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Abstract

 After the luteinizing hormone surge of the menstrual cycle, the ovarian follicular 

granulosa and theca cells terminally differentiate to form the luteal cells of the corpus 

luteum. During this process known as luteinization, granulosa cells begin to synthesize 

large quantities of progesterone, a hormone essential for pregnancy. The rate limiting step 

for the de novo synthesis of pregnenolone (the precursor to progesterone) is the transport 

of cholesterol from the outer to the inner mitochondrial membrane, a process mediated by 

STARD1. STARD1 contains a C-terminal lipid binding domain holding one molecule of 

cholesterol, and an N-terminal domain targeting STARD1 to the mitochondrial 

membrane. STARD1 is the founding member of the mammalian START domain family, 

which includes 15 members. Two other members, STARD4 and STARD6, have recently 

been found in the ovary, and there is evidence that both can transfer cholesterol in certain 

settings, but unlike STARD1, STARD4 and STARD6 lack mitochondrial targeting. In 

this study, we aimed to determine the regulation of STARD1, STARD4, and STARD6 by 

protein kinase A (PKA) and Protein Kinase C (PKC) signals and sterol levels in cultured 

human luteinized granulosa cells. We found that both STARD1 and STARD4 mRNA, 

but not STARD6, were increased by PKA and PKC signaling agonists. STARD4 mRNA 

was sensitive to cellular sterol level, and STARD1 mRNA was responsive to cholesterol 

under low dose phorbol ester (PMA) stimulation.  Moreover, STARD1 protein level and 

phosphorylation was increased by both cAMP analog and PMA. In transfected COS-1 

cells, fluorescent confocal images showed that the localization of STARD6 was mostly in 
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the cytoplasm with some nuclear presence but STARD4 was throughout the cytoplasm 

and nucleus. In addition, to confirm a prior result in our laboratory to test if STARD6 can 

facilitate de novo steroidogenesis, COS-1 cells transfected with the components of the 

P450 cholesterol side chain cleavage complex were co-transfected with vector alone or 

vectors containing either human STARD1 or STARD6. STARD6 was able to modestly 

increase pregnenolone production above vector, but not nearly to the extent of STARD1. 

These studies provide new insight into the regulation of START domain proteins in the 

human ovary.
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Chapter I: Introduction 

1.1 Introduction overview 

Steroidogenesis, the process of making steroid hormones, occurs in many tissues. 

Large scale de novo steroidogenesis is restricted to the gonads, the adrenals, and 

placentas of some species. The adrenal cortex produces essential mineralocorticoid and 

glucocorticoid hormones necessary for life. In some species, like humans, sex steroid 

hormones are also made by the adrenal. The ovaries of females and testes of males are the 

major sites for sex steroid hormone production. All steroid hormones can be derived from 

the first synthesized steroid hormone product, pregnenolone, if the appropriate modifying 

enzymes are present. As pregnenolone is the first hormone produced by de novo 

steroidogenesis from cholesterol substrate, this section will review cholesterol regulation 

and cholesterol access to the enzymatic machinery within the mitochondria. The role of 

steroidogenic acute regulatory protein (StAR) also called STAR-related lipid transfer 

(START) domain protein 1 (STARD1), the major protein controlling cholesterol entry 

into the mitochondrion, will be reviewed. In addition, other relevant START domain 

proteins of the START domain family, STARD4 and STARD6, of interest to our study 

will be reviewed. 
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1.2 Cholesterol regulation 

Cholesterol is not only a critical component of cell membranes, but also has 

functions as metabolites or precursors (Edwards and Ericsson, 1999). Humans are able to 

get cholesterol from the diet as well as produce cholesterol from acetate. However, too 

much cholesterol loading in the cell is noxious, and much research shows that 

atherosclerotic vascular disease is related to the levels of low density lipoprotein-borne 

cholesterol. Therefore, cholesterol levels need to be controlled to keep them at a certain 

level, not too low or too high. There are two major protein families that transcriptionally 

regulate cholesterol level, liver X receptors (LXRs) and sterol regulatory element binding 

proteins (SREBPs) (Edwards and Ericsson, 1999). When cholesterol concentration is 

deficient, LXR is inactive, yet under the same conditions SREBP is cleaved to an active 

form. Cleaved SREBP moves into nucleus and activates certain genes for the synthesis 

and uptake of cholesterol. On the other hand, when cholesterol level is high, SREBPs are 

inactive. In contrast, when LXR binds oxysterol it stimulates the transcription of the 

genes to reverse cholesterol transport (Edwards et al, 2000).  

 Acetyl-CoA can be used to synthesize cholesterol through a process that requires no 

less than twenty-three enzymes (Clark 2012). The expression of genes coding for many 

of these enzymes are under the control of the SREBP family. SREBPs are a group of 

transcription factors, belonging to the helix–loop–helix leucine zipper (bHLH-Zip) family 

(Horton et al, 2002) where the bHLH-Zip region is the DNA binding domain (Sato et al, 

1994). There are three members in this protein family, SREBP-1a, SREBP-1c, and 
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SREBP-2 (Goldstein et al, 2002). The three proteins reside in the membrane of the 

endoplasmic reticulum (ER). The three proteins are separated to three parts: 

amino-terminal (N-terminus), carboxyl-terminal (C-terminus), and the part between the 

two domains. The N-terminus consists of about a 500 amino acid sequence which 

includes the bHLH-Zip domain. The C-terminus contains around a 590 amino acid 

sequence is the functional domain. The middle region has two transmembrane segments, 

and the two segments are linked by about 30 amino acids. The N-terminus region, which 

is the transactivation domain, can be cut from the membrane by proteases, and imports 

into nucleus to activate the transcription level of lipid related genes (Horton et al, 2003).  

 If SREBP resides in the ER membrane, its C-terminus region links to SREBP 

cleavage-activating protein (SCAP). SCAP is a sensor for lipid level. If the cholesterol 

level of the ER membrane decreases to a threshold, the protein complex of SREBP and 

SCAP moves to the golgi. In the golgi, the complex is cut twice by enzymes, and releases 

the nuclear form of SREBP (nSREBP) into nucleus. In the nucleus, nSREBP recognizes a 

10 base pair repeat sequence in DNA within the promoters of target genes related to 

cholesterol synthesis or metabolism (Goldstein et al, 2002). On the other hand, if the 

cholesterol concentration of the ER membrane is plentiful, SCAP maintains SREBP in 

the ER membrane with the help of insulin-induced genes 1 (INSIG1) and insulin-induced 

genes 2 (INSIG2) (Yabe et al, 2002; Yang et al, 2002). Thus, the active domain is unable 

to be delivered to the nucleus, so the transcription level of cholesterol related genes 

cannot be enhanced.  
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 The three proteins, SREBP-1a, SREBP-1c, and SREBP-2 regulate cholesterol 

synthesis and fatty acid synthesis in different ways. First, in liver, both SREBP-1a and 

SREBP-2 can promote both synthetic pathways. Nonetheless, SREBP-1a is more 

sensitive to the fatty acid pathways, but cholesterol level is more dramatically enhanced 

by SREBP-2. Moreover, SREBP-1c only increases fatty acid production (Horton et al, 

2002; Horton et al, 2003). 

 

1.3 Steroid hormone synthesis in the corpus luteum 

The corpus luteum (CL) is a transient endocrine structure essential to support pregnancy. 

It is formed from the residual somatic cells of an ovarian follicle after it has released its 

ovum at ovulation. The CL produces mainly the steroid hormone progesterone but also 

can produce estrogen in some species. The CL exists for only a short period of time, but 

it has remarkable function for synthesizing more than 40 mg of progesterone daily for 

humans (Christenson and Devoto, 2003). As steroid hormones are released upon 

synthesis, continued steroid hormone production is required to maintain high plasma 

levels.  Steroid hormone synthesis by the CL is regulated by different hormones in 

different animal species. For example, the progesterone level in the CL of humans and 

monkeys is under the control of luteinizing hormone (LH) which stimulates 

steroidogenesis through the cAMP or PKA pathway (Niswender et al, 2000). On the 

contrary, although LH is the initial agent to promote CL function, prolactin and estradiol 
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maintain CL steroidogenic ability in rodents and rabbits, and human chorionic 

gonadotropin (hCG) maintains it in humans (Christenson and Devoto, 2003). 

 The first step for de novo steroidogenesis in luteal cells is producing pregnenolone 

from cholesterol. This initial event occurs in the mitochondria and is highly regulated. 

Steroid hormone production efficiency is limited by cholesterol transport to the inner 

mitochondria. Cholesterol itself can be synthesized via 

3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity, but this is a 

minor source of cholesterol in the CL. The major source of cholesterol is via cellular 

uptake of low density lipoprotein (LDL), which is rich with cholesterol, or high density 

lipoprotein (HDL) which contains cholesterol esters. The preferred source of extracellular 

lipoprotein used for steroidogenesis is dependent on the species. Humans and pigs prefer 

LDL as cholesterol source which is obtained via LDL receptors at the cell membrane 

(Brannian and Stouffer, 1993); on the other hand, for rodents and ruminants, scavenger 

receptor BI (SR-BI) in the plasma membrane can obtain HDL (Christenson and Devoto, 

2003).  

 There are two forms of cholesterol which existed in cells or in plasma lipoproteins. 

They are free cholesterol and cholesterol esters. The free cholesterol is a critical substrate, 

or precursor, which is involved in steroidogenesis. Cholesterol is esterified through its 

3β-hydroxyl group to polyunsaturated fatty acids or to sulfate which is catalyzed by an 

enzyme called microsomal acyl coenzyme A: cholesterolacyltransferase (ACAT).  The 

cholesterol esters are produced in the rough endoplasmic reticulum (RER), and then they 
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are transported to lipid droplets which localize in the cytosol to vesicles. Lipid droplet 

abundance is a crucial characteristic in the luteal cells. However, cholesterol esters in 

these droplets cannot be a direct precursor in the process of steroidogenesis, or be a 

structural compound serving in the cellular membrane system as free cholesterol does. 

On the other hand, these cholesterol esters can be hydrolyzed by neutral cholesterol ester 

hydrolase (NCEH), and the hydrolysis product, free cholesterol, can be used for steroid 

production or structural functions. Furthermore, NCEH is sensitive to many tropic 

hormones, such as hCG (which mimics LH), follicle-stimulating hormone (FSH), and LH, 

in steroidogenic ovarian cells (Christenson and Devoto, 2003). 

 In women, after the LH surge or injecting hCG, the progesterone concentration in 

serum is raised immediately (Christenson and Devoto, 2003). This observation 

demonstrates that the enzymes for producing progesterone have to exist or be induced 

quickly in the steroidogenic cells. In luteal cells, researchers have found several enzymes 

that are involved in steroid hormone production. However, there are only two major steps 

to synthesize progesterone from cholesterol. First, the P450 cholesterol side chain 

cleavage enzyme (P450scc) complex (which includes the P450scc enzyme, adrenodoxin 

and adrenodoxin reductase) converts cholesterol to pregnenolone at the inner membrane 

of the mitochondria. To synthesize progesterone, pregnenolone is further altered by 

3β-hydroxysteroid dehydrogenase (3β-HSD) which resides in the smooth endoplasmic 

reticulum (SER). However, to reach the inner mitochondrial membrane, cholesterol must 

associate with STARD1 in luteal cells (Devoto et al, 2002). The action of STARD1 is 
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believed to be the true rate-limiting step in de novo steroidogenesis (Lavoie and King, 

2009).  

In de novo steroidogenesis, STARD1 delivers cholesterol, and several publications 

have focused on its regulation or function in ovarian cells or other steroidogenic tissue 

cells (Stocco 2000). The ovarian follicle is composed of theca cells, granulosa cells, and 

the oocyte. Steroids hormones are synthesized in theca cells and granulosa cells which 

are surround the oocyte in follicles of the ovary. In the follicle, the androgens are 

produced de novo in theca cells which locates at the outermost layer of the follicle. The 

androgens are then converted to estradiol in the granulosa cells for most mammals. The 

theca cells of some species can use the androgens for estradiol production. Both LH and 

FSH stimulate progesterone production in cultured cells, however, in vivo, within the 

maturing ovarian follicle before the LH surge, STARD1 cannot be detected in the 

granulosa cells of most species, and thus progesterone production from cholesterol is 

limited. On the contrary, STARD1 protein is highly expressed in the periovulatory theca 

cells in order to synthesize androgens which are produced from cholesterol through 

pregnenolone. Moreover, in the preovulatory human follicle, STARD1 can be found in 

granulosa from the starting point of the LH surge (Kiriakidou et al, 1996). Thus, with the 

LH surge and ovulation, the major developmental change occurs in the granulosa cell 

layer of the follicle. The residual theca and granulosa cells of the ovulated follicle 

become the luteal cells of the corpus luteum. STARD1 RNA and protein levels climb to a 

peak and are maintained in the early luteal phase and mid-luteal phase, respectively, and 
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their expression are decreased during the late luteal phase in human CL and the CL of 

numerous other species (Devoto et al, 2001; Juengel et al, 1995). 

 

1.4 START domain protein family 

 The START domain proteins are very different among animals, plants and protists. 

In mammals including humans, all the START domains are close to the C-terminus of 

each protein, but this domain does not reside on the C-terminus in other species. The 

domain sits about 470 amino acids from the C-terminus in rice and Arabidopsis. In 

addition, some plants proteins locate the START domain in the middle of two other 

domains (Schrick et al, 2004). 

Plants have more kinds of STARD proteins than animals. For example, Arabidopsis 

has thirty-five proteins, and twenty-nine for rice. Yet mouse and human only possess 

fifteen STARD proteins. On the other hand, C. elegans contains 7, and 4 for D. 

melanogaster, and for protists and bacteria, there are no more than two kinds (Soccio and 

Breslow, 2003). Moreover, some STARD proteins contain more than one domain. In 

human, six out of the total fifteen are multidomain proteins. Arabidopsis encodes 

twenty-six multidomain STARD proteins, and rice encodes twenty-two. Most 

multidomain proteins in Arabidopsis and rice contain a homeodomain (HD), and a small 

part contains pleckstrin homology (PH) domains. The homeodomain of STARD proteins 

only exists in plants, and some proteins with the homeodomain play roles in localization, 

signaling, or enzymatic activity (Iyer et al, 2001; Ponting and Aravind, 1999).  
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 For humans, STARD family contains a preserved sequence with around 210 amino 

acids, and the amino acids fold into an α/β helix-grip structure , which consists of four α 

helices and nine anti-parallel β sheets, and these secondary structures form a hydrophobic 

pocket which is able to maintain one molecule of lipid, called the sterol-binding pocket 

(SBP) (Mathieu et al, 2002; Yaworsky et al, 2005). The C-terminus α helix forms a 

hydrophobic pocket which acts as a ligand binding site, and the C-terminus requires a 

conformational change when lipid enters into the pocket (Baker et al, 2005; Bose et al, 

2008a; Bose et al, 2008b). The model of tertiary structure demonstrates the C-helix is 

stable since the neighboring amino acids are bound by a series of hydrogen bonds, for 

example, a salt bridge which is formed by Asp 106 and resides at the loop of sheets β1 

and β2 (Mathieu et al, 2002; Yaworsky et al, 2005). The loop is close to the C-helix 

unless the structure is in acidic microenvironment (Baker et al, 2005).  

