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Abstract

Consider the following problem arising from the study of human problem solving: Let

G be a vertex-weighted digraph with marked “start” and “end” vertices. Suppose

that a random walker begins at the start vertex, steps to neighbors of vertices with

probability proportional to their weights, and stops upon reaching the end vertex.

Could one deduce the weights from the paths that many such walkers take? An

iterative numerical solution to this reconstruction problem is analyzed for when the

empirical mean occupation times of the walkers is given. The existence of a choice

of weights that gives rise to a given list of expected occupation times is considered,

showing several equivalent conditions for such a solution to exist, and giving an

algorithm for finding a solution when there is one.

A generalization of projective space, which we refer to as "graphical projective

space," arising from these questions is then considered which takes as an input a

hypergraph. Some of the properties of these spaces are discussed, using a natural

CW-complex to distinguish between them, and some small examples are given.

Finally, graphical projective spaces are applied as natural spaces for vertex weights

on a graph, and the problem of how to extend the solution of the random-walk

problem on the graph to the appropriate graphical projective space is considered.

Several open problems are discussed.
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Chapter 1

introduction

Single-agent search problems are commonly modeled as a graph G, with an edge from

x ∈ V (G) to y ∈ V (G), written x→ y, if it is possible to move from state x to state

y. We will not make any assumptions about such moves being reversible, so that G

may be a directed graph. We distinguish a vertex vstart as the starting vertex, and

vend as an ending vertex. These model the starting point and solution of a problem

being solved.

Some typical examples of such single-agent search problems include:

1. Vertices are states of a Rubik’s Cube or a 15-puzzle, with an edge between two

vertices if it is possible to transform one into the other by an allowable move.

Here vstart is the starting state, and vend is the solved puzzle.

2. Vertices are web pages, with edges corresponding to hyperlinks. In this case,

vstart may be a company homepage, and vend a page where purchases are made.

3. Vertices are the positions of a chess board, edges correspond to legal moves,

vstart is the initial position given by a chess puzzle, and vend is the set of winning

configurations.

4. Vertices are a grid of points in a mouse maze, with edges corresponding to

feasible moves, vstart is the cage door and vend is the cheese.

In many such examples, a researcher has access to the state of the solver, but

not to their reasoning process (their “policy” to use machine learning parlance). The
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amount of time a subject takes to find the solution state (the “latency”) can serve as

a useful proxy for their knowledge level, but this single number is a somewhat crude

measurement. One might strive to learn in addition the worth attributed by the

solver to intermediate states, i.e. the solver’s “value function.” Such detailed profiles

of preferences could aide in, for example, improving customer service, evaluating

individual expertise, estimating how well a lab animal has learned a task, tuning a

software game-playing engine, or identifying gaps in students’ knowledge. However,

the solver, be it human, lab animal, or machine, may be long gone, may not have

conscious knowledge of this information, may be secretive, or may not be able to

express their thoughts in a human-readable format. Nonetheless, by studying the

path that many instances of the solver take, one could hope to reconstruct such

valuational ascriptions without the involvement of the solvers. This strategy is akin

to using the density of oil stains in a parking lot to see which spots are most popular,

or evaluating historical road use by the depth of wheel-ruts [26].

This paper models the solution process as a random walk on the graph G, starting

at vstart and ending at vend. A novice solver may follow something as simple as a

uniform random walk, with each neighbor at a given step having the same probability

as any other neighbor. A more experienced solver might follow a more direct route

through the graph, as they will be inclined to move closer to the solution state with

each move.

Much study of random walks has been done on simple graphs [15], occasionally

using edge weights to modify the probabilities. More recently, random walks on

directed graphs with edge weights have been studied to analyze the PageRank algo-

rithm [3]. Vertex weights specify the proportional probabilities of moves, and encode

the intuition of valuing a particular state, no matter where the path is coming from.

Furthermore, the dimension of the space of vertex weights is the same as the dimen-

sion of the space of vectors of expected occupation times. This severely limits the
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possible sets of weights which give rise to a particular vector of expected occupation

times, whereas the space of edge weights which give rise to the same vector would be

a multi-dimensional space.

In the second chapter, this model is described in greater detail and vertex weights

are related to empirical mean occupation times. The problem of determining the

weights from the occupation times is resolved by using an iterative algorithm to

obtain a numerical solution. The analysis includes a characterization of solution

existence: a description of which sets of occupation times admit a set of weights that

give rise to it. This is followed by an analysis of the number of steps required, and

the rate of convergence of the algorithms involved. Further results are proven for the

special case of non-directed graphs.

Our main results are a formula to find the expected occupation times based on a

set of weights, and a characterization of solution existence for the occupation times.

The following two theorems give the results; all of the necessary notation is defined

in Chapter 2.

Proposition 1. The expected number of visits in a weighted random walk from the

start vertex to the end vertex is given by the coordinates of the unique eigenvector D

with Dn = 1 associated with the eigenvalue 1 of the matrix

P̃ = diag(W ) · ÃT ·
(
diag(Ã ·W )

)−1

That is, P̃D = D.

Theorem 3. The following are equivalent

1. There exists a set of weights W such that D is the vector of expected occupation

times on G.

2. D is in the relative interior of C with respect to H.
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3. There exists Ω ⊆ Λ which covers all edges of G such that D is a strict convex

combination of the traces of walks in Ω.

4. For every 1 ≤ i ≤ c and for every S ⊆ Ci

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = Ci or S = ∅.

5. For every S ⊆ V , ∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = ∪i∈σCi for some σ ⊆ [c]

6. For every set of representatives, R, there exists a set of weights W such that

Fi(W ) ≤ 0 for all i ∈ V −R.

In the third chapter an extension of the solution space is presented which will allow

non-finite weights. This is discussed in a general format, where an analog of projective

space is defined, examples of which can be parameterized via hypergraphs. The term

“graphical projective space” will be used to refer to these spaces. The construction of

these spaces are discussed, and some of the properties are described. This is followed

by further analysis of the special case where the underlying hypergraph is a simple

graph.

The main results from the third chapter are in the following theorems, with the

necessary notation defined in that chapter.

Theorem 46. PH forms a CW-complex with open cells EH .

Theorem 47. There is a bijection between the open cells C ∈ EH and the chains of

non-empty subsets of the vertices, S, V = S0 ) S1 ) S2 ) . . . ) Sk = ∅, such that

for 0 ≤ i < k, every vertex in Si − Si+1 is connected to a vertex in Si−1 − Si in the

graph H − Si+1. C is isomorphic in the category of CW-complexes to PH↘S.
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Corollary 51. The CW-complex PH is isomorphic in the category of CW-complexes

with natural CW-complex of the zonotope formed under projection onto the cut space

B.

The fourth chapter combines graphical projective spaces with the vertex-weighted

random walk problem discussed in chapter two; allowing the vertex weights to come

from graphical projective spaces as opposed to being restricted to finite positive

weights. Analagous results are proven to those in Chapter 1, primarily in the form

of the following theorem:

Theorem 4. The following are equivalent

1. There exists a set of weights W ∈ PH such that I − P (W ) is invertible, and

D ∈ Rn
>0 is the vector of expected occupation times on G.

2. D is in the intersection of Rn
>0 and C

3. There exists a subgraph G′ of G where every vertex is on a v1 to vn path such

that there exists Ω ⊆ Λ which covers all edges of G′ such that D is a strict

convex combination of the traces of walks in Ω.

4. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding graph H ′ with c′ components C ′i such that for 1 ≤ i ≤ c′ and for

every S ⊆ C ′i ∑
vj∈S

Dj − ξS ≤
∑

vj∈N−(S)
Dj,

with equality iff S = C ′i or S = ∅.

5. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding graph H ′ with c′ components C ′i such that for every S ⊆ V ,

∑
vj∈S

Dj − ξS ≤
∑

vj∈N−(S)
Dj,

with equality iff S = ∪i∈σCi for some σ ⊆ [c]
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6. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding hypergraph H ′ such that for every set of representatives of H ′, R,

there exists a set of weights W such that Fi(W ) < 0 for all i ∈ V −R.

7. There exists a set of weights W ∈ Rn
>0 such that D is the expected occupation

times on G′.

The conclusion discusses some of the remaining open problems that arise in con-

nection with these questions.

6



Chapter 2

Random Walks on Vertex-Weighted Graphs

2.1 Introduction and Definitions

The model used involves a directed graph G with vertex set V , |V | = n, and two

distinguished vertices vstart and vend. The vertices are all labeled v1, v2, . . . , vn, and

without loss of generality it is assumed that vstart = v1 and vend = vn. Based on this

vertex ordering, the adjacency matrix for G, A, can be defined: Aij = 1 if vi → vj. It

is assumed that every vertex in G is on some walk from vstart to vend, and similarly for

every edge. If the graph which arises in some application does not have this property,

then it makes sense to restrict to the largest subgraph which does, as these are the only

edges and vertices which will participate in the relevant random walks. The weights

of each vertex are given by W : V → R>0. Here R is the set of all real numbers, and

R>0 is the set of positive real numbers. W is treated as a vector in Rn
>0, the cartesian

product of n copies of R>0. To facilitate this Wi is used as an abbreviation for W (vi).

For S ⊆ V , in-neighborhood of S is defined as N−(S) = {v ∈ V : ∃s ∈ S, v → s},

and the out-neighborhood of S as N+(S) = {v ∈ V : ∃s ∈ S, s → v}. Note that

S ∩ N−(S) and S ∩ N+(S) are allowed to be non-empty. The expected occupation

times of the vertices are given by D : V → R. D is treated as a vector as well, with

Di = D(vi). Note in particular that D(vend) = Dn = 1, since all of the walks visit

the end vertex exactly once.

The formulas involved in the calculations can be written concisely in matrix for-

mat, so some matrix notation is used. In particular, diag(X) is the square matrix
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with the vector X along the diagonal and 0’s everywhere else. I is the identity ma-

trix, with the size being evident from context. χi is the vector with a 1 in the ith

coordinate and 0’s everywhere else. | · | is used to refer to the L2 norm.

Given x, y ∈ V , P (x, y) is defined as the probability of moving from x to y during

the random walk. If x9 y, then P (x, y) = 0. If x→ y,

P (x, y) = W (y)∑
z∈N+(x) W (z) .

Note that P can also be written in matrix form as

P = diag(W ) · AT · (diag(A ·W ))−1,

where Pij = P (vj, vi), the probability of moving from vj to vi. Note that the roles of

i and j are “reversed” from the convention employed for the adjacency matrix.

2.2 Finding the Occupation Times

The first problem is to figure out how to find the expected occupation times given a

particular graph and set of weights. First note that for any vertex except v1,

Di =
n∑
j=1

PijDj.

If this were true for all of the vertices, then D would be an eigenvector of P . Note

that, N+(vn) = ∅, so the last column of A is all 0’s. Define Ã, such that Ãij = Aij

if i 6= 1 and j 6= n, and Ã1n = 1. In essence this is the same as adding an edge from

vend to vstart. Using this definition the following proposition can be proven.

Proposition 1. The expected number of visits in a weighted random walk from the

start vertex to the end vertex is given by the unique eigenvector D with Dn = 1

associated with the eigenvalue 1 of the matrix

P̃ = diag(W ) · ÃT ·
(
diag(Ã ·W )

)−1

That is, P̃D = D.

8



Proof. By the definition of Ã, P̃ij = Pij except when i = 1 and j = n, and P̃ is still

a probability matrix for some graph, call it G̃. Note that G̃ is G with an added edge

from vn to v1. As such, the columns of P̃ sum to 1, so it is stochastic. By definition

every vertex has a path in G to vn, and a path from v1, making G̃ strongly connected.

Ã is irreducible, and therefore P̃ is as well. By the Perron-Frobenius theorem, P̃ has

1 as an eigenvalue with a unique eigenvector E with En = 1, and all of its entries are

positive. It remains to show that this vector E is the same as D. For this, recall that

for i 6= 1,

Di =
n∑
j=1

PijDj,

which can be rewritten as

Di =
n∑
j=1

P̃ijDj.

Since all walks start at v1, there is always a visit to v1 which does not have a pre-

decessor. This implies that D1 is 1 greater than the weighted sum of its neighbors

values. For i = 1 we have,

D1 = 1 +
n∑
j=1

P1jDj = P̃1nDn +
n−1∑
j=1

P̃1jDj =
n∑
j=1

P̃1jDj.

Then D = P̃D, and D is an eigenvector of P̃ with eigenvalue 1, and Dn = 1 by

assumption. As shown above this vector is unique, so D = E.

This process can be made slightly simpler by using the assumption that Dn = 1

to reduce the dimensionality of the matrices by 1. Define P as the (n− 1)× (n− 1)

leading principal submatrix of P . P is also Similarly, define D as the vector formed

by the first n− 1 coordinates of D.

Theorem 2.

