3.6 ENHANCEMENT MECHANISM 

To mechanistically understand the enhanced nucleate boiling on NFMWCNT 

coatings, a visualization study was performed to understand the bubble dynamics on three 

flat substrates: bare copper, NFMWCNT coated copper, and oxygen plasma treated 

NFMWCNT coated copper at a given super heat, ∆T = 9 ± 0.5 oC. The dramatic 

enhancement results of the NFMWCNTs were shown in the significant increase of active 

nucleation site density, bubble growth rate, and bubble departure frequency with the 

hydrophobic-hydrophilic composite cavities (Figure 3.5). The active nucleation site 

density on NFMWCNT coatings with and without oxygen plasma treatments was found 
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to be at least one order of magnitude higher than that on the bare copper substrate. The 

primary reasons could be in two-folds during the entire nucleate boiling process. The first, 

the total surface area was significantly augmented becuase of the NFWMCNT coatings. 

The second, the active nucleation site density was dramatically enhanced because of the 

prevention of cavities (formed by NFWMCNTs) from flooding due to their hydrophobic 

property. The highest nucleation site density was on the regular NFMWCNT coatings 

(Figure 3.5a). Bubble growth rate on the NFMWCNT coatings with and without oxygen 

plasma treatments (Figure 3.5b) was also significantly higher than that on the bare copper 

surface, which indicated that the evaporation in the microlayer was primarily enhanced 

by the hydrophilic groups. However, having a fewer number of the less hydrophilic 

groups resulted in a higher evaporating rate on the microlayer according to the 

visualization study. This could be caused by the decreased local drag resulting from 

fewer hydrophilic groups, which would enhance the water supply to the nanopores or 

cavities underneath. Additionally, bubble departure frequency from NFMWCNT coatings 

was higher (Figure 3.5c) and the average bubble departure diameter was smaller (Figure 

3.5d) compared with those on the bare copper interface. The reason can be a combined 

effect of the reduced anchoring surface tension force on hydrophobic-hydrophilic 

interfaces and the increased inertia force resulting from the bubble growth due to the 

enhanced evaporation in the microlayer.  

The slightly functionalized NFMWCNT interfaces performed even better in terms 

of bubble generation, growth and departure than the oxygen plasma treated NFMWCNT 

interfaces. This observation confirms that hydrophobic cavities are superior in promoting 

the bubble departure processes, and hence, in enhancing the HTC, while hydrophilic 



 

33 

surfaces are best for improving the local wettability and therefore delaying the transition 

boiling, i.e., enhancing CHF. This study experimentally demonstrates that the 

enhancements of HTC and CHF can be achieved by inducing hydrophobic-hydrophilic 

composite wettability, which can be tuned by varying the concentration of hydrophilic 

functional groups.  

To further distinguish the effects of hydrophilicity and defect density on boiling 

heat transfer enhancement, FMWCNT coatings with and without fluoridations were 

studied. FMWCNT was treated by fluorine to achieve hydrophobic fluorinated 

FMWCNT (F-FMWCNT), where more defect areas were introduced and a large amount 

of hydrophobic C2F functional groups were created [119-120]. The completely 

hydrophobic F-FMWCNT and partially hydrophilic FMWCNT were coated on the flat 

copper substrates without any additives. The contact angles were measured at 146.2o and 

19.3o, respectively (Figure 3.5e). Boiling heat transfer rate on the F-FMWCNT coatings 

was found to be lower than that on the FMWCNT coatings. Additionally, the Raman 

spectroscopy examines that the F-FMWCNT has a higher defect density than the 

FMWCNT (indicated by the higher ID/IG ratio as shown in Figure 3.5e). Therefore, the 

enhancement of boiling heat transfer is primarily caused by the introduced hydrophilicity 

instead of the defect density in the CNT enabled hydrophobic-hydrophilic interfaces. 

In summary, interfaces with hydrophobic-hydrophilic composite wettabilities 

were synthesized from the functionalized MWCNTs by partially oxidizing pristine 

MWCNT surfaces to form hydrophilic carboxylic and hydroxylic functional groups on 

the defect sites of MWCNTs. Amphiphilic Nafion was added to strengthen the bonding 

of the FMWCNT coatings and to introduce additional hydrophobic functional groups (-
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CF2-) and hydrophilic sulfuric acid groups (-SO3H). The distribution and concentration of 

hydrophilic groups were approximately indicated by platinum nano-particles. The 

apparent contact angle of the interface was shown to be conveniently tuned in a large 

range by varying the concentration of the intrinsically hydrophilic functional groups. The 

present nano-engineered interface, which composed of numerous submicro/nanoscale 

interconnected cavities with partially hydrophobic and partially hydrophilic wettability, 

was experimentally demonstrated to be superior to enhance nucleate boiling. This is 

because the hydrophobic-hydrophilic interfaces effectively enhance nucleation density, 

bubble growth rate and bubble departure frequency, and thus considerably improve 

nucleate boiling. Hydrophobic F-FMWCNTs with higher defect densities were shown to 

perform worse than the hydrophilic FMWCNTs in boiling heat transfer. This indicated 

that the nucleate boiling was primarily enhanced by the introduced hydrophilicity, instead 

of the defect density in the CNT enabled hydrophobic-hydrophilic interfaces. Moreover, 

this nano-engineered interface can potentially be used to enhance transport phenomena at 

micro/nano scale, such as transporting liquid without loss [99], reducing friction [97], and 

manipulating droplet movement [94]. 
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CHAPTER 4 

MICROMEMBRANE-ENHANCED CAPILLARY EVAPORATION 

Micromembrane-enhanced evaporating surfaces were developed to enhance capillary 

evaporation HTC and CHF. Micromembranes made of sintered single-layer copper mesh 

screen were diffusion bonded on microchannels to effectively promote capillary pressure 

and reduce flow resistance. Compared with mono-porous evaporating surfaces such as 

microchannels and copper woven mesh laminates in the same thickness under the similar 

working conditions, CHF was substantially increased by 83% and 198%, respectively, 

because of the separation of the capillary pressure generation and fluid transport process 

that was enabled by the micromembrane. The major features such as "M"-shaped 

capillary evaporation heat transfer curves and the associated heat transfer regions were 

identified. Oscillating flows induced by the bubble growth and collapse as well as the 

capillary flows induced by the receding menisci were observed and believed to play 

imperative roles in enhancing the heat transfer by inducing advections and improving 

evaporation and nucleate boiling. 

4.1 INTRODUCTION OF CAPILLARY EVAPORATION 

Capillary evaporation [31] is one of the most efficient heat transfer modes and has 

been widely used in heat exchangers [32] and heat pipes [33-35]. Evaporators with high 

HTC and CHF are highly desirable for compact heat exchangers for high heat flux 

applications [36-37]. Most of porous coatings used in enhancing capillary evaporation 
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are usually mono-porous structures [39]. For example, sintered particles and powders 

were developed to substantially enhance thin film evaporation HTC [39-40]. The effects 

of porosity, wick thickness and other factors on the optimal design of the wicking 

structures were also examined [39-40]. Copper woven mesh laminates [41-44] were 

extensively studied to enhance the capillary evaporation HTC due to the augmented 

surface areas and increased capillary forces. However, the flow resistances in these 

microscale mono-porous structures remain high, resulting in low CHFs due to the liquid 

supply crisis. Micro-grooves [45-46] or channels [47] were superior for liquid supply 

because of the attributed low flow resistance, but the capillary forces induced by the 

disjoining pressure differences in grooves [46] were still too low to reach high CHFs. 

This brief review shows that both the microscale mono-porous structures (such as 

sintered meshes or particles/powders) and micro-grooves or channels cannot meet the 

needs of high heat flux applications. To solve this dilemma, various types of bi-porous 

surfaces were proposed and developed [35, 48-52]. Semenic et al. [49, 51] found that 

biporous surface of sintered powders performed better than the mono-porous copper 

wicks because the working fluid can be supplied to the hot spots through micropores 

inside the clusters even though the voids were filled with vapor. Cao et al. [53] reported 

that when a mono-dispersed wick was replaced by bi-dispersed wicks with the same 

small pore diameter, both HTC and CHF were increased significantly. Cai et al. [36] 

studied the heat transfer performance on the carbon nanotube bi-porous structures, which 

consisted of carbon nanotube (CNT) array separated by microchannels. The nanoscale 

pores in the CNT bi-porous structure provided ultrahigh capillary pressure and augmented 

surface areas, which significantly reduced the menisci radii and increased thin-film 
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evaporation area and evaporation efficiency. Ćoso et al. [54] examined a type of bi-

porous media consisting of microscale pin fins periodically separated by microchannels 

to simultaneously increase the heat dissipation capacity as well as the HTC of the 

evaporator wick. Some of the bi-porous wicks have also been integrated in heat pipes [50, 

55-57] to decrease the thermal resistance and increase working heat fluxes. Heat pipe 

performance was found to be greatly enhanced by applying modulated wick because of 

enhanced axial capillary liquid flows and extra evaporation surface area resulting from 

the cross-sectional area [35]. In these reported bi-porous structures, the main fluid 

passages were still through the micro or nanoscale mono-porous structures (such as 

microscale powders or CNTs). As a result, the overall liquid flow resistances still remain 

high.  

On the other hand, the oscillating flow significantly increases HTC and CHF in 

closed mini/micro-channels as can be found in oscillating heat pipes [47, 121]. However, 

the oscillating capillary evaporation in unconfined or open microchannels was not 

reported. 

The objective of this study is to develop a new type of micromembrane-enhanced 

evaporating surfaces that are capable of both generating high capillary pressure and 

managing flow resistances. The effects on capillary evaporation were systematically 

examined. These effects include the separation of liquid supply and capillarity generation 

as well as the induced oscillating flows in unconfined micromembrane-enhanced 

evaporating surfaces.  

4.2 DESIGN OF MICROMEMBRANE-ENHANCED EVAPORATING SURFACES  

During the capillary evaporation, the counter interactions of flow resistance and  
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Figure 4.1 (a) Design of micromembrane-enhanced evaporating surfaces. (b) 
Comparisons of flow resistances between meshes, microchannels and the 
micromembrane-enhanced evaporating surfaces. 

capillary force determine the overall liquid supply and thus, the CHF. Fine copper woven 

meshes with microscale pore size can generate high capillary pressure, but the associated 

flow resistance through the in-plane direction was significantly high. Micro-grooves [45-

46] or channels [47] were superior for liquid supply because of the low flow resistance, 

but with limited capillarity [46]. The combination of the advantages of single layer 

meshes and microchannels could lead to a new type of capillary evaporating surfaces 

with high capillary pressure and low flow resistance, which would consequently result in 

much higher CHF than each individual (Figure 4.1a). The membrane with microscale 

pores was developed to generate high capillary pressure and augment heat transfer area. 

Smooth microchannels were designed as the primary fluid passages to reduce flow 
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resistance. Moreover, the micromembranes would greatly enhance thin film evaporation 

because of the augmented area and high resistance to surface flooding using capillarity. 

A theoretical model was developed to verify the design. Due to the unavailability 

of two-phase models for single layer mesh screens, the single-phase flow resistances 

through microchannels and single layer mesh (in-plane direction) were estimated. A 

modified Ergun equation for the porous media [122] was employed in this study to 

estimate the flow resistance through sintered woven meshes.  

2 2

2 3 3
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p p
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L D D

µ ε υ ρυεβ γ
ε ε

−∆ −
= +                                            

(1) where, ∆p is pressure drop; L is the length along the macroscopic pressure gradient in 

porous media; vs is the average velocity estimated from vs = Q/A (Q is flow rate through a 

cross-sectional area A); μ is the absolute viscosity of fluids; ε is the volumetric porosity; 

Dp is the equivalent spherical diameter of porous media; and ρ is the fluid density. Here, 

the β and γ vary with different porous media [44] and were modified for the one layer 

woven screen meshes as β = 15940 and γ = 12 according to this experimental study using 

the method in Ref. 106. The equivalent diameter of particles for a mesh is defined as, Dp 

= 6/Sv [44], where, Sv is defined as the surface area per unit volume of solid phase. The 

volumetric porosity of the mesh [123] is given by  
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where, d is the diameter of the mesh; M is mesh number; Cf is compression factor and 

equal to 0.9 for two-layer meshes.  