This START domain protein family participates in non-vesicular transport for lipids, 

such as cholesterol, oxysterol, and other lipids (Clark, 2012). The human START domain 

protein family contains 15 members, and the 15 proteins are separated into 6 subfamilies 

(Soccio et al, 2002): 1) STARD1 group (STARD1 and STARD3), 2) STARD4 group 

(STARD4, STARD5 and STARD6), 3) the phospholipid- and sphingolipid-binding group 

(STARD2, STARD7, STARD10 and STARD11), 4) the group with putative Rho GTPase 

function (STARD8, STARD12 and STARD13), 5) the thioesterase group (STARD14 and 

STARD15), and 6) STARD9 (Alpy and Tomasetto, 2005).  
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1.5 STARD1  

For several decades, data supported the idea that an unknown protein mediated 

cholesterol entry into the mitochondrion to initiate steroidogenesis, however, a candidate 

protein was not found until 1994 (Clark et al, 1994). In heterologous transient 

transfection experiments, a cDNA for a protein candidate led to enhanced synthesis of 

steroid hormones, and it was called StAR (Clark et al, 1994). Because it was the first 

member of STARD family, StAR is also named STARD1. STARD1 primarily expresses 

in adrenal and gonadal cells. Overwhelming evidence shows that STARD1 play a major 

role in cholesterol transport into the steroidogenic pathway (Stocco and Clark, 1996). 

Importantly, humans with inactivating mutations of STARD1 suffer from congenital 

lipoid adrenal hyperplasia (CLAH), a disease characterized by the inability to make 

steroid hormones.  

STARD1 contains a START domain motif of about 210 amino acids which forms a 

hydrophobic pocket that is able to hold a cholesterol molecule. It also contains an 

amino-terminal α helix sequence that can target into the membrane of mitochondria. Thus, 

it binds to and helps cholesterol transfer from the outer membrane of mitochondria to the 

inner membrane so as to facilitate steroid production. This protein is a 37 kDa precursor 

when just translated in and present in the cytosol. Then it is cut into a 32 kDa 

intermediate during its transfers into the mitochondria. Finally, a mature protein with 30 

kDa localizes in the matrix of mitochondria (Stocco and Clark, 1996). One report 

illustrates that the newly synthesized 37 kDa precursor is critical for cholesterol transport. 
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Other evidence supports that STARD1 increases the transfer rate of cholesterol (Arakane 

et al, 1998; Arakane et al, 1996; Artemenko et al, 2001; Baker et al, 2007; Bose et al, 

2002). Still yet, other evidence shows that STARD1 phosphorylation happens at the 

mitochondria (Dyson et al, 2008). The presence of the 30 kDa form of STARD1 

positively correlates with increased de novo steroidogenesis.  

STARD1 is activated after phosphorylation by 3’-5’-cyclic adenosine 

monophosphate (cAMP)-dependent PKA. Serine 57 and serine 195 are two conserved 

sites in STARD1 for phosphorylation (Arakane et al, 1997). If the serine 195 is mutated 

to alanine which cannot be phosphorylated, the ability for cholesterol transport will 

decline more than 50%. In contrast, if the serine 195 is substituted by aspartic acid which 

is more positive charged and mimics phosphorylation, the steroidogenic activity 

STARD1 will be higher than the activity of the wild type. However, if this residue is 

mutated to a nonpolar amino acid, such as alanine, and it cannot be phosphorylated, the 

protein still maintains most activity (Fleury et al, 2004). These results show that 

posttranslational modification of the protein can increase the ability of cholesterol 

transport through the PKA pathway (Strauss, III et al, 2003). 

 

1.6 STARD1 in steroidogenic cells 

 STARD1 is crucial for steroid hormone synthesis in steroidogenic cells. Steroid 

hormone synthesis occurs in response to the stimulation by tropic hormone. As 

mentioned previously, the first step for steroid hormone production is the process of 
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converting cholesterol to pregnenolone. This step needs the P450scc complex which 

resides in the inner membrane of mitochondria. The reaction occurs in the mitochondria, 

yet cholesterol is produced in the ER, or transferred into the cells by LDL receptors or 

SR-BIs. The hydrophobic cholesterol needs to move across the hydrophilic space 

between the two membranes of mitochondria, and therefore, the speed of cholesterol 

transport across mitochondrial membrane becomes the rate-limiting step for the steroid 

hormone production, and this limiting step is acutely under the control of a non-vesicular 

lipid transport protein, STARD1, and its expression also responds to the tropic hormone 

stimulation (King and LaVoie, 2012, Chark, 1994).  

 

1.7 STARD1 in liver 

STARD1 participates in bile acid biosynthesis in hepatocytes by transmitting 

cholesterol into mitochondria. STARD1 overexpression leads to increase the levels of 

27-Hydroxycholesterol (27HC) and bile acid production in rodent primary liver cells and 

human HepG2 cell line (Hall et al, 2005; Pandak et al, 2002; Ren et al, 2004). One study 

demonstrated the rate limiting process, cholesterol transport from the outer membrane to 

the inner membrane of mitochondria, is needed for bile acid production by the 

Cytochrome P450, Family 27, Subfamily A, Polypeptide 1 (CYP27A1) pathway (Pandak 

et al, ). The expression of STARD1 in liver cells does not only increase oxysterol 

synthesis in which liver X receptor participates, but also enhances bile acid production 

which helps clear cholesterol in blood vessels. As a result, its expression leads to 
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anti-atherogenic action. Thereby, increasing the level of STARD1 expression may 

theoretically be a method to adjust dyslipidemia or decrease atherosclerosis (Ning et al, 

2009). 

  

1.8 Mechanism of STARD1 transport  

 STARD1 is believed to deliver cholesterol after inserting into mitochondria through 

its N-terminus targeting sequence. Mutated STARD1 protein which is lacking of 62 

amino acids in the N-terminus, called N-62 STARD1 protein, has a similarly effective 

transport rate for cholesterol in cytosol, compared with the wild type protein (Christenson 

and Strauss, III, 2000). However, the N-62 and normal STARD1 proteins do not work in 

exactly the same way. N-62 STARD1 protein scatters in the cytosol, but the wild type 

mostly localizes in the mitochondria. On the other hand, if more than 10 amino acids 

from the C-terminus are cut off, the ability of steroidogenesis decreases distinctly. With 

deletion of more than 28 amino acids in the C-terminus, the STARD1 protein is totally 

inactive. Importantly, patients with CLAH have C-terminus mutations. In summary, 

STARD1 protein can be separated into two independent parts: the N-terminus targeting 

motif and C-terminus functioning motif (Bose et al, 2002). The N-62 STARD1 protein 

can increase steroid hormone synthesis in a few minutes in mitochondria in COS-1 cells 

with only nanomolar concentration (Arakane et al, 1998). 

STARD1 is able to deliver hundreds of cholesterol molecules, but one molecule of 

STARD1 protein can transport only one molecule of cholesterol at one time. Therefore, 
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this transporter should work in the intramembranous matrix of mitochondria so as to help 

cholesterol molecules pass through the space between the two membranes (Tsujishita and 

Hurley, 2000). In the 1990s, there were two hypotheses for how STARD1 targets into the 

mitochondria and transports cholesterol across the membrane of mitochondria. First, the 

C-terminus of STARD1 connects to the outer mitochondrial membrane where is rich with 

cholesterol, and STARD1 then uptakes cholesterol and delivers it to the inner membrane 

that is sterol poor. In order to terminate cholesterol transfer, the protein enters through the 

inner membrane, and this process occurs fast. When STARD1 passes across the inner 

membrane, it will not be able to transport cholesterol. Hence, the transporter is 

synthesized fast. The other assumption is shuttle model: the STARD1 goes back and forth 

between the two membranes. Nonetheless, this later model is not supported by abundant 

evidence(Strauss, III et al, 2003).  

To summarize some of the key points regarding STARD1, the leading peptide 

locates in the N-terminus of the STARD1, and it is used to target STARD1 to 

mitochondria. The C-terminus is the functional group for cholesterol transfer. The 

transporter has to be recycled since one molecule of this protein delivers hundreds of 

cholesterol molecules through the intramembranous matrix, and converts into 

pregnenolone by the actions of P450scc enzyme complex. Maintaining the activity of 

STARD1 requires a proton pump, and disturbing the electrochemical gradient of 

mitochondrial membranes causes decreased function of STARD1 (Allen et al, 2004). 

This protein forms a molten globule molecule through a pH-dependent transition state in 
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liquid in vitro (Bose et al, 1999) or onto artificial membranes (Christensen et al, 2001; 

Song et al, 2001). Lastly, some papers show that STARD1 interacts with a protein 

localized in the outer membrane of mitochondria, called the peripheral benzodiazepine 

receptor (PBR), during the cholesterol import process (Hauet et al, 2005; West et al, 

2001). Other studies have failed to confirm this.  

After STARD1 is synthesized as a 37 kDa protein, the leader peptide at the 

N-terminus targets to the outer mitochondrial membrane. Then the whole protein anchors 

into the membrane, and participates in steroidogenesis. Localizing in the membrane, 

STARD1 delivers the cholesterol which has already been in the outer mitochondrial 

membrane. The cholesterol molecules in the outer membrane can be separated into two 

groups by their function. First, those stabilized in the membrane as a structural 

component of the membrane; second, the molecules which are unstable and can be 

imported to the inner membrane for steroidogenesis. Although the two kinds are the same 

chemical form, they are different in the physical states for how they link to the outer 

membrane.  

PBR may participate in the process of STARD1 transport (Hauet et al, 2005). PBR is 

made up of five transmembrane domains and its C-terminus, a 26 amino acid sequence, is 

exposed to the cytosol (Joseph-Liauzun et al, 1998). The C-terminus forms a cholesterol 

recognition/interaction amino acid consensus (CRAC) domain, which consists of a 

helical structure, which comprises a hydrophobic pocket in order to hold only one 

cholesterol molecule (Jamin et al, 2005; Li et al, 2001).  
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As a consequence, a new model for the transport mechanism is suggested. Unstable 

cholesterol first binds to the CRAC domain of PBR, and the cholesterol molecule 

transmits to STARD1 which is through proton-induced molten globule transition. Then 

some other proteins form a hydrophobic channel, perhaps the voltage-dependent anion 

channel (VDAC) and the adenine nucleotide-binding protein (McEnery et al, 1992), pick 

up the cholesterol molecule and transfer it to P450scc enzyme to produce pregnenolone 

(Soccio et al, 2002). 

 

1.9 Hormonal control of STARD1 

Injecting hCG into women leads to differential effects on the mRNA and protein 

levels of STARD1 in theca-lutein cells and granulosa-lutein cells during the mid-luteal 

phase. Their expression is increased sharply in theca-lutein cells while they are increased 

moderately in granulosa-lutein cells (Kohen et al, 2003). Nonetheless, the protein and 

mRNA expression are enhanced in both theca-lutein cells and granulosa-lutein cells. 

Moreover, gonadotropin hormone regulates the mRNA level of STARD1, and the mRNA 

level of STARD1 is under the control of the cAMP pathway by LH in Leydig cells. In 

addition, hCG can bind to LH receptor so as to enhance the transcription of STARD1. 

The mRNA level of STARD1 is also controlled by the PKC pathway which is also 

activated by high concentrations of LH and some growth factors, such as insulin-like 

growth factor 1 (IGF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF) 

and transforming growth factor alpha (TGFα) in primary Leydig and some Leydig tumor 
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cell lines (King and LaVoie, 2012). The transcriptional level of STARD1 is also 

enhanced by increased hCG which acts through PKA and PKC signaling in Leydig cells 

(Jo et al, 2005; Lin et al, 1998; Manna et al, 2006a; Manna et al, 2002; Manna et al, 

2006b). Low dose phorbol ester (10 nM) acting through PKC increases STARD1 mRNA 

in Leydig cells (Manna et al, 2009). Moreover, the granulosa cell also expresses 

STARD1 followed the LH surge in the ovary (LaVoie and King, 2009). Interestingly, in 

cultured human luteinized granulosa cells; higher phorbol ester concentrations (162 nM) 

suppressed cAMP-stimulated STARD1 mRNA (Kiriakidou et al, 1996).  

 

1.10 STARD1 transactivators 

Early publications have shown that the protein level of STARD1 can be stimulated by 

cAMP by increasing transcription (Christenson and Strauss, III, 2000). However, later 

studies show that the promoter of this protein is lacking a canonical cAMP-responsive 

element (CRE) (Christenson and Devoto, 2003). Nevertheless, it is found that all 

STARD1 gene promoters identified thus far contain steroidogenic factor-1 (SF-1) binding 

sites. SF-1 belongs to the nuclear receptor superfamily, and it can promote the 

transcription levels of many steroidogenic genes following increased cAMP (Parker and 

Schimmer, 1997). Also, all the SF-1 binding sites of the human STARD1 gene are 

regulated by cAMP. Moreover, liver receptor homologue-1 (LRH-1) a related protein 

also acts on SF-1 binding sites (Galarneau et al, 1996). LRH-1 exists in granulosa cells 



18 

prior to LH surge, the protein level raises after LH surge, and maintains a high expression 

if progesterone production is enhanced as shown in rodent luteal tissue.  

The most active promoter region of STARD1 genes resides at -119 bp to -58 bp, of 

the 5′-flanking region of the gene. The two transcription factors, SF-1 and LRH-1, bind at 

-105 to -95 bp, -42 to -35 bp and -926 to -918 bp of the human gene (Sugawara et al, 

1997). Mutation of -105 to -95 bp also causes a decreased promoter activity in granulosa 

cells in rodent ovarian cells (Yivgi-Ohana et al, 2009). The STARD1 promoter of 

humans is influenced by SF-1/LRH-1 recognition sites with sites from -3400 bp to -3000 

bp (Mizutani et al, 2010). Deletion of LRH-1 leads to impaired ovulation and reduced 

levels of STARD1 and progesterone synthesis in rodent granulosa cells (Duggavathi et al, 

2008). Furthermore, the promoters of STARD1 in humans and rodents have an element 

that binds to CCAAT/enhancer-binding proteins (CEBPs), and CEBPβ can also enhance 

the STARD1 gene expression with addition of cAMP. It has shown a synergistic effect 

on cAMP-dependent activity of STARD1 gene promoter by overexpression both SF-1 

and CEBPβ (LaVoie and King, 2009). 

 Two members of GATA family, GATA4 and GATA6, regulate the STARD1 level in 

somatic steroidogenic cells in testis and ovary (LaVoie 2003). With the treatment of 

cAMP analog, the binding of transcription factor GATA4 increases, and which activates 

STARD1 promoter in MA-10 Leydig cell line (Hiroi et al, 2004). Also, in granulosa cells, 

the two transcription factors bind from a proximal GATA sequence, and enhance the 

promoter activity (Gillio-Meina et al, 2003; LaVoie et al, 2004). GATA6 can partly 
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substitute for GATA4, and elevate the mRNA level of STARD1 in luteal cells (King and 

LaVoie, 2012).  