(I − P )D = χ1

(I − P ) is invertible, so

D = (I − P )−1χ1

9



Proof. By proposition 1, (I − P̃ )D = 0. Writing this in block matrix form for the

first n− 1 rows shows that

0 = [I − P − χ1] ·

 D

1

 = (I − P )D − χ1

It suffices to show that I − P is invertible. P̃ has a one-dimensional eigenspace for

the eigenvalue 1 by the Perron-Frobenius theorem, which implies that I − P̃ has a

nullity of 1 and a rank of n − 1. The Perron-Frobenius eigenvector has all positive

coordinates, so any column can be written as a linear combination of all of the other

columns. Since each column of P̃ sums to 1, each column of I − P̃ sums to 0, so the

last row can be written as the negative sum of all the other rows. The removal of

the last column, and the last row do not affect the rank of the matrix, so I − P is

invertible.

The next section examines when a vector D permits a set of weights W so that

D is the vector of expected occupation times for W , and how W can be computed in

that case.

2.3 Finding the Weights

By the above work given a set of weights W , 0 = (I − P (W ))D − χ1. Given a set of

expected occupation times D, define F (W ) = (I − P (W ))D − χ1. F : Rn → Rn, so

Fi refers to the ith component of F . Any set of weights W for which D is the set of

expected occupation times will have F (W ) = 0, so the question becomes one of when

F has a zero in Rn
>0, and how to find it in the case that such a zero exists.

An obvious approach from here would be to use Newton’s method to approximate

the root. This works sometimes, and converges quadratically, as expected, when

such a zero exists. Consider the following example on C7, the complement of the

7-cycle, where the starting and ending vertices are not adjacent. If all vertices are
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given a weight of one, then the expected occupation times are (2.1099, 0.83517, 1.0989,

1.0549, 1.0110, 1.2747, 1). Assume these occupation times for D, and apply Newton’s

method to solve for the weights. Then, fixing Wn = 1, the result of Newton’s method

is shown in Tables 2.1 and 2.2.

Table 2.1 Newton’s Method on C7

1.000000 2.182303 1.000000 1.000000 1.000000 1.000000
0.082406 -0.056562 0.059299 0.150052 0.298105 0.253446
0.037769 0.006201 0.004263 -0.002019 0.173600 0.195977
0.037604 0.030471 0.005884 0.003796 -0.004851 0.026110
0.107309 0.098305 -0.010239 -0.010828 -0.027468 -0.023338
0.057032 0.033218 0.098918 0.100978 0.062051 0.054585
0.290475 0.284835 0.277364 0.277247 0.287089 0.290019
0.618280 0.617896 0.617637 0.617710 0.618096 0.618289
0.890610 0.890601 0.890600 0.890606 0.890614 0.890616
0.991025 0.991025 0.991025 0.991025 0.991025 0.991025
0.999939 0.999939 0.999939 0.999939 0.999939 0.999939

In Table 2.1 the vector is converging to all ones, and seems to be doing so quadrat-

ically in each variable. The problem with using Newton’s method is that the basins

of attraction can be quite small, irregular, and difficult to predict. While it could be

useful in some circumstances, this is not a good general method to solve for weights.

The reality of this is made more evident by Table 2, where the previous starting point

has been changed by a small amount.

Table 2.2 Another Newton’s Method on C7

1.000000 2.182304 1.000000 1.000000 1.000000 1.000000
0.082405 -0.056563 0.059298 0.150050 0.298104 0.253445
0.037753 0.006184 0.004247 -0.002035 0.173591 0.195968
0.037176 0.030043 0.005515 0.003426 -0.004999 0.025971
0.099878 0.090665 -0.027041 -0.027633 -0.045961 -0.041732
-0.839434 -0.945517 -0.481074 -0.533826 -1.055920 -1.150283
-2.162853 -2.418231 -2.198071 -1.466400 -1.251899 -1.420593
-4.952298 -4.696043 -4.970810 -5.525099 -5.601439 -5.427250
-27.894333 -27.982593 -27.879736 -27.688253 -27.630389 -27.710694
-621.339288 -621.311739 -621.343273 -621.396474 -621.415349 -621.392844
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Convergence is lost completely, and the coordinates are sent off towards infinity.

Depending on the starting point, Newton’s method can even converge to a set of

negative weights. In order to get around the problems with Newton’s method, an

alternate approach is used, which is to approximate the function with something

other than linear functions. For this approach, an algorithm is given to find a good

starting position as long as D satisfies a certain property. It is shown that all D’s for

which a set of weights exists have this property.

The final result on this matter which is proven is a list of equivalent properties for

D. In order to state these properties, a few more definitions are needed. The trace

of a walk ω at vi is defined as tri(ω), the number of times ω visits vi. Then tr(ω) is

the vector giving the number of visits to each vertex. Define the set of proper walks

Λ as the set of walks which start at v1, end at vn, and visit vn only once. For ω ∈ Λ,

let p(ω) be the probability of the walk ω. A set Ω ⊆ Λ covers an edge e ∈ G if there

exists a walk ω ∈ Ω such that ω uses the edge e. Ω covers all edges of G if such an ω

exists for each edge in G. For a set of points S ∈ Rn, the affine hull of S is defined

as the set of points which can be written as ∑s∈S αss with αs ∈ R for all s, and∑
s∈S αs = 1. A convex combination of elements of S is a sum ∑

s∈S αss with αs ∈ R

for all s, and ∑s∈S αs = 1 where αs ≥ 0 for all s ∈ S. A strict convex combination

is a convex combination for which αs > 0 for all s ∈ S. The convex hull of S is

the subset of the affine hull containing only points which are convex combinations of

elements of S. A point x in the convex hull is in the relative interior of the convex

hull with respect to the affine hull if there exists ε > 0 such that every point in the

affine hull which is within ε of x is also in the convex hull. By definition,

D =
∑
ω∈Λ

p(ω)tr(ω).

D is a convex combination of traces of walks, so it is contained in the convex hull of

the traces of proper walks, call this convex hull C. The minimal hyperplane in Rn

which contains C is the affine hull of the traces of Λ, call it H. Define a hypergraph
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H on the same vertices as G such that e ⊆ V (G) is an edge in H iff there exists vk

such that e = N+(vk). Let c = c(G) denote the number of components of H, and

let Ci be the vertices in the ith component of H for 1 ≤ i ≤ c. R ⊆ V is a set of

representatives of the components, that is |R ∩ Ci| = 1. R(vi) is used to mean the

representative of the component containing vi. ξS = 1 if v1 ∈ S, and 0 otherwise for

S ⊆ V , with ξi = ξ{vi}.

Fi(W ) = Di − ξi −
∑

j∈N−(vi)
Dj

Wi∑
k∈N+(vj)

Wk

.

Theorem 3. The following are equivalent

1. There exists a set of weights W such that D is the vector of expected occupation

times on G.

2. D is in the relative interior of C with respect to H.

3. There exists Ω ⊆ Λ which covers all edges of G such that D is a strict convex

combination of the traces of walks in Ω.

4. For every 1 ≤ i ≤ c and for every S ⊆ Ci

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = Ci or S = ∅.

5. For every S ⊆ V , ∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = ∪i∈σCi for some σ ⊆ [c]

6. For every set of representatives, R, there exists a set of weights W such that

Fi(W ) ≤ 0 for all i ∈ V −R.

13



The proof will proceed by showing that each property implies the next one on the

list. First, the following property of H is proven.

Theorem 4. H is a hyperplane of dimension n− c.

Proof. The dimension of H is equal to the dimension of the span of all possible

differences between two points in H. The difference between any two points in H can

be written as ∑ω∈Λ αωtr(ω) where ∑ω∈Λ αω = 0. Call this space H′

Let Bi = N−(Ci), and note that N+(Bi) = Ci. Note also that vn /∈ Bi for any

i, since N+(vn) = ∅. For any proper walk ω, anytime it visits a vertex in Bi the

next vertex must be in Ci. Anytime a walk visits a vertex in Ci, the previous vertex

must have been in Bi, unless it is visiting the first vertex. So the number of visits

to vertices in Bi is the same as the number of visits to vertices in Ci, with one extra

step in Ci if v1 ∈ Ci. That is,

∑
vj∈Ci

trj(ω) =
∑
vj∈Bi

trj(ω) + ξCi
. (2.1)

Let µj(Ci) be the vector such that µj(Ci) = 1 if vj ∈ Ci, µj(Ci) = −1 if vj ∈ Bi,

and µj(Ci) = 0 otherwise. Then for any proper walk ω ∈ Λ,

µ(Ci) · tr(ω) = ξCi
.

For any x ∈ H, µ(Ci) · x = ξCi
, so for any x ∈ H′, µ(Ci) · x = 0. If these µ’s are

linearly independent then the dimension of H is at most n− c.

To see that the µ’s are linearly independent, note that every vertex in G shows

up in exactly one Bi and exactly one Ci, with the exception of vn, which is in a

Ci but not a Bi. In a linear combination of µ’s, χn shows up at most once. If the

linear combination equals 0, the coefficient for the component containing vn must be

0. But then any vertex with vn as a forward neighbor only shows up at most once,

so any component with an out-neighbor of vn must have a coeffiecient of 0 as well.

14



By assumption, every vertex in G has a path to vn, so all of the coefficients must be

0, and therefore the µ’s are linearly independent.

To show that H′ has dimension at least n− c it suffices to provide n− c linearly

independent vectors in H′. Let T be a rooted spanning tree of G, rooted at vn so

that all edges are directed towards vn. T exists because every vertex vi has a path

to vn in G. Let `(vi) be the unique path from vi to vn in T . Define L(vi) = tr(`(vi)),

so the L’s are clearly linearly independent since the χi’s can be reconstructed from

them. Suppose vi and vj are neighbors in H, this implies that there is a vk with

vk → vi, and vk → vj. Then any walk from v1 to vk, which must exist by the

definition of G, can be extended to a proper walk either by going to vi and following

`(vi), or doing the same for vj. The difference between the traces of these walks is

L(vi)−L(vj). This difference is in H′ as long as vi and vj are neighbors in H. Pick a

set of representatives R for the components. Then, since Ci is by definition connected,

L(vi) − L(R(vi)) ∈ H′. This gives a non-zero vector whenever vi 6= R(vi), so there

are n− c such vectors. Furthermore, any linear combination of these differences with

non-zero coefficients gives a linear combination of L’s with non-zero coefficients, so

the differences are linearly independent. The dimension of H′, and therefore H is

n− c. In addition, the vectors L(vi)− L(R(vi)) form a basis for H′.

As shown above, D is a convex combination of traces of proper walks. Further-

more, because the coefficient on the trace of a particular walk is the probability of

the walk, and each walk has a non-zero probability, D is a strict convex combination

of traces of proper walks. The following lemma proves that property 1 in Theorem 3

implies property 2.

Lemma 5. Let S be a countable or finite set of points in Rn, and suppose D is a

strict convex combination of S. Then D is in the relative interior of the convex hull

of S with respect to the affine hull of S.

15



Proof. D = ∑
si∈S αisi, with

∑
si∈S αi = 1, and αi > 0 for all si ∈ S. It suffices to

show that there exists an ε > 0 such that for every w = ∑
si∈S aisi with

∑
si∈S ai = 0

and |w| < ε, D + w is in the convex hull of S. These w form a vector space, call it

W . Let U = {u1, . . . , uk} be an orthonormal basis for W . Also, note that W is in

the span of vectors of the form si − D, so there is a finite subset S ′ ⊆ S such that

W is in the span of the linearly independent set of vectors of the form s′i −D, with

s′i ∈ S ′. Then we can write each of the following:

w =
∑
s′i∈S′

βi(s′i −D),

w =
∑
ui∈U

γiui,

ui =
∑
s′j∈S′

Γi,j(s′j −D).

It follows that
∑
s′i∈S′

βi(s′i −D) =
∑
ui∈U

γiui =
∑
ui∈U

γi
∑
s′j∈S′

Γi,j(s′j −D)

=
∑
s′j∈S′

(s′j −D)
∑
ui∈U

γiΓi,j.

Thus βj = ∑
ui∈U γiΓi,j. Let Γmax = maxs′j∈S′

√∑
ui∈U Γ2

i,j. The Cauchy-Schwarz

inequality implies that

|βj| ≤
√∑
ui∈U

γ2
i ·

∑
ui∈U

Γ2
i,j ≤ εΓmax.

Let αmin = min
s′i∈S′

αi be the smallest α amongst the coefficients for elements of S ′.

D + w =
∑
si∈S

αisi +
∑
s′i∈S′

βi(s′i −D) =
∑
si∈S

αi(1−
∑
s′j∈S′

βj)si +
∑
s′i∈S′

βis
′
i

For bi such that D + w = ∑
si∈S bisi,

bi ≥ αmin(1− nεΓmax)− εΓmax = αmin − εΓmax(nαmin + 1)

For

ε = αmin

Γmax(nαmin + 1)
D + w is in the convex hull of S, as desired, when |w| < ε.
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Proof of 2⇒ 3. Suppose D is in the relative interior of C with respect to H. Let U

be a finite set of walks ui which covers the edges of G. Since every edge in G has

a walk from v1 to vn containing it, such a U exists. Let X = ∑|U |
i=1

1
|U |tr(ui), which

implies D −X ∈ H′. Since D is in the relative interior, there exists ε > 0 such that

D + ε(D −X) is also in the relative interior. There exist αi ≥ 0 such that

D + ε(D −X) =
∑
ωi∈Λ

αitr(ωi)

D =
∑
ωi∈Λ

αi
1 + ε

tr(ωi) +
|U |∑
i=1

ε

(1 + ε)|U |tr(ui)

D can be written as a strict convex combination of walks which cover every edge in

G, implying D has property 3.