The single-phase flow resistance through a smooth, rectangular channel in the 

laminar flow regime can be estimated by Darcy-Weisbach equation [124]: 
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where, ∆p is the pressure drop through the channel; v is fluid velocity; L0 is channel 

length; Dh is hydrodynamic diameter; f is the Darcy friction factor and Re is Reynolds 

number. 

As shown in Figure 4.1b, the magnitude of flow resistance in the single layer 

mesh was more than four orders higher than that through the microchannels. Flow 

resistance on the micromembrane-enhanced evaporating surfaces was estimated to be 

only a small fraction of that in the single layer meshes at the same Reynolds number and 

slightly higher than the in microchannels as shown in Figure 4.1b. 

Equally important, capillary force generated from the micromembrane can be 

significantly increased and was estimated to be approximately two times higher than that 

generated on the microchannels by comparing the minimum meniscus radius [125] when 

the working fluid and substrate materials are identical. This indicates that the membrane-

enhanced evaporating surfaces developed in this study could achieve high CHF with 

significantly enhanced HTC by increasing the capillary forces, augmenting the surface 

areas and reducing the flow resistance. 

4.3 EXPERIMENTAL APPARATUS AND DATA REDUCTION 

Fine sintered copper woven meshes were employed as the primary evaporating 

membranes because of their superior thermal conductivity, high permeability and large 

surface areas [13, 123, 126]. Copper woven meshes with mesh number of 1509 m-1 (145 

inch-1) and wire diameter of 56 μm (made by Belleville Wire Cloth, as shown in Figure 

4.2a, b and c) were attached on the microchannels by a diffusion bonding technique [13, 

127] to minimize the contact thermal resistance [123]. Samples as shown in Figure 4.2a  
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Figure 4.2 The micromembrane-enhanced evaporating surfaces developed in this study. 
(a) Three dimensional (3D) Micro-XCT image of the micromembrane-enhanced 
evaporating surface. (b) Top view of the micromembrane-enhanced evaporating surface. 
(c) Sharp corners formed by individual wires. (d) Sintered four-layer copper woven mesh 
laminates. (e) Single-layer mesh. (f) 3D Micro-XCT image of microchannels. 

and b were sintered in a high temperature furnace at 1000 oC in a hydrogen (H2) 

atmosphere. Four-layer mesh laminates were made by sintering four layers of meshes 

with diffusion bonding technique (Figure 4.2d). In addition, we also studied the 

performances of single-layer mesh (Figure 4.2e) and microchannels (Figure 4.2f) as 

baselines in this study. 

4.3.1 EXPERIMENTAL APPARATUS 

Experimental study was conducted in a closed system. The 10 × 15 × 15 cm3 test 

chamber was made from aluminum as shown in Figure 4.3. One side of the chamber was 

covered by a piece of quartz glass as a visualization window. The other side was designed 

for sample installation. External lighting was provided for visualization studies. Four 

cartridge heaters were mounted at the four corners of the aluminum chamber to assure 

saturated working conditions (Figure 4.3). A proportional-integral-derivative (PID) 

temperature controller was used to accurately control the water temperature between 99.9 

± 0.2 oC and 100.1 ± 0.2 oC. Highly purified water was degassed through boiling for more 

than two hours at approximately 100.0 ± 0.2 oC before tests. A built-in compact condenser  
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Figure 4.3 Experimental setup for the capillary evaporation in the vertical direction. Four 
cartridge heaters are shown as 1, 2, 3 and 4. Five thermocouples (TC) are shown as TC1 
to TC5. 

was designed to keep a constant water level by timely recycling the condensate. The 

vapor pressure and temperature inside the chamber were monitored by a pressure gauge 

and two T-type thermocouples, respectively (Figure 4.3). All tests were conducted with 

samples positioned in the vertical direction and with an approximately 15 mm distance 

from the center of heating area to the water level (Figure 4.3), which aimed to minimize 

the impacts of pool boiling. 

The visualization system consisted of a high-speed camera (Phantom V 7.3), an 

infinity K2/SC long distance micro single port main body (VRI-INFINITY-K2SC), a CF-2 

objective (VRI-MICRO-990214), and a NIKON T2 adapter (VRI-MICRO-770568). The 

fluid flow and bubble dynamics were captured by the high speed camera. The videos 

were taken at 3000 frames per second (fps) and replayed at 45 fps to show the whole 

oscillating cycles. The visualization setup was shown in Figure 4.3.   

As shown in Figure 4.4a, the sample assembly consists of two component: a 

heating block and a thermocouple (TC) block with evaporating surfaces. The 25.4 mm (1  
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Figure 4.4 Schematic of the test sample assembly and the real sample images. (a) 1. 
Cartridge heater, 2. Copper heating block, 3. 1 cm × 1 cm square copper block with holes 
for thermocouple (TC block) 4. K type thermocouples, 5. Screw, 6. G-7 fiberglass, 7. 
High temperature RTV silicone, 8. micromembrane-enhanced evaporating surface, (b) 9. 
Photo of the micromembrane-enhanced evaporating surface, 10. Copper TC block, (c) 
SEM image of the micromembrane-enhanced evaporating surface. (d) Thermocouple 
arrangement and parameters for data reduction. 

inch) squared copper heating block was made from copper Alloy 101 with four heater 

ports in one end. Heat was provided by four 50.8 mm (2 inches) long and 6.35 mm (1/4 

inch) in the diameter cartridge heaters (250 W) through an alternative current (AC) power 

supply. The TC block was attached on the other end of the heating block. Thermal grease 

was applied to reduce the contact thermal resistance between the heating and TC blocks, 

which was then insulated by G-7 Fiberglass to ensure one dimensional (1D) heat flux 

input. Micromembrane-enhanced structure was sintered on the TC block (Figure 4.4b and 

c) to minimize contact thermal resistance. Five K type thermocouples with 0.51 mm (0.02 
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inch) junction in diameter were used to measure the axial temperature distribution, which 

was then used to estimate the linearity of temperature profile (Figure 4.4a) and hence the 

approximately 1D input heat flux. High temperature RTV silicone® was used to achieve 

mechanical sealing. Only the evaporating surfaces were exposed to the saturated vapor. 

The heating elements were well insulated by high temperature Nelson Firestop Ceramic 

Fibers to applying high heat fluxes.  

4.3.2 DATA REDUCTION 

Data were reduced and categorized into the parameters from Eqs. 4 to 6. 
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where, q″ is the input heat flux, k is the thermal conductivity of copper; ∆T is the 

temperature difference between the two thermocouples; ∆x is the distance between two 

thermocouples as shown in Figure 4.4d; Tw is the estimated temperature of the surface; T5 

is the temperature of the thermocouple TC #5; ∆x′ is the distance from TC #5 to the 

evaporating surface; Tsat is the saturated water temperature; and h is the evaporation HTC.  

Uncertainties of the temperature measurements and the length are ± 0.5 K for K 

type thermocouple (± 0.2 K for T type thermocouple) and 0.01 mm, respectively. 

Uncertainty propagations with 95% confidence level for the computed results in most of 

the ranges were estimated by Kline and McClintock method [77]. The uncertainties of 

heat flux, HTC, and superheat were ± 3.2 W/cm2, ± 1.2 W/(cm2·K), and ± 0.8 °C, 
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respectively. Heat loss due to the fin effect was estimated to be less than 4% (Figure 

4.4a).  

4.4 RESULTS AND DISCUSSION 

In this study, four types of evaporating surfaces with identical heating areas (1 × 1 

cm2) were experimentally investigated. These include copper microchannels (channel 

height and width: 250 μm, channel wall width: 250 μm), single layer copper mesh screen 

(thickness: 80 μm), four-layer sintered copper mesh screens (thickness: 320 μm) and the 

micromembrane-enhanced evaporating surfaces (total thickness of sintered 

microchannels and mesh: 320 μm). Dimensions of all evaporating surfaces are specified 

in Table 4.1.  

4.4.1 CAPILLARY EVAPORATION CURVES 

Figure 4.5a shows the HTC-heat flux curves for all the tested samples. Four-layer 

mesh screens, which have an equal thickness with the micromembrane-enhanced 

evaporating surfaces, showed higher HTC in the operating heat flux range. HTC on four-

layer mesh screens reached a peak value of 23.1 W/(cm2·K) at the heat flux of 17.0 W/cm2 

and then kept dropping. Such a high HTC should result from a combination of the 

enhanced thin film evaporation and nucleate boiling on the large surface areas. However, 

the high HTC on four-layer mesh screens could not sustain and decreased quickly with 

the increasing heat flux as shown in Figure 4.5a. This was primarily caused by the 

increasing drying areas due to the high flow resistance. For the same reason, HTC on the 

single-layer copper mesh dropped even more sharply because single-layer mesh stored 

less water initially and had a significantly higher flow resistance than four-layer meshes. 
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Microchannels reached a CHF of 83.1 W/cm2, but the capillary forces generated in 

microchannels could not maintain the liquid supply for high heat flux conditions. 

As shown in Figure 4.5a and b, two micromembrane-enhanced evaporating  

Table 4.1 Sample Specifics 
Samples Parameters 

1 layer mesh Thickness: 
0.08 mm 

Wire diameter: 
0.56 mm Porosity: 0.737 

4 layer meshes Thickness: 
0.32 mm 

Wire diameter: 
0.56 mm Porosity: 0.693 

Microchannel Height: 
0.25 mm Width: 0.25 mm Pillar width: 

0.25 mm 
Micromembrane-
enhanced 
evaporating surfaces 

Thickness: 
0.32 mm Width: 10 mm Length: 60 mm 

 

 
Figure 4.5 Evaporation curves and the proposed heat transfer regions. (a) Capillary 
evaporation heat transfer curves on the microchannels, single layer mesh, four-layer 
meshes, and micromembrane-enhanced evaporating surfaces. Heat transfer region I (0-
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11.2 W/cm2), region II (11.2-57.2 W/cm2), and region III (57.2-152.2 W/cm2). (b) q"-∆T 
curves. 

surfaces show a good repeatability on two individual samples. The capillary evaporation 

HTC increased with increasing input heat flux in the low heat flux region and decreased 

after reaching the first peak value. Then HTC started to increase after approaching the 

valley and reached the second peak value (Figure 4.5a). Finally HTC decreased a little bit 

due to the partial dryout. The whole curve exhibits an "M" shape. It shall be noted that 

the first peak HTC, 14.1 W/ (cm2·K), on the micromembrane-enhanced evaporating 

surfaces was observed at a heat flux of 11.2 W/cm2. However, HTC decreased gradually 

to 5.9 W/ (cm2·K) and then started to increase again with the increasing heat flux between 

the heat fluxes of 11.2 and 57.2 W/cm2. In the high heat flux region, the peak HTC, 9.1 

W/ (cm2·K), was achieved at a heat flux of 140.4 W/cm2 (Figure 4.5a) with a superheat of 

16.0 oC (Figure 4.5b). The overall HTC curves on the micromembrane-enhanced 

evaporating surfaces showed two peaks, which were significantly different from reported 

results and curves of the other three interfaces. 

The HTC on the micromembrane-enhanced evaporating surfaces was superior to 

the microchannels and single-layer mesh when input heat fluxes were less than 37 W/cm2 

(Figure 4.5a). The primary mechanism behind the enhanced HTC on the 

micromembrane-enhanced evaporating surfaces in the low heat flux regime is the 

enhanced nucleate boiling and advection induced by oscillating flow. However, 

microchannels showed better evaporating performance than the micromembrane-

enhanced evaporating surfaces when the working heat flux exceeded 30.3 W/cm2 due to 

the fully activated flow oscillations in microchannels.  
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CHF on the developed micromembrane-enhanced evaporating surfaces was 

substantially enhanced to 151.7 and 152.2 W/cm2 on the two individual samples. 