 

1.11 STARD4 subfamily 

The three members of the STARD4 subfamily, STARD4, STARD5 and STARD6.  

They contain 205 to 233 amino acids and share 26% to 32% identical residues. STARD4 

and STARD5 are widely expressed in different cell types, such as in kidney cells and 

hepatocytes, but STARD6 is only found in testis, and nerve cells (Soccio et al, 2002). 

Recently, our lab also localized STARD6 to ovary (LaVoie et al., 2011). 

 There are three pieces of evidence show that the STARD4 subfamily proteins bind to 

lipids and cholesterol. First, STARD4 is involved in cholesterol homeostasis and is under 

the control of SREBPs. SREBPs also regulate other molecules involved in lipid 

metabolism (Edwards et al, 2000). Moreover, the three members of this subfamily are 

most similar with STARD1 which binds to cholesterol (Soccio et al, 2002). Last, the 

crystal structure of STARD4 has been elucidated, and revealed a hydrophobic pocket 

(Romanowski et al, 2002).  

STARD4 and STARD5 share about 30% identical sequence, and both proteins 

contain a START domain. The STARD4 gene is under the control of SREBPs via a sterol 

regulatory element (SRE) within its promoter, but STARD5 is not regulated by sterol 

level. The two proteins have similar activity to STARD1 in terms of cholesterol transport. 
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In addition, both of them may activate the alternative bile acid production pathway 

(Soccio et al, 2005b). 

 

1.12 STARD4 

 The mouse STARD4 contains only an α/β domain which consists of four α helixes 

(αA to αD) and ten β sheets (β1 to β10). Most β sheets are anti-parallel, but β8 and β9 are 

parallel. Two α helixes localize at the two ends, and the other two insert between β3 and 

β4. Moreover, the three dimensional structure contains a hydrophobic pocket which may 

hold a lipid molecule (Renet al, 2004). 

 In experiments with SREBP transgenic mice, STARD4 was more highly induced by 

SREBP-2 compared to SREBP-1a. The STARD4 level of wild-type mice dropped 

dramatically within one day of feeding with a high cholesterol diet. Moreover, STARD4 

level was not influenced by activated SREBP-1c. Therefore, STARD4 was more 

sensitive to SREBP-2 than SREBP-1a and SREBP-1c (Soccio et al, 2005).  

 During the six days when monocytes differentiate to macrophages, the expression of 

SREBP-1 and its target genes increased. On the contrary, the SREBP-2 level declined, so 

that the expression of its target genes also decreased (Ecker et al, 2010). As STARD4 

was preferentially regulated by SREBP-2 rather than SREBP-1 and since STARD4 

increased in macrophages while SREBP-2 decreased, the enhanced STARD4 protein 

level may result from the increased expression of activating transcription factor 6α 
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(ATF6α) which occurred during the differentiation process of macrophages 

(Rodriguez-Agudo et al, 2011).  

Peptides are synthesized by the ER in eukaryotic cells. If unfolded and misfolded 

proteins build up within the ER, such as when the cellular environment is perturbed, the 

cell induces several pathways in order to reduce such ER stress. This is referred to as the 

unfolded protein response (UPR). UPR simulates the transcription level of genes 

encoding ER-resident chaperones or folding catalysts. STARD4 level is increased during 

the early phase of ER stress, and this protein is one of the target genes for the UPR, 

Moreover, the promoter of STARD4 can be activated by ATF6, which is stimulated in 

the early stage of ER stress (Yamada et al, 2006).  

 STARD4 promotes the rate of cholesterol esterification from exogenously derived 

cholesterol. This protein transports cholesterol to ACAT, and the delivery efficiency of 

cholesterol to ACAT decides the rate of cholesteryl ester production. Also, STARD4 

promotes cholesterol transport to the ER and mitochondria. Thus, this protein plays an 

important role in cholesterol metabolism (Rodriguez-Agudo et al, 2008).  

 Riegelhaupt et al. (2010) investigated of the role of STARD4 in knockout mice to 

clarify the function of this protein in cholesterol metabolism. Homozygous STARD4 

knockout mice had reduced body weight compared to the wild type mice, and this result 

was not caused by altered food intake or energy metabolism (Riegelhaupt et al, 2010), but 

may have resulted from a defect during the development.  
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 It has also been shown that STARD4 is able to promote steroidogenesis after 

P450scc complex and 3β-HSD cDNAs are transfected into nonsteroidogenicCOS-1 cells. 

Therefore, knocking out STARD4 might lead to impaired steroid hormone synthesis 

during development, but there is no data to support this concept at present. Furthermore, 

there was no significant difference between the knockout mice and wild type mice in 

body composition, including the heart, kidney, liver, lung, spleen, and the epididymal fat 

pads. Compared to the wild types, STARD4 null mice also showed no significant 

difference in plasma and liver lipid content, when fed normal chow diet. However, the 

levels of bile cholesterol and phospholipid were lower in gallbladders of the female 

knockout mice compared to the controls (Riegelhaupt et al, 2010).  

STARD4 null mice were also fed a diet of 0.2% lovastatin to reduce the cholesterol 

concentration in blood. The result did not show any significant alteration between the 

STARD4 null mice and wild type controls. Nevertheless, with a 0.5% cholesterol diet, 

the levels of total cholesterol, LDL, and cholesterol ester have a moderate decline in 

female knockout mice. Based on microarray analyses, the mRNA levels of most genes 

did not have significant differences between the two groups with the exception of 

Niemann Pick C1 (NPC1). NPC1 mRNA level dropped 2.5 fold in the knockout mice. 

Therefore, decreasing of NPC1 expression may be a compensatory mechanism for lack of 

STARD4 in the intracellular cholesterol transport pathway (Riegelhaupt et al, 2010).  

 Taken together, these data support the role of STARD4 in cholesterol transport: 

knocking out this protein did not yield on apparent change in cholesterol metabolism. 
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Hence, several proteins may have overlapping functions and compensate for the 

impairment of STARD4’s function in cholesterol regulation in the knockout mice 

(Riegelhaupt et al, 2010). 

In the STARD4 knockdown cells, the ability of cholesterol to regulate SREBP-2 

decreases sharply, and cholesterol builds up in the cells. After the injection of 

methyl-β-cyclodextrin (MCD) a simple steroid transporter, into the cytosol, the 

cholesterol accumulation is reversed in STARD4 silenced cells. It seems that MCD can 

mimic the cholesterol transport that is normally mediated by STARD4 (Mesmin et al, 

2011). 

 A 2011 publication showed that STARD4 was controlled by sterol levels in 3T3-L1 

cells and THP-1 macrophages. Moreover, this protein was associated with the ER and 

ER-derived vesicles rich in ACAT-1. STARD4 and ACAT-1 co-localized outside of lipid 

droplets. STARD4 was able to enhance the ACAT-1 activity of cholesterol esterfication, 

and this observation shows it was possible for STARD4 to deliver cholesterol to or into 

the ER. In addition, it played a crucial role to regulate cholesterol homeostasis in 

hepatocytes and Kupffer cells which were two major cell types in the liver 

(Rodriguez-Agudo et al, 2011).  

 Purified recombinant STARD4 protein can increase ACAT activity (cholesteryl ester 

formation) by 2 fold in vitro (Rodriguez-Agudo et al, 2011). This observation was 

consistent with the result that overexpressing the STARD4 protein promoted cholesterol 

esterfication in macrophages and liver cells (Rodriguez-Agudo et al, 2008). Therefore, 
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these results demonstrated that STARD4 is able to activate ACAT enzyme localized to 

the ER (Rodriguez-Agudo et al, 2011).  

As an overview of STARD4 action, first, this protein is involved in cholesterol 

delivery to ACAT, and promotes the activity of ACAT for cholesteryl ester formation. 

Second, it plays a central role in cholesterol distribution from ER as a non-vesicular 

transport pathway, so as to regulate cholesterol homeostasis in the ER. Thus, this protein 

may be involved in the ER stress which is induced by the altered level of free cholesterol, 

and hence, it is possible for STARD4 to play a role in the atherosclerosis development 

(Rodriguez-Agudoetal, 2011).  

 Elbadawy and his coworkers (Elbadawy et al, 2011) focused on the STARD4 

function in a hepatocarcinoma cell line, HepG2. The expression of this protein was 

increased when the HepG2 cells are grown in lipoprotein deficient serum (LPDS), where 

cholesterol was depleted, when compared with the cells grown in normal serum. The free 

cholesterol was preserved in the plasma membrane, and the ER associated cholesterol 

was decreased in the STARD4 knockdown cells under the cholesterol deficient 

environment. Moreover, in the knockdown, the cholesterol poor condition caused 

decreased ACAT activity of cholesteryl ester synthesis. In other words, ER associated 

cholesterol esterification was reduced when the expression of STARD4 was reduced in 

the cholesterol deficient condition. Under conditions which restore cholesterol for a short 

period of time, STARD4 knockdown cells showed a decreased rate of fluorescent 

recovery after photobleaching (FRAP) in the endocytic recycling compartment when 
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dehydroergosterol (DHE) was used. DHE is a nontoxic cholesterol analog with natural 

fluorescence, and can mimic cholesterol characteristics in different sorts of cells. In 

summary, STARD4 can transport cholesterol between the ER, plasma membrane and 

endocytic recycling compartment in order to maintain cellular cholesterol homeostasis in 

in vitro models.  

 

1.13 STARD6 

 To date, there are few studies that have examined the distribution and function of 

STARD6. Bose and his colleagues showed recombinant mouse STARD6 can promote 

steroidogenesis in isolated pig mitochondria in vitro, similar to STARD1. STARD6 was 

also able to bind cholesterol better than STARD1. Furthermore, both of the two proteins 

show similar patterning during the process of unfolding or refolding.  

 The cDNA of rat STARD6 is 1146 bp long, and the longest open reading frame 

(ORF) can translate a 227 amino acid long peptide. In rat testis, the mRNA appeared 

from the third week after birth, and the mRNA kept increasing until adulthood. STARD6 

protein only expresses during the maturation of germ cells and in spermatids in the testis. 

According to result of Western Blots, rat STARD6 is a 28 kDa protein, and 

immunohistochemistry data also demonstrates that it expresses in mature germ cells 

(Gomes et al, 2005). Therefore, it may participate in spermatogenesis during meiosis and 

the process of sperm cell maturation (Soccio et al, 2002). Subsequently, STARD6 was 

found in Leydig cells in testes of the rat under hypothyroid conditions during puberty. 



26 

Hence, perhaps it is involved in both spermatogenesis and steroidogenesis in rats (Chang 

et al, 2007b). 

 Immunoreactivity data showed that STARD6 protein was found in the nucleus rather 

than cytosol in neurons and the glia of the brain, spinal cord and dorsal root ganglion. 

Thus, STARD6 may also play roles in sensory conduction control and lipid sensing of the 

nervous system (Chang et al, 2007a). Chang and his coworkers (Chang et al, 2010) 

showed that the immunoreactivity of this protein was mostly found in nucleus and the 

intensity was weaker in cytosol in the cultured neuron cells, and STARD6 may play 

critical roles in cholesterol homeostasis (Chang et al, 2010). Just recently, their lab also 

inferred the possiblity that STARD6 is a neuroprotective protein, and it may be 

influenced by excitotoxic stimuli (Chang et al, 2013). 

 

1.14 START proteins and diseases involving steroid production 

The mutation of the STARD1 gene can lead to a disease, congenital lipoid adrenal 

hyperplasia, and this disease is due to the lack of the steroidogenesis in both the gonads 

and adrenals (Lin et al, 1995). Most of the patients are lacking of adrenocorticoids within 

2 weeks after born with poor feeding, dehydration, lethargy, hyperkalemia, hyponatremia, 

hypoglycemia, and acidosis (Richmod et al, 2001). CLAH, in most cases, is due to failed 

cholesterol transport to the inner membrane of mitochondria for steroid production. With 

this condition, cholesterol accumulates in the cytoplasm which ultimately damages the 

steroidogenic cells (Bose et al, 1996). Similarly, in stard1 knockout mice, the 
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accumulation of lipid and the deficiency of steroid hormones, mice live only a short 

period of time after birth unless given supplemental steroid hormones (Caron et al, 1997).  

These animals are infertile even when maintained on supplemental steroids as are 

humans. 

Diminished ovarian reserve (DOR) is a common diagnosis in infertility patients, but 

it is also one of the least well-studied diseases of infertility. The cause of DOR is unclear 

and yet there is some association with age and is characterized by fewer follicles capable 

of development and ovulation. A comparison of normal ovarian reserve women's and 

DOR patients' luteinized granulosa cells from obtained from assisted reproduction 

protocols revealed DOR patients expressed a higher level of STARD1 and STARD4 

mRNA (Skiadas et al, 2012); this study was also the first to identify STARD4 in ovarian 

cells. Another common infertility disorder in women, polycystic ovary syndrome (PCOS), 

is associated with high androgen production in theca cells of the ovary. In vitro, STARD1 

level in primary theca cells was not different between PCOS and control groups, however 

specific enzymes involved with androgen synthesis have been shown to be elevated in 

PCOS (Wood et al, 2003).  

 

1.15 Aims of this study 

 This study is part of a larger ongoing study to determine the roles of STARD4 and 

STARD6 in ovarian function. The first aim of this thesis study was: to determine the 

levels of STARD1, STARD4, and STARD6 mRNAs and proteins in human luteinized 
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granulosa cells with treatments that stimulate progesterone production, and to test the 

effect of cholesterol depletion, cholesterol supplementation, and inhibition of 

progesterone synthesis on these endpoints. As a prelude to studies with ovarian granulosa 

cells, a second aim was: to determine the subcellular localization of recombinant human 

STARD4 and STARD6 in COS-1 cells. To provide confirmation of our lab's prior results 

showing the steroidogenic potential of human STARD6 using the COS-F2 assay, a third 

aim was: to utilize the COS-F2 assay to show that STARD6 can increase pregnenolone 

production in COS-1 cells transfected with components of the P450scc complex.   

These aims are based on the following hypotheses and rationale.  Cyclic AMP 

acting through PKA is known to stimulate STARD1 mRNA and protein in human 

granulosa cells and high doses of phorbol ester inhibit it (Kiriakidou et al, 1996), but the 

effect of low dose phorbol-12-myristate-13-acetate (PMA) is not known.  STARD1 

protein is functional after phosphorylation, and this process is catalyzed through the PKA 

pathway. In MA-10 cells, a low dose of PMA can enhance the STARD1 protein 

expression but not phosphorylated STARD1 (Jo et al, 2005). Because these cells have 

little phosphorylated STARD1, low dose PMA had little effect on increasing progesterone 

synthesis. However, our lab's preliminary data (not shown) revealed that PMA can 

increase progesterone production. Therefore, we hypothesize that in the human luteinized 

granulosa cells, low dose PMA is able to increase the protein level of STARD1 and 

phosphorylated STARD1.  This occurrence would be most likely due to the presence of 

the higher basal levels of PKA activity (Bogan and Niswender, 2007).   
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 STARD4 and STARD6 have only been recently identified in the ovary, and almost 

nothing is known about their regulation or possible functions in the ovary. Both of these 

molecules have the potential to act like STARD1 in certain settings.  As we found that 

STARD1 mRNA and protein was increased by cAMP and low dose PMA in granulosa 

cells, we hypothesized that STARD4 and STARD6 may be similarly regulated.  Since 

STARD1, STARD4, and STARD6 have a START domain and the ability to bind and 

transport cholesterol, we also hypothesized that intracellular cholesterol availability 

would regulate the mRNA and protein levels. There are three steps to test these 

hypotheses. First, we tested if the mRNA, protein level of STARD4 and STARD6 are 

affected by PKA and PKC pathways by treating granulosa cells with 8-Bromoadenosine 

3',5'-cyclic monophosphate (8Br-cAMP) and low dose PMA. We then altered the 

intracellular cholesterol levels by preventing cholesterol usage by the steroidogenic 

pathway and manipulating cellular cholesterol content by pretreating cells in lipoprotein 

deficient media or resupplying human low density lipoprotein during treatment to 

observe the effects on the mRNA and protein levels of STARD1, STARD4 and STARD6. 