Equation 2.1 implies property 4 holds with equality when S = Ci. Property 4

also clearly holds when S = ∅. The following lemmas complete the proof of 3⇒ 4.

Lemma 6. For any proper walk ω ∈ Λ, for every 1 ≤ i ≤ c and for every S ⊆ Ci

∑
vj∈S

trj(ω) ≤
∑

vj∈N−(S)
trj(ω) + ξS

Proof. Every time ω visits a vertex in S, the previous vertex must be in N−(S), with

the exception of the first visit to v1. The total number of visits to N−(S) is at least

the number of visits to S, minus 1 if vstart ∈ S.

Corollary 7. For D ∈ C, for every 1 ≤ i ≤ c and for every S ⊆ Ci

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

Lemma 8. Suppose D is a strict convex combination of traces of walks in Ω ⊆ Λ,

and Ω covers the edges of G. Then for every 1 ≤ i ≤ c and for every non-empty

S ( Ci ∑
vj∈S

Dj <
∑

vj∈N−(S)
Dj + ξS
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Proof. D = ∑
ωj∈Ω αjωj, with αj > 0, and ∑ωj∈Ω αj = 1. Since S 6= Ci is non-empty

and Ci is connected in H, there exists x ∈ S and y ∈ Ci − S such that x and y are

neighbors in H. In other words, there exists z with z → x and z → y. There exists

a walk ωk ∈ Ω from v1 to vn which goes through the edge zy. Since ωk uses the edge

zy, it goes from N−(S) to Ci − S at least once, thus

∑
vj∈S

tr(ωk)j <
∑

vj∈N−(S)
tr(ωi)j + ξS. (2.2)

If αk = 1, then the proof is complete. Otherwise let

E = D +
1
2αk

1− αk
(D − tr(ωk)) =

∑
j 6=k

αj

(
1 +

1
2αk

1− αk

)
tr(ωj) + 1

2αktr(ωk)

E is also a convex combination of walks, so by corollary 7,

∑
vj∈S

Ej ≤
∑

vj∈N−(S)
Ej + ξS,

∑
vj∈S

(
D +

1
2αk

1− αk
(D − tr(ωk))

)
j

≤
∑

vj∈N−(S)

(
D +

1
2αk

1− αk
(D − tr(ωk))

)
j

+ ξS.

If ∑
vj∈S

(D − tr(ωk))j >
∑

vj∈N−(S)
(D − tr(ωk))j,

then we have strict inequality with D. So now suppose

∑
vj∈S

(D − tr(ωk))j ≤
∑

vj∈N−(S)
(D − tr(ωk))j.

Then, using Equation 2.2,

∑
vj∈S

Dj =
∑
vj∈S

(D − tr(ωk))j +
∑
vj∈S

tr(ωk)j

<
∑

vj∈N−(S)
(D − tr(ωk))j +

∑
vj∈N−(S)

tr(ωi)j + ξS =
∑

vj∈N−(S)
Dj + ξS.
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Proof of 4⇒ 5. Pick a set S ⊆ V , and decompose it into subsets Si ⊆ Ci. Applying

the inequality in Property 4 to each subset implies,

∑
vj∈Si

Dj ≤
∑

vj∈N−(Si)
Dj + ξSi

,

and then putting the pieces back together proves that

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS.

Equality holds iff S is a union of components.

Some further properties implied by Property 5 are worth noting.

Theorem 9. Property 5 also implies that Dn = 1, D1 ≥ 1, and for i 6= 1, n, Di > 0.

D1 = 1 iff N−(v1) = ∅.

Proof. Applying Property 5 when S = V shows that

∑
vj∈V

Dj =
∑

vj∈N−(V )
Dj + ξS.

Every vertex shows up on the left hand side, but vn doesn’t show up on the right

hand side, whereas everything else does. Dn = ξV = 1.

Let S be the set of vertices vi such that Di ≤ ξi. By property 5,

∑
vi∈V−S

Di ≤
∑

vi∈N−(V−S)
Di + ξV−S

=
∑

vi∈N−(V−S)∩(V−S)
Di +

∑
vi∈N−(V−S)∩S

Di + ξV−S

=
∑

vi∈N−(V−S)∩(V−S)
Di +

∑
vi∈N−(V−S)∩S

Di +Dn − ξS

≤
∑

vi∈V−S
Di +

∑
vi∈N−(V−S)∩S

Di − ξS

≤
∑

vi∈V−S
Di.
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All of the inequalities must actually be equalities. By Property 5, V −S is the union

of some collection of components.

∑
vi∈N−(V−S)∩S

Di = ξS. (2.3)

S must also be the union of components, or it is empty. By Property 5,

∑
vi∈S

Di =
∑

vi∈N−(S)
Di + ξS

=
∑

vi∈N−(S)∩S
Di +

∑
vi∈N−(S)∩(V−S)

Di + ξS

=
∑

vi∈N−(S)∩S
(Di − ξi) +

∑
vi∈N−(S)∩(V−S)

Di + ξS + ξN−(S)∩S

≥
∑
vi∈S

(Di − ξi) +
∑

vi∈N−(S)∩(V−S)
Di + ξS + ξN−(S)∩S

=
∑
vi∈S

Di +
∑

vi∈N−(S)∩(V−S)
Di + ξN−(S)∩S.

N−(S) ∩ (V − S) = ∅, and v1 /∈ N−(S) ∩ S. If vi /∈ S, then N+(vi) ∩ S = ∅, and

N+(v1) ∩ S = ∅. Pick a vertex vj 6= v1, there is a path from v1 to vj but no vertices

in the path except v1 can be in S, so vj /∈ S. Either S = ∅, or S = {v1}. In the

case that S = {v1}, v1 ∈ N−(V − S), so by equation 2.3, D1 = ξS = 1. This is only

possible if v1 has no in-edges in G.

It is useful to note here that properties 4 and 5 can be replaced by equivalent

conditions where the in-neighborhoods have been replaced by the out-neighborhoods

in the definitions. That is, define a hypergraph H ′ on the vertices of G − vn with

e ⊆ V an edge in H ′ iff e = N+(vk) for some vk ∈ V . Let Bi be the components of

H ′. Note that, as in the proof of the dimension of H, Bi = N−(Ci) and Ci = N+(Bi).

The following properties can be included in Theorem 3.

4b. For 1 ≤ i ≤ c and for every T ⊆ Bi

∑
vj∈T

Dj + ξN+(T ) ≤
∑

vj∈N+(T )
Dj

with equality iff T = Bi or T = ∅.
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5b. For every T ⊆ V − vn,

∑
vj∈T

Dj + ξN+(T ) ≤
∑

vj∈N+(T )
Dj

with equality iff T = ∪i∈σBi for some σ ⊆ [c]

We will prove 4⇒4b, but the reverse proof, and the proof for 5 is much the same.

proof of 4⇒4b. Let S = Ci −N+(T ). Note that N−(S) ⊆ Bi − T .

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS (2.4)

Theorem 9 shows that

∑
vj∈Ci

Dj −
∑

vj∈N+(T )
Dj ≤

∑
vj∈N−(S)

Dj + ξS

≤
∑
vj∈Bi

Dj + ξCi
−
∑
vj∈T

Dj − ξN+(T ).

Applying Property 4 to Ci implies

∑
vj∈T

Dj + ξN+(T ) ≤
∑

vj∈N+(T )
Dj,

with equality iff Equation 2.4 has equality and N−(S) = Bi − T . These are both

true when T = ∅ and when T = Bi, so it suffices to show that they don’t hold

otherwise. If N+(T ) = Ci or N+(T ) = ∅, then Equation 2.4 holds with equality. If

N+(T ) = ∅, then T = ∅, since vn is the only sink in G. If N+(T ) = Ci, then S = ∅

and Bi = T .

The proof of 5 ⇒ 6 utilizes Algorithm A to construct the set of weights W

satisfying the conditions of Property 6, Fj(W ) ≤ 0 for all j /∈ R. The algorithm

initializes all of the weights at 1. From here, it checks which Fj’s are positive, and

multiplies the corresponding weights by 1 + τ , for some given τ > 0, if j /∈ R. This

process repeats as long as at least one weight was increased, continuing until all of

the desired Fj’s are non-positive. Based on the definition of Algorithm A, it is not

21



Algorithm A Pseudocode

1 for j ← 1 to n

2 Wj(0)← 1

3 k ← 0

4 repeat

5 t← 0

6 for j ← 1 to n

7 if j /∈ R and Fj(W (k)) > 0

8 then Wj(k + 1)← (1 + τ)Wj(k)

9 t← 1

10 else Wj(k + 1)← Wj(k)

11 k ← k + 1

12 until t = 0

13 return W (k)

clear that the algorithm will terminate. Whether or not it does depends on the choice

of F , τ , and R. In order to prove that 5⇒ 6 for the proof of Theorem 3, it suffices to

show that when F is defined by a vector D which satisfies Property 5, then Algorithm

A will end in finitely many steps for the correct choice of τ .

The following theorem gives a pair of properties which, if satisfied, provide condi-

tions under which Algorithm A will always end. A few definitions are needed to state

these properties. For S ⊆ [n]− R, η > 0, define YS(η) ⊆ Rn
>0 as the set of W ∈ Rn

>0

such that
min
i∈S

Wi∑
i∈[n]−S

Wi

> η
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Theorem 10. Suppose there exists 0 < δ1 < δ2 such that the following properties

hold for every S ⊆ [n]−R,

1.

lim inf
η→∞

(
sup

W∈YS(η)

∑
i∈S

Fi(W )
)
≤ −δ2|S|.

2. If
Fi(W (k)) > 0 when i ∈ S

Fi(W (k)) ≤ 0 when i /∈ S

then
Fi(W (k + 1)) > −δ1 when i ∈ S

Fi(W (k + 1)) ≥ Fi(W (k)) when i /∈ S

Then Algorithm A ends in finitely many steps.

Proof. This proof is by contradiction; suppose the algorithm never halts. Then some

W ’s have their weights increased infinitely often, let S be the indices of these W ’s.

lim
k→∞

min
i∈S

Wi(k)∑
i∈[n]−S

Wi(k)
=∞

For any i ∈ S,

lim inf
k→∞

Fi(W (k)) ≥ −δ1.

−δ1|S| ≤
∑
i∈S

lim inf
k→∞

Fi(W (k)) ≤ lim inf
k→∞

∑
i∈S

Fi(W (k)) ≤ −δ2|S|.

This is a contradiction since δ1 < δ2, so the algorithm must end after finitely many

steps.

Let R be a set of representatives of the components. R(vj) will be used to denote

the representative of the component Ci such that vj ∈ Ci. The algorithm can execute

seperately on the components Ci, so the following parameters are defined for each

component. δ1 and τ will involve a parameter εi ∈ (0, 1). In order to satisfy Theorem

10, εi cannot be 0 or 1, but any choice between 0 and 1 will work. The effect of εi is
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on the number of steps required for the algorithm, which will be discussed in a later

section. µi is defined as

µi = min
S⊆Ci−Ri

 1
|S|

 ∑
t∈N−(S)

Dt −
∑
s∈S

(Ds − ξs)
 ,

and λi =
∑
vj∈Bi

Dj

µi
. Finally, define τi = 1− εi

λi
.

Lemma 11. Given Property 5 from Theorem 3, for every S ⊆ Ci −Ri, W ∈ YS(η),

∑
j∈S

Fj(W ) < −µi|S|+
∑
vj∈Bi

Dj

η + 1 .

Proof. Let S ′ = Ci − S

∑
j∈S

Fj(W ) =
∑
vj∈S

(Dj − ξj)−
∑
vj∈S

∑
v`∈N−(vj)

D`
Wj∑

vh∈N+(v`)
Wh

=
∑
vj∈S

(Dj − ξj)−
∑

v`∈N−(S)
D`

∑
vj∈N+(v`)∩S

Wj∑
vh∈N+(v`)

Wh

=
∑
vj∈S

(Dj − ξj)−
∑

v`∈N−(S)
D`

1−

∑
vj∈N+(v`)∩S′

Wj∑
vh∈N+(v`)

Wh



≤ −µi|S|+
∑

v`∈N−(S)
D`

∑
vj∈N+(v`)∩S′

Wj∑
vh∈N+(v`)∩S

Wh +
∑

vh∈N+(v`)∩S′
Wh

≤ −µi|S|+
∑

v`∈N−(S)
D`

∑
vj∈S′

Wj

min
vh∈S

Wh +
∑
vj∈S′

Wj

< −µi|S|+
∑
vj∈Bi

Dj

η + 1
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Lemma 12. Given Property 5 from Theorem 3, for every S ⊆ Ci −Ri, if

Fj(W (k)) > 0 when j ∈ S

Fj(W (k)) ≤ 0 when j /∈ S

then
Fj(W (k + 1)) > −(1− εi)µi when j ∈ S

Fj(W (k + 1)) ≥ Fj(W (k)) when j /∈ S

Proof. First, suppose without loss of generality that 1 /∈ S, so F1(W (k)) ≤ 0. This

implies W1(k + 1) = W1(k), and Wj(k + 1) ≥ Wj(k) for all j.