Compared to microchannels, four-layer mesh screens, and single-layer mesh screen, CHF 

was enhanced approximately 83%, 198%, and 1000%, respectively. The dramatic 

enhancement in CHF primarily resulted from the separation of the evaporation and liquid 

transport processes that was enabled by the micromembrane. As a result, capillary force 

was increased by fine meshes and flow resistance was reduced by microchannels. 

4.4.2 CAPILLARY EVAPORATION ON MICROMEMBRANE-ENHANCED 

EVAPORATING SURFACES 

According to the heat transfer characteristics and visualization study, as shown in 

Figure 4.5a, the whole heat transfer process can be divided into three regions. Region I 

(Figure 4.5a and 4.6a) was dominant by the advections induced by oscillating capillary 

flows and by the nucleate boiling in the microchannels since the microchannels were 

nearly flooded [3]. It should be noted that in the micromembrane covered microchannels, 

the oscillating flows and the bubbles were not confined. Although the bubbles were not 

able to detach due to the absence of buoyancy force, these bubbles could keep growing 

until collapsed. The visible bubbles and menisci distribution in the region I are shown in 

Figure 4.6b and c. In region I, the micromembrane (i.e., mesh screen) was well wetted, 

but nucleate boiling was not fully developed on micromeshes due to the relative low 

superheat (less than 0.82 ˚C on the bottom surface of microchannels as calculated). The 

thin film evaporation was also weak due to the flooded surfaces in region I (Figure 4.6a).  

To understand the oscillation mechanism on the micromembrane-enhanced 

evaporating surfaces, the schematic liquid and vapor distribution in this region was 
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proposed in Figure 4.6. In region I, the micromembrane-enhanced evaporating surfaces, 

which include microchannels and micromembranes, should be saturated (or flooded) with 

water initially (Figure 4.6d). The liquid columns inside microchannels were separated by 

the growing bubbles periodically, which resulted in the periodic change of the meniscus 

curvature primarily in microchannels (Figure 4.6e). As a result, the upper liquid columns  

 
Figure 4.6 Schematic of fluid flow on the micromembrane-enhanced evaporating surfaces 
in region I. (a) Proposed fluid distribution in heat transfer region. (b, c) Bubble and 
meniscus distributions on the surfaces at the heat flux of 9.0 W/cm2, respectively. (d-h) 
Hypothesized interactions between fluid and vapor inside microchannels. (i) The number 
of visible bubbles in a single channel, nb, and total number of visible bubbles in active 
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channels, Nc·nb, in the low heat flux region. (j) Oscillating frequency in a single channel, f, 
and the total frequency in the channel array, i.e., the product of active channel number 
and the frequency of a single channel, Nc·f, in the low heat flux region. 

tended to move downwards due to the net capillary force (F2-F1) generated on the caps of 

the upper liquid columns. Simultaneously, the lower liquid columns were pumped up by 

capillary force (Figure 4.6f). The liquid columns with motions in the opposite directions 

ended up with a merging in a microchannel. Then, the merged liquid columns were 

pumped up by the capillary force generated on the meniscus located on the top ends of 

microchannels. The incompletely wetted microchannels were then fully rewetted by the 

working fluid at a velocity of more than 10 m/s as measured (Figure 4.6h). This rewetting 

process is similar to the multilayer liquid spreading as mentioned in Xiao's work [128]. 

This periodic process resulted in oscillating capillary flows and hence enhanced HTC 

during capillary evaporation in vertical direction in region I, which is radically different 

from the oscillating flows observed in the confined channels and closed chambers [121, 

129-130]. The liquid droplets were observed to flash out of the microchannels from the 

top openings at the low heat flux region, which further indicated oscillating fluid motions 

on the micromembrane-enhanced evaporating surfaces. Nucleate boiling occurred 

primarily on the microchannel walls because the surface temperature on the microchannel 

wall was higher than that on the membrane. A higher superheat was required to initiate 

nucleate boiling on membrane according to the nucleate boiling theory [9, 83]. As 

illustrated in Figs. 6i and j, in a single microchannel, the oscillating frequency increased 

because the nucleate boiling was intensified and the menisci receded more rapidly due to 

the increased evaporating rate. However, it was also observed that not all the channels 

were activated because of the variations in the roughness and wettability. Hence, the 
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capillary flows were governed by the boiling and menisci inside these active 

microchannels in region I.  

Region II (Figure 4.7a) is a transition heat transfer region, where the heat transfer 

should be dominated by thin film evaporation. When the heat flux exceeded 11.2 W/cm2, 

the phase change rate was getting stronger and the liquid supply through capillary  

 
Figure 4.7 Liquid distributions in region II. (a) Hypothesized liquid distribution inside the 
structure. (b, c) Bubble and meniscus distributions on the surfaces at the heat flux of 40.4 
W/cm2, respectively. 

pressure generated in microchannels was not sufficient in some of the microchannels. As 

a result, some microchannels started to be partially dry and the oscillating liquid flows 

were gradually suspended in these microchannels. The primary reason that results in this 

transition region could be the transformation of the dominant capillary force from 

microchannels to micromembranes. This speculation could be evidenced in Figure 4.7b 

and c [3], where visible bubbles were not observed. When the heat flux approached to 

57.2 W/cm2, only one microchannel was observed to be active with fluid oscillations. 

Accordingly, HTC dropped with the increasing number of non-active channels in this 

transition regime, as thin film evaporation started to prevail. As shown in Figure 4.5a, the 
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shape of the capillary evaporation heat transfer curves in regions I and II was well 

predicted by the trend of total frequency, which was defined by the product of the 

oscillatory frequency, f, and the active channel numbers Nc, as a function of input heat 

flux (Figure 4.6i and j).  

Region III (Figure 4.8) should be dominated by the thin film evaporation and  

 
Figure 4.8 Schematic of fluid flow on the micromembrane-enhanced evaporating surfaces 
in region III. (a) Hypothesized fluid low and liquid distributions inside the structure. (b, 
c) Bubble and meniscus distributions on the surfaces at the heat flux of 61.4 W/cm2, 
respectively. (d) The number of visible bubbles in a single channel, nb, and total number 
of visible bubbles in active channels, Nc·nb, in the high heat flux region. (d) Bubble 
growth and collapse frequency, fgc, in the high heat flux region. 

nucleate boiling in microchannels as well as on the micromeshes. Figure 4.8a, b and c 

show that the menisci were inherently interacting with bubble dynamics [3]. When the 

superheat on meshes was getting higher than the onset of the nucleate boiling with 
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increasing heat fluxes, bubbles started to nucleate on mesh wires (Figure 4.8a). Liquid 

oscillations were retarded during the bubble expansion, while strong liquid pulls were 

observed during the menisci receding into the sharp corners formed by individual wires 

when bubbles collapsed [3]. Thus, the liquid motions were significantly intensified by the 

induced wetting and dewetting [131] processes. Consequently, the fluid flows were 

resumed by the receding menisci in region III (Figure 4.8b and c), where nucleate boiling 

occurred on the flooded microchannel walls, while thin film evaporation primarily 

occurred on the micromeshes. As shown in Figure 4.8d, the bubble number increased 

continuously with increasing heat fluxes. It was challenging to visualize individual 

bubbles when the heat flux exceeded 100 W/cm2. The microchannels could not be fully 

saturated with working fluid due to the high velocity of vapor flow in the high heat flux 

region. The frequency of bubble growth and collapse as well as the menisci receding on 

the mesh screens would determine the frequency of local liquid wetting and dewetting 

processes, which are different from the liquid motions in region I. The frequency of 

wetting and dewetting, which was found to be closely associated with the bubble growth 

and collapse, increased with increasing heat fluxes as shown in Figure 4.8d. The copper 

meshes provide larger surface areas and more nucleate sites for heat transfer. The peak 

HTC in the region III was measured at 9.1 W/ (cm2·K), which is approximately 50% 

lower than the peak value (14.1 W/ (cm2·K)) in the region I. The reason could be that the 

additional thermal resistance resulting from the vapor core that started to form in 

microchannels in the region II and further develop in region III. The assumption of the 

existence of vapor core inside microchannels (Figure 4.8a) can be validated by the fact 
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that liquid droplet splash from the top opening of the microchannels in region I, but was 

not observed in regions II and III [3].  

4.5 SUMMARY OF THE MICROMEMBRANE-ENHANCED EVAPORATING 

SURFACES 

In summary, significantly high HTC and CHF were achieved using the 

micromembrane-enhanced evaporating surfaces that were developed in this study. The 

separation of capillary pressure generation and water transport processes enabled by the 

micromembrane should be favorable to supply liquid. CHF on the developed 

micromembrane-enhanced evaporating surfaces was substantially enhanced to 152.2 

W/cm2. Compared to microchannels, four-layer mesh screens, and single-layer mesh 

screen, CHF was enhanced approximately 83%, 198%, and 1000%, respectively. The 

increased capillary forces on micromeshes and the reduced flow resistance using 

microchannels should be the primary reasons for the dramatically increased CHF. The 

generation of capillary forces on the newly developed interfaces was governed by the 

liquid evaporative rate, bubble growth and collapse and receding menisci, which were not 

continuous or constant. Oscillating flows were observed in the low heat flux region and 

HTC was increased by the induced advection. Thin film evaporation and nucleate boiling 

were improved by the enhanced nucleation site density and augmented surface areas 

through the use of micromembrane that was made of sintered single-layer micromesh, 

resulting in the enhanced capillary evaporation HTC in the high heat flux region. 



 

55 

CHAPTER 5 

ENHANCED CAPILLARY EVAPORATION ON MICROMEMBRANE-ENHANCED 

HYBRID WICKS WITH ATOMIC LAYER DEPOSITED SILICA 

Substantial enhancement of capillary evaporation in water was reported on the 

micromembrane-enhanced hybrid wicks with intrinsically superhydrophilic silica (SiO2) 

coatings. Compared with bare micromembrane-enhanced hybrid wicks, evaporation heat 

transfer coefficient was improved from 9.1 W/(cm2·K) to 14.2 W/(cm2·K) at a heat flux of 

139.3 W/cm2, i.e., a 56% enhancement after coating a nano-thick layer of Atomic Layer 

Deposited (ALD) SiO2. Different from Wenzel's effect, conformal ALD SiO2 coatings 

can achieve intrinsic superhydrophilicity without significantly modifying surface 

roughness. The superwetting property could substantially enhance thin film evaporation 

by augmenting the liquid film areas and reducing film thickness, resulting in significantly 

enhanced evaporation. However, ALD SiO2 coatings increased both capillary pressure 

and viscous drag. As a result, the critical heat flux was not enhanced in this study.  

5.1 INTRODUCTION OF ENHANCED CAPILLARY EVAPORATION 

Guided by Wenzel′s effect [132], the apparent contact angles can be dramatically 

reduced by increasing surface roughness on hydrophilic surfaces. As a result, engineered 

surfaces with microscale [13], nanoscale [9], patterned [17] and hierarchical [133] 

structures have been employed to enhance boiling and evaporation. However, it is rather 

challenging to distinguish the effects of augmented surface roughness and the effect 

intrinsic wettability on heat transfer performance. To study the effect of interfacial 
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wettability, Takata et al. [69] investigated the effects of surface wettability on boiling and 

evaporation heat transfer using sputtering coated TiO2 on plain surfaces, yielding the 

enhancement on both HTC and CHF. Nonetheless, the sputtering method introduced 

additional surface roughness and the superhydrophilicity was not reliable and needed to 

be maintained by UV light. Most recently, Feng et al. [73] reported approximately 200% 

of CHF enhancement in pool boiling using atomic layer deposited (ALD) alumina 

coatings which provide superwetting and rewetting on the "hot spot". In previous studies, 

CHF was enhanced on the plain surfaces [69, 73] (i.e. plain copper or Pt wire), where 

liquid supply was governed by the bubble dynamics. Nonetheless, superhydrophilic 

porous structures, where fluid flow was primarily governed by the capillary pressure, 

have not been studied due to the difficulty in depositing conformal coatings on high 

aspect ratio surfaces. In this study, enhanced evaporation on intrinsically 

superhydrophilic micromembrane-enhanced hybrid wicks, where liquid supply should be 

determined by capillary flows, were obtained by coating ALD SiO2 on micromeshes.  