As steroidogenesis requires cholesterol to be transported to the mitochondria, and 

STARD1 is localized to mitochondria, we hypothesized that STARD4 and STARD6 may 

localize to mitochondria. To test this we performed preliminary subcellular localization 

studies of recombinant STARD4 and STARD6 in transfected COS-1 cells using the 

fluorescent-antibodies. Both STARD1 and STARD4 have the ability to increase 

steroidogenesis in an artificial system which utilizes COS-1 cells transfected to express 
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steroidogenic machinery (Soccio et al, 2005). We therefore hypothesized that STARD6, 

when overexpressed in COS-1 with co-expression of the P450scc system, would be able 

to increase pregnenolone production.  In total, these studies will provide novel data on 

the regulation and localization of STARD4 and STARD6, and the function of STARD6. 
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Chapter II: Materials and Methods 

2.1 Human granulosa cell isolation  

 Human follicular fluid containing residual granulosa cells isolated from women 

undergoing assisted reproduction techniques were obtained from Advanced Fertility and 

Reproductive Endocrinology Institute, LLC in West Columbia, SC. Follicular fluid was 

transported on ice as soon as possible to the University of South Carolina.  A protocol 

for the use of these cells was reviewed by the institutional IRB and found exempt from 

further review. The follicular fluid containing granulosa cells and blood was transferred 

to one or more 50 ml tubes (depending on volume) and cells were pelleted at 2000 rpm in 

a Beckman TJ-6 refrigerated swinging rotor centrifuge for 15 minutes. A filtered solution 

of hyaluronidase (4 mg/ml) and DNase (0.25 mg/ml) was prepared fresh in media 

containing antibiotics. The media used was Dulbecco’s Modification of Eagle’s Medium 

(DMEM)/Ham’s F12 (F12) (1:1) containing antibiotics (0.1% Gentamicin, 1 % 

antibiotic/antimycotic solution (AMAB)).  Following centrifugation, the supernatant of 

the follicular fluid was discarded and each cell pellet was resuspended in 2.5-3 ml of 

enzyme solution, mixed well, and incubated in the culture incubator (37 
o
C 5% CO2) for 

10 minutes. Percoll gradients were used to remove contaminating blood cells. During this 

time Percoll gradients were prepared consisting of 4 ml of 70% Percoll in saline overlaid 
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with 4 ml of 35% Percoll in DMEM/F12 in a 15 ml tube. After enzyme incubation, 

DMEM/F12 + antibiotics (ab) was added to each pellet up to 4 ml.  The cell mixture 

was gently overlaid onto the Percoll gradient. The gradients were spun at 2000 rpm for 30 

minutes. The white band(s) was collected from each gradient and placed in a clean tube 

then poured through a 70 m cell strainer into a clean 50 ml tube to remove any clumps.  

Sample volume was adjusted to 22-25 mls with DMEM/F12 + ab medium and the sample 

was spun at 2000 rpm for 20 minutes. The supernatant was poured off, and the cell pellet 

was retained and resuspended in 300 to 600 μl DMEM/F12 + ab medium and the total 

volume was measured. For counting, 10 μl of cell suspension was taken, and 1 ml 

DMEM/F12 + ab medium were added to the suspension with 100 μl trypan blue dye. 

Cells were plated at approximately 0.5 to 2 x 10
6
 live cells per well in 1 ml DMEM/F12 

complete medium (same as above except containing 10% fetal bovine serum (FBS)) in 12 

well Falcon plates.  In some experiments the FCS was replaced with lipoprotein 

deficient serum (LPDS) to deplete cells of intracellular cholesterol stores.  Cells were 

cultured at 37
o
Cwith 5% CO2 in humidified cell culture incubator. The medium was 

changed daily at approximately 24 h intervals for 3 days after plating. Cells were treated 

on day 4 in serum-free DMEM/F12 + ab medium.  

 

2.2 Human granulosa cell treatment 

 Cells were treated in 1 ml serum-free DMEM/F12 + ab supplemented with vehicle(s) 

or treatments.  Treatments included cell-permeable cyclic AMP analog 8Br-cAMP, (0.25 
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or 1 mM) to activate the PKA pathway, and phorbol ester, PMA (1 or 20 nM, low dose), 

to activate the PKC pathway. For time course studies, cells were initially cultured in 

complete medium for 4 days prior to treatment in serum-free medium with the above 

compounds for 6 or 24 h.   

 Aminoglutethimide (AG) is an inhibitor of 450scc enzyme and blocks cholesterol 

utilization for de novo steroidogenesis and its use reduces progesterone production.  In 

order to determine the effect of reducing the use of cholesterol (and therefore its 

intracellular depletion) for steroidogenesis, AG (100 M in dimethyl sulfoxide (DMSO)) 

was co-added to cultures with vehicle, 8Br-cAMP (1 mM), or PMA (20 nM). DMSO 

solvent was used as a vehicle in place of AG. Treatments were for 24 h. 

 To evaluate the effects of cholesterol depletion on human granulosa cell endpoints of 

interest, some cells were precultured for the initial 4 days with complete media 

containing 10% LPDS. Cells from the same patient were also precultured under normal 

conditions (complete media with 10% FCS) for the same period. On day 4, cells were 

treated with vehicle, 8Br-cAMP (1 mM), or PMA (20 nM) alone or in the presence of 

human low density lipoprotein (hLDL, 50 g/ml) or its saline/EDTA vehicle. hLDL 

served as an exogenous source of cholesterol. Treatments were for 24 h. 

 

2.3 Whole cell extracts 

 Whole cell extract (WCE) buffer was used to lyse cells for protein isolation and was 

composed of 50 mM Tris (pH 7.5), 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium 
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dodecyl sulfate (SDS), 150 mM NaCl, 1 mM EDTA, 0.3% ALLN, 1% Pierce protease 

inhibitor cocktail, 1% Pierce phosphatase inhibitor, and sterile distilled water. Prior to 

removing medium from wells, 600-800 l of conditioned medium was collected from 

each well and frozen at -80
o
C for later progesterone quantification. The residual media 

was aspirated from cells and cells were rinsed with 1-2 ml of room temperature 

Dulbecco's phosphate buffered saline (PBS). Following aspiration of PBS, ice cold WCE 

buffer (human granulosa cell: 100 μl, COS-1 cell: 150 μl) was added to each well. Cells 

were scraped into the buffer by using a rubber scraper. The cell lysate in each well was 

transferred into a 1.5-ml microfuge tube and incubated on ice for 30 minutes. The lysate 

was spun at 13,000 rpm in an Eppendorf model 5417R refrigerated microcentrifuge for 

15 minutes at 4
o
C. The supernatant was collected and transferred to a new labeled tube on 

ice. The volume of these supernatant was measured for the purposes of calculating total 

protein.  Samples were stored at -80
o
C until use.  

 

2.4 Protein quantification 

 Protein was quantified by method of Bradford using Bio-Rad dye reagent and a 

spectrophotometer set to 595 nm. A standard curve with known amounts of protein 

(bovine serum albumin, BSA, 0-8 g/ml) was generated in each assay and sample 

quantities were extrapolated from the linear standard curve. Protein (20-30 μg) was 

aliquoted for SDS-PAGE and Western blotting. 
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2.5 SDS-polyacrylamide gel electrophoresis 

 Separating acrylamide gels of 10% and 12% were prepared in 20 ml volumes 

constituted of 6.6 ml and 8 ml, respectively of 30% acrylamide stock, 7.7 ml 1 M Tris, 

pH 8.8, 0.2 ml 10% SDS, 150 μl 10% APS, 15 μl TEMED and 5.3 ml or 3.94 ml sterile 

water. The 5% stacking gel was constituted of 0.8 ml 30% acrylamide stock, 0.625 ml 

1M Tris, pH 6.8, 50 μl 10% SDS, 50 μl 10% APS, 5 μl TEMED, and 3.481 ml sterile 

water. In some cases, 4-20% precast gradient gels (Pierce, ThermoScientific) were 

utilized. 

 After assembling the gel apparatus, 800 ml of 1X running buffer was made of 80 ml 

of 10X running buffer, and 720 ml nanopure water. The 10X running buffer was made of 

57.3 g glycine, 12.1 g Trizma Base, and 4 g SDS, and filled up to 500 ml with nanopure 

water. Wells were flushed prior to loading.  On ice protein samples were combined with 

a 5X bromophenol blue loading dye containing 5% 2-mercaptoethanol.  The protein 

samples were boiled for 8 minutes prior to loading. The samples were loaded into wells, 

and the gel was run at 200 V for 45 min to 1 h.  

 

2.6 Immunoblotting 

 Protein in gels was transferred to Hybond-P PVDF membrane after wetting the 

membrane briefly in methanol. Transfer buffer was constituted of 2.93 g glycine, 5.82 g 

Trizma Base, and 200 ml methanol, and nanopure water up to 1 liter with nanopure water. 

Semi-dry electroblotting (Owl Panther semi-dry electroblotter) was used for protein 
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transfer.  The transfer stack consisted of three sheets of the pre-cut, pre-wet Whatman 

paper, the gel, the PDVF membrane, and three additional sheets of Whatman paper. The 

transfer occurred under conditions of constant current, starting at a voltage of 9-10 and 

for 90 minutes.  

 

2.7 Western blot 

 The membrane was blocked in 5% nonfat dry milk (Carnation)/1X tris buffered 

saline (TBS) -Tween TTBS. TTBS (1X) contained 100 ml 10X TBS, 900 ml nanopure 

water and 0.5 ml Tween-20 per liter. 10X TBS was constituted of 24.2 g Trizma Base, 

292 g NaCl, and filled up to 1 liter with nanopure water. After 1 hour blocking, the 

membrane was washed with 1X TTBS for 3 times, 10 minutes for each time. The 

membrane was placed in a small container. STARD1 (concentration unknown, 1:1500) 

and phosphorylated-STARD1 (p-STARD1, concentration unknown, 1:500) antibodies 

were gifts from Dr. Douglas Stocco and Dr. Steven King, respectively (Texas Tech 

University, Lubbock, TX). STARD4 (0.5 μg/ml, Cat. # AP12801a, Lot # SA110414AR,), 

STARD6 (2.5 μg/ml, Cat. # AP11832b, Lot # SA 110210AB,) and CYP11A1 (0.5 μg/ml, 

Cat. # AP7899a, Lot # SH081229L) antibodies were from Abgent (Atlanta, GA). The 

actin antibody (concentration unknown, 1:500) was obtained from Cell Signaling (Cat. # 

4967, Lot # 6, Danvers, MA), SREBP2 (0.5 to 1 μg/ml, Cat. # sc-5603, Lot #D1712) 

from Santa Cruz Biotechnology (Santa Cruz, CA) antibodies from was obtained from 

InVitrogen/Life Technologies (Carlsbad, CA). With a couple of exceptions, primary 
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antibodies was diluted in 1% nonfat dry milk/1X TTBS, and applied to the membrane. 

The exceptions were STARD1 antibody, where the primary antibody was diluted in 5% 

milk, and p-STARD1 antibody which was diluted in 4% milk, 1XTBS containing 0.01% 

Tween (as recommend by the source). At least 3 ml of antibody solution was used. The 

container was placed at 4 
o
C overnight (cold room) on a shaker. Goat anti-rabbit 

secondary antibody (Zymed, Cat. # 65-6120) which was obtained from InVitrogen/Life 

Technologies 3 µl, 3 μl BSA, and 94 μl PBS was mixed together in a 50 ml tube in order 

to pre-absorb the secondary antibody overnight at 4 
o
C. 

The following day the membrane was transferred to a plastic box for washing. The 

membrane was washed with 1X TTBS for 3 times, 10 minutes for each time. The 

pre-absorbed secondary antibody was diluted with 5% nonfat dry milk/1X TTBS (or 4% 

milk/1XTTBS 0.01% Tween) with a final concentration of 1:4000 for the goat anti-rabbit 

secondary antibody. The membrane was placed in a container for antibody application 

and incubated on the shaker for 1 hour at room temperature. Afterwards, the membrane 

was washed with 1X TTBS for 5 times, 10 minutes for each time. ECL solution was 

prepared by adding 1:1 Reagent 1 and Reagent 2 of the ECL kit. The ECL solution was 

mixed well, and added onto well-drained membrane for 1 minute. The membrane was 

drained extremely well without touching protein lanes, and then the membrane was 

placed inside two pieces of transparency plastic inside a film cassette. A spectrum of 

timed film exposures was performed and developed. After exposure, the membrane was 

washed with 1X TTBS 3 times, 5 minutes each time. Then the membrane was ready for 
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reblocking or was stripped.  If two proteins of interest were of sufficiently different size, 

then another primary antibody was applied without stripping off the first antibody.  

 

2.8 Stripping immunoblots 

 The membrane was washed with 1X TTBS 3 times, 5 minutes each time. The 1X 

TTBS was poured off and approximately 50 ml of erasing buffer was added for each 

membrane in a small box. The erasing buffer for 50 ml was made up of 3.125 ml 1 M 

Tris-Cl, pH 6.8, 10 ml 10% SDS, 0.35 ml 2-mercaptoethanol, and 36.5 ml nanopure water. 

The membrane was placed in a hybridization oven at 60 
o
C, with agitation for 45 minutes. 

The easing buffer was poured off, and the membrane was washed 4-5 times in 1X TTBS 

for 10-15 minutes each over the course of an hour. A 2 hour blocking period was used 

before applying another primary antibody.  

 

2.9 RNA isolation 

 Prior to removing medium from wells, 600-800 l of conditioned medium was 

collected from each well and frozen at -80
o
C for later progesterone quantification. 