F1(W (k + 1)) = D1 − ξ1 −
∑

vj∈N−(v1)
Dj

W1(k + 1)∑
vh∈N+(vj)

Wh(k + 1)

= D1 − ξ1 −
∑

vj∈N−(v1)
Dj

W1(k)∑
vh∈N+(vj)

Wh(k + 1)

≥ D1 − ξ1 −
∑

vj∈N−(v1)
Dj

W1(k)∑
vh∈N+(vj)

Wh(k)
= F1(W (k))

Suppose without loss of generality that 1 ∈ S, so F1(W (k)) > 0. This implies

W1(k + 1) = (1 + τi)W1(K), and Wj(k + 1) ≥ Wj(k) for all j.

F1(W (k + 1))) = D1 − ξ1 −
∑

vj∈N−(v1)
Dj

W1(k + 1)∑
vh∈N+(vj)

Wh(k + 1)

= D1 − ξ1 −
∑

vj∈N−(v1)
Dj

(1 + τi)W1(k)∑
vh∈N+(vj)

Wh(k + 1)

≥ D1 − ξ1 −
∑

vj∈N−(v1)
Dj

W1(k)∑
vh∈N+(vj)

Wh(k)
− τi

∑
vj∈N−(v1)

Dj
W1(k)∑

vh∈N+(vj)
Wh(k)

≥ F1(W (k))− τi
∑

vj∈N−(v1)
Dj > −

1− εi
λi

∑
vj∈Bi

Dj

= −(1− εi)µi
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Corollary 13. If D satisfies Property 5, then Algorithm A can be executed in a finite

number of steps on Ci with any choice of representative Ri.

Proof. By Lemma 11, δ2 = µi. By Lemma 12, δ1 = (1−ε)µi. 0 < δ1 < δ2, so Theorem

10 applies.

Given R, Algorithm A produces the requisite set of weights W for Property 6.

A second algorithm, Algorithm B, uses this set of weights as a starting point, and

converges to the set of weights in Property 1.

In order to do this an Algorithm B is similar to Newton’s method; it will give a

sequence of weights, converging to a solution of the equation F (W ) = 0. It is similar

to Newtons’s method in the sense that F will be approximated by a simpler function,

G and a zero of G will be found. Then the zero of G is used as a starting point for

a new approximation. There are some problems with just using a straight forward

Newton’s method, as it is difficult to find a good starting point. This modification

will fix this by converging as long as the starting set of weights satisfies Property

6. It still has some of the same problems as Newton’s method; it does not converge

everywhere to the point we would like, and the boundaries of the basins of attraction

are chaotic, but the modified version has the advantage of having a constructable

starting point which leads to a converging sequence to a zero of F .

A slightly modified version of F is used to reduce dimensionality. First,

∑
vi∈Cj

Fi(W )

=
∑
vi∈Cj

(Di − ξi)−
∑
vi∈Cj

∑
vk∈N−(vi)

Dk
Wi∑

vh∈N+(vh) Wh

=
∑
vi∈Cj

(Di − ξi)−
∑
vk∈Bj

Dk

∑
vi∈N+(vk)∩Cj

Wi∑
vh∈N+(v`) Wh

=
∑
vi∈Cj

(Di − ξi)−
∑
vk∈Bj

Dk = 0.
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Given a set of representatives R of the components Ci, F is uniquely determined

by F |V−R. Secondly, if the weight of every vertex in Ci is multiplied by the same

constant, then the probability matrix P , and therefore the Fj functions, don’t change.

All of the weights are positive, so assume without loss of generality that Wi = 1 if

vi ∈ R. F : Rn−c → Rn−c is defined for vi ∈ V −R,

F i(W ) = Di − ξi −
∑
vj→vi

Dj
Wi∑

vk∈N+(vj)∩(V−R)
Wk + βj

,

where βj is 1 if R(vi) ∈ N+(vj), and 0 otherwise.

The following theorems, which set the stage for Algorithm B, deal with functions

similar to F which have several important properties. For 1 ≤ i ≤ n, say Fi : Rn → R

has property Pi if the following conditions hold:

1.

Fi(X) = Ai −
mi∑
j=1

Xi
n∑
k=1

αij,kXk + αij,n+1

2. Ai > 0.

3. αij,k ≥ 0 for all 1 ≤ j ≤ mi and 1 ≤ k ≤ n+ 1.

4. αij,i > 0 for all 1 ≤ j ≤ mi.

5. For every 1 ≤ j ≤ mi, there exists at least one 1 ≤ k ≤ n + 1, k 6= i such that

αij,k > 0.

Consider F : Rn → Rn such that each Fi has property Pi. Define the directed graph

GF on n+ 1 vertices, Vi, so that there is an edge from Vi to Vk iff in Fi there exists

j such that αij,k > 0. If every vertex Vi has a directed path to Vn+1, say that F has

property P. Let T be a rooted spanning tree in GF , which is rooted at Vn+1, and all

of the edges point towards Vn+1. Let NT (i) be the unique forward neighbor in T of
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Vi. Let Tn+1 = 1; Ti is defined recursively. For t ∈ R, define Qi(t) ∈ Rn as the vector

with Qii(t) = t, Qij(t) = 0 for j 6= i, NT (i), and if NT (i) 6= n+ 1, QiNT (i)(t) = TNT (i).

Fi(Qi(t)) = Ai −
mi∑
j=1

t

αij,NT (i)TNT (i) + αij,it

For t ≥ 0, this is a strictly decreasing function with Fi(Qi(0)) = Ai > 0, so there

exists a unique Ti > 0 with Fi(Qi(Ti)) = 0.

Lemma 14. Let F be a function with property P, Y ∈ Rn
>0, with Fi(Y ) ≤ 0, and

NT (i) = n+ 1 or YNT (i) ≥ TNT (i), then Yi ≥ Ti.

Proof. This proof is by contrapositive. Suppose NT (i) = n + 1 or YNT (i) ≥ TNT (i),

and Yi < Ti.

Fi(Y ) = Ai −
mi∑
j=1

Yi
n∑
k=1

αij,kYk + αij,n+1

≥ Ai −
mi∑
j=1

Yi
αij,NT (i)TNT (i) + αij,iYi

> Ai −
mi∑
j=1

Ti
αij,NT (i)TNT (i) + αij,iTi

= Fi(Qi(Ti)) = 0

Corollary 15. If Fi(Y ) ≤ 0 for every i, then Yi ≥ Ti for every i.

Proposition 16. Fix i between 1 and n. Suppose Fi : Rn → R has property Pi Then

for every Y ∈ Rn
>0 there exists

Gi,Y (X) = Ai −
Xi

n∑
k=1

θikXk + θin+1

with property Pi, such that Fi(Y ) = Gi,Y (Y ), and ∂Fi

∂Xj
(Y ) = ∂Gi,Y

∂Xj
(Y ) for all j such

that 1 ≤ j ≤ n.
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Proof. Let Kj = ∂F
∂Xj

(Y ), and let Bi = 1
Ai−Fi(Y ) . For j 6= i, n+ 1, define

θij = KjYi(Bi)2

θii = KiYi(Bi)2 +B = Yi(Bi)2(Ki + 1
YiBi

)

θin+1 = BiYi −
n∑
k=1

θkYk = −Yi(Bi)2
n∑
k=1

KkYk

Given these values for the θ terms,
n∑
k=1

θikYk + θin+1 =
n∑
k=1

θikYk +BiYi −
n∑
k=1

θikYk = BiYi

Gi,Y (Y ) = Ai −
Yi

n∑
k=1

θikYk + θin+1

= Ai −
Yi
BiYi

= Ai − (Ai − Fi(Y )) = Fi(Y )

For j 6= i, n+ 1,

∂Gi,Y

∂Xj

(Y ) =
θijYi(

n∑
k=1

θikYk + θin+1

)2 = Kj(YiBi)2

(BiYi)2 = Kj

∂Gi,Y

∂Xi

(Y ) = θiiYi(
n∑
k=1

θikYk + θin+1

)2 −
1

n∑
k=1

θikYk + θin+1

= Ki(YiBi)2 + YiBi

(YiBi)2 − 1
YiBi

= Ki + 1
YiBi

− 1
YiBi

= Ki

Noting that the Yj are all positive, to show θj ≥ 0 for j 6= i, n + 1 it suffices to

show that Kj ≥ 0.

Kj = ∂Fi
∂Xj

(Y ) =
mi∑
`=1

αi`,jYi(
n∑
k=1

αi`,kYk + αi`,n+1

)2

Since αi`,j ≥ 0, Kj ≥ 0, and any αi`,j > 0 would imply Kj > 0. To prove θi > 0 it

suffices to show that Ki + (YiBi)−1 > 0.

Ki = ∂Fi
∂Xi

(Y ) =
mi∑
j=1

αij,iYi(
n∑
k=1

αij,kYk + αij,n+1

)2 −
mi∑
j=1

1
n∑
k=1

αij,kYk + αij,n+1
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1
YiBi

= Ai − Fi(Y )
Yi

=
mi∑
j=1

1
n∑
k=1

αij,kYk + αij.n+1

Ki + 1
YiBi

=
mi∑
j=1

αij,iYi(
n∑
k=1

αij,kYk + αij.n+1

)2 > 0

To prove θin+1 ≥ 0, note that it suffices to show that
n∑
k=1

KkYk ≤ 0

n∑
k=1

KkYk = −
mi∑
j=1

∑
k 6=i

αij,kYiYk + αij,n+1Yi(
n∑
k=1

αij,kYk + αij,n+1

)2 +
∑
`6=i

mi∑
j=1

αij,`YiY`(
n∑
k=1

αij,kYk + αij,n+1

)2

= −
mi∑
j=1

αij,n+1Yi(
n∑
k=1

αij,kYk + αij,n+1

)2 ≤ 0

θin+1 > 0 if αij,n+1 > 0 for at least one j.

Corollary 17. The Gi,Y (X) guaranteed in Proposition 16 is continuous in both X

and Y for X, Y ∈ Rn
>0, as is

∂Gi,Y

∂Xj

(X).

Lemma 18. Suppose G : Rn → Rn is a function such that Gi has property Pi for

every i, with mi = 1. If there exists Y > 0 such that Gi(Y ) ≤ 0 for all i, then there

exists Z such that 0 < Zi ≤ Yi for all i and Gi(Z) = 0 for all i.

Proof. The proof is by induction on n. First, suppose n = 1. Then

G(x) = A− x

θ1x+ θ2
,

θ1, θ2 > 0, and G(y) ≤ 0. Since G(0) = A > 0, and G is continuous on [0, y], z exists

by the Intermediate Value Theorem.

Now suppose n > 1.

An −Gn(Y ) = Yn
n∑
j=1

θnj Yj + θnn+1

.
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Using the fact that at least one θnj > 0, j 6= n,
n∑
j=1

θnj Yj + θnn+1 > θnnYn

Yn = (An −Gn(Y ))
 n∑
j=1

θnj Yj + θnn+1

 > (An −Gn(Y ))θnnYn

1− Anθnn > −Gn(Y )θnn ≥ 0

If Gn(X) = 0, then

Xn =
n−1∑
j=1

Anθ
n
j

1− Anθnn
Xj + Anθ

n
n+1

1− Anθnn

Letting Bj =
Anθ

n
j

1− Anθnn
,

Xn =
n−1∑
j=1

BjXj +Bn+1.

This induces a map Q : Rn−1 → Rn, where Qi(X) = Xi for 1 ≤ i ≤ n − 1, and

Qn(X) =
n−1∑
j=1

BjXj +Bn+1. Then we can define G̃ : Rn−1 → Rn−1 such that for any i

with 1 ≤ i < n, G̃i(X) = Gi(Q(X)). For X ∈ Rn−1,

G̃i(X) = Ai −
Qi(X)

n∑
j=1

θijQj(X) + θin+1

= Ai −
Xi

n−1∑
j=1

θijXj + θin+1 + θin

n−1∑
j=1

BjXj +Bn+1


= Ai −

Xi

n−1∑
j=1

(θij + θinBj)Xj + θin+1 + θinBn+1

Let Ỹ be the vector formed by the first n− 1 coordinates of Y . Define

g(t) = Gn(Ỹ , t) = An −
t

n−1∑
j=1

θnj Yj + θnnt+ θnn+1

.

g is a decreasing function with g(Qn(Ỹ )) = 0, and g(Yn) = Gn(Y ) ≤ 0. Qn(Ỹ ) ≤ Yn.

G̃i(Ỹ ) = Ai −
Qi(Ỹ )

n∑
j=1

θijQj(Ỹ ) + θin+1
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= Ai −
Yi

n−1∑
j=1

θijYj + θinQn(Ỹ ) + θin+1

≤ Ai −
Yi

n−1∑
j=1

θijYj + θinYn + θin+1

= Gi(Y ) ≤ 0

G̃ and Ỹ satisfy the conditions for the lemma with n−1, so by induction there exists

Z̃ ∈ Rn−1 such that 0 < Z̃i ≤ Ỹi for 1 ≤ i ≤ n − 1. Let Z = Q(Z̃). 0 < Zi ≤ Yi for

1 ≤ i ≤ n− 1. Zn = Qn(Z̃) ≤ Qn(Ỹ ) ≤ Yn.