SiO2 was selected in this study because of its superior hydrophilic properties and 

chemical stabilities in water [68, 71]. The hydrophilicity of ALD SiO2 coatings results 

from the high affinity silanol (Si-OH) groups on the surface [68, 71, 134-135]. The nano-

thick ALD SiO2 coating is able to induce superhydrophilicity with surface roughness 

changing in the order of 10 nm. Compared to Metal-Organic Chemical Vapor Deposition 

(MOCVD)[136], Plasma Enhanced Chemical Vapor Deposition (PECVD) [136], Radio 

Frequency (RF) magnetron spattering [69] and solution based techniques [137], ALD 

technique has a unique capability to deposit highly conformal nano-thick films on high 

aspect-ratio structures [138-139]. Equally important, because of the sequential self-
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terminating gas-solid reactions, strong bonding between the coatings and the substrate 

can be achieved by ALD technique [134]. Additionally, surface morphology and 

chemical property control are essential for long term operations in industrial applications 

[140]. ALD coatings can serve as corrosion protection layers of heat transfer surfaces 

[76] because copper corrosion and dissolution often imposes limitations on heat transfer 

performance of heat exchangers for long-term operations [140-141].  

Conformal nanometer-thick SiO2 coatings can maintain the surface 

morphologies, making it possible to study the effect of intrinsic wettability on heat 

transfer. This work aims to study the effect of ALD SiO2 coatings on evaporation heat 

transfer on micromembrane-enhanced hybrid wicks. 

5.2 DESIGN AND ALD DEPOSITION 

5.2.1 DESIGN OF MICROMEMBRANE-ENHANCED HYBRID WICKS 

This type of evaporating surfaces consist of a microscale membrane made from 

one-layer copper woven meshes and a microchannel array beneath [142]. Copper woven 

meshes (made by Belleville Wire Cloth) with a mesh number of 1509 m-1 (145 inch-1) 

and a wire diameter of 56 μm were attached on the microchannels by diffusion bonding 

technique [127] to minimize the contact thermal resistance [123]. The evaporation 

surfaces were sintered on a 1×1 cm2 square copper block (Figure 5.1). All tests were 

conducted with samples positioned in the vertical direction and with an approximately 15 

mm distance from the center of heating area to the water level to minimize the impacts of 

pool boiling [142].The design and structures of the micromembrane-enhanced hybrid 

wicks were detailed in Ref.[142]. 
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Figure 5.1 Schematic of the test sample assembly and images of the real sample. 1, 120V 
250W 1/4" diameter × 2" long cartridge heater; 2, 1" copper heating block with 4 holes 
on the left side and 1 hole on the right side; 3, 1 cm × 1 cm square copper block with five 
holes for thermocouples; 4, 0.02″ diameter × 6″ long K type thermocouple; 5, Screw; 6, 
G-7 fiberglass; 7, High temperature RTV silicone; 8, 10 mm wide × 0.8 mm thick × 50 
mm long hybrid wicks; 9, Photo of the hybrid wicks; 10, Photo of the square copper 
block; 11, SEM image of the hybrid structure. 

 
Figure 5.2 Main steps in the growth mechanism of rapid ALD SiO2 [81]. 

5.2.2 ALD DEPOSITION OF SILICA 

Atomic layer deposition is a self-limiting (the amount of film material deposited 

in each reaction cycle is constant), sequential surface chemistry that deposits conformal 

thin-films of materials onto substrates [138]. 12 nm-thick ALD SiO2 was deposited on the 

evaporating surfaces that were developed in previous study [142]. ALD was carried at 
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150 °C in a viscous-flow, hot-wall type ALD reactor [78]. The reactor was operated in a 

static mode for conformal growth of oxides on the micromembrane-enhanced hybrid 

wicks with a high aspect-ratio. Ultra-high purity N2 was used as a carrier gas. Prior to 

SiO2 deposition, ALD alumina (Al2O3) was pre-deposited as a seed layer in order to 

facilitate the SiO2 nucleation and growth and hence to ensure the conformality of the 

SiO2 films. The trimethylaluminum (TMA) and water chemistry was used for ALD Al2O3 

[79], while the ALD SiO2 was deposited in so-called "rapid″ mode using tris (tert-

pentoxy) silanol [81] (Figure 5.2). The chemistries used for ALD were well studied and 

shown to yield high quality films [79-81]. The number of deposition cycles of ALD 

Al2O3 coatings was approximately 80 at a typical growth rate of 0.1 nm /cycle. After 80 

cycles of Al2O3 coating, one cycle of ALD SiO2 was coated at an approximate growth 

rate of 12 nm /cycle. Therefore, the thicknesses of ALD Al2O3 and ALD SiO2 films were 

8 nm and 12 nm, respectively. The total thickness of the ALD Al2O3 and SiO2 coatings 

was approximately 20 nm. To study the effect of plasma cleaning, bare hybrid wicks 

were cleaned by oxygen plasma for 60 seconds to create hydrophilic copper oxide [143].  

During the evaporation on the ALD SiO2 coated micromembrane-enhanced 

hybrid wicks, the only driving force for fluid supply was capillary pressure generated by 

the micromembrane. The one dimensional (1D) input heat flux was supplied by the 

copper heating block through the four cartridge heaters and estimated from Fourier's law 

from the measured temperature gradient and the given thermal conductivity of copper. 

The capillary evaporation were also visualized by a high-speed camera (Phantom V 7.3) 

with an infinity K2/SC long distance micro single port main body, a CF-2 objective, and 

a NIKON T2 adapter [144].  
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5.3 CHARACTERIZATION OF THE ALD SIO2 COATED INTERFACE 

Surface morphologies of the ALD SiO2 coated micromembrane were 

characterized by atomic force microscopy (AFM) as shown in Figure 5.3. The root mean 

square (RMS) roughness, Rq, was used to characterize the surface roughness. 
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= −∑∑ , where Rq is the RMS roughness; M, N are the total sampling times 

in the length and width direction; i, j are the sampling times; Zi,j is the sampling height; Z 

is the average height. The RMS roughness on a plain copper surface was 1.2 nm and 

increased to 2.9 nm after the nano-thick ALD coatings. This indicated that the change of 

the surface roughness resulted from ALD SiO2 coatings was minor and hence, the impact 

of augmented heat transfer areas is negligible. As shown in Figure 5.3a and b, the three 

dimensional (3D) AFM images well illustrated the conformality of the ALD coatings.  

The static contact angle measured with a 5 µL of highly purified water droplet 

was employed to characterize the hydrophilicity of the ALD coatings. Before the 

measurement, the samples were cleaned by plasma for 15 seconds with the oxygen flow 

rate at 6 mL/min to remove carbon contaminations. The contact angle on the ALD SiO2 

coated plain surface was reduced from 49.6o (Figure 5.3c) to 4.7o (Figure 5.3d), i.e., 

intrinsically superhydrophilic. The apparent contact angle on the ALD SiO2 coated hybrid 

wick was measured at nearly 0o because of the Wenzel ′s effect [132] (Figure 5.3e).  

5.4 TWO DIMENSIONAL MODEL OF TEMPERATURE DISTRIBUTION 

Because of the symmetry lines (Figure 5.4a), only one unit of hybrid wick has 

been chosen to be simulated (conduction heat transfer). As it is depicted in Figure 5.4b, 

dark gray area represents the micro-channels and light gray represent combination of 

fluid and mesh. In order to simplify mesh and fluid, a T-shape has been taken out (Figure  
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Figure 5.3 Characterization of the ALD SiO2 coating. (a) 3-D AFM image of bare copper 
mesh. (b) 3-D AFM image of the conformal SiO2 ALD coated copper mesh. (c) Contact 
angle on bare copper sheet. (d) Contact angle on ALD coated copper sheet. (e) Contact 
angle on ALD coated hybrid structure. 

 
Figure 5.4 Boundary layer and assumption. (a) One unit of hybrid mesh in the 

neighborhood of others (b) Model and boundary conditions used for simulation 

5.4b) and replaced by fluid, being said, thermal properties for this area (light gray) are 

averaged values based on thermal properties of mesh and fluid. Also, boundary 

conditions have been illustrated in the Figure 5.4b. Please note that constant temperature 

at the bottom and h∞ are calculated based on this paper's experimental results and T∞ is 

the saturation temperature. 

5.5 ENHANCED CAPILLARY EVAPORATION 

a b 
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In this experimental study, three types of micromembrane-enhanced hybrid 

wicks, i.e., bare, ALD SiO2 coated and plasma-CuO coated surfaces were evaluated. 

C o m p a r e d 

 
Figure 5.5 Evaporating heat transfer curves on micromembrane-enhanced hybrid wicks 
with various surface treatments. (a) ∆T-q" curves. (b) q"-h curves. (c) Schematic view of 
the hybrid wick. (d) Temperature distribution at a heat flux of 9.0 W/cm2 in region I. (e) 
Temperature distribution at a heat flux of 40.4 W/cm2 in region II. (f) Temperature 
distribution at a heat flux of 61.4 W/cm2 in region III. The unit of temperature is oC for d, 
e and f. 

with hybrid wicks without coating, as shown in Figure 5.2a and b, ALD SiO2 coatings did 

not enhance evaporative CHF, i.e., from 151.7 W/cm2 to 151.9 W/cm2. However, HTC 

was significantly improved after applying ALD SiO2 coatings, for example, from 9.1 

W/(cm2·K) to 14.2 W/(cm2·K) at a heat flux of 139.3 W/cm2, which is a 56% enhancement 

(Figure 5.5a). The plasma generated copper oxides were also examined to study the heat 

transfer enhancement. However, copper oxide obtained in the plasma cleaning process 

was not sustainable. The superhydrophilicity enabled by CuO faded quickly because the 
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plasma treatment can only oxidize the surface wire of copper meshes. The evaporating 

HTC was not enhanced by plasma induced copper oxides in high heat flux regime (Figure 

5.5a). A repeat test was conducted to confirm the HTC enhancement as shown in Figure 

5.5a. This demonstrated that the capillary evaporation HTC can be significantly enhanced 

by ALD SiO2, instead of the plasma induced CuO. 

5.6 EVAPORATION ENHANCEMENT MECHANISM 

According to our previous study, the evaporation process on the bare 

micromembrane-enhanced hybrid wicks can be divided into three regions [144] (Figure 

5.5b). Region I is dominated by the oscillating flows and nucleate boiling inside 

microchannels. Region II is governed by the thin film evaporation on both microchannels 

and micromembrane. Region III is determined by nucleate boiling and thin film 

evaporation on both microchannels and micromembrane.  

In this study, a two-dimensional (2D) model was developed to study temperature 

distribution in the cross section of the evaporating structures as shown in Figure 5.5c, d, e 

and f (Refer to supplementary information for boundary conditions and assumptions) to 

further reveal the heat transfer mechanism,. In region I, nucleate boiling was primarily 

initiated on the bottom walls of microchannels because the sufficient superheat (i.e., 

100.86 oC as shown in Figure 5.5d). In region II, the temperature on side walls reached 

104.8 oC (Figure 5.5e), high enough to trigger nucleate boiling. However, the heat 

transfer was still dominated by thin film evaporation because of the insufficient liquid 

supply during the transition of the capillary force from the microchannels to 

micromembrane [144]. Additionally, the required superheat to nucleate bubbles on 

micromembrane with relatively larger cavities should be higher than that on 
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microchannels as guided by Hsu’s model [145] (Figure 5.5e). In region III, the 

temperature on micromembrane reached 109.4 oC (Figure 5.5f) and the liquid supply was 

sufficient after the oscillating flows resumed [144]. As a result, the nucleate boiling can 

occur in microchannels and on micromembrane [146]. Thin film evaporation should be 

dominated on the superhydrophilic micromembrane during the entire heat transfer 

process according to visualization study. 