Residual medium was aspirated from each well of cells. Trizol (800 μl) was added to 

each well and incubated 10 minutes at room temperature to lyse cells, and lysates were 

transferred to microfuge tubes and stored at -80
o
C until use. All the following spins were 

at 15,000 g in an Eppendorf refrigerated microfuge. Directzol spin columns, RNA wash 

buffer and RNA prewash buffer were used from the Zymo Research Directzol kit. After 
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thawing and equilibrating to room temperature, an equal volume of 95-100% ETOH was 

added to tubes containing the Trizol lysates and vortexed.  Samples were loaded into a 

spin column and centrifuged for 1 minute. The flow-through was discarded.  Each 

column was placed to a new tube and 400 μl of RNA wash buffer was added into each 

column and centrifuged for 1 minute. The flow-through was discarded. DNase cocktail 

(80 μl) was added into each column and incubated 15-20 min at room temperature. The 

DNase cocktail contained 6.25% DNase (from Zymo Research Directzol kit), 1X DNase 

reaction buffer (from Zymo Research Directzol kit), 3.75% kit water, and 80% RNA 

wash buffer. All columns were centrifuged for 30 seconds followed by addition of 400 μl 

RNA prewash buffer and centrifugation for 1 minute. The flow-through was discarded. 

The RNA prewash buffer was added and then centrifuged again, and the flow-through 

was discarded. RNA wash buffer (700 μl) was added to each column, centrifuged for 1 

minute, and the flow-through was discarded. Columns were centrifuged for another 2 

minutes in order to dry the columns. Each column was transferred to a new tube. 

RNase/DNase-free kit water (30 μl) was added to columns, and incubated at room 

temperature for 5 minutes. Columns with tubes were centrifuged for 2 minutes to elute 

RNA, and then kept on ice for use or stored at -80 
o
C. RNA was transferred into new 

tubes. Quantification of RNA was performed at 260 nm using a Biophotometer 

(Eppendorf). The dilutions were made for cDNA synthesis, and then stored at -80
o
C. 
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2.10 cDNA synthesis 

 The cDNA synthesis reaction consisted of 15 μl of RNA, 4 μl of 5X iScript reaction 

mix, and 1 μl of iScript Reverse Transcriptase enzyme (Bio-Rad iScript cDNA synthesis 

kit). After assembly, reactions were placed in the room temperature for 2 minutes. cDNA 

synthesis was carried out in a thermal cycler (Effendorf, Hauppauge, NY). The cycle 

consisted of 25 
o
C for 5 minutes, 42 

o
C for 30 minutes, 85 

o
C for 5 minutes, and a 4 

o
C 

hold. After cDNA synthesis, each sample of the cDNA was diluted with 

DNase/RNase-free water to 10 ng/µl when possible.  In some cases cDNA was diluted 

to 3-5 ng/µl. The cDNA was stored at -20
o
C and later used for real time PCR.  

 

2.11 Real time PCR 

 Quantification of hTBP (human TATA-box binding protein, an internal control), 

hSTARD1, hSTARD4, and hSTARD6 was performed by real-time PCR using the method 

of Pfaffl(Pfaffl 2001). The PCR primers for hTBP yielded an 87-bp amplicon and were 

derived from GenBank accession no. NM_003194.3. The upstream primer was 

5’-CACGGCACTGATTTTCAGTTC-3’ and the downstream primer was 

5’-TCTTGCTGCCAGTCTGGACT-3’. The PCR primers for hSTARD1 (157-bp 

amplicon) were upstream 5’-TACGTGGCTACTCAGCATCG-3’ and downstream 

5’-ACAGCAGGCTGGTCTTCAAC-3’. The PCR primers for hSTARD4 (135-bp 

amplicon) were upstream 5’-CAAAGCCCAAGGTGTTATAGATGAC-3’ and 

downstream 5’-ACAGCAATTCTCTTCAAAGTTCTCC-3’. The hSTARD6 primers 
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(203-bp amplicon) were upstream 5’-TTCATATGTCATACCATTACACAAAG-3’ and 

downstream 5’-CTCATTTCTGTCTGGACAAACATCAC-3’. All primers were obtained 

from InVitrogen/Life Technologies. 

 cDNA samples were amplified in 2-3 well replicates (or more as needed) and a water 

negative control was included in each PCR run. Each PCR 20 μl reaction was composed 

of 0.2-1.0 ng/μl (according to different patients) cDNA, 1X SSoAdvanced SYBR Green 

Supermix, 312.5 nM (for hTBP, hSTARD1 and hSTARD6) or 600 nM (for hSTARD4) of 

upstream primer, and the same amount of downstream primer. The real-time PCR was 

performed in iCycler (Bio-Rad, Hercules, CA) with the initial denaturation, 1X, 95
o
C for 

1.5 min, followed by 40 cycles (for hTBP, hSTARD1 and hSTARD4) or 45 cycles (for 

hSTARD6) of denaturation for 15 seconds, 95
o
C, annealing for 30 seconds, 60

o
C (for 

hSTARD1 and hSTARD6), or 62
o
C (for hTBP and hSTARD4), elongation for 30 seconds, 

72
o
C, followed by 10 min final extension at 72

o
C, and a melt curve using 80 cycles of 

0.5
o
C increments starting at 60

o
C.  A single product was confirmed by a single melt 

curve peak. The amplicons of non-SYBR green PCR reactions were previously 

sequenced by the lab to confirm their identities.  

 

2.12 COS-1 cell culture 

 COS-1 cells were maintained in complete COS-1 medium in 10-cm dishes, and the 

cells were cultured at 37 
o
C with 5% CO2 in the incubator. Complete medium (100 ml) 

for COS-1 cells contained 88 ml of DMEM, 1X AMAB, 1X non-essential amino acids 
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(NEAA), and 10 ml of new born calf serum (NBCS). When the cells were confluent they 

were passaged by standard technique using Trypsin-EDTA solution followed by addition 

of complete medium and pelleted. For experiments, cells were resuspended in complete 

medium and seeded into 6-well plates containing a sterile coverslip and 2 ml of complete 

medium. One 10-cm plate of cells was used to seed one 6-well plate and resulted in cells 

being approximately 50-80% confluent on the next day. The cells were cultured in the 

incubator.  

 

2.13 Plasmid transfection into COS-1 cells for confocal staining and imaging 

The pSTARD4 and pSTARD6 plasmids which were from Origene (Rockville, MD) 

contained a human full-length cDNA sequence and an additional Myc-DDK (Flag) tag 

sequence which is added at the C-terminus of the protein. Plasmids were purified from 

bacteria using appropriate antibiotic selection and a QiagenMaxiprep kit.  

When the COS-1 cells were more than 50% confluent, they were transfected. 

Individual plates of cells were transfected with pcDNA3.1 (empty expression vector), 

which was from InVitrogen/Life Technologies, pSTARD6, or pSTARD4. In some 

experiments, a plate of cells that received no transfection was included.  The cells were 

rinsed by replacing media with 2 ml of serum-free antibiotic-free DMEM media per well. 

The transfection mix for each well was DMEM/NEAA media containing 1 or 2 μg of 

pSTARD1 or D6 plasmid or pcDNA3.1 plasmid, and 8 μl of Lipofectamine per ml of 

media. The plates were incubated at 37 
o
C with 5% CO2 for 5-6 hours. The transfection 
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mix was removed and complete medium (2 ml) was added to each well. The plates were 

incubated for 18 hours for recovery and plasmid expression, and then the cells were ready 

fixed. The pSTARD1 and the F2 plasmids were gifts from Dr. Himangshu Bose (Mercer 

University, Savannah, GA). 

 Cells were fixed as follows. Media were aspirated off, and 2 ml of Phosphate 

Buffered Saline (PBS) was added to each well of the plates. PBS was removed, and 1.5 

ml 2% paraformaldehyde was added in each well. The cells were incubated in room 

temperature for 15 minutes. The paraformaldehyde was removed, and 2 ml of PBS was 

added. After 5 minutes the PBS was removed and another 2 ml of PBS was added. The 

edges of the plates were sealed with parafilm, and the plates were store at 4 
o
C in the 

fridge. 

 

2.14 COS-1 F2 steroid assay to evaluate the steroidogenic potential of hSTARD6 

 To determine if human STARD6 had the potential to facilitate de novo 

steroidogenesis, the COS-1 F2 assay was used. The F2 and human STARD1 plasmids 

were a generous gift of Himangshu Bose (Mercer University). Several 6-well plates 

(Plates I to V) of COS-1 cells were set up for this assay using the same plating procedure 

as above except without coverslips (Table 2.1). Plate V was not transfected and received 

media changes only. Plates I-IV received the F2 plasmid (1 ug/well) which codes for the 

3 components of the P450scc complex needed for de novo steroid synthesis. Plates I-IV 

also received a renilla luciferase (ptk-RL-luc) plasmid (10 ng/well) which was used for 
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assessing transfection efficiency.  The plates received 1 µg of the following plasmids: 

Plate I, pSTARD1 (positive control), II, pSTARD6 (experimental), Plates III and IV, 

pcDNA3.1 (empty expression vector). The transfection mix was made with the indicated 

amount of plasmids and 8 µl Lipofectamine in DMEM/NEAA media. Cells were 

incubated with the transfection mix for 5.5-6 h and then the medium was replaced with 2 

ml complete COS-1 medium and cells were allowed an 18 h recovery/expression period.  

At the end of the recovery period, medium was changed to 1 ml complete medium.  

Plates I-IV were treated with vehicle or 0.25 mM 8Br-cAMP (half the wells for each plate 

received one treatment). Plate IV also received 5 μΜ 22(R)-hydroxy-cholesterol 

(22R-OH-Chol) as a positive control. 22R-OH-Chol is able to directly permeate the 

mitochondrion can be converted to pregnenolone by P450scc complex without the need 

for a STARD molecule. Cell treatments were for 24 h. 

At the end of the treatment time, 0.6 ml of medium was collected from each well and 

media from like wells pooled.  Residual medium was removed and cells were rinsed 

with PBS. One of the three wells of cells was lysed for renilla luciferase assay by using 

Passive Lysis Buffer (Dual Luciferase Assay System, Promega), and the other two wells 

were lysed with WCE buffer to measure total protein and for later used in western blot.  

Renilla luciferase activity in cleared lysates was measured using a Turner luminometer 

and renilla luciferin substrate (Promega). Pregnenolone in the undiluted culture media 

was measured by ELISA (Alpco, Salem NH). Pregnenolone concentrations were 

normalized to protein content of wells or luciferase activity.  
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2.15 Staining cells for confocal imaging 

 The coverslips were moved into a new 6-well plate for staining. Cells were washed 

with 1.5 ml PBS per well for 5 to 10 minutes, three times. An aspirator was used to 

remove the liquid in the wells. Cells were incubated in 1 ml PBS/0.01 M glycine/0.1% 

Trition-X per well for 15 minutes, three times. Cells were incubated in 1 ml 5% 

BSA/PBS per well for 10 minutes. Cells were incubated in 1 ml 5% normal donkey 

serum (dissolved in 1% BSA/PBS) per well for 10 minutes. One ml primary antibody 

(dissolved in 1% BSA/PBS) was added in each well, and the plate was incubated at 37 
o
C 

for 1 h. The primary antibodies included STARD4 (2.5 μg/ml), STARD6 C-term (2.5 

μg/ml), and DDK (Flag) tag (5 μg/ml) for incubation. Cells were washed with 1.5 ml 1% 

BSA/PBS per well for 15 minutes, twice. Cells were incubated in 1 ml 5% donkey 

normal serum (which was dissolved in 1% BSA/PBS) per well for 10 minutes.  The 

plate was covered with foil for all subsequent steps. One ml secondary antibody 

(dissolved in 1% BSA/PBS) was added in each well, and the plate was incubated at 37
o
C 

for 1 h, and the secondary antibody included donkey anti-rabbit Cyanine 3 (DAR-Cy3, 

Cat. # 711-165-152, Lot # 108392) (15 μg/ml) and donkey anti-mouse Cyanine 3 

(DAM-Cy3, Cat.# 715-165-112, Lot # 107821) (15 μg/ml) in the experiments. Both of 

them were obtained from Jackson ImmunoResearch (West Grove, PA). Wells were 

washed with 1.5 ml 1%BSA/PBS for 15 minutes, three times. PBS (1.5 ml) was added to 

wash each well for 15 minutes. Nuclei were stained with 1 ml of 5 μg/ml 
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4',6-diamidino-2-phenylindole (DAPI) per well for 15 minutes. Cells were washed in 1.5 

ml PBS per well for 15 minutes, twice. One drop of 1,4-diazabicyclo [2.2.2] octane 

(DABCO) solution was dropped on the middle of the slide, and slowly pulling the 

coverslip down to the slide to avoid bubbles. DABCO solution (100 ml) was made of 1 g 

of DABCO powder, 25 ml PBS, and 75 ml glycerol.  

 

2.16 Confocal imaging 

 A LSM 510 META ZEISS confocal microscope (Carl Zeiss Micro Imaging Inc.) was 

used to image. The excitation/emission spectrum for DAPI complexes was 358 nm /461 

nm. The excitation/emission spectrum for Cy3 complexes was 550 nm/570 nm.  

 

2.17 Statistical analyses 

 GraphPad Prism version 3.02 for Windows (GraphPad Software, San Diego, CA) 

was used for statistical analysis for at least three independent sets of samples of human 

granulosa cells for all real-time PCR data. The mean and standard error of the mean were 

calculated for all groups. Data was analyzed by ANOVA followed by Tukey’s post-hoc 

test to determine if there were differences in mRNA expression between control 

conditions of with the appropriate vehicle treatment. For studies with LPDS pretreatment, 

the values were compared with those of FCS pretreated vehicle controls.  Paired T-tests 

were used to determine if there were significant changes when only two groups were 

analyzed. Differences were determined to be significant if the P-value was ≤ 0.05.  
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Table 2.1 information for plasmid transfections and treatments of COS-1 F2 steroid 

assay 

 

plate number I II III IV V 

number of wells with cells 6 6 6 6 3 

F2 plasmid Y Y Y Y N 

renilla luciferase plasmid Y Y Y Y N 

hSTARD1 plasmid Y N N N N 

hSTARD6 plasmid N Y N N N 

pcDNA3.1 plasmid N N Y Y N 

treated with 5 μM 22R-OH-Chol N N N Y N 

water control Y Y Y Y Y 

treated with 0.25mM 8Br-cAMP Y Y Y Y N 
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Chapter III: Result 

3.1 Comparison of 8Br-cAMP and phorbol ester effects on STARD1, STARD4, and 

STARD6 mRNA levels in human luteinized granulosa cells  

 In order to compare the effects of cAMP analog and phorbol ester on STARD1, 

STARD4, and STARD6 mRNA levels, cultured human luteinized granulosa cells were 

treated with 8Br-cAMP (0.25 mM and 1 mM) or low dose PMA (1 nM and 20 nM) for 6 

or 24 h. STARD1 mRNA was significantly increased by 0.25 mM 8Br-cAMP at 24 h and 

increased by 1 mM 8Br-cAMP at both 6 and 24 h treatment (Figure 3.1). STARD1 

mRNA was significantly increased by 20 nM PMA at both 6 and 24 h treatment. PMA 

increases in STARD1 mRNA levels were lower than those observed with cAMP. 