Lemma 19. Fix i between 1 and n. Suppose Fi : Rn → R has property Pi. Let

Gi,Y : Rn → R be the approximation of F at Y , as guaranteed by Proposition 16.

Then for all Z with 0 < Z ≤ Y , Fi(Z) ≤ Gi,Y (Z).

Proof. Pick Z ∈ Rn with 0 < Zi ≤ Yi for all 1 ≤ i ≤ n. Let L(t) = (Y − Z)t +

Z, so that L(0) = Z, and L(1) = Y . Let M(t) = Li(t)
Ai − Fi(L(t)) , and N(t) =

Li(t)
Ai −Gi,Y (L(t)) =

n∑
j=1

θijLj(t) + θin+1. It suffices to show that M(t) ≤ N(t) for t = 0.

M(1) = N(1), and M ′(1) = N ′(1), so since N is linear it is the tangent line to M at

1. It suffices to show that M ′′(t) ≤ 0 for t ≥ 0. There exist aj and bj such that M

can be written in the form:

M(t) = Li(t)
Ai − Fi(L(t)) = Li(t)

mi∑
j=1

Li(t)
ajt+ bj

= 1
mi∑
j=1

1
ajt+ bj

M ′(t) =

mi∑
j=1

aj
(ajt+ bj)2mi∑

j=1

1
ajt+ bj

2

M ′′(t) = −2mi∑
j=1

1
ajt+ bj

3

 mi∑
j=1

a2
j

(ajt+ bj)3

mi∑
j=1

1
ajt+ bj

−

mi∑
j=1

aj

(ajt+ bj)2

2

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= −2mi∑
j=1

1
ajt+ bj

3

mi−1∑
j=1

mi∑
k=j+1

(
a2
j

(ajt+ bj)3
1

akt+ bk

−2 ajak

(ajt+ bj)2 (akt+ bk)2 + 1
ajt+ bj

a2
k

(akt+ bk)3

)

= −2mi∑
j=1

1
ajt+ bj

3

m−1∑
j=1

m∑
k=j+1

 1
(ajt+ bj) (akt+ bk)

(
aj

ajt+ bj
− ak
akt+ bk

)2


If t ≥ 0, then M ′′(t) ≤ 0.

Using these lemmas, Algorithm B can now be described. The algorithm intializes

with Y (0), the output from Algorithm A. Y (k) is formed from Y (k−1) by finding the

approximation GY (k−1), and solving for a zero of the function. GY (k−1)(Y (k)) = 0.

This G exists by Proposition 16. This process continues until whatever level of

accuracy is desired has been achieved. The following theorem shows that the sequence

formed will converge to a zero of F if F has Property P.

Algorithm B Pseudocode

1 Y (0)← output from Algorithm A

2 k ← 0

3 repeat

4 approximate F (W ) with GY (k)(W )

5 Y (k + 1)← W such that GY (k)(W ) = 0

6 k ← k + 1

7 until convergence criteria met.
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Theorem 20. Suppose F : Rn → Rn has Property P. Let Y (0) be a point such that

Fi(Y (0)) < 0 for all i. Let GY : Rn → Rn be the function such that Gi,Y is the

approximation of Fi guaranteed by Proposition 16. Then Algorithm B converges to a

point Y ∈ Rn
>0 with F (Y ) = 0.

Proof. By Lemma 18, Yi(k + 1) ≤ Yi(k) for all 1 ≤ i ≤ n. By Lemma 19,

F (Y (k + 1)) ≤ GY (K)(Y (k + 1)) = 0.

Each coordinate Yi(k) is a non-increasing sequence bounded below by Ti, so it con-

verges in Rn
>0. Y = limk→∞ Y (k). By Corollary 17, Gi,Y (X) is continuous in both X

and Y , so

Fi(Y ) = Gi,Y (Y ) = lim
k→∞

Gi,Y (k)(Y (k + 1)) = 0.

Since F has Property P, this proves that 6⇒ 1, and thus completes the proof of

Theorem 3.

2.4 Number of Steps For Algorithm A

Recall the following relevant definitions. Ci is a component of the hypergraph H

where the edges of H are the out-neighborhoods of G. R is a set of representatives

of the components, R ∩ Ci = {Ri}. R(vj) = Ri if vj ∈ Ci.

µi = min
S⊆Ci−R

 1
|S|

 ∑
t∈N−(S)

Dt −
∑
s∈S

(Ds − ξs)


λi =

∑
vj∈Bi

Dj

µi

τi = 1− εi
λi
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Note that if |Ci| ≥ 3,

µi <

∑
vj∈Bi

Dj

|Ci| − 1 ≤
∑
vj∈Bi

Dj

2 ,

so λi > 2. For S ⊆ V −R, η > 0, YS(η) ⊆ Rn
>0 is the set of W ∈ R>0 such that

min
i∈S

Wi∑
i∈[n]−S

Wi

> η

The following theorems give bounds on the size of the weights after executing

Algorithm A, and the number of steps required to execute the algorithm.

Theorem 21. For each component Ci with |Ci| ≥ 3, after executing Algorithm A,

there is still a vertex with weight 1, and the mth smallest weight for m ≥ 2 is at most(
λi
εi
− 1

)(
λi
εi

)m−2

Theorem 22. The number of steps Algorithm A requires for component Ci is

O
(
|Ci|2λi ln (λi)

)

Note that if |Ci| = 1, the algorithm need not be run; the vertex is in R and so

has a weight of 1. If Ci = 2, either both Fj functions are 0 when both weights are

1, or one is positive and one is negative. If Ri is chosen to be the positive one, the

algorithm doesn’t need to be run. The following lemma is needed to prove Theorem

21.

Lemma 23. Let S ( Ci, |Ci| ≥ 3. If W ∈ YS
(
λi
εi
− 1

)
, then there exists a vertex

vj ∈ S with

Fj(W ) < −(1− εi)µi

Proof. By the pigeon-hole principle it suffices to show that

∑
vj∈S

Fj(W ) < −(1− εi)µi|S|.
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By Lemma 11 ∑
vj∈S

Fj(W ) < −|S|µi + 1
λi
εi
− 1 + 1

∑
vk∈Bi

Dk

= −|S|µi +
εi
∑
vk∈Bi

Dk

λi
= −|S|µi + εiµi

≤ −|S|µi + |S|εiµi = −|S|(1− εi)µi

Proof of Theorem 21. Since each component Ci has exactly one vertex in R, this

vertex has weight 1. The bounds on the remaining weights are proven inductively

using that as the base case. So suppose the first m−1 smallest weights have the given

bound. The bound for the mth largest weight is proven by contradiction. Let S ′ be

the set containing the m− 1 smallest weights, so S = Ci−S ′ is the set containing all

of the larger weights. The assumption for contradiction is

min
vj∈S

Wj >

(
λi
εi
− 1

)(
λi
εi

)m−2

.

By induction, ∑
vk∈S′

Wk ≤ 1 +
m−1∑
k=2

(
λi
εi
− 1

)(
λi
εi

)k−2

= 1 +
(
λi
εi
− 1

)
m−3∑
k=0

(
λi
εi

)k

= 1 +
(
λi
εi
− 1

) 1−
(
λi
εi

)m−2

1− λi
εi

=
(
λi
εi

)m−2

This implies thatW ∈ YS
(
λi
εi
− 1

)
. By Lemma 23 there exists vj ∈ S with Fj(W ) <

−(1−εi)µi. ButWj >

(
λi
εi
− 1

)(
λi
εi

)m−2

> 1, so its weight must have been increased

by Algorithm A. By Lemma 12, Fj(W ) > −(1− εi)µi, which is a contradiction.
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Theorem 21 bounds the ending weights after Algorithm A terminates. Since at

least one weight is multiplied by 1 + τi at each step of the algorithm, this can be

used to bound the number of steps where particular weight is increased. Summing

these bounds then provides a bound on the total number of steps the algorithm can

take. In particular, the number of steps Algorithm A takes when executed on Ci is

bounded by

|Ci|∑
m=2

ln
(λi

εi
− 1

)(
λi
εi

)m−2


ln (1 + τi)

≤
|Ci|∑
m=1

m ln
(
λi
εi

)

ln
(

1 + 1− εi
λi

)

=
(
|Ci|+ 1

2

) ln
(
λi
εi

)

ln
(

1 + 1− εi
λi

) (2.5)

This is where εi takes effect. Choosing εi = 0 pushes the numerator to∞, whereas

choosing εi = 1 pushes the denominator to 0. Neither of these are good choices, but

there is a minimum somewhere in between. The following technical lemma will be

used to bound the effect of εi.

Lemma 24. For 0 < x ≤ c

1
x

+ 1
ln(1 + c) −

1
c
≤ 1

ln(1 + x) ≤
1
x

+ 1
2

Proof. Note that it suffices to show that

lim
x→0

1
ln(1 + x) −

1
x

= 1
2 ,

and that 1
ln(1 + x) −

1
x

is decreasing for x > 0. The first is a straightforward appli-

cation of L’Hôpital’s rule.

lim
x→0

1
ln(1 + x) −

1
x

= lim
x→0

x− ln(1 + x)
x ln(x+ 1) = lim

x→0

1− 1
x+1

ln(x+ 1) + x
x+1
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= lim
x→0

x

(x+ 1) ln(x+ 1) + x
= lim

x→0

1
2 + ln(x+ 1) = 1

2

To show that 1
ln(1 + x) −

1
x

is decreasing, note that its derivative is

(x+ 1) ln(x+ 1)2 − x2

x2(x+ 1) ln(x+ 1)2

Since x > 0, it suffices to show that the numerator is negative.

(x+ 1) ln(x+ 1)2 − x2

=
(√

x+ 1 ln(x+ 1) + x
)√

x+ 1
(

ln(x+ 1)−
√
x+ 1 + 1√

x+ 1

)

As this is 0 when x is 0, it suffices to show that the derivative of

ln(x+ 1)−
√
x+ 1 + 1√

x+ 1

is negative. Its derivative is

1
x+ 1 −

1
2(x+ 1)

(√
x+ 1 + 1√

x+ 1

)
= 1

2(x+ 1)

(
2−
√
x+ 1− 1√

x+ 1

)
,

thus it suffices to show
√
x+ 1 + 1√

x+ 1
≥ 2

They are equal at x = 0, and the left hand side is increasing.

Using Lemma 24 and the fact that λi > 2 when |Ci| ≥ 3, Expression 2.5 can be

bounded below by

(
|Ci|+ 1

2

)
ln (λi)

λi + 1

ln
(3

2

) − 2

 ≤
(
|Ci|+ 1

2

) ln
(
λi
εi

)

ln
(

1 + 1− εi
λi

)
Theorem 22 cannot be improved by a better choice of εi.

Proof of Theorem 22. Using Lemma 24, Expression 2.5 can be bounded above by

(
|Ci|+ 1

2

) ln
(
λi
εi

)

ln
(

1 + 1− εi
λi

) ≤ (|Ci|+ 1
2

)
ln
(
λi
εi

)(
λi

1− εi
+ 1

2

)
.
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Fixing εi = 1
2 turns this into

2
(
|Ci|+ 1

2

)
ln (2λi) (λi + 1) (2.6)

= O
(
|Ci|2λi ln (λi)

)
.

This assymptotic bound cannot be improved by different choices of εi, but the

upper bound given by Expression 2.6 can be improved upon by using εi values other

than 1/2.

Proposition 25.

min
x∈(0,1)

1
1− x ln

(
λ

x

)
≤ ln(eλ) + ln(ln(eλ)) + ln

(
1 + ln(ln(eλ ln(4λ2)))

ln(eλ)

)

The following lemma is proven first, to give a bound in the proof of Proposition

25.

Lemma 26. For all n > 0

ln(ex) ≤ en−1xn

n

Proof. First note that both sides are equal when x = e−
n−1

n . It suffices to show that

ln(ex)− en−1xn

n
has a negative derivative when x > e−

n−1
n , and a positive derivative

when 0 < x < e−
n−1

n . The derivative is

1
x
− (ex)n−1 = 1− en−1xn

x

Since n > 0, the numerator is negative when x > e−
n−1

n , and positive when x < e−
n−1

n .

x > 0, so this completes the proof.