As shown in Figure 5.5b, in region I, the evaporation curve on the ALD SiO2 

coated hybrid wicks shared a similar shape from that on the bare hybrid wicks, i.e., the 

overall HTC decreased with the increasing heat flux, resulting from the additional 

thermal resistance introduced by the vapor core formed inside microchannels. Although 

bare micromembrane was not fully saturated in region I, the superhydrophilic ALD SiO2 

coated hybrid wicks appeared to be fully saturated with liquid as visualized (Figure 5.6a 

and e). This can also be validated in Figure 5.6i, j, k and l. The static wetting height in 

microchannels is described as: h=(2γcosθ)/(ρgR), where h is the static capillary length, γ 

is the surface tension of water, θ is the contact angle, ρ is liquid density and R is the half 

width of the microchannel. Since the contact angle was reduced from 49.6o to 4.7o, h2 

should be larger than h1 (Figure 5.6i, j), where h1 and h2 are the capillary heights in bare 

and ALD SiO2 coated tubes, respectively. The frequency of the oscillating flows, which 

was induced by multilayer liquid wetting as indicated in Xiao's model [147], would 

increase (Figure 5.7a) and result in strong advections. Thus, the HTC on ALD SiO2 

coated hybrid wicks was significantly enhanced in the low heat flux region, which was 

consistent to the observation in previous study [69].  
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Region II is a transition region [144] where the oscillating liquid spreading and 

wetting process temporarily suspended. In this region, the sidewall temperature increases 

with the increasing heat flux and became superheated (Figure 5.5e). Consequently, 

bubbles started to nucleate on the microchannel sidewalls. The substantially enhanced 

nucleate boiling eventually led to the global liquid supply crisis in microchannels. As a 

result, the capillary flows were suspended in Region II. The heat transfer in Region II 

was dominated by nucleate boiling inside microchannels and thin film evaporation on the 

meshes. The averaged HTC on ALD SiO2 coated surfaces in region II were 

approximately 15% higher than that on the bare ones. According to visualization study, at 

the heat flux of 40.4 W/cm2, the ALD SiO2 coated sample was fully wetted (Figure 5.6b) 

while the bare sample was partially dryout (Figure 5.6f). This observation indicated that 

HTC in region II was primarily increased by enhanced thin film evaporation because of 

the improved wetting conditions (Figure 5.6b and f).  

In Region III, the copper meshes were sufficiently superheated (Figure 5.5f) and 

capillary evaporation occurred on micromembrane, which caused menisci receding and 

rewetting in the sharp corners. This could induce oscillating capillary flows. Therefore, 

the dynamic capillary forces induced by menisci receding transformed from 

microchannels to micromembrane. Hence, the liquid supply was resumed. The 

superhydrophilic ALD SiO2 coatings substantially enhanced thin film evaporation in this 

region (Figure 5.5b). This observation was consistent with a recent study at which ALD 

alumina (Al2O3) coated platinum (Pt) wire was used to enhance pool boiling heat transfer 

because of the superwetting property [30]. The superwetting property of the ALD SiO2 

coatings contributed to the local wetting and rewetting of the copper wires (Figure 5.d 
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and m). Hence, the thin liquid film can sustain and result in a significant improvement of 

evaporative heat transfer (Figure 5.6c and g). As shown in Figure 5.6d and h, partial 

dryout or so called "hot spot″ occurred on the bare mesh wires  was not observed on the 

ALD SiO2 coated micromembrane because wetting areas can be sustained by the fast 

 

Figure 5.6 The superwetting property enabled by ALD SiO2 coatings. (a-c) Liquid 
distributions on the ALD SiO2 coated micromembrane-enhanced hybrid wicks at heat 
fluxes of 8.9, 40.1 and 61.5 W/cm2. (d) Schematic diagrams of liquid distribution on the 
ALD SiO2 coated micromembrane-enhanced hybrid wicks. (e-g) Liquid distribution on 
the bare micromembrane-enhanced hybrid wicks at heat fluxes of 9.0, 40.4 and 61.4 
W/cm2. (h) Schematic diagrams of liquid distributions on the bare micromembrane-
enhanced hybrid wicks. (i) Capillarity in a bare Cu microchannel. (j) Capillarity in an 
ALD SiO2 coated microchannel. (k) Cross-section of meniscus on a bare copper corner. 
(l) Liquid film distribution on ALD SiO2 coated interfaces. (m) Cross-section of meniscus 
on an ALD SiO2 coated corner. 
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liquid spreading processes (Figure 5.6m). This can also be validated by the Washburn′s 

law [148-149] that describes the dynamic wetting process. The penetrated distance, L, is 

described as: L=(Rσ∙cosθ/(2µ))1/2 t1/2, where R is the half width of microchannels; σ is the 

liquid surface tension; θ is the contact angle; µ is the liquid dynamic viscosity; and t is 

the penetrating time. This equation verifies that at a constant time the intrinsically 

superhydrophilic structure can achieve a longer liquid spreading length. This also 

indicates the velocity of liquid supply, v2, in the superhydrophilic microchannels is higher 

than the liquid velocity, v1, in bare microchannels. Thus, wetting areas can be augmented 

and maintained by applying conformal superhydrophilic ALD SiO2 coatings (as shown in 

Figure 5.6a, b and c) in the dynamic wetting process. The effective evaporating heat 

transfer areas are substantially increased by superhydrophilic ALD SiO2 coatings. 

In addition, the local liquid distributions were improved by the intrinsically 

superhydrophilic ALD SiO2 coatings (Figure 5.6k and m). Disjoining pressure results in a 

pressure gradient and provides the primary driving force to spread the local liquid film. 

The superhydrophilic interface yields a smaller film pressure gradient and larger friction 

drag [150], resulting in a thinner liquid film in the evaporating process. Thus, the local 

thin film evaporation can be enhanced by improving the wettability as predicted by a 

theoretical model [151].  

In previous study, visualization studies illustrated that only a part of 

microchannels was fully wetted or activated on the bare micromembrane-enhanced 

hybrid wicks [144]. As shown in Figure 5.7a, the frequency of oscillating flows on the 

ALD SiO2 coated evaporating surfaces was approximately one order of magnitude 

greater than that of the bare structures in the low heat flux region. The number of visible 
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bubbles in the low heat flux region was also increased by the superhydrophilic coatings 

due to the enhanced surface wettability (Figure 5.7b). The increased frequency of bubble 

growth and collapse (Figure 5.7c) could be caused by the enhanced thin film evaporation 

on the microlayer underneath the bubbles, resulting in a high bubble growth rate [152]. 

However, the bubble growth and collapse phenomena were different from those in pool  

 

Figure 5.7 Comparisons of oscillating flows on the ALD SiO2 coated and bare hybrid 
wicks (a) The total oscillating frequency, Mc·fa, on the ALD SiO2 coated 
micromembrane-enhanced hybrid wicks; Mc is the number of active channels; and fa is 
the frequency of fluid flow in a single active channel. Nc·f is for the bare structure. (b) 
The total number of visible bubbles in active channels, Mc·mb. Mc is the number of 
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visible bubbles in a single active channel; and mb is the number of active channels. Nc·nb 
is for the bare structure. (c) Bubble growth and collapse frequency, fa,gc. fgc is for the bare 
structure. (d) The total number of visible bubbles in active channels, Mc·mb, in the high 
heat flux region. Nc·nb is for the bare structure. (e) Total bubble growth and collapse 
frequency, Mc·mb·fa,gc is for ALD coated structure, Nc·nb·fgc is for the bare structure. 

boiling investigation because of the absence of buoyancy force [152]. Although the ALD 

SiO2 coated surfaces were superwetted in the high heat flux region, the number of visible 

bubbles was reduced (Figure 5.7d) since some of the superhydrophilic cavities were 

inactive because of flooding [91, 146]. The total bubble growth and collapse frequency 

was nearly identical on the bare and ALD coated evaporating surfaces (Figure 5.7e), 

implying that the HTC enhancement primarily resulted from the improved thin film 

evaporation and advections, instead of nucleate boiling. 

The enhanced HTC ascribed to the improved local wetting. However, CHF of 

capillary evaporation was not enhanced by the ALD SiO2 coatings as shown in Figure 

5.6a. CHF is generally determined by the global liquid supply, which is governed by the 

capillary pressure generated by micromeshes and flow resistance through microchannels. 

When evaporation was approaching CHF conditions, thin film evaporation occurred 

primarily on micromembrane and the liquid film was maintained by liquid spreading. 

Nucleate boiling was occurred on the flooded microchannel walls with the high 

frequency bubble growth and collapse process. Global liquid flowed through the 

microchannels at the flow velocity v, and v=q''/ρhfg, where q" is the heat flux; ρ is 

saturated liquid density; and hfg is the liquid latent heat. The major forces that determine 

fluid flows are capillary pressure (∆p) and viscous drag (∆p′). Capillary pressure is 

determined by the meniscus according to Young-Laplace equation: ∆p=2σ/r, where ∆p is 

capillary pressure, σ is surface tension and r is the principal radius of curvature. The 

http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation�
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decreasing contact angle could result in a reduced meniscus in a conformal sharp corner 

[151], that is, r1 < r2 as shown in Figure 5.3k and m, where r1 and r2 are the radii of 

curvature for bare and ALD SiO2 coated interfaces. Herein, conformal superhydrophilic 

ALD SiO2 coatings could yield higher capillary pressure than the bare surfaces. However, 

superhydrophilic coatings also result in higher viscous drag as reported by Wu and Cheng 

[153]. Also, the increased fluid velocity in the microchannels may result in higher flow 

resistance on the superhydrophilic surfaces as indicated by the pressure drop in 

microchannels: ∆p′=½ f ρv2L0/Dh, where ∆p′ is the pressure drop through the channel; v 

is the fluid velocity; L0 is the flow length; Dh is the hydrodynamic diameter; and f is the 

friction factor. Therefore, both capillary force and viscous drag were increased by 

applying conformal superhydrophilic ALD SiO2 coatings. Therefore, CHF was not 

enhanced in this study. 

5.7 SUMMARY OF THE MICROMEMBRANE-ENHANCED HYBRID WICKS 

Intrinsically superhydrophilic ALD SiO2 coatings with a nanoscale modification 

on surface roughness can significantly increase the HTC by 56% during the capillary 

evaporation process. The enhancement results from the induced advections in the low 

heat flux region and enhanced thin film evaporation in the high heat flux region, 

respectively. CHF, which was governed by the global liquid supply, i.e., by the capillary 

pressure and viscous drag in the dynamic process, was not enhanced since the conformal 

superhydrophilic ALD SiO2 coatings increased both the capillary pressure and viscous 

drag in this study.  
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CHAPTER 6 

TRANSPORT PHENOMENA ON NANOENGINEERED HYDROPHOBIC-HYDROPHILIC 

INTERFACES 

Solid-liquid interfacial characteristics such as wettability, surface roughness and the 

presence of micro/nano bubbles are significant to the heat and mass transports. 

Hydrophilic interface is superior to maintaining the surface wetting for enhanced thin 

film evaporation [146]. Smooth hydrophobic interface is able to reduce the friction drag 

due to the induced slippage [154-155]. Nanotextured hydrophobic structures inevitably 

track micro/nano bubbles, which can enhance nucleate boiling [145] by augmenting 

nucleation site density and enable drag reduction by inducing shear-free boundary 

conditions [156]. Nanoengineered porous interfaces with partially hydrophilic and 

partially hydrophobic areas were expected to improve the partial wetting and track 

nanobubbles, resulting in enhanced heat transfer and reduced friction drag. 