STARD4 mRNA was significantly increased by 0.25 mM 8Br-cAMP at 24 h and 

increased by 1 mM 8Br-cAMP at both 6 and 24 h treatment (Figure 3.2). STARD4 

mRNA was significantly increased by 20 nM PMA at both 6 and 24 h treatment.  PMA 

increases in STAR mRNA levels were similar to those observed with cAMP. STARD6 

mRNA levels were not significantly altered by treatment with cAMP analog or PMA 

(Figure 3.3) 
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3.2 Effects of blocking cholesterol utilization with the P450scc inhibitor 

Aminoglutethimide on STARD1, STARD4, and STARD6 mRNA levels  

 In human luteinized granulosa cells, under serum-free conditions, intracellular 

cholesterol is depleted by agonists that stimulate progesterone production which utilizes 

P450scc. We tested the effect of blocking P450scc enzyme activity with 

Aminoglutethimide, to block the utilization of cholesterol for de novo steroidogenesis.  

In other experiments in our laboratory we verified that that progesterone levels were 

decreased by ~50% with 100 μM AG (data not shown). The increase of STARD1 mRNA 

level by either 8Br-cAMP (1 mM) or PMA (20 nM) with the 24 hour treatment was not 

altered Aminoglutethimide treatment (Figure 3.4). STARD4 showed a different response 

to Aminoglutethimide. The increase in STARD4 mRNA level by 8Br-cAMP with 24 h 

treatment was significantly reduced by Aminoglutethimide (Figure 3.5). There was no 

effect of Aminoglutethimide on PMA-stimulated STARD4 mRNA. STARD6 mRNA 

levels were not affected by Aminoglutethimide at 24 h treatment (Figure 3.6). However, 

the fold-change in STARD6 mRNA was significantly reduced by Aminoglutethimide in 

cells treated with PMA (Table 3.1).  

 

3.3 Effects of cholesterol depletion and supplementation on STARD1, STARD4, and 

STARD6 mRNA levels  

 In order to test the effect of cellular cholesterol depletion on STARD1, STARD4, 

STARD6 mRNA cells were precultured under wither normal conditions (10% FCS) or 
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lipoprotein deficient conditions (10% LPDS) for the initial 4 days of culture. To further 

test the effects of sterol on the responses of these mRNAs, some samples were 

supplemented with exogenous hLDL during the 24-h treatment period with 8Br-cAMP (1 

mM) and PMA (20 nM). The STARD1 mRNA level was significantly enhanced by 

8Br-cAMP and PMA with 24 h treatment under either preculture condition (Figure 3.7). 

The addition of 50 μg/ml hLDL did not affect the cAMP-stimulated response of STARD1 

mRNA in either preculture condition. PMA stimulated STARD1 mRNA to a similar 

extent with both preculture conditions.  With LPDS pretreatment conditions, the 

addition of hLDL with PMA reduced STARD1 mRNA levels. In addition, the 

fold-change in STARD1 mRNA was significantly reduced by hLDL in cells with normal 

preculture conditions that were treated with PMA (Table 3.2). In other words, the 

STARD1 mRNA response to PMA was altered by the addition of exogenous hLDL under 

either preculture condition. 

 The STARD4 mRNA level was significantly enhanced by 8Br-cAMP and PMA with 

24 h treatment under either preculture condition (Figure 3.8). The addition of 50 μg/ml 

hLDL reduced the cAMP-stimulated response of STARD4 mRNA in either preculture 

condition. PMA stimulated STARD1 mRNA to a similar extent with both preculture 

conditions. Regardless of preculture conditions, the addition of hLDL impaired the ability 

of PMA to stimulate STARD4 mRNA levels, as the PMA responses were not significant 

with hLDL.  In addition, the fold-change in STARD4 mRNA in response to 8Br-cAMP 
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was significantly reduced by co-addition of hLDL under either pretreatment condition, 

whereas it was not affected with PMA treatments (Table 3.3). 

 There was no significant effect of cholesterol depletion (LPDS pretreatment) or 

cholesterol supplementation during treatment on STARD6 mRNA levels at 24 h (Figure 

3.9).  

 

3.4 The effects of 8Br-cAMP and PMA on STARD1, STARD4, STARD6, and 

CYP11A1 protein levels in human luteinized granulosa cells 

 Although we attempted to quantify the western blots densitometrically, the quality of 

some blots did not allow this and thus individual western blots are presented below to 

allow one to evaluate the range of responses between patients. Actin was used as a 

control to evaluate protein loading or transfer. 

 The western blots in Figure 3.10 with patient #1376 were performed by others and 

included to show the effects of the two different concentrations of 8Br-cAMP (0.25, 1 

mM) and PMA (1, 20 nM) at 24 h treatment. 8Br-cAMP at either concentration increased 

the levels of both STARD1 protein and phosphorylated STARD1. PMA also increased 

STARD1 protein and phosphorylated STARD1, however in patient #1376 at 24 h 

treatment 20 nM PMA did not show increased STARD1 protein, yet a small amount of 

phosphorylated STARD1 was present (Figure 3.10C). Other patients have shown 

increased STARD1 and phosphorylated STARD1 with 20 nM treatment (data not shown). 
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 When accounting for actin levels, in patient #1376 STARD4 and STARD6 protein 

levels showed no obvious regulation by treatments at 24 h.  In this patient both 

8Br-cAMP and PMA treatments led to a decrease in CYP11A1 level.  

 

3.5 Effects of blocking cholesterol utilization with the P450scc inhibitor 

Aminoglutethimide on target protein levels  

Figures 3.11 to 3.15 cells represent cells treated with 8Br-cAMP (1 mM) or PMA (20 

nM) with either vehicle (DMSO) or Aminoglutethimide (100 M). Both 8Br-cAMP and 

PMA increased the protein levels of STARD1 for the Patient #1578, #1581, and #1619, 

with PMA giving a lower response that than that of 8Br-cAMP.  In patient #1624 blots, 

8Br-cAMP increased STARD1 protein and in #1559 the data is unclear due to blot quality. 

In patients #1581 and 1619 Aminoglutethimide treatment appeared to modestly decrease 

the STARD1 protein levels, whereas for patients # 1578 and 1624 this did not occur.   

In the absence of Aminoglutethimide, 8Br-cAMP increased the levels of 

phosphorylated STARD1 for the patients # 1578, 1581 and 1619, and PMA increased it in 

patient #1578. In the presence of Aminoglutethimide phosphorylated STARD1 was lower 

with 8Br-cAMP in patient #1581, and not # 1578 nor 1619. 

STARD4 protein levels for patients # 1578, 1581, 1619, 1624, and 1559 did not 

show any obvious changes with 8Br-cAMP or PMA (20 nM) alone nor with 

Aminoglutethimide treatment.  
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STARD6 protein levels for patients # 1578, 1581, 1619, 1624, and 1559 did not 

show any obvious changes with 8Br-cAMP or PMA (20 nM) alone nor with 

Aminoglutethimide treatment.  

Data for SREBP-2 protein was collected for patients # 1578, 1581, and 1644 and did 

not reveal any consistent trends with treatments. 

CYP11A1 protein showed a variety of responses to treatment depending on the 

patient. In patient # 1578, 1619, 1559 CYP11A1 protein was unchanged by 8Br-cAMP, in 

# 1581 and 1624 it was decreased with cAMP analog, in # 1578 and 1644 it was 

decreased with PMA, and it was unchanged in # 1581, 1619 and 1559.  

 

3.6 Effects of cholesterol depletion and supplementation on target protein levels 

 Figures 3.15 to 3.17 represent human granulosa cells that were either precultured 

under normal conditions (FCS) or lipoprotein deficient (LPDS) conditions for the initial 4 

days of culture prior to treatment in serum-free medium with 8Br-cAMP (1 mM) or PMA 

(20 nM) with the addition of vehicle or hLDL (50 g/ml).  Under normal preculture 

conditions, subsequent 24 h treatment with 8Br-cAMP or PMA increased the protein 

levels of STARD1 for the patients # 1641 and 1644, but as mentioned above #1559 blot 

quality in this region was too poor to evaluate. With the LPDS preculture conditions, 

patient # 1559 had lower overall STARD1 protein with an increase evident with 

8Br-cAMP compared to vehicle under the same conditions.  Blot quality for patient # 

1641 with LPDS preculture was poor, however an increase in STARD1 protein was still 
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evident with the cAMP treatment (no hLDL). In patient # 1644 with LPDS 

precultureSTARD1 protein was lower overall when considering the actin yet there was an 

increase still evident with 8Br-cAMP and PMA. Taken together there was a trend to have 

reduced level of STARD1 protein in cells with 24 h treatment in those precultured in 

LPDS. Phosphorylated STARD1 proteins followed the same general trends as above with 

consistent increases with 8Br-cAMP treatment and in some cases with PMA under 

normal preculture conditions. 

 The addition of hLDL to cells with normal pretreatment conditions showed no 

difference in STARD1 protein compared to non-LDL treatment in patient # 1644 but 

reduced the PMA-induction of STARD1 in patient # 1641. The blot quality for the LPDS 

preculture for patient 1641 was poor in this region and not suitable to draw conclusions 

from pertaining to hLDL treatment. In patient #1644, hLDL had no effect on STARD1 

expression under LPDS precultured conditions. 

 For patients # 1559, 1641, and 1644 no discernible differences in the levels of 

STARD4 or STARD6 were observed (in good quality blot regions) between the normal 

and lipoprotein preculture conditions or with different treatments. 

 For patients # 1559, 1641, and 1644 lipoprotein deficient preculture conditions 

reduced the overall levels of CYP11A1 protein for all treatment conditions. No 

differences between 8Br-cAMP or PMA with or without hLDL were noted. 
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 Due to the variable quality of these western blots comparing the normal and 

lipoprotein deficient preculture conditions +/- hLDL further experiments will be 

performed by others in the lab to provide more quantifiable blots. 

 

3.7 The effects of 8Br-cAMP and PMA on STARD1 and phosphorylated STARD1 

protein levels in human luteinized granulosa cells with 6 h treatment 

 In initial studies of STARD1 in human luteinized granulosa, our lab evaluated 

concentration and treatment time for 8Br-cAMP and PMA and the most consistent 

stimulation of STARD1 occurred at 24 h and thus most studies were performed with this 

treatment time. Figure 3.18 shows levels of STARD1 and phosphorylated STARD1 at 6 h 

treatment in human luteinized granulosa cells precultured under normal conditions or 

lipoprotein deficient conditions. STARD1 protein was stimulated to a similar extent with 

either preculture conditions and phosphorylated STARD1 tended to be increased to a 

greater extent with 8Br-cAMP or PMA treatments in lipoprotein deficient preculture 

conditions. The 6 h treatment with LPDS preculture conditions is representative of only 1 

patient so far.  Blots of STARD1 and phosphorylated STARD1 with normal preculture 

conditions has been repeated multiple times with several patients by others in the lab and 

showed fairly consistent stimulation by cAMP and PMA (data not shown). 
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3.8 Immunofluorescence microscopy of recombinant human STARD4 and STARD6 

expressed in COS-1 cells 

As a basis for future studies with human granulosa cells, COS-1 cells were utilized to 

for antibody testing and preliminary localization studies. COS-1 cells were transfected 

with expression plasmids containing the cDNAs for human STARD4 or STARD6 that 

would yield Flag-tagged proteins. The immunoreactivity for recombinant STARD4 

protein in COS-1 cells was localized throughout the cytoplasm and nucleus with both the 

primary antibodies for STARD4 and the Flag-tag. In some cell nuclear staining was more 

predominant (Figure 3.19 and Figure 3.20). Most immunoreactivity for recombinant 

STARD6 proteins in COS-1 cells was localized in the cytoplasm with little evident signal 

in the nucleus with both the primary antibodies for STARD6 and the Flag-tag (Figure 

3.21 and Figure 3.22).  

 

3.9 STARD6 can facilitate de novo steroidogenesis in the COS-1 F2 assay  

 Using the COS-1 F2 assay, which involves transfecting the machinery for de novo 

steroidogenesis into non-steroidogenic COS-1 cell, both recombinant STARD1 and 

STARD6 have both shown to increase pregnenolone production to differing extents. To 

determine if STARD6 has the potential to increase de novo steroidogenesis, STARD6 was 

expressed along with the F2 plasmid and pregnenolone levels measured in the media.  

The data presented here is one experiment which was performed to replicate previous 

data in the lab.   
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Whole cell extracts were isolated from cells to verify protein expression.STARD1, 

STARD6 and CYP11A1 proteins were detected in the appropriate cells which meant all 

the plasmids were successfully transfected and expressed (Figure 3.25A). The vector only 

transfection (pcDNA3.1) showed a low concentration of pregnenolone in cells with or 

without 8Br-cAMP treatment (Figure 3.25B). The pregnenolone level increased 2.80 fold 

with vehicle and 4.37 fold with 8Br-cAMP treatment in the STARD6 transfected cells 

compared to the vector only control group. With STARD1 transfection (a positive 

control), the level increased 10.7 fold with vehicle and 12.0 fold with 8Br-cAMP.  As a 

positive control for the P450scc complex activity, a group of the cells transfected with 

vector only was treated with 5 μM 22R-OH-cholesterol, a mitochondrial permeable form 

of cholesterol, and in these cells the pregnenolone concentration increased to 14.1 and 

15.4 fold with or without 8Br-cAMP, respectively. 
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Table 3.1. The fold-change in STARD6 mRNA in response to cAMP or phorbol ester 

treatment in the presence of vehicle (-AG) or Aminoglutethimide (AG) at 24 h.  

 

Treatment Fold-response with cAMP or PMA AG effect 
Significance 

Br-cAMP -AG 
0.89 ± 0.14 

+AG 
1.12 ± 0.34 

ns 
P= 0.41 

PMA 0.85 ± 0.10 0.37 ± 0.10 P = 0.03 

ns = not significant 
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Table 3.2. The fold-change in STARD1 mRNA in response to cAMP or phorbol ester 

treatment in the presence of vehicle (-LDL) or low density lipoprotein at 24 h, 

following normal or lipoprotein deficient preculture (Pretrt) conditions.  

 

ns = not significant 

 

 

Treatment FCS Pretrt P  LPDS Pretrt P  

8Br- 

cAMP 
-LDL 

10.44±2.52 
+LDL 

10.09±3.48 
ns  -LDL 

11.43±2.64 
+LDL 

9.48±1.46 
ns 

PMA  5.29±1.27 2.67±0.52 0.003 7.89±1.85 2.96±1.15 ns 

0.07 



60 

Table 3.3. The fold-change in STARD4 mRNA in response to cAMP or phorbol ester 

treatment in the presence of vehicle (-LDL) or low density lipoprotein at 24 h, 

following normal or lipoprotein deficient preculture (Pretrt) conditions.  