Proof of Proposition 25. Let f(x) = 1
1− x ln

(
λ

x

)
. limx→0 f(x) = limx→1 f(x) =∞.

f(x) is minimized at a point x0 such that f ′(x0) = 0

f ′(x0) = 1
(1− x0)2 ln

(
λ

x0

)
− 1
x0(1− x0) = 0
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1
x0

= 1
1− x0

ln
(
λ

x0

)
= f(x0)

Rearranging again,

ln
(
λ

x0

)
= 1− x0

x0
= 1
x0
− 1

f(x0) = 1
x0

= ln
(
eλ

x0

)
(2.7)

f(x0) = ln (eλf(x0)) (2.8)

Applying Lemma 26 with n = 1
2 to Equation 2.7 implies

1
x0
≤ 2λ 1

2

(ex0) 1
2

1
x2

0
≤ 4λ
ex0

1
x0
≤ 4λ

e

f(x0) ≤ 4λ
e

Better bounds are obtained by repeatedly substituting the Equation 2.8 into itself.

f(x0) = ln (eλ ln (eλf(x0))) = ln(eλ) + ln (ln (eλ ln (eλf(x0))))

= ln(eλ) + ln(ln(eλ)) + ln
(

1 + ln (ln (eλf(x0)))
ln(eλi)

)

= ln(eλ) + ln(ln(eλ)) + ln
(

1 + ln (ln (eλ ln (eλf(x0))))
ln(eλ)

)

≤ ln(eλ) + ln(ln(eλ)) + ln
(

1 + ln (ln (eλ ln (4λ2)))
ln(eλ)

)

It is worth noting that we can actually solve equation 2.7 for x0 using the -1

branch of the Lambert-W function. The Lambert-W function is the inverse of the

function x exp(x). x exp(x) is not one-to-one over R, but restricted to either of the

two domains x ≤ −1 or x ≥ −1, it is. W0(x) is the inverse of the x ≥ −1 branch,

and W−1(x) is the inverse of the x ≤ −1 branch.
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From Equation 2.7,
1
x0

= ln
(
eλ

x0

)

x0 ln
(
x0

eλ

)
= −1

x0

eλ
ln
(
x0

eλ

)
= − 1

eλ

ln
(
x0

eλ

)
exp

(
ln
(
x0

eλ

))
= − 1

eλ

If λ > x0, ln
(
x0

eλ

)
< −1, so

ln
(
x0

eλ

)
= W−1

(
− 1
eλi

)

x0 = eλ exp
(
W−1

(
− 1
eλ

))
= −1

W−1

(
− 1
eλ

)
f(x0) = −W−1

(−1
eλ

)
By choosing εi = −W−1

−1

(
− 1
eλi

)
, the number of steps in Algorithm A is bounded

by (
|Ci|+ 1

2

)
ln
(
λi
εi

)(
λi

1− εi
+ 1

2

)
≤
(
|Ci|+ 1

2

)(
−W−1

(−1
eλi

))(
λi + 1

2

)

≤
(
|Ci|+ 1

2

)(
λi + 1

2

)(
ln(eλi) + ln(ln(eλi)) + ln

(
1 + ln(ln(eλi ln(4λ2

i )))
ln(eλi)

))

It is worth nothing that εi = 1
ln(eλi)

gives a similar bound without having to

deal with the Lambert-W function. When this εi is chosen, the number of steps for

Algorithm A can be bounded by(
|Ci|+ 1

2

)
ln
(
λi
εi

)(
λi

1− εi
+ 1

2

)

=
(
|Ci|+ 1

2

)(
λi ln(eλi)

ln(λi)
+ 1

2

)
(ln(λi) + ln(ln(eλi)))

=
(
|Ci|+ 1

2

)(
λi

(
ln(eλi) + ln(ln(eλi)) + ln(ln(eλi))

ln(λi)

)
+ (ln(λi) + ln(ln(eλi)))

2

)
,

which is only slightly worse than previous bound.
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2.5 Convergence Rate of Algorithm B

A convergent sequence X(i)→ X converges with Q-order k > 0 iff there exists C > 0

such that

|X(i+ 1)−X| ≤ C|X(i)−X|k.

If a sequence converges with Q-order 2, it is said to converge Q-quadratically.

Theorem 27. Let Y (i) → Y be the sequence produced by Algorithm B for F . Y (i)

converges to Y Q-quadratically.

This is proven via a more general statement. A few definitions are needed to

state it. Let Gj,Y be the jth coordinate of GY , with ∇Gj,Y being its gradient, or

equivalently the jth row of the Jacobian of GY . Then for ψj ∈ Rn, with 1 ≤ j ≤

n, define the matrix M(GY )(ψ), whose jth row is ∇Gj,Y (ψj). Let λ1(A) be the

eigenvalue of matrix A with smallest absolute value. F ′(X) is the Jacobian of F

evaluated at X. [n] denotes the integers between and including 0 and n. N0 is used

to denote the non-negative integers. For L ∈ Nn
0 , L = (L1, . . . , Ln), |L| =

n∑
j=1

Lj,

XL = XL1
1 · · ·XLn

n , ∂|L|

∂XL
= ∂|L|

∂XL1
1 · · · ∂XLn

n

, L! = L1! · · ·Ln!, and
(
|L|
L

)
= |L|!

L! .

Theorem 28. Let Y (i) ∈ Rn be a sequence converging to X, with F (X) = 0, for

some function F : Rn → Rn with continuous (k + 1)st derivatives. Let GZ be a

function such that G agrees with F on all derivatives of order k or less at Z. For

any L ∈ Nn
0 , |L| = k + 1, ∂LGY (Z) is continuous in both Y and Z at X. Suppose

GY (i)(Y (i + 1)) = 0 for all i. Let Ai be the line segment between X and Y (i). For

L ∈ Nn
0 ,

C = max
|L|=k+1
`∈[n]

∣∣∣∣∣∂k+1(F` −G`,X)(X)
∂XL

∣∣∣∣∣ .
Then there exists an integer N > 0 such that for all i ≥ N ,

min
ψ∈An

i+1
|λ1(M(GY (i))(ψ))||Y (i+ 1)−X| ≤ 2C

√
nk+2

(k + 1)! |Y (i)−X|k+1
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Corollary 29. Suppose there exists ε > 0, and a positive integer N such that for all

i ≥ N ,

min
ψ∈An

|λ1(M(GY (i))(ψ))| > ε.

Then Y (i) converges to X with Q-order k + 1.

Corollary 30. Given the assumptions of Theorem 28, if ∇Gj,Z(ψj) is continuous

in both Z and ψj at Z = ψj = X for all j, and F ′(X) is non-singular, then Y (i)

converges with Q-order k + 1.

Proof of Corollary 30. Let ε = |λ1(F ′(X))| = |λ1(G′X(X))|. Since ∇Gj,Z(ψj) is con-

tinuous in both Z and ψj, there exists a δ so that if all of the ψj and Z are within δ of

X, then ||λ1(M(G′Z)(ψ))| − ε| < ε

2 is within ε/2 of ε, and so |λ1(M(GZ)(ψ))| > ε/2.

Y (i) converges to X, so for large enough i it is within δ of X, as is ψj for any ψj ∈ A.

By Corollary 29 this implies Y (i) converges with Q-order k + 1.

proof of Theorem 28.

0 = F (X) = GY (i)(X) + (F −GY (i))(X) (2.9)

F and GY (i) agree on all derivatives of order k or less at Y (i), so the Taylor

expansion of Fj−Gj,Y (i) at Y (i) has no non-zero terms before the (k+1)st derivative

terms. There exists ξj on the line between X and Y (i) such that

(Fj −Gj,Y (i))(X) =
∑
L∈Nn

0
|L|=k+1

∂k+1(Fj −Gj,Y (i))(ξj)
∂XL

(X − Y (i))L
L!

Let

C = max
|L|=k+1
`∈[n]

∣∣∣∣∣∂k+1(F` −G`,X)(X)
∂XL

∣∣∣∣∣ .
By the continuity of the partial derivatives, for i large enough, all of the derivatives

at ξj are bounded by 2C.

∣∣∣(Fj −Gj,Y (i))(X)
∣∣∣ ≤ 2C

∑
|L|=k+1

|X − Y (i)|L
L!
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= 2C
(k + 1)!

∑
|L|=k+1

(
k + 1
L

)
|X − Y (i)|L = 2C

(k + 1)!

(
n∑
`=1
|X` − Y`(i)|

)k+1

≤ 2C
√
nk+1

(k + 1)! |X − Y (i)|k+1

∣∣∣(F −GY (i))(X)
∣∣∣ ≤ 2C

√
nk+2

(k + 1)! |X − Y (i)|k+1

Returning to equation 2.9,

(Fj −Gj,Y (i))(X) = −Gj,Yi
(X) = Gj,Y (i)(Y (i+ 1))−Gj,Y (i)(X)

By the Mean Value Theorem, there exists ψj between X and Y (i + 1) such that

this is equivalent to:

(Fj −Gj,Y (i))(X) = ∇Gj,Y (i)(ψj) · (Y (i+ 1)−X).

Let M(GY (i))(ψ) be the matrix whose jth row is ∇Gj,Y (i)(ψj).

M(GY (i))(ψ) · (Yi+1 −X)T = (F −GY (i))(X)

|λ1(M(GY (i))(ψ))||Yi+1 −X| ≤
∣∣∣M(GY (i))(ψ) · (Yi+1 −X)T

∣∣∣
= |(F −GY (i))(X)| ≤ 2C

√
nk+2 |X − Yi|k+1

The following theorem, along with Corollary 17, prove that Corollary 30 applies

to Algorithm B for F , which proves Theorem 27

Theorem 31. Suppose F : Rn → Rn has property P. Then for X ∈ Rn
>0, F ′(X) is

non-singular.

Proof.

Fi(X) = Ai −
mi∑
j=1

Xi
n∑
k=1

αij,kXk + αij,n+1
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For i 6= `,
∂Fi
∂X`

(X) =
mi∑
j=1

αij,`Xi(
n∑
k=1

αij,kXk + αij,n+1

)2 ,

otherwise

∂Fi
∂Xi

(X) =
mi∑
j=1

αij,iXi(
n∑
k=1

αij,kXk + αij,n+1

)2 −
mi∑
j=1

1
n∑
k=1

αij,kXk + αij,n+1

= −
mi∑
j=1

n∑
k 6=i

αij,kXk + αij,n+1(
n∑
k=1

αij,kXk + αij,n+1

)2

Consider the matrix A = diag(X)−1F ′(X) diag(X). For i 6= j,

Ai,` =
mi∑
j=1

αij,`X`(
n∑
k=1

αij,kXk + αij,n+1

)2

Ai,i = −
mi∑
j=1

n∑
k 6=i

αij,kXk + αij,n+1(
n∑
k=1

αij,kXk + αij,n+1

)2

n∑
`=1

Ai,` = −
mi∑
j=1

αij,n+1(
n∑
k=1

αij,kXk + αij,n+1

)2 .

Define the (n+1)×(n+1) matrix B so that if 1 ≤ i, ` ≤ n, Bi,` = Ai,`, Bn+1,` = 1
n
,

Bn+1,n+1 = −1, and

Bi,n+1 =
mi∑
j=1

αij,n+1(
n∑
k=1

αij,kXk + αij,n+1

)2 .

The rows of B sum to 0, and only the diagonal elements are negative. Let b be the

largest of the diagonal entries. bI +B has only non-negative entries, every row sums

to b, and since GF has paths from every vertex Vi to the vertex Vn+1, by the property
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P, bI +B is irreducible. The Perron-Frobenius theorem implies that (bI +B)T has b

as an eigenvalue with algebraic multiplicity 1, and an eigenvector V with all positive

coordinates. BTV = 0, and B has rank n. The (n+ 1)st row of B can be written as

a linear combination of the other rows, and the (n+ 1)st column can be written as a

linear combination of the other columns, so their removal does not reduce the rank.

A has rank n, so it is non-singular, and thus F ′(X) is also non-singular.

By the Inverse Function Theorem [23], Theorem 31 implies that F is invertible

in some open neighborhood for every X ∈ Rn−c
>0 . This means that there are at most

countably many sets of weights which can give a particular set of expected occupation

times.

2.6 Special cases

This section discusses some special cases of the problem for which a little more can be

said than in the general case. Specifically, it considers what can be said about simple

graphs and some special cases thereof. Note that the graph G cannot be simple, as

the end vertex has no out edges. However, a simple G may be presented, removing

the offending entries in the adjacency matrix for calculations. For the remainder of

the section G is a connected simple graph.

The process of finding the expected number of visits from the weights is relatively

unchanged upon restricting to simple graphs, with the aforementioned exception. For

the reverse direction however a few facts can be refined.

Theorem 32. H has two components iff G is bipartite, and one component otherwise.

The following lemma and corollary are useful in the proof.

Lemma 33. vi and vj are neighbors in H iff there exists a path of length 2 between

them in G.
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Proof. By the definition of H, vi and vj are neighbors iff there exists vk such that vk

has an out edge to each of vi and vj. Since G is simple this occurs iff vi, vk, vj forms

a path.

Corollary 34. vi and vj are in the same component in H iff there exists an even

length walk between them in G.

proof of Theorem 32. A bipartite G must give H two components as only vertices in

the same partite set of G will have walks of even length between them. To see that

any other G must give H one component, note that G contains an odd cycle. Let

vk be some vertex on that cycle. For any vi and vj, there is a walk from vi to vj

which contains vk. If this walk is even, then vi and vj are in the same component.

If it is odd, then insert that odd cycle into the walk when it visits vk to create an

even length walk. Any two vertices are in the same component, so there is only one

component.

Theorem 35. Suppose G is a path with n vertices from the start vertex to the end

vertex. Let Di be the expected number of visits to vertex vi, Ei = 1 if i is odd, and

Ei = 0 if i is even. For 1 ≤ i ≤ n− 1, the weights are given by

Wi =
b i−1

2 c∏
j=1


Di+1−2j

i−2j∑
k=1

(−1)k+i−2jDk + Ei

− 1

 ,

where the empty product is taken to be 1. Wn = Wn−2

(
Dn−1

Dn−2
− 1

)
.