6.1 INTRODUCTION 

Carbon nanotubes (CNTs) [157] have been used to enhance two phase heat and 

mass transport, e.g. pool boiling [158-160], flow boiling [161-162], evaporation [163-

164] and nanofluids [165-167]. However, the enhancement was retarded by the intrinsic 

superhydrophobicity of pristine carbon nanotubes. McHale and Garimella [23] deposited 

copper on the multiwall carbon nanotubes (MWCNTs) and tuned the hydrophobicity to 

hydrophilicity yielding heat transfer enhancement. In this study, partially hydrophobic 
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and partially hydrophilic MWCNTs were synthesized from functionalized multiwall 

carbon nanotubes (FMWCNTs) by inducing hydrophilic functional groups on the defect 

areas of pristine MWCNTs. This nanoengineered hydrophobic-hydrophilic interface 

exhibited the advantages of both hydrophobic and hydrophilic characteristics, resulting in 

superior properties in advancing heat and mass transports.  

The ideal porous interface to enhance capillary evaporation should be able to 

provide a low flow resistance and a simultaneous high capillary force for liquid supply 

[54, 142]. Superhydrophobic interface is able to reduce the flow resistance [168], 

nonetheless, it can not provide sufficient capillary driving force due to the small surface 

energy. Superhydrophilic surface is superior to generating high capillary pressure [169] 

while the associated flow resistance is relatively high [94, 169]. A composite interface 

with cool hydrophilic areas and hot hydrophobic areas is able to accelerate the droplet 

flow with the aid of Marangoni flow [94-95]. This is significantly helpful for the local 

liquid supply in the evaporation process since the temperature of hydrophilic areas is 

lower than that of the hydrophobic areas. Furthermore, fluid oscillations induced by the 

periodic bubble growth and collapse significantly affect the liquid supply and nucleate 

boiling. It has been demonstrated that carbon nanotube enabled hydrophobic-hydrophilic 

interfaces can increase the bubble departure frequency, decrease the bubble size augment 

the nucleate site density and thus enhance the nucleate boiling [146]. However, in reality 

micro/nanofabricatons [94, 100] are costly and challenging to make such an interface, 

especially on the high aspect ratio porous structure. In this study, nanoengineered 

partially hydrophobic and partially hydrophilic interfaces were developed to enhance the 

heat transfer and increase the CHF.  
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6.2 SYNTHESIS AND DEPOSITION 

MWCNTs were oxidized in an acid reflux bath at 80 ºC for 4 hrs to generate 

defects and to grow hydrophilic carboxylic and hydroxylic functional groups on the 

surface of each MWNT. Aqua regia, a mixture of HCl (12M) and HNO3 (16M) in 1:1 

volume ratio, was used to oxidize MWNTs. The treated MWNTs were filtered out and 

thoroughly rinsed with DI water. A sonicator was used to disperse FMWCNTs in 

isopropyl alcohol to form “inks” for subsequent spray coating. 5 mg of FMWCNTs 

dispersed in 10 ml of isopropyl alcohol with the addition of 20 mg of a 5% Nafion™ 

(Dupont DE521) solution was used to form the "inks″. A 700W, 20 kHz, sonic probe was 

used to treat the "inks″ with Nafion and FMWCN (NFMWCNT) suspension for 1 hour 

(45 seconds - off and 15 seconds-on duty cycle) at a power level of 30%. Nafion was 

slowly added into the MWNT mixture while dispersing. The combination of acid reflux 

treatment and the use of nafion as surfactant resulted in excellent dispersion of CNT in 

isopropyl alcohol.  

The NFMWCNT "ink" was deposited on the hybrid wicks using an ultrasonic spray 

coater (Sonotek Exacta-Coat). A 120 kHz spray head was used with an ink feed rate of 

0.2ml/min. The ultrasonic spray head was programmed to move in a raster pattern at a 

distance 5 mm from the top surface of the substrate, traversing at a speed of 25 mm/sec, 

forming a track at the width of approximately 1.25mm. The raster pattern was repeated 

numerous times (coats) to building up the thickness of the coating. During spray, the 

substrate was heated to ~100 ºC to speed up the evaporation of the solvent. 

6.3 HIERARCHICAL HYDROPHOBIC-HYDROPHILIC SURFACES 

Pristine carbon nanotubes (Figure 6.1a) were oxidized in the concentrated nitric 
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Figure 6.1 Characterization of the FMWCNTs and FMWCNT coated hybrid wicks. (a) 
Pristine MWCNT coatings. (b) Functionalized MWCNT coatings with Pt tracer particles. 
(c) Schematic of the test sample assembly. 1. Cartridge heater, 2. Copper heating block, 
3. 1 cm × 1 cm square copper block with holes for thermocouple (TC block) 4. K type 
thermocouples, 5. Screw, 6. G-7 fiberglass, 7. High temperature RTV silicone, 8. hybrid 
wick, (d) 9. Photo of the hybrid wick, 10. Copper TC block. (e) SEM image of the hybrid 
wick. (f) FMWCNT coated single copper wire. (g) Nanoengineered hydrophobic-
hydrophilic FMWCNT coatings. 

acid (H2NO3) to grow functional groups. The FMWCNTs were dispersed in the isopropyl 

alcohol with the aid of high power ultrasonic. Amphiphilic Nafion was used to help 

disperse the FMWCNTs, strengthen the bonding of the FMWCNT coating to the 

substrate and introduce superhydrophilic functional groups (-SO3H). Wettability-tunable 

interfaces with numerous nanoscale or submicrometer interconnected cavities were 

synthesized from partially hydrophobic and partially hydrophilic FMWCNTs (Figure 

6.1b). Positive charged platinum ions (Pt4+) were employed as tracer particles to locate 

the functional group distribution on the FMWCNT wires and buddles.  

The nanoengineered interface made of amphiphilic nafion and FMWCNT 

(NFMWCNT) was developed to enhance capillary evaporation. As shown in Figure 6.1c, 
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four cartridge heaters integrated with a copper block were used as the heating source. A 

thermocouple (TC) block with 1 cm2 cross-section area was employed to generate one-

dimensional (1-D) heat flux. Five thermocouples were used to record the temperature 

distributions. The bi-porous structure was attached on the heating block by diffusion 

bonding technique (Figure 6.1d). In order to minimize the influence of pool boiling, the 

bi-porous structure, which consisted of single layer copper woven mesh sintered on 

microchannel array, was positioned in the vertical direction with a 15 mm distance from 

the water level to the center of heating area. The well-dispersed NFMWCNT inks were 

deposited on the bi-porous structure by an ultrasonic spray coater (Figure 6.1e and f). The 

copper mesh wires and microchannels were coated by the straw-like NFMWCNTs 

(Figure 6.1g). Four different types of coatings, pristine MWCNTs, FMWCNTs, 

NFMWCNTs and heated NFMWCNTs, were tested and compared to show the heat 

transfer enhancement mechanisms. 

6.4 CAPILLARY EVAPORATION PERFORMANCES 

Figure 2a and b show the heat transfer performances of different nanoengineered 

interfaces. Pristine MWCNT coatings could increase the HTC from 7.5 W/(cm2·K) to 

10.5 W/(cm2·K) at the heat flux of 104.3 W/cm2. FMWCNT, NFMWCNT and heated 

NFMWCNT could increase the HTC from 9.0 W/(cm2·K) to 9.6, 11.1 and 11.7 

W/(cm2·K) at the heat flux 136.7 W/cm2, respectively. Intrinsically superhydrophobic 

pristine MWCNTs were able to enhance the heat transfer because the copper substrate 

was hydrophilic, hence, liquid could be supplied by capillary force on the wetted 

substrates. MWCNT coatings augmented the nucleate site density and surface areas, 

yielding enhanced nucleate boiling. The internal bonding forces of different carbon 
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Figure 6.2 Capillary evaporation results for 80nm FMWCNT coatings. (a) ∆T-q" curves. 
(b) q"-h curves. 

nanotube wires and the bondings between the coatings and substrates are significant since 

the bubble growth expansion forces were extremely high especially in the high heat flux 

regime. FMWCNT coatings could not be strongly attached on the substrates, hence, they 

might easily fall off due to the bubble growth expansion forces. Amphiphilic Nafion was 

able to strengthen the bonding between the FMWCNTs and substrates as well as the 

interactions of FMWCNT wires. Moreover, heating the FMWCNT coating at 

approximately 130 oC, above the glass transition temperature of Nafion for five minutes 

resulted in the inter-diffusion of polymer chains, which provided a greater degree of 

interlocking and Van der Waals interactions.  

The coating thickness is also critical to the heat transfer performance. Increasing 

coating thickness yielded augmented nucleate site densities and surface areas, which are 

good for both nucleate boiling; however, the fluid flow is also hindered to enter into the 

bottom nanoscale cavities, resulting in thermally insulated nanoporous layer and extra 

thermal resistances. As shown in Figure 6.3a and b, NFMWCNTs with the thickness of 

400 nm and 1600 nm were deposited and tested, respectively. The HTC enhancements 

were reached by 102.3% and 15.7%, respectively, at the heat flux of 151.7 W/cm2. 400 
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nm coatings performed better than the 80 nm coatings since they induced more cavities 

and surface areas. 1600 nm coatings performed worse than 80 nm coatings because of the 

extra thermal resistances introduced by the porous layers. When the heat flux was less 

than 118.3 W/cm2, local liquid supply was sufficient with the thickness of 1600 nm, 

yielding enhanced HTC due to the augmented nucleate site densities. However, when the 

heat flux reached higher than 118.3 W/cm2, HTC decreased until CHF occurred. The 

possible reason is that the non-wetted porous layer becomes thicker, resulting in 

increasing thermal resistances. Nucleate boiling and evaporation occur only in top wetted 

structures. This indicates an optimal coating thickness exists to obtain an effective HTC 

enhancement. 

To further investigate the HTC enhancement mechanism of the NFMWCNT 

coatings, conformal ALD SiO2 coatings were deposited on the bi-porous structure to form 

intrinsically superhydrophilic interface [146] as a comparative study (Figure 6.3a and b). 

In the low heat flux region, the intrinsically superhydrophilic ALD SiO2 and NFMWCNT 

coated bi-porous structures reached the HTC of 8.8 W/(cm2·K) and 18.1 W/(cm2·K), 

respectively, at the heat flux of 28.9 W/cm2. In the high heat flux region, ALD SiO2 

coating reached a maximum HTC of 14.2 W/(cm2·K), which was increased by 61.4% at 

the heat flux of 151.7 W/cm2. Nonetheless, the enhancement was 102.3% for the 400 nm 

NFMWCNT coatings at the identical heat flux.  