 

ns = not significant 

 

 

Treatment FCS Pretrt P  LPDS Pretrt P  

8Br- 

cAMP 
-LDL 

4.98±0.09  
+LDL 

2.92±0.60  
0.04  -LDL 

3.12±0.53  
+LDL 

1.65±0.54  
0.05  

PMA  5.10±0.87  5.85±1.00  ns 
0.35  

2.67±0.64  4.16±0.88  ns 
0.12  
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Figure 3.1. The effect of cyclic AMP analog (0.25 or 1 mM) or low dose phorbol ester 

(1 or 20 nM) treatment on STARD1 mRNA levels in human luteinized granulosa 

cells. Human luteinized granulosa cells were cultured for 4 days with 10% FCS prior to 

treatment in serum-free media for 6 or 24 h. Data are mean + SEM from n = 3-4 

experiments per time point, each with a different patient. Data for sH20/8Br-cAMP 

treatments and DMSO/PMA treatments were analyzed separately. Six-hour data were 

analyzed by T-test, and 24-h hour data were analyzed by ANOVA and Tukey’s post hoc 

test. *, **, and *** indicate there is a significant difference between the treatment and its 

vehicle control at the same time point at P<0.05, 0.01, and 0.001, respectively.  
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Figure 3.2. The effect of cyclic AMP analog (0.25 or 1 mM) or low dose phorbol ester 

(1 or 20 nM) treatment on STARD4 mRNA levels in human luteinized granulosa 

cells. Human luteinized granulosa cells were cultured for 4 days with 10% FCS prior to 

treatment in serum-free media for 6 or 24 h. Data are mean + SEM from n = 3-4 

experiments per time point, each with a different patient. Data for sH20/8Br-cAMP 

treatments and DMSO/PMA treatments were analyzed separately. Six-hour data were 

analyzed by T-test, and 24-h hour data were analyzed by ANOVA and Tukey’s post hoc 

test. * or ** indicate there is a significant difference between the treatment and its vehicle 

control at the same time point at P<0.05 and P<0.01, respectively.  
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Figure 3.3. The effect of cyclic AMP analog (0.25 or 1 mM) or low dose phorbol ester 

(1 or 20 nM) treatment on STARD6 mRNA levels in human luteinized granulosa 

cells. Human luteinized granulosa cells were cultured for 4 days with 10% FCS prior to 

treatment in serum-free media for 6 or 24 h. Data are mean + SEM from n = 3-4 

experiments per time point, each with a different patient. Data for sH20/8Br-cAMP 

treatments and DMSO/PMA treatments were analyzed separately. Six-hour data were 

analyzed by T-test, and 24-h hour data were analyzed by ANOVA and Tukey’s post hoc 

test. There were no significant differences. 

 



64 

 

 

Figure 3.4.The effect of blocking cholesterol utilization with the P450scc inhibitor 

Aminoglutethimide (AG) on STARD1 mRNA levels. Human luteinized granulosa cells 

were cultured for 4 days with 10% FCS prior to treatment in serum-free media for 24 h 

with 8Br-cAMP or PMA in the presence of vehicle (DMSO) or P450scc inhibitor 

Aminoglutethimide (100 M) to block cholesterol conversion to pregnenolone and thus 

prevent cellular depletion of cholesterol. Data represent mean + SEM of 3-4 experiments, 

each with 1 patient. Bars with the same letters are significantly different from each other 

by ANOVA and Tukey’s post-hoc test, P<0.05.  Only relevant are comparisons shown.  
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Figure 3.5.The effect of blocking cholesterol utilization with the P450scc inhibitor 

Aminoglutethimide (AG) on STARD4 mRNA levels. Human luteinized granulosa cells 

were cultured for 4 days with 10% FCS prior to treatment in serum-free media for 24 h 

with 8Br-cAMP or PMA in the presence of vehicle (DMSO) or P450scc inhibitor 

Aminoglutethimide (100 M) to block cholesterol conversion to pregnenolone and thus 

prevent cellular depletion of cholesterol. Data represent mean + SEM of 3-4 experiments, 

each with 1 patient. Bars with the same letters are significantly different from each other 

by ANOVA and Tukey’s post-hoc test, P<0.05.  Only relevant are comparisons shown.  
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Figure 3.6.The effect of blocking cholesterol utilization with the P450scc inhibitor 

Aminoglutethimide (AG) on STARD6 mRNA levels. Human luteinized granulosa cells 

were cultured for 4 days with 10% FCS prior to treatment in serum-free media for 24 h 

with 8Br-cAMP or PMA in the presence of vehicle (DMSO) or P450scc inhibitor 

Aminoglutethimide (100 M) to block cholesterol conversion to pregnenolone and thus 

prevent cellular depletion of cholesterol. Data represent mean + SEM of 3-4 experiments, 

each with 1 patient.  There were no significant differences. 
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Figure 3.7. Comparison of pre-culturing human luteinized granulosa cells in fetal 

calf serum (FCS) or lipoprotein deficient serum (LPDS), followed by treatment in 

serum-free medium with cAMP analog or phorbol ester in the presence or absence 

of exogenous human low density lipoprotein (hLDL) on STARD1 mRNA. Cells were 

initially cultured for 4 days under normal conditions (10% FCS) or lipoprotein deficient 

serum (10% LPDS) and then treated in serum-free medium for 24 h with the indicated 

agents. Data are mean + SEM from n = 4 experiments, each with a different patient. Data 

for sH20/8Br-cAMP treatments and DMSO/PMA treatments were analyzed separately.  

Data were analyzed by ANOVA followed by Tukey’s post hoc test. Bars with common 

letters are significantly different with P < 0.05. * indicates a significant difference 

between the two treatments, P < 0.05. Only relevant comparisons are shown.   
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Figure 3.8. Comparison of pre-culturing human luteinized granulosa cells in fetal 

calf serum (FCS) or lipoprotein deficient serum (LPDS), followed by treatment in 

serum-free medium with cAMP analog or phorbol ester in the presence or absence 

of exogenous human low density lipoprotein on STARD4 mRNA. Cells were initially 

cultured for 4 days under normal conditions (10% FCS) or lipoprotein deficient serum 

(10% LPDS) and then treated in serum-free medium for 24 h with the indicated agents. 

Data are mean + SEM from n = 4 experiments, each with a different patient. Data for 

sH20/8Br-cAMP treatments and DMSO/PMA treatments were analyzed separately.  

Data were analyzed by ANOVA followed by Tukey’s post hoc test.  Bars with common 

letters are significantly different with P < 0.05.  ** indicates that the two treatments 

were different, P<0.001. + indicates that the two treatments were different by T-test 

(P<0.05) and shows basal STARD4 mRNA levels increased with LPDS pretreatment 

(which reduces intracellular cholesterol stores).  Only relevant comparisons are shown.   
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Figure 3.9. Comparison of pre-culturing human luteinized granulosa cells in fetal 

calf serum (FCS) or lipoprotein deficient serum (LPDS), followed by treatment in 

serum-free medium with cAMP analog or phorbol ester in the presence or absence 

of exogenous human low density lipoprotein on STARD6 mRNA. Cells were initially 

cultured for 4 days under normal conditions (10% FCS) or lipoprotein deficient serum 

(10% LPDS) and then treated in serum-free medium for 24 h with the indicated agents. 

Data are mean + SEM from n = 4 experiments, each with a different patient. Data for 

sH20/8Br-cAMP treatments and DMSO/PMA treatments were analyzed separately.  

Data were analyzed by ANOVA followed by Tukey’s post hoc test.  There were no 

significant differences. 
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Figure 3.10. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, and actin proteins. The effects of cAMP and PMA on protein 

levels at 24-h treatment. Human luteinized granulosa cells from Patient #1376 were 

cultured for 4 days with 10% FCS prior to treatment with 8Br-cAMP (0.25 mM and 1 

mM) and PMA (1 nM and 20 nM) in serum-free media for 24 h. Whole cellular protein 

extracts were separated by SDS-polyacrylamide gel electrophoresis using 12% gels and 

transferred to PVDF membranes and probed with antibodies for the indicated proteins.(A) 

Membrane 1 (B) Membrane 2 (C) Membrane 3.  Membrane 3 data was provided by Dr. 

Steven King of Doug Stocco's laboratory (Texas Tech University, Lubbock, TX).  This 
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experiment has been performed with at least three different patients and although there is 

patient to patient variation, it is consistent with the overall trends with the exception that 

20 nM PMA was usually stimulatory to STARD1 in most patients. 
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Figure 3.11. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, SREBP2 (68 kDa and 120 kDa), and actin proteins. The effects 

of Aminoglutethimide on protein levels. Human luteinized granulosa cells from Patient 

#1578 were cultured for 4 days with 10% FCS prior to treatment with 8Br-cAMP (1 mM), 

PMA (20 nM), and vehicle (DMSO) or AG (100 μM) in serum-free media for 24 h. 

Whole cellular protein extracts were separated by SDS-polyacrylamide gel 

electrophoresis using 4-20% gradient gels and transferred to PVDF membranes and 

probed with antibodies for the indicated proteins.  (A) Membrane 1. (B) Membrane 2. 
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Figure 3.12. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, SREBP2 (68 kDa and 120 kDa), and actin proteins. The effects 

of Aminoglutethimide (AG) on protein levels. Human luteinized granulosa cells from 

Patient #1581 were cultured for 4 days with 10% FCS prior to treatment with 8Br-cAMP 

(1 mM), PMA (20 nM), and vehicle (DMSO) or AG (100 μM) in serum-free media for 24 

h. Whole cellular protein extracts were separated by SDS-polyacrylamide gel 



74 

electrophoresis using 4-20% gradient gels and transferred to PVDF membranes and 

probed with antibodies for the indicated proteins.  (A) Membrane 1. (B) Membrane 2. 
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Figure 3.13. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, and actin proteins. The effects of Aminoglutethimide (AG) on 

protein levels. Human luteinized granulosa cells from Patient #1619 were cultured for 4 

days with 10% FCS prior to treatment with 8Br-cAMP (1 mM), PMA (20 nM), and 

vehicle (DMSO) or AG (100 μM) in serum-free media for 24 h. Whole cellular protein 

extracts were separated by SDS-polyacrylamide gel electrophoresis using 4-20% gradient 

gels and transferred to PVDF membranes and probed with antibodies for the indicated 

proteins. 
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Figure 3.14.Western blot analyses of STARD1, STARD4, STARD6, CYP11A1, 

SREBP2 (68 kDa), and actin proteins. The effects of Aminoglutethimide (AG) on 

protein levels. Human luteinized granulosa cells from Patient #1624 were cultured for 4 

days with 10% FCS prior to treatment with 8Br-cAMP (1 mM), PMA (20 nM), and 

vehicle (DMSO) or AG (100 μM) in serum-free media for 24 h. Whole cellular protein 

extracts were separated by SDS-polyacrylamide gel electrophoresis using 4-20% gradient 

gels and transferred to PVDF membrane and probed with antibodies for the indicated 

proteins. 
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Figure 3.15. Western blot analyses of STARD1, STARD4, STARD6, CYP11A1, and 

actin proteins. The effects of lipoprotein deficient serum (LPDS) pre-culture or 

Aminoglutethimide (AG) on protein levels. Human luteinized granulosa cells from 

Patient #1559 were cultured for 4 days with 10% FCS or 10% LPDS prior to treatment 

with 8Br-cAMP (1 mM), PMA (20 nM), and vehicle (DMSO) or AG (100 μM) in 

serum-free media for 24 h.  Whole cellular protein extracts were separated by 

SDS-polyacrylamide gel electrophoresis using 10% or 12% gels and transferred to PVDF 

membranes and probed with antibodies for the indicated proteins.  (A) Membrane 1 

from a 12% gel.  (B) Membrane 2 from a 10% gel.   
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Figure 3.16. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, SREBP2 (68 kDa and 120 kDa), and actin proteins. The effects 

of lipoprotein deficient serum (LPDS) pre-culture on protein levels.  Human 

luteinized granulosa cells from Patient #1641 were cultured for 4 days with 10% FCS or 

10% LPDS prior to treatment with 8Br-cAMP (1 mM), PMA (20 nM), and vehicle 

(saline/EDTA) or human LDL (hLDL, 50 μg/ml) in serum-free media for 24 h. Whole 

cellular protein extracts were separated by SDS-polyacrylamide gel electrophoresis using 

4-20% gradient gels and transferred to PVDF membranes and probed with antibodies for 

the indicated proteins. There was a big bubble at the site from row 10-13 of the 

membrane and thus protein levels in this region are underrepresented. 

 



79 

 

 

Figure 3.17. Western blot analyses of STARD1, phosphorylated STARD1, STARD4, 

STARD6, CYP11A1, SREBP2 (68 kDa and 120 kDa), and actin proteins. The effects 

of lipoprotein deficient serum (LPDS) pre-culture on protein levels.  Human 

luteinized granulosa cells from Patient #1644 were cultured for 4 days with 10% FCS or 

10% LPDS prior to treatment with 8Br-cAMP (1 mM), PMA (20 nM) and vehicle 

(saline/EDTA) or human LDL (hLDL, 50 μg/ml) in serum-free media for 24 h. Whole 

cellular protein extracts were separated by SDS-polyacrylamide gel electrophoresis using 

4-20% gradient gels and transferred to PVDF membranes and probed with antibodies for 

the indicated proteins.  
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Figure 3.18. Western blot analyses of STARD1, phosphorylated STARD1, and actin 

proteins.  The effects of lipoprotein deficient serum (LPDS) pre-culture on protein 

levels with 6 h treatments. Human luteinized granulosa cells from Patient #1688 were 

cultured for 4 days with 10% FCS or 10% LPDS prior to treatment with 8Br-cAMP (0.25 

mM and 1 mM) and PMA (1 nM and 20 nM), in serum-free media for 6 h. Whole cellular 

protein extracts were separated by SDS-polyacrylamide gel electrophoresis using 4-20% 

gradient gels and transferred to PVDF membranes and probed with antibodies for the 

indicated proteins.  Data with FCS pretreatment are representative of at least three 

different patients. 
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Figure 3.19.The distribution of recombinant human STARD4 in transfected COS-1 

cell as assessed by immunofluorescence confocal microscopy using the STARD4 
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primary antibody. COS-1 cells were cultured and transfected on coverslips and 

processed for immunofluorescence confocal microscopy. A-G represent serial images 

from a Z-stack (63X), and H represents a 3D image for the same visual field under the 

microscope. DAPI is shown in blue and STARD4 primary antibody detected by 

Cy3-labeled donkey anti-rabbit secondary antibody is shown in red.  The majority of 

positive immunoreactivity was present in the nucleus.  Scale bar represents 20 μm.  
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Figure 3.20.The distribution of recombinant human STARD4 in transfected COS-1 

cell as assessed by immunofluorescence confocal microscopy using the DDK-tag 
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primary antibody to detect human STARD4. COS-1 cells were cultured and 

transfected on coverslips and processed for immunofluorescence confocal microscopy. 

A-G represent serial images from a Z-stack (63X), and H represents a 3D image for the 

same visual field under the microscope. DAPI is shown in blue and DDK (Flag)-tag 

primary antibody which should recognize Flag-tagged STARD4 was detected by 

Cy3-labeled donkey anti-mouse secondary antibody is shown in red. The majority of 

positive immunoreactivity was present in the nucleus.  Scale bar represents 20 μm.  
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Figure 3.21.The distribution of recombinant human STARD6 in transfected COS-1 

cell as assessed by immunofluorescence confocal microscopy using the STARD6 
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primary antibody. COS-1 cells were cultured and transfected on coverslips and 

processed for immunofluorescence confocal microscopy. A-G represent serial images 

from a Z-stack (63X), and H represents a 3D image for the same visual field under the 

microscope. DAPI is shown in blue and STARD6 primary antibody detected by 

Cy3-labeled donkey anti-rabbit secondary antibody is shown in red. The majority of 

positive immunoreactivity was present in the cytoplasm. Scale bar represents 20 μm.  
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Figure 3.22.The distribution of recombinant human STARD6 in transfected COS-1 

cell as assessed by immunofluorescence confocal microscopy using the DDK-tag 
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primary antibody to detect human STARD6. COS-1 cells were cultured and 

transfected on coverslips and processed for immunofluorescence confocal microscopy. 