Proof. Define Pi,i+1 = Wi+1

Wi+1 +Wi−1
, and Pi,i−1 = 1 − Pi,i+1. It suffices to show

that Di−1Pi−1,i + Di+1Pi+1,i = Di for 2 ≤ i ≤ n − 2, as well as 1 + D2P2,1 = D1,

Dn−2Pn−2,n−1 = Dn−1, and Dn−1Pn−1,n = 1.
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For 2 ≤ i ≤ n− 1,

Wi+1

Wi−1
=

b i
2c∏
j=1


Di+2−2j

i+1−2j∑
k=1

(−1)k+i+1−2jDk + Ei+1

− 1


b i−2

2 c∏
j=1


Di−2j

i−1−2j∑
k=1

(−1)k+i−1−2jDk + Ei−1

− 1



= Di

i−1∑
k=1

(−1)k+i−1Dk + Ei+1

− 1

Pi,i+1 = Wi+1

Wi+1 +Wi−1

= Wi+1/Wi−1

Wi+1/Wi−1 + 1

=


Di

i−1∑
k=1

(−1)k+i−1Dk + Ei+1

− 1




Di

i−1∑
k=1

(−1)k+i−1Dk + Ei+1

− 1 + 1



=

i∑
k=1

(−1)k+iDk + Ei+1

Di

Pi,i−1 =

i−1∑
k=1

(−1)k+i−1Dk − Ei−1

Di

1 +D2P2,1 = 1 +D1 − 1 = D1

Di−1Pi−1,i +Di+1Pi+1,i =
i−1∑
k=1

(−1)k+i−1Dk + Ei +
i∑

k=1
(−1)k+iDk − Ei = Di.

48



G is bipartite, so H has two components, C1 and C2, splitting the odd and even

vertices. Without loss of generality, assume vn ∈ C1. ξC1 = En. By Theorem 3,

∑
vi∈C1

Dj =
∑

vj∈N−(C1)
Dj + En.

n∑
k=1

(−1)k+nDk = En.

Dn−2Pn−2,n−1 =
n−2∑
k=1

(−1)k+n−2Dk + En−1

= Dn−1 − 1 +
n∑
k=1

(−1)k+nDk + En−1 = Dn−1 + En + En−1 − 1

= Dn−1

Dn−1Pn−1,n =
n−1∑
k=1

(−1)k+n−1Dk + En = 1−
n∑
k=1

(−1)k+nDk + En

= 1− En + En = 1

Corollary 36. The weights given by Theorem 35 are the unique solution for D on a

path with D1 = D2 = 1. P is uniquely determined by D.

Proof. If the first i weights are determined uniquely, then the equation Di−1Pi−1,i +

Di+1Pi+1,i = Di has a unique solution for Pi+1,i, so there is a unique solution for

Wi+1.

Recall P (W ) is the matrix of probabilities for the weights W . Let D(W ) be the

expected occupation times for W . For an induced subgraph G′ of G, W |G′ is the

restriction of W to vertices in G′. A leaf in G is a vertex with only one neighbor.

Theorem 37. Let G be a graph with at least 3 vertices, one of which, x, is a leaf,

x 6= v1, x 6= vn, and x is not adjacent to vn. G′ = G − x. Let W1 and W2 be

weights on the vertices of G. If D(W1) = D(W2) then D(W1|G′) = D(W2|G′). If

P (W1) 6= P (W2) then P (W1|G′) 6= P (W2|G′).
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Proof. Let P1 = P (W1), P2 = P (W2), D = D(W1). P1D = D = P2D. x has only

one neighbor, call it y. Dx is equal to Dy times the probability of going from y to

x. This probability must be the same for both P1 and P2, call it p. Let P 1 be the

matrix P1 with row and column x removed, and let K be the identity matrix with

the y entry replaced by 1/(1 − p). P ′1 = P (W1|G′) = P 1K. Let D be D with the x

entry removed. P 1D = K−1D.

P ′1K
−1D = P 1D = K−1D

K−1D = D(W1|G′)

P ′2 = P (W2|G′) = P 2K

K−1D = D(W1|G′)

It suffices to show that P1 and P2 differ in some entry other than the probability

of going from y to x, or from x to y. There are at least 3 vertices, x is not the start or

end vertex, and y is not the end vertex There is a walk from y to vn, so y must have

another neighbor, z. Without loss of generality, assume that z has the same weight

in both W1 and W2. If the weights of the neighbors of y have different sums in W1

versus W2, then the probability of going from y to z differs between P1 and P2. So

now suppose the sums are the same. If x also has the same weight in both, then they

must differ somewhere else as they are not equal. If x has different weights in W1

versus W2, then some neighbor of y must have different weights for the sums to be

equal. The probability of going from y to this vertex differs between P1 and P2.

Corollary 38. If P is uniquely determined by D on G for any D satisfying Theorem

3, then the same is true of G with a leaf added to any vertex other than vn.

Thus combining Corollaries 36 and 38, we get the following

Corollary 39. If G is a tree, then P is uniquely determined by D.
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Chapter 3

Graphical Projective Spaces

3.1 Introduction and Definitions

The primary motivating force behind the definition of graphical projective spaces

is as an appropriate extension of the space from which weights are pulled for the

vertices of a vertex-weighted graph. In particular they will be used to complete the

space of possible solutions for the random walk problem discussed in Chapter 2 on a

vertex-weighted graph. However, they also provide an interesting connection between

hypergraphs and the topological spaces which arise out of the process, which may hold

independent interest.

Given a hypergraph H on n vertices, a function will be defined from the first

orthant of Rn to the interior of the unit cube in an appropriate Rm. This will induce

an equivalence relation on the initial orthant, and a metric on the resulting quotient

space. The completion of the quotient space with respect to the metric can then be

formed. The resulting space is a graphical projective space.

More formally, let H be a hypergraph with vertex set V and edge set E, composed

of c components. For v ∈ V , define the degree d(v) as the number of edges e ∈ E

with v incident to e. Set n = |V | and m = ∑
v∈V d(v). Define f : Rn

>0 → (0, 1)m.

f is described as a collection of m functions from R>0 to (0, 1), it has a separate

coordinate function for each incident vertex-edge pair. The input coordinates are
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indexed by the vertices of V . For vi ∈ e ∈ E

fe,vi
(X) = Xi∑

vj∈e
Xj

More intuitively, the input is a collection of finite positive weights on the vertices,

and for each vertex-edge pair the function returns the proportion of that edge’s weight

which is at that vertex.

f provides an equivalence relation on Rn
>0 of X ≈ Y iff f(X) = f(Y ). Each

equivalence class contains a unique element, minimal in the lexicographic order on

Rn
>0, with min

i
Xi = 1. Whenever an element of Rn

>0/ ≈ is used it is assumed to be this

minimal representative of the class. If H consists of the single hyperedge containing

all vertices, then the equivalence relation noted is precisely the equivalence relation

used in defining projective space, restricted to the open first orthant.

Define f̃ : Rn
>0/ ≈→ (0, 1)m, and define the metric d on Rn

>0/ ≈ as

d(X, Y ) = |f̃(X)− f̃(Y )|,

where | · | is the L2 norm. Under this metric there are Cauchy sequences in Rn
>0/ ≈

which do not converge inside the space, sequences where some coordinates head off

towards∞. Taking the completion of Rn
>0/ ≈ with respect to the metric d adds points

which essentially capture the possibilities for when the weights on the hypergraph

head towards 0 or ∞. From here on the completed space will be called PH . For

X ∈ PH , define S(X) to be the set of vertices whose coordinates are unbounded in

all Cauchy representatives of X. In the case where H is a single hyperedge with all

of the vertices, the completion is the closed first orthant of projective space. f̃ is

extended to f : PH → [0, 1]m. f is a homeomorphism between PH and its image.

A topological space X is a Hausdorff space if for any x, y ∈ X, x 6= y, there

exist neighborhoods of x and y that are disjoint. Rn is Hausdorff, and the property

of being Hausdorff is preserved under homeomorphisms, and subspaces. [0, 1]m is

52



Hausdorff, so PH is Hausdorff. An n-dimensional open cell is a topological space

which is homeomorphic to the open ball Bn. A Hausdorff space X along with a

partition into open cells E is a CW-complex if the following properties hold:

1. For every open n-cell C ∈ E , there is a continuous map gC : Bn → X such that

gC restricted to the interior Bn is a homeomorphism with C, and gC maps any

point on the boundary of Bn into a cell in E of dimension less than n.

2. For every n-cell C ∈ E , the closure in X, C, intersects only finitely many other

cells in E .

3. A subset A ⊆ X is closed iff A ∩ C is closed for every C ∈ E .

The last two properties are automatically satisfied if there are only finitely many cells

in the partition.

Proposition 40. Suppose the interior of X is an open n-cell, and there is a con-

tinuous function g : Bn → X such that the restriction of g to the open n-ball is a

homeomorphism with the interior of X. If the boundary of X is a CW-complex with

finitely many cells E, each of dimension less than n, then X is a CW-complex with a

cell decomposition formed by adding the interior of X to E.

Proof. All of the cells on the boundary of X satisfy the requirements as they are

already part of a CW-complex. So it suffices to show that the cell formed by the

interior does as well. g provides the requisite function, and the restrictions on the

CW-complex formed by the boundary ensure that the image of the boundary of Bn

under g is contained in cells from E , all of which have dimension less than n.

Proposition 41. Suppose X is a Hausdorff space with a partition into open cells E.

Suppose there is a finite collection D of closed cells, each D ∈ D is the union of open

cells in E. Each open cell C ∈ E is in at least one D. If every D is a CW-complex

over the open cells it contains, then X is a CW-complex.
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Proof. Since each open cell of X is contained in a CW-complex, X inherits the local

properties for that cell. The third property is satisfied in each of the closed cells in

D, and there are only finitely many of them, so X satisfies the third property.

Let S be a decreasing chain of subsets of V , that is V = S0 ) S1 ) . . . ) Sk. The

chain induced hypergraph H ↘ S is a hypergraph with the same vertices V as H,

e ↘ S is an edge in H ↘ S iff there exists an edge e ∈ E and an index i ∈ [k] such

that e↘ S = e ∩ Si 6= ∅, and for all j > i, e ∩ Sj = ∅.

3.2 CW-Complexes on Graphical Projective Spaces

Define an equivalence relation on X, Y ∈ PH , X ∼ Y iff there exists K ∈ Rn
>0 such

that, for any Cauchy representative of X, A, the sequence (K1A1(i), . . . , KnAn(i)) is

a representative of Y . This is obviously reflective, and easily seen to be symmetric

and transitive, so it is an equivalence relation. Let EH be the equivalence classes

formed by ∼. EH is the collection of cells for the CW-complex of PH . Note that for

any C ∈ EH , if X, Y ∈ C, then S(X) = S(Y ), so the set S(C) is well defined.

The equivalence class which contains A(i) = (1, 1, 1, . . . , 1) is the initial quotient

space before the completion, so it is the interior of PH , which is represented by

Rn
>0/ ≈. This is homeomorphic to Rn−c

>0 , and therefore to the open ball Bn−c. There

exists a continuous map h : Bn−c → PH which restricts to a homeomorphism between

the open ball Bn−c and the interior of PH . Proposition 40 applies to PH , so by

Proposition 41 it suffices to find a collection D of closed cells on the boundary so that

every open cell in EH is contained in at least one D ∈ D, and to show that D forms

a CW-complex.

Pick a nonempty subset S1 ( V , such that every vertex in S1 is connected to

some vertex in V − S1. Let S be the chain V = S0 ) S1. VS1 is the vector with a 1

for every vertex in S1, and a 0 otherwise. QS is the the equivalence class containing
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the point with the Cauchy sequence representative A(i) = (1, 1, . . . , 1) + iVS1 . QS is

the closure of QS in PH . D is the collection of these QS.

Lemma 42. Let S = {V, S1}, with every vertex in S1 connected to V − S1. X ∈ QS

iff for every edge e ∈ E, if e ∩ S1 6= ∅, then for any vi ∈ e− S1, f e,vi
(X) = 0.

Proof. First suppose there exists an edge e ∈ E with e ∩ S 6= ∅, and vi ∈ e − S1

with f e,vi
(X) > 0. Pick Y ∈ QS. Let a(i) be a Cauchy sequence converging to Y .

Without loss of generality, assume aj(i) = aj if vj /∈ S1, and aj(i) = aj · i if vj ∈ S1.

f e,vi
(Y ) = lim

j→∞

ai(j)∑
vk∈e

ak(j)
= lim

j→∞

ai∑
vk∈e∩S1

ak · j +
∑

vk∈e−S1

ak
= 0

d(X, Y ) ≥ f e,vi
(X) > 0

The distance from Y to X is bounded away from 0 for all Y ∈ QS, so X is not in the

closure.