The evaporation process on the bare bi-porous structure can be divided into three 

regions (Figure 6.3b) [142]. Region I (0-11.2 W/cm2) is dominated by the oscillating flow 

and nucleate boiling; region II (11.2-57.2 W/cm2) is governed by the thin film 

evaporation and region III (57.2-152.2 W/cm2) is determined by both nucleate boiling 



 

78 

 

Figure 6.3 HTC enhancement mechanism. (a) ∆T-q" curves. (b) q"-h curves. (c-e) Liquid 
distributions in the bare wicks at the heat fluxes of 9.0, 40.4 and 61.4 W/cm2, 
respectively. (f-h) Liquid distributions in the ALD SiO2 coated hybrid wicks at the heat 
fluxes of 8.9, 40.1 and 61.5 W/cm2, respectively. (i-k) Liquid distributions in the 400 nm 
NFMWCNT coated hybrid wicks at the heat fluxes of 9.1, 40.2 and 61.3 W/cm2, 
respectively. (l) The total number of visible bubbles in active NFMWCNT coated 
channels, Mc·mb. Mc is the number of visible bubbles in a single active channel and mb is 
the number of active channels. Nc·nb is for the bare structure. (m) The total oscillating 
frequency, Mc·fN, in the NFMWCNT coated hybrid structures; Mc is the number of active 
channels and fN is the frequency of fluid flow in a single active channel. Nc·f is for the 
bare structure. (n) The total number of visible bubbles in active channels, Mc·mb in the 
high heat flux region. Nc·nb is for bare structure. (o) Bubble growth and collapse 
frequency, fN,gc. fgc is for the bare structure. 

and thin film evaporation. NFMWCNT coated interfaces show significantly higher HTC 

in region I than the bare and ALD SiO2 coated structure. In this region, heat transfer was 

dominated by the nucleate boiling and oscillating flow in the unconfined bi-porous 
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structure. Good wetting conditions were maintained initially on both ALD SiO2 and 

NFWMCNT coated bi-porous structures (Figure 6.3c, f and i), but the nanoscale porous 

NFMWCNTs could form a large amount of hydrophobic-hydrophilic cavities (Figure 

6.1g) [146], which were ideal for nucleate boiling at the bottom wall of the 

microchannels. This substantially reduced the superheat of the microchannel. In addition, 

such nanoengineered interfaces dramatically increased the oscillating flow and 

advections (see Supplementary Video) since the nanoporous coatings were filled with 

water and form a well wetted layer for fluid flow, yielding a dramatically improved heat 

transfer on the single layer mesh. Hence, the overall HTC were significantly enhanced in 

region I. Visualization study validated that the nucleate boiling (Figure 6.3l) and 

oscillating frequency (Figure 6.3m) were both substantially enhanced by the 

nanoengineered coatings. In region II, the porous hydrophobic-hydrophilic coatings can 

still maintain good wetting conditions (Figure 6.3d, g and j), and thus the HTC was 

increased from 5.8 W/(cm2·K) to 9.8 W/(cm2·K) at the heat flux of 57.1 W/cm2 due to the 

enhanced thin film evaporation. In region III, more nucleate sites can be initiated with the 

increasing superheat according to the nucleate boiling theory [83]. Maximum HTC 

reached 21.2 W/(cm2·K) at the heat flux of 163.1 W/cm2 (Figure 6.3b). It has been 

studied that conformal ALD SiO2 coatings enhanced the wetting conditions and thin film 

evaporation [146]. 80 nm NFMWCNT coating performed worse than the ALD SiO2 

coating. Even though it provided more nucleate cavities than the conformal ALD 

coatings, NFMWCNT coatings took extra thermal resistances and deteriorated the thin 

film evaporation. However, 400 nm NFMWCNTs performed better than ALD SiO2 

coating. This is because thicker NFWMCNT coatings provide a large amount of cavities, 
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resulting in a significantly enhanced nucleate boiling heat transfer. Therefore, the HTC 

enhancement on the carbon nanotube enabled interfaces primarily resulted from the 

enhanced nucleate boiling in this region. Figure 6.3 n and o indicated that the nucleate 

site density and bubble growth and collapse frequency were both increased by the 

NFMCNT coatings.  

CHF was decreased by the hydrophobic MWCNTs, while it could be increased 

by the hydrophobic-hydrophilic NFMWCNTs (Figure 6.2a). CHF was decreased from 

151.7 W/cm2 on bare structure to 120.3 W/cm2 on the structure with hydrophobic 

MWCNT coatings, because of the lack of capillary driving forces. In contrast, 

NFMWCNTs can not only enhance the HTC but also increase the CHF from 151.7 

W/cm2 to more than 171.7 W/cm2 on the three types of hydrophobic-hydrophilic 

NFMWCNT coatings (Figure 6.3a). 

It has been studied that flow resistance is significant for liquid supply during the 

capillary evaporation process [142]. Conformal ALD SiO2 coatings maintain the CHF 

(Figure 6.3a) because of the non-improved liquid supply, but NFMWCNTs are superior 

to the CHF enhancement due to the reduced flow resistance. NFMWCNTs can enhance 

the overall liquid supply as the superhydrophobic areas can decrease the flow resistance 

in microchannels and superhydrophilic functional groups significantly improved local 

wettability. Figure 4a shows that the wetting speed in the hybrid wick is significantly 

improved by the NFMWCNT coatings. The hybrid structure was visualized by a high 

speed camera and microscope assembly. Wetting tests show that the wetting speed in the 

microchannels of the FMWCNT coated hybrid structure is 3.27 cm/s, while it is 1.9 cm/s 

in the bare structure. Although the FMWCNTs take extra roughness, the hydrophobic 
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Figure 6.4 Characterization of the friction drag in the NFMWCNT coated hybrid wicks. 
(a, b) Wetting speed in the NFMWCNT coated hybrid wicks. (c, d) Wetting speed in the 
bare hybrid wicks. (e) Flow resistance measurement in the NFMWCNT coated 
microchannel. 

cavities are filled with trapped air or vapor gases and water can not penetrate into the 

nanopores [97], resulting in improved fluid flow.  

6.5 CHF ENHANCEMENT MECHANISM 

Flow resistance was measured to further study the friction drag in the 

NFMWCNT coated smooth interface (Figure 6.4b). The flow resistance was reduced 

from 5.9 kPa to 4.2 kPa, which is 28.8%, at the Reynolds number of 300 (See 

supplementary in formation for flow resistance measurement). This validated the drag 

reduction and was consistent with the wetting speed test. The hydrophobic interface may 

induce boundary slip reduce friction drag [154]. The nanoporous interface with partial 

wetting areas can induce interfacial slippage due to the existence of nanobubbles [97]. 

Thus, the nanoengineered partially hydrophobic and partially hydrophilic interfaces could 

probably track some nanobubbles and induce boundary slip, yielding the reduce friction 

drag, which was good for the fluid flow and liquid supply. In addition, during the heat 

transfer process the hydrophobic-hydrophilic nanoporous interfaces could reduce the 

bubble size and increase the bubble growth and collapse frequency, which intensified 

fluid oscillations, resulting in improved fluid supply and CHF. 
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6.6 SUMMARY OF THE NANOENGINEERED HYBRID WICKS 

In summary, the nanoengineered hydrophobic-hydrophilic interfaces are robust to 

enhance heat and mass transports. Hydrophobic-hydrophilic NFMWCNT coated hybrid 

wicks show enhanced capillary evaporation performances in both heat transfer and CHF. 

The increased HTC primarily resulted from the improved wetting conditions, oscillating 

fluid flow and augmented nucleate boiling; while the improved CHF resulted from the 

reduced friction drag and increased bubble growth and collapse frequency.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE STUDY 

Surface roughness and interfacial wettability are two primary factors for two-phase heat 

and mass transports. Guided by Wenzel′s effect, the apparent contact angles can be 

dramatically reduced by increasing surface roughness on hydrophilic surfaces. As a 

result, engineered surfaces with microscale, nanoscale, patterned and hierarchical 

structures have been employed to enhance boiling and evaporation. However, it is rather 

challenging to distinguish the effects of augmented surface roughness and the effect 

intrinsic wettability on heat transfer performance. The purpose of this study is to improve 

two-phase heat transport using nanoengineered interfaces with special wettability.  

7.1 CONCLUSIONS 

Intrinsically superhydrophilic TiO2 coatings and partially hydrophobic and 

partially hydrophilic FMWCNTs were deposited on two layer micromeshes to enhance 

nucleate boiling. CHF can be effectively increased by the improved interfacial wettability 

because of the superwetting property. Ideal cavities were created by CNT-enabled 

hydrophobic-hydrophilic composite interfaces, resulting in augmented nucleate site 

density, increased bubble growth rate and improved bubble departure frequency. 

Therefore, both HTC and CHF were substantially enhanced.  

The effect of interfacial wettability on boiling heat transfer was systematically 

studied. Intrinsically superhydrophilic surfaces can significantly increase the boiling CHF 

because of the superwetting property. Partially hydrophobic and partially hydrophilic 
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nanoporous media can create ideal cavities to enhance bubble dynamics. More 

hydrophobic surfaces yield higher HTC, while more hydrophilic surfaces result in higher 

CHF. The hydrophobic-hydrophilic interfaces perform better than the superhydrophobic 

interfaces in the boiling heat transfer. 

Bio-inspired micromembrane-enhanced hybrid wicks effectively improve the 

CHF of capillary evaporation by increasing capillary forces and reducing flow resistance. 

Based on this newly developed hybrid wicks, intrinsically superhydrophilic SiO2 coatings 

and partially hydrophobic and partially hydrophilic FMWCNTs were deposited on the 

micromembrane-enhanced hybrid wicks to enhance capillary evaporation. The improved 

wettability significantly improved the wetting conditions and thin film evaporation on 

micromembranes, resulting in dramatically increased HTC. FMWCNT coatings could 

reduce the friction drag due to the existence of "nanobubbles" and increase the 

wettability, yielding enhanced HTC and CHF simultaneously. 

Surface structures and interfacial wettability were both studied to enhance 

capillary evaporation. High capillary pressure and low friction drag are critical to 

improve the liquid supply and increase evaporating CHF. The separation of capillary 

pressure generation and fluid flow result in significantly enhanced capillary evaporation. 

Improved interfacial wettability results in better wettings and thin film evaporation, 

which can dramatically increase the HTC. Nanoporous coatings with hydrophobic-

hydrophilic wettabitiy can increase the capillary pressure, reduce the friction and create 

ideal heat transfer surfaces, resulting in enhanced HTC and CHF simultaneously.  

Therefore, intrinsic interfacial wettability is critical for boiling and evaporation 

heat transfer. Improving the wettability could significantly increase the CHF of nucleate 
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boiling and enhance the HTC of capillary evaporation. The partially hydrophobic and 

partially hydrophobic functionalized carbon nanotubes can create ideal interfaces for 

nucleate boiling and reduce friction drag, resulting in enhanced HTC and CHF during 

boiling and evaporation. 

7.2 FURTURE STUDY 

7.2.1 CHF MECHANISM 

Surface structures and interfacial wettability are significant for boiling and 

evaporation. This dissertation systematically studied the impact of interfacial wettability. 

However, further studies are needed to quantitatively define the effect to wettability on 

CHF mechanism of nucleate boiling.  

Zuber considered the dynamic effects of vapor jets and developed the CHF model 

base on Taylor and Helmholtz instatiblities in 1959 [170]. As indicated in the correlation 

of CHF, 0.5 0.25
, lg[ ( )]Z CHF g l gq h gβ ρ σ ρ ρ= ⋅ − , where qz,CHF is the CHF predicted by 

Zuber's model; β is the constant; ρg is the vapor density; hlg is the latent heat; σ is surface 

tension; g is the acceleration of gravity; ρl is the liquid density. This model is widely used 

to explain the CHF mechanism of boiling heat transfer on plain or structured surfaces. 

However, the impact of interfacial wettability, which was also critical for CHF, was not 

considered in this model.  

Satish Kandlikar modified Zuber's model in 2001, considering the impact of 

interfacial wettability and surface orientation [171]. As indicated in Kandlikar's model, 

0.5
, ,

1 cos 2( )[ (1 cos )cos ]
16 4K CHF Z CHFq q θ π θ φ

π
+

= ⋅ + + , where qk,CHF is the CHF predicted by 

Kandlikar's model, θ is the contact angle and φ is the tilted angle of the surface. This 
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model considered the contact angle and surface orientation, which was widely used in the 

boiling heat transfer area. 

Most recently, Moo Hwan Kim found that Kandlikar's model could not explain 

the CHF mechanism when the micro/nanostructures were used and the contact angle is 

less than 10o due to the liquid spreading effect [24]. Then Kandlikar's model was further 

modified to Kim's model, qKim,CHF = qK,CHF + qliquid_spreading, where qKim,CHF is the CHF 

predicated by Kim's model and qliquid_spreading is the CHF contributed by liquid spreading. 