A-G represent serial images from a Z-stack (63X), and H represents a 3D image for the 

same visual field under the microscope. DAPI is shown in blue and DDK (Flag)-tag 

primary antibody which should recognize Flag-tagged STARD6 was detected by 

Cy3-labeled donkey anti-mouse secondary antibody is shown in red. The majority of 

positive immunoreactivity was present in the cytoplasm with some evident in the nucleus. 

Scale bar represents 20 μm.  
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Figure 3.23. Negative control images for COS-1 cells transfected with either 

STARD4 or STARD6. Cells were cultured and transfected on coverslips and processed 

for immunofluorescence confocal microscopy. Images were taken at 63X. (A) a negative 

control image for STARD4 antibody staining (shown in Figure 3.19) using the 

Cy3-labeled donkey anti-rabbit secondary antibody only (B) a negative control image for 

the DDK (Flag) tag antibody used for STARD4 staining (shown in Figure 3.20) using the 

Cy3-labeled donkey anti-mouse secondary antibody only, (C) a negative control for 

STARD6 antibody staining (shown in Figure 3.21) using the Cy3-labeled donkey 

anti-rabbit secondary antibody only, (D) a negative control for DDK (Flag) tag antibody 

used for STARD6 staining (shown in Figure 3.22) showing images with Cy3-labeled 

donkey anti-mouse secondary antibody only.  DAPI is shown in blue and Cy3 signal 

would be red if present. Scale bar indicates 20 μm.  
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Figure 3.24.Western blot analysis of transfected COS-1 cells used for the F2 steroid 

assay showing STARD1, STARD6, CYP11A1 and actin proteins. COS-1 cells were 

transfected with expression plasmids for human STARD1, human STARD6, or 

pcDNA3.1 (empty vector), and F2 (P450scc complex). After a pre-expression period cells 

were treated with vehicle, 0.25 mM 8Br-cAMP and/or 5μM 22R-OH-Chol for 24 hours.  

Whole cellular protein extracts were separated by SDS-polyacrylamide gel 

electrophoresis using 4-20% gradient gels and transferred to PVDF membranes and 

probed with antibodies for the indicated proteins. Lane # 1: STARD1 and F2 plasmids; # 

2: STARD1 and F2 plasmids, 8Br-cAMP treatment; # 3: STARD6 and F2 plasmids; # 4: 

STARD6 and F2 plasmids, 8Br-cAMP treatment; # 5: pcDNA3.1 and F2 plasmids; # 6: 

pcDNA3.1 and F2 plasmids, 8Br-cAMP treatment; # 7: pcDNA3.1 and F2 plasmids, and 

22R-OH-Chol treatment; # 8: pcDNA3.1 and F2 plasmids, 8Br-Camp and 

22R-OH-Choltreatment; # 9: without transfection or treatment.  
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Figure 3.25.Pregnenolone production by transfected COS-1 cells using the F2 

steroid assay. COS-1 cells were transfected with the F2 plasmid and the indicated 

expression plasmid, and following a recovery period, cells were treated with vehicle or 

0.25 mM 8Br-cAMP for 24 hours. Pregnenolone concentrations in the media were 

measured by ELISA and normalized for renilla luciferase values (arbitrary light units, 

ALU) to control for transfection efficiency.(A) pregnenolone production in the presence 

of STARD1, STARD6, or pcDNA3.1 and the F2 plasmid or in the non-transfected control, 

(B) pregnenolone production in the pcDNA3.1/F2 transfection treated with 5 μM 

22R-OH-cholesterol (22R-OH-Chol) which freely permeates the mitochondria and served 

as a positive control. 
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Chapter IV: Discussion

Our data showed that with 6 hour treatment or 24 hour treatment, cAMP analog 

increased the mRNA and protein level of STARD1 which occurred most likely through 

the PKA pathway in human granulosa cells. Several publications have showed similar 

results in MA-10 Leydig cell lines (Clark et al, 1994) and proliferating human granulosa 

cells (Devoto et al, 1999) on the protein level. For the mRNA level, another in vitro study 

showed that there was a 5-fold increase for STARD1 mRNA level with 24 hour treatment 

with 8Br-cAMP in the proliferating granulosa lutein cells (Kiriakidou et al, 1996), and it 

was similar with our result. However, in the same study fresh luteinized granulosa cells 

showed a significant increase in STARD1 mRNA with 6 hour treatment and not later, 

which differs from our observations where STARD1 was still up at 24 hours. Although 1 

mM 8Br-cAMP was used in both our and their experiments, the culture conditions were 

different such that we used DMEM/F12 and they used DMEM, which may explain the 

difference in part. Also the hormone regimen used to stimulate follicle growth in patients 

might have been quite different.   

 We found that 20 nM PMA increased mRNA level of STARD1 significantly, and 

there was numerically nonsignificant stimulation by 1 nM PMA due to a larger variation 

among different patients. Moreover, the protein levels in most patients except patients 
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#1581, #1624 and #1641, were also shown to increase under the stimulation of 20 nM 

PMA, and this result is consistent with Manna et al (2009) which showed 10 nM PMA 

increased STARD1 protein level in MA-10 cells. Nonetheless, Kiriakidou et al. (1996) 

showed that PMA decreased its expression in granulosa lutein cells. This result may 

because of the higher concentration of PMA (162 nM) used in their experiment, as higher 

concentrations of phorbol ester can lead to a decrease in PKC activity.  

 We found that in several patients that low dose PMA increased not only STARD1 

protein but that the protein was phosphorylated supporting our hypothesis. The study of 

Jo et al. (2005) gave a different result in the MA-10 Leydig cell line, but similar result in 

R2C Leydig cells. MA-10 cells only express STARD1 and synthesize steroid hormones 

when the cells were stimulated by trophic hormones or cAMP analog. On the other hand, 

R2C cells had a basal level of STARD1 protein and steroid production without any 

exogenous hormone stimulation. The result of MA-10 cells showed that PKC activation 

(with low dose PMA) increased the protein level of STARD1, but without the 

phosphorylation lacked its function and thus unable to produce steroid hormone. 

Moreover, when R2C cells were treated with PKA inhibitor, the cells expressed lower 

levels of STARD1 proteins and steroid hormones (Rao et al, 2003). This result showed 

that R2C cells have their own PKA signaling activity. Our data are also consistent with 

work in ovine luteal cells were STARD1 is present as a phosphorylated protein in the 

presence of PMA due to high endogenous PKA activity characteristic of these fully 

luteinized cells (Bogan and Niswender, 2007). In our experiment, human luteinized 
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granulosa cells are collected after the simulated LH surge (hGC injection), and thus their 

phenotype is more like the mature ovine luteal cells. As a consequence, the higher level 

of phosphorylated STARD1 with the low dose PMA treatment is likely due to the 

presence of the basal level of PKA activity induced by luteinization.  

 As PKA and PKC pathways regulate STARD1 and progesterone production in 

human ovarian cells, patients that lack STARD1, such as in CLAH, would not make 

significant levels of sex steroid hormones in response to activation of these pathways, 

which is supported by the fact they are infertile. Furthermore, without STARD1, 

accumulated cholesterol in the cytoplasm is harmful and finally kills the steroidogenic 

cells.  On the other hand, excess STARD1 during ovarian follicle maturation, such as in 

the case of diminished ovarian reserve patients (Skiadas et al, 2012) may result in too 

much steroid synthesis causing a premature increase in pregnenolone or progesterone 

which may interfere with ovulation, oocyte quality, or implantation. STARD4 has also 

been shown to be elevated in diminished ovarian reserve patients and could potentially 

facilitate cholesterol transport to the mitochondrion resulting in abnormally high steroid 

production as well.  There are no studies yet to indicate STARD6 is abnormal in any 

disease.  Taken together, abnormalities on both STARD1 and STARD4 levels may affect 

steroidogenesis by reduced or excessive cholesterol transport leading to ovarian 

dysfunction.  

 STARD4 has previously been shown to be regulated by sterol content (Clark, 2012). 

LPDS pretreatment, which results in cells with lower cholesterol stores, led to an 
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increased basal level of the expression of STARD4 mRNA level, but not protein level. A 

new study also showed a similar result in HepG2 for the mRNA level, and also showed 

an increase in protein level (Garbarino et al, 2012) --This reference is incorrect-please 

insert correct one. One possibility for STARD4 mRNA and proteins being not coupled in 

our cells may be due to the stability of STARD4 proteins. The difference also may be the 

results of the different cell types.  It may also be a temporal difference between the 

mRNA and protein regulation such that we need to evaluate longer treatment times.  It is 

interesting that cholesterol depletion can cause increased basal level of STARD4 mRNA, 

because the transcription level of the STARD4 gene is regulated by SREBP2 (Soccio et al, 

2005). When the cholesterol concentration of the ER declines, SREBP2 will be activated 

to increase cholesterol related gene transcription (including STARD4 gene) in the nucleus. 

This is most likely why the basal level of STARD4 mRNA increased. However, STARD4 

mRNA was not shown to further increase under stimulatory treatments beyond that of 

FCS pretreated cells receiving cAMP or PMA, which infers that there is maximum 

response of the STARD4 gene that can be achieved by these cells when challenged with 

such agonists. 

 STARD4 mRNA was lower in the presence of hLDL. hLDL is an exogenous 

cholesterol source that upon uptake contributes to the intracellular cholesterol pool.  In 

FCS pretreated cells it slows the depletion of cholesterol by stimulated steroidogenesis.  

It can partly restore the loss of cholesterol resulting from the LPDS pretreatment. Also 

hLDL blunted the increase of STARD4 mRNA level. Although in the presence of hLDL 
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the PMA affect was not significantly lower than the same treatments without hLDL, PMA 

in the presence of hLDL failed to significantly increase STARD4 above vehicle levels 

showing that cholesterol content did affect the STARD4 mRNA response also although 

not to the same extent as with the cAMP-treated samples. Thus, exogenous cholesterol 

most likely blunted the activation of SREBP2, reducing the induction of STARD4. 

Unfortunately, no consistent differences in the protein level of SREBP2 (68 kDa or 120 

kDa) could be determined by our western blots as there was a lot of inconsistency in the 

blot quality and patient responses.  

 Our result for STARD4 localization (Figure 3.19 and Figure 3.20) found it to be 

nuclear and cytoplasmic in the transfected COS-1 cells.  This finding was partly 

different than a previous study that showed STARD4 resided in the cytosol and 

membrane fractions in 3T3-L1 cells (Rodriguez-Agudo et al, 2011). The different 

findings could be the result of different cell types as 3T3-L1 cells have endogenous 

STARD4 protein with a role in metabolism. On the other hand, COS-1 cells do not 

express STARD4 protein without transfection. Furthermore, without a normal 

endogenous function in the COS-1 cells, STARD4 proteins does not necessarily localize 

to the same sites as it would in a cell where it has a metabolic role. In addition, STARD6 

images showed that the most of the immunoreactivity resided outside the nucleus in the 

cytoplasm (Figure 3.21 and Figure 3.22.).  

 There is no prior evidence showing STARD4 protein nuclear localization, but studies 

showed the STARD6 proteins were mostly found in nucleus with less in the cytosol in 
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the cultured neuronal cells (Chang et al, 2010). It has been postulated that STARD6 may 

be involved in the transcriptional regulation of cholesterol homeostasis (Chang et al, 

2013), but there is no data to support this idea. However, the STARD6 immunoreactivity 

in our experiment localized mostly outside the nucleus and appeared to be associated 

with some type of vesicle, which might be expected if it participates in sterol transport.  

Further studies need to be performed to answer the question of specific subcellular 

location are needed and should be performed with antibodies that identify organelles or 

other organelle markers. The future goal will be to perform these studies in the human 

granulosa cells.   

STARD6 protein increased the pregnenolone production transfected COS-1 cells. 

This result showed the STARD6 protein was capable of facilitating de novo 

steroidogenesis. Similar to our studies, Soccio et al (2005) transfected STARD4 and the 

genes for converting cholesterol to progesterone in COS cells and found that STARD4 

was able to increase progesterone production. STARD4 protein also had a similar but 

lower ability for cholesterol transport than STARD1.  

The COS-1 cell line contains both STARD1 dependent and independent activities 

(Huang and Miller, 2001). Thereby, in the negative vector only control a low level of 

pregnenolone was observed with the F2 plasmid, and no pregnenolone was synthesized in 

non-transfected COS-1 in the same experiment. The same kind of studies for STARD4 

and STARD5 have been done, and both of the proteins can also increase steroidogenesis, 

like our findings for STARD6 (Soccio et al, 2005a). Moreover, in the STARD1 
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transfected cells, pregnenolone levels were much higher than the levels in the STARD6 

transfected cells regardless of 8Br-cAMP treatment. This result is probably because 

STARD1 protein has an N-terminal sequence that can target to the mitochondrial 

membrane. As a consequence, cholesterol delivery across the mitochondrial membrane is 

more efficiently transported by STARD1 protein than by STARD6 protein. Nevertheless, 

N-62 STARD1, which lacks targeting sequence, and wild type STARD1 had similar 

enhancement of steroidogenesis (Huang and Miller, 2001). N-62 STARD1 and STARD6 

cannot anchor to the mitochondrial membrane, so the mechanism of the cholesterol 

transport abilities of N-62 STARD1 and STARD6 remains a question.  

In the future research, it will be useful to localize STARD4 and STARD6 in human 

luteinized granulosa cells to determine the different subcellular localization of the two 

proteins in primary cells. This information will be critical to understanding how these 

proteins function in normal steroidogenic cells.  These studies should be performed both 

under vehicle and agonist treated conditions to see if the proteins are mobilized between 

cellular compartments.  In addition, these studies can be performed with normal 

conditions and other conditions that alter intracellular cholesterol content.  Another 

avenue of study is to more thoroughly investigate STARD4 and STARD6 function in 

human granulosa cells by reducing each protein through the use of RNA interference 

technique.    

 In summary, we have found that STARD1 and STARD4 show somewhat similar 

regulation by PKA and PKC agonists, 8Br-cAMP and low dose PMA, whereas STARD6 
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was not regulated. STARD4 showed most regulation by manipulation of intracellular 

cholesterol regulation. STARD1 protein and its phosphorylation were also enhanced by 

agonist treatment, whereas STARD4 and STARD6 protein were not at the time points 

examined.  Recombinant STARD4 and STARD6 expressed in COS cells showed 

different distributions with STARD4 being nuclear and cytoplasmic and STARD6 being 

mostly cytoplasmic with a punctuate appearance reminiscent of vesicular association.  

Finally, STARD6 when expressed in COS cells with the genes encoding the P450scc 

system was able to modestly enhance de novo steroidogenesis. These data provide new 

insight into the regulation of START domain proteins in a relevant primary ovarian cell.  
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