Now suppose for every edge e ∈ E, if e ∩ S1 6= ∅, then for any vi ∈ e − S1,

f e,vi
(X) = 0. Let a be a representative Cauchy sequence for X, with a(i) =

(a1(i), a2(i), . . . , an(i)). If e ∩ S1 6= ∅ and vi ∈ e ∩ S1,

f e,vi
(X) = lim

j→∞

ai(j)∑
vk∈e

ak(j)
≤ lim

j→∞

ai(j)∑
vk∈e∩S

ak(j)

1 = lim
j→∞

∑
vi∈e

ai(j)∑
vk∈e

ak(j)
=
∑
vi∈e

f e,vi
(X) =

∑
vi∈e∩S1

f e,vi
(X)

= lim
j→∞

∑
vi∈e∩S1

ai(j)∑
vk∈e

ak(j)
≤ lim

j→∞

∑
vi∈e∩S1

ai(j)∑
vk∈e∩S1

ak(j)
= 1

The inequality must actually be equality, so if e ∩ S1 6= ∅ and vi ∈ e ∩ S1,

f e,vi
(X) = lim

j→∞

ai(j)∑
vk∈e∩S

ak(j)

For i ≥ 1, let Y (i) ∈ QS be the element with representative Cauchy sequence bi(k),

where bij(k) = aj(i) if vj /∈ S1, and bij(k) = k · aj(i) if vj ∈ S1. If e ∩ S1 = ∅,
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f e,vj
(Y (i)) = f̃e,vj

(a(i)) If e ∩ S1 6= ∅, and vj ∈ e− S1, f e,vj
(Y (i)) = 0 = f e,vj

(X). If

e ∩ S1 6= ∅, and vj ∈ e ∩ S1,

f e,vj
(Y (i)) = lim

k→∞

bij(k)∑
vh∈e

bih(k)
= lim

k→∞

k · aj(i)
k ·

∑
vh∈e∩S1

ah(i) +
∑

vh∈e−S1

ah(i)

= aj(i)∑
vh∈e∩S1

ah(i)

lim
i→∞

d(Y (i), X) = 0

Lemma 43. For every cell C ∈ EH , and S = {V, S1}, with every vertex in S1

connected to V − S1, if C ∩QS 6= ∅, then C ⊂ QS.

Proof. Pick X ∈ C ∩ QS, a(i) is a Cauchy sequence converging to X. For any

other Y ∈ C, there exists K such that (K1a1(i), . . . , Knan(i)) is a Cauchy sequence

converging to Y . Y satisfies the conditions of Lemma 42.

Theorem 44. Let C ∈ EH , and S = {V,S(C)}. C ⊂ QS.

Proof. Pick X ∈ C, with a(i) a Cauchy sequence converging to X. Every vertex in

S(C) is connected to a vertex in V −S(C). Let e ∈ E be given such that e∩S(C) 6= ∅,

and choose vi ∈ e − S(C). Since vi /∈ S(C), assume without loss of generality that

ai(j) is bounded as j goes to ∞.

f e,vi
(X) = lim

j→∞

ai(j)∑
vk∈e

ak(j)
= lim

j→∞

ai(j)∑
vk∈e∩S(C)

ak(j) +
∑

vk∈e−S(C)
ak(j)

= 0

By Lemmas 42 and 43, C ⊂ QS.

Lemma 45. If S = {V, S1}, with every vertex in S1 connected to V −S1, then QS is

isomorphic to PH↘S as CW-complexes.
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Proof. For X, Y ∈ Rn
>0, X ≈H Y implies X ≈H↘S Y , so the inclusion map I :

Rn
>0/ ≈H→ Rn/ ≈H↘S is well-defined. Pick X ∈ QS. Let a(i) be a Cauchy sequence

which converges to X. If e ⊂ S1 or e ⊂ V − S1, then e = e↘ S,

f̃e,vj
(a(i)) = f̃e↘S,vj

(I(a(i)))

If e ∩ S1 6= ∅ and vj ∈ e− S1,

f e,vj
(X) = 0

If vj ∈ e ∩ S1,

f e,vj
(X) = lim

i→∞

aj(i)∑
vk∈e∩S1

ak(i)
= lim

i→∞
f̃e↘S,vj

(I(a(i)))

I(a(i)) is Cauchy in PH↘S. Define F : QS → PH↘S as F (X) = lim
i→∞
I(a(i)).

f e↘S,vj
(F (X)) = f e,vj

(X), so F is one-to-one. I is continuous, so F is as well.

If X and Y are in the same cell, then F (X) and F (Y ) will be too, and if X and Y

are in different cells, then F (X) and F (Y ) are as well. It suffices to show that F is

onto.

Pick Y ∈ PH↘S, and let b(i) be a Cauchy sequence in the quotient space of

Rn
>0 over the equivalence relation ≈H↘S which converges to Y . Let β(i) ∈ Rn

>0 be

a sequence which maps to b(i). Assume without loss of generality that βj(i) ≥ 1.

K(i) =
∑

vj∈V−S1

βj(i). Define α(i) so that αj(i) = βj(i) if vj /∈ S1, and αj(i) =

i · βj(i) · (1 + K(i)) if vj ∈ S1. Since S1 is the union of components in H ↘ S, α(i)

is also a representative sequence for b(i), and therefore for Y . Suppose e ⊂ S1 or

e ⊂ V − S1.

lim
i→∞

fe,vj
(α(i)) = lim

i→∞

βj(i)∑
k∈e

βk(i)
= lim

i→∞
fe↘S,vj

(β(i)) = f e↘S(Y )

If e ∩ S1 6= ∅ and vj ∈ e− S1,

lim
i→∞

fe,vj
(α(i)) = lim

i→∞

βj(i)∑
vk∈e∩S1

i · βk(i)(1 +K(i)) +
∑

vk∈e−S1

βk(i)
= 0
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If vj ∈ e ∩ S1,

lim
i→∞

fe,vj
(α(i)) = lim

i→∞

i · βj(i)(1 +K(i))∑
vk∈e∩S1

i · βk(i)(1 +K(i)) +
∑

vk∈e−S1

βk(i)

= lim
i→∞

βj(i)∑
k∈e∩S1

βk(i)
= f e↘S,vj

(Y )

α(i) converges to a point X ∈ QS, and F (X) = Y . F is onto.

Theorem 46. PH forms a CW-complex with open cells EH .

Proof. By Propositions 40 and 41, Theorem 44, and Lemma 45, it suffices to show

that PH↘S has a dimension smaller than n − c. It suffices to show that H ↘ S has

more components than H. Some edge in H has vertices in both S1 and V −S1, since

every component of H has at least one vertex in V − S1, and S1 is non-empty. In

H ↘ S, no vertex in S1 is in the same component as any vertex in V −S1, as no edges

have vertices in both. Any component in H which has a non-empty intersection with

S1 is split into at least 2 components in H ↘ S.

Theorem 47. There is a bijection between the open cells C ∈ EH and the chains of

non-empty subsets of the vertices, S, V = S0 ) S1 ) S2 ) . . . ) Sk = ∅, such that

for 0 ≤ i < k, every vertex in Si − Si+1 is connected to a vertex in Si−1 − Si in the

graph H − Si+1. C is isomorphic in the category of CW-complexes to PH↘S.

Proof. The statement is trivially true for the interior of PH ; k = 0, and S is just

S0 = V . The proof is by induction on n − c. If n − c = 0, the interior is the

only cell and V = S0 ( S1 is the only chain, so the proof is complete. Suppose

n− c > 0, and C is a cell other than the interior of PH . C ⊂ QS(C), and by Lemma

45, QS(C) is isomorphic in the category of CW-complexes to PH↘S(C), which has a

smaller dimension. By induction, C is isomorphic to P(H↘S(C))↘S̃, where S̃1 ( S(C).

Let S be the chain V = S0 ) S(C) ) S̃1 ) . . . ) S̃k. (H ↘ S(C)) ↘ S̃ = H ↘ S,
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so C is isomorphic in the category of CW-complexes to PH↘S. For a given chain

S, let C be the cell containing the element with the representative Cauchy sequence

a(i) = ∑k
j=0 i

j · VSj
.

The following result allows a reduction of dimensionality in some special cases.

Theorem 48. Let e ∈ E be an edge with |e| ≥ 3 vertices such that there are three

edges e1, e2, e3 ⊂ e each with |e|−1 vertices. Then PH is isomorphic as a CW-complex

PH−e.

Proof. It suffices to find a continuous bijective homeomorphism from f(PH−e) to

f(PH) which maps cells to cells. This homeomorphism, call it H, can fix all of the co-

ordinates which are shared by both f(PH−e) and f(PH). It suffices to prove that He,vj

is continuous and bijective for every vj ∈ e in order for H to be a homeomorphism.

The only inputs that will be used in He,vj
will be the f ei,v`

terms for i ∈ {1, 2, 3}.

Without loss of generality, assume that H has |e| vertices, and e1, e2, e3, and e are

the only edges.

Without loss of generality, assume that ei = e−vi for i ∈ {1, 2, 3}. On the interior

of f(PH−e), f is a bijection with Rn
>0/ ≈. The ≈ equivalence relation is the same

for both H and H − e, so f e,vj
can be applied to the quotient space of Rn

>0 over the

equivalence relation ≈H−e. He,vj
applies this map to the interior of f(PH−e). Suppose

X is on the boundary of f(PH−e). At least one of X’s coordinates is 0. First assume

that Xei,vj
= 0 for some i, j ∈ {1, 2, 3}, i 6= j. Note that proof of this case is all

that is required for the base case of |e| = 3, so we can induct on |e| after this case is

proven. Let He,vj
(X) = 0, and He,v`

(X) = Xej ,v`
. To see that this is continuous, let

a(t) be a Cauchy sequence such that lim
t→∞

f̃(a(t)) = X.

0 ≤ lim
t→∞

He,vj
(f̃(a(t))) = lim

t→∞
f̃e,vj

(a(t))

= lim
t→∞

aj(t)
|e|∑
k=1

ak(t)
≤ lim

t→∞

aj(t)
|e|∑
k 6=i

ak(t)
= Xei,vj

= 0
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lim
t→∞

He,v`
(f̃(a(t))) = lim

t→∞
f̃e,v`

(a(t))

= lim
t→∞

a`(t)
|e|∑
k=1

ak(t)
= lim

t→∞

a`(t)
|e|∑
k 6=j

ak(t)

|e|∑
k 6=j

ak(t)

|e|∑
k=1

ak(t)
= Xej ,v`

(
1−Xei,vj

)
= Xej ,v`

Now assume Xei,vj
6= 0 for all i, j ∈ {1, 2, 3}, but some other X coordinate is 0. In

particular, there must be at least 4 vertices to require this case. Since X is on the

boundary, there is an S1 so that the closure of C, the cell containing X, is isomorphic

to P(H−e)↘S = PH↘S−e↘S. For any vj /∈ S1, Xei,vj
= 0 for j 6= i. This implies that

v1, v2, v3 ∈ S1. e1∩S, e2∩S, e3∩S and e∩S satisfy the conditions for induction with

|e∩S| < |e|. PH↘S−e↘S is isomorphic as a CW-complex to PH↘S, which is isomorphic

to the closure of a cell D in PH . H(X) chains these isomorphisms together to map

X to PH .

3.3 From Graphs to Zonotopes

This section explores the connection between the CW-complex formed by simple

graphs, and zonotopes with isomorphic CW-complexes. A zonotope is a special type

of polytope which is the image of a hypercube under linear projection. An explicit

map from PH to a zonotope is given which maps k-cells to k-faces of the zonotope,

thus preserving the CW-complex structure. This is done by taking the image of

PH under f , which is clearly an isomorphism, and taking a linear projection onto a

subspace of dimension n− c. In order for this to be an isomorphism in the category

of CW-complexes, the linear projection needs to be one-to-one. It suffices to find a

linear space of dimension m−n+ c such that no two points in the image of PH under

f have a difference which is in the linear space.

In a simple graph, m = 2|E|, as there are 2 coordinates in the image for each

edge, one for each vertex in the edge. If e = (vi, vj), then f e,vi
(X) = 1 − f e,vj

(X).
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This induces a linear projection down to R|E| by arbitrarily choosing one vertex for

each edge. Essentially, this induces a direction on each edge, giving a directed graph
−→
H , where the image of f is restricted to the coordinates for the in-vertices of each

directed edge. This restriction, call it −→f , is an isomorphism. Another linear space of

dimension |E| −n+ c is needed to complete the linear map into a space of dimension

n− c. The space used is a form of a cycle space on the directed graph −→H .

For every cycle C in H, there are two directed cycles −→C . Note that all of the

edges are directed the same way around the cycle, and that this may conflict with

the directions given to those edges in −→H . Define the vector V(−→C ) ∈ R|E| as the vector

with Ve(
−→
C ) = 0 if e /∈ C, Ve(

−→
C ) = 1 if e is given the same direction in −→C and −→H , and

Ve(
−→
C ) = −1 if it is given different directions. Let C be the vector space generated by

these V(−→C ). Let T be a spanning forest of H. Every edge not in T induces a unique

cycle in H, and choosing one directed cycle for each one generates vectors V(−→C ) for

each of these cycles, which forms a linearly independent set. T has n−c edges, which

implies that C has dimension at least |E| − n + c. This will be proven to be exact

when the dimension of the complementary space is discussed.

Theorem 49. For any a, b ∈ PH ,
−→
f (a)−−→f (b) /∈ C

Proof. For a cycle −→C , say that the vector X matches V(−→C ) if for every e ∈ C, Xe 6= 0

and both Xe and Ve(
−→
C ) have the same sign. To see that −→f (a)−−→f (b) cannot match

V(C) ∈ C, suppose for contradiction that it does. Let (c0, c1, . . . , ck) be the vertices

of C, with the