However, no CHF model that considered the interfacial wettability was 

developed to explain the CHF enhancement in microporous media. There is no need to 

consider capillary effect in the previous models, but in porous structures capillary 

pressure should be dominated for liquid supply. Further study is needed to consider the 

capillary effect and develop a CHF model for the porous media. 

7.2.2 HYDROPHOBIC-HYDROPHILIC SURFACES 

This dissertation also developed partially hydrophobic and partially hydrophilic 

surfaces by functionalizing carbon nanotubes, resulting in significantly enhanced boiling 

and evaporation. This type of interface still needs to be further investigated to advance 

two-phase transport. 

The hydrophobic cavity with hydrophilic surface was superior to HTC and CHF 

enhancement. However, the single bubble dynamics were not studied due to the difficulty 

in fabricating such an interface. Also, traditional bubble departure forces resulted from 

buoyancy force of vapor bubbles. If the bubble size can be reduced to nanoscale, 

buoyancy force may not play a critical role. Thus, bubble dynamics on nanoscale cavities 

can be studied to define the bubble size effect on CHF.  
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The hydrophobic-hydrophilic surfaces also exhibited significant advantages on 

fluid flow. When the capillary flow and Marangoni flow are in the direction, the drop 

motion can be advanced, resulting in advanced mass transport [94]. In addition, the 

nanoporous surfaces with partial wetting may track nanobubbles and yield significant 

drag reduction [172]. These fundamental studies may substantially advance fluid flow on 

solid-liquid interfaces.  
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APPENDIX A  

EXPERIMENTAL AND MODELING DETAILS 

Details of the FMWCNT synthesis and coating, plasma treatment process, sintering 

methods, pool boiling experiments and visualization studies are available below: 

1. Functionalized multiwall carbon nanotube (FMWCNT) synthesis and deposition 

Multiwall carbon nanotubes (MWNTs) were purchased from CheapTubes Inc. 

(VT, USA). The outer diameter of the MWNT is in the range from 8 to 15 nm and the 

inside diameter is from 3 to 5 nm and the length is from 10 to 50 μm. The specific surface 

area is 233 m2/g.  

MWCNTs were oxidized in an acid reflux bath at 80 ºC for 4 hrs to generate 

defects and to grow hydrophilic carboxylic and hydroxylic functional groups on the 

surface of each MWNT. Aqua regia, a mixture of HCl (12M) and HNO3 (16M) in 1:1 

volume ratio, was used to oxidize MWNTs. The treated MWNTs were filtered out and 

thoroughly rinsed with DI water. A sonicator was used to disperse FMWCNTs in 

isopropyl alcohol to form “inks” for subsequent spray coating. 5 mg of FMWCNTs 

dispersed in 10 ml of isopropyl alcohol with the addition of 20 mg of a 5% Nafion™ 

(Dupont DE521) (Fig. A1) solution was used to form the "inks″. A 700W, 20 kHz, sonic 

probe was used to treat the "inks″ with Nafion and FMWCN (NFMWCNT) suspension 

for 1 hour (45 seconds - off and 15 seconds-on duty cycle) at a power level of 30%. 

Nafion was slowly added into the MWNT mixture while dispersing.  

2. FMWCNT dispersion 



 

99 

 

Figure A.1 Chemical formula of Nafion. 

   

Figure A.2 Characterization of the dispersion of CNTs. (a) pure MWCNTs. (b) 
FMWCNTs. (c) Mixture of FMWCNTs and nafion with heating treatment. 

 

 

Figure A.3 Sonotek Exacta-Coat sprayer controlled by X-Y-Z Robot. 

The combination of acid reflux treatment and the use of nafion as surfactant 

resulted in excellent dispersion of CNT in isopropyl alcohol (Fig. A2). As shown in Fig. 

A2, numerous agglomerations have been observed on the MWCNTs without functional 

groups (Fig. A2a). After acid treated few agglomerations can be seen in the FMWCNT 

coatings (Fig. A2b). When FMWCNTs were dispersed in Isopropanol mixed with Nafion,  

a c b 
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Figure A.4 Mixture of FMWCNTs and Nafions (red dot: functional group; magenta line: 
Nafion; LT gray line: carbon nanotube). 

excellent dispersion was obtained (Fig. A2c).  

3. FMWCNT coating 

Deposition of the NFMWCNT "ink″ was done with an ultrasonic spray coater 

(Sonotek Exacta-Coat) (Fig. A3). A 120 kHz spray head was used with an ink feed rate of 

0.2ml/min. The ultrasonic spray head was programmed to move in a raster pattern at a 

distance 5 mm from the top surface of the substrate, traversing at a speed of 25 mm/sec, 

forming a track at the width of approximately 1.25mm. The raster pattern was repeated 

numerous times (coats) to building up the thickness of the coating. During spray, the 

substrate was heated to ~100 ºC to speed up the evaporation of the solvent (Fig. A4). 

4. Plasma treatment 

Oxygen plasma (Plasma Etch Inc., NV, USA) was used to tune the wettability of 

the interface by controlling the amount and distribution of functional groups on each 

FMWCNT. The sample was treated at a 6 mL/min flow rate of oxygen at a vacuum of 

200.3 Pa. The pristine MWCNT coating needed less plasma treatment time since the 

bonding between individual CNTs was not as tight as NFMWCNT. The treatment time of 

FMWCNT coated on the 2-layer mesh required longer time than that on flat copper sheet  

a 
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Figure A.5 Characterization of the bonding of CNTs. (a) Scratch on the pure MWCNT 
coated interface (b) Scratch on the FMWCNT coated interface (c) Scratch on the mixture 

coated interface. 

due to the larger surface area.  

5. Scratch test 

Microscratch tests were performed using a microtribometer (CETR Inc., CA, 

USA). A conical diamond indenter with a tip radius of 1.5 µm and an included angle of 

60° was attached to a 500 µN load cell, which can record both normal and lateral forces. 

During scratch tests, the indenter was first brought into contact with the sample surface 

under a 4 µN normal force and the duration time was 60 s, such setting can keep the 

indenter in good contact with the sample surfaces. Then the indenter was drawn over a 

sample surface and the normal force 6 µN was set as constant normal force. The 10 mm 

long scratches were made by translating the sample ramping the loads on the conical tip 

over various loads. The normal load was detected in situ during scratching. 

Pristine CNTs were peeled off near the scratch edge (Fig. A5a), which indicated 

hydrophobic pristine CNTs were not compatible with copper substrate. However, the 

bonding between the FMWCNT coating and substrate was improved by inducing 

hydrophilic functional groups (Fig. A5b). The reason is that the superhydrophicility of 

functional groups enhanced the bonding to hydrophilic copper substrates. Additionally, 

amphiphilic Nafion served as a gluing media to further strengthen the bonding after 

a c b 
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thermally curing, which is indicated by the residual FMWCNTs wrapped by polymer 

near the scratch edge (Fig. A5c).  

6. Sintering method 

Commercially available copper woven meshes (made by Belleville Wire Cloth) 

are used to serve as main channels for liquid supply. The diffusion bonding technique is 

employed to achieve nearly perfect contact conditions between the copper meshes and a 

copper heating block. First fold one-layer mesh to get two-layer meshes and make them 

sintered together in a high temperature furnace at 1000 oC in hydrogen (H2) atmosphere 

for 2 hours. The surface of the 1×1 cm2 copper heating block smooth was polished as a 

mirror and was sintered with the two layer copper meshes on the smooth surface in the 

same sintering conditions as before.  

7. Transmission electron microscopy (TEM) 

The distribution and concentration of hydrophilic groups are approximately 

indicated by tracer particles. Positive charged platinum ions (Pt4+) induced by H2PtCl6 

were used to locate the distribution of the functional groups on the FMWCNT wires and 

bundles as the platinum particles are loaded by the defects of FMWCNTs [108, 173] 

CH2OHCH2OH = CH3CHO+H2O 

2CH3CHO + (PtCl6)2- = 2CH3CHOO- + Pt + Cl- + 4H2O 

The Hitachi H8000 Scanning Transmission Electron Microscope (TEM), which is 

developed to achieve a 1.5 nm scanning transmitted electron image, is used in this work 

to get the image of Pt loaded FMWCNTs. 200 kV accelerating voltage and 150 K 

magnification are used to capture the images. 

8. Scanning electron microscope (SEM) 
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The Zeiss Ultraplus thermal field emission scanning electron microscope (SEM), 

which has a resolution of 1.0 nm at 15 KV at WD = 2 mm, is used to take images of 

copper woven meshes. 

9. Raman analysis 

        

Figure A.6 Intensity ratio as a function of oxygen plasma treatment time. Intesntity ratio 
and plasma treatment time: ID/IG=1.95, 0 S; ID/IG=2.22, 30 s; ID/IG=2.30, 120 s. 

ID/IG ratios were analyzed in the LabRAM HR systems. Raman spectra of the 

samples that were treated by oxygen plasma with different time were collected on a 

LabRAM HR laser Raman spectrometer with excitation wavelength of 633 nm. Fig. S6 

shows the time dependent Raman intensity ratio ID/IG. Basically, longer plasma treatment 

time results in more defects, that is, more functional groups (e.g. C=O, O-C=O, O-H, C2-

F), which was verified by the intensity ratio ID/IG. 

10. Flow resistance measurement 

Flow resistance measurements were conducted in an open test loop as shown in 

Figure A7. Deionized (DI) water was degassed in a water tank at 104 Pa with saturation 

temperature at approximately 46 oC and the water temperature was maintained at 60 oC 

by a flexible silicone-rubber heat sheet (McMaster) for 12 hours prior to tests. The 

degassed DI water was pumped from a reservoir to the test section by a gear pump 

(ISMATEC® Regol-z digital) at a constant flow rate. The pump with a digital flow meter 

was calibrated using a bucket and stopwatch method prior to tests [174]. A differential  



 

104 

Insulation block

190 µm 

Housing

Top Cover

Bottom Cover

Outlet Port

Copper block

(b)

O-ring sealInlet Port

(b)(a)

Top cover

Housing

Cu block

Insulating 
block

Bottom cover

NFMWCNTs

 

Figure A.7 (a) Test setup assembly. (b) Side view of the test sample and flow direction. 

pressure transducer (OMEGADYNE, INC. PX409, 0-15 PSI) was used to measure the 

pressure drop between the inlet and outlet plenums. The temperature and pressure signals 

were recorded by an Agilent 34972A data acquisition system. 

As shown in Figure A7a, the schematic of the test sample assembly was 

comprised of two cover plates, a housing block, a copper block and insulation layers. The 

copper heat sink and heating block were machined from oxygen free single Cu blocks 

C10100. The copper block was sealed by silicone to avoid leakage.  

A desired flow rate was set by the digital gear pump. The electric power was 

supplied to four heaters by a DC power supply at a given step. The differential pressure 

and fluid flow rate were monitored and recorded. Two hundred sets of data were 

collected in steady state.  

The measured pressure drop, ∆pm, is between the inlet and the outlet plenums. To 

eliminate the inlet contraction and outlet expansion pressure losses, the pressure drop (∆p) 

through the microgap was calculated [175] as: 1 2 1 2( ) ( )m c c e ep p p p p p∆ = ∆ − ∆ + ∆ − ∆ + ∆ , 

where ∆pc1 and ∆pc2 are the contraction pressure losses from the deep plenum to the 

shallow plenum and from the shallow plenum to the microgap, respectively; ∆pe1 and 
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∆pe2 are the expansion pressure losses from the shallow plenum to the deep plenum and 

from the microgap to the shallow plenum, respectively [175]. Reynolds number Re is 

defined as Re = ρvDh/μ, where ρ is the water density; v is the average fluid velocity; Dh is 

the hydrolic diameter and μ is the dynamic viscosity. The relationship between the 

pressure drop in the microchannel and the reynolds number were ploted in Figure 6.4e. 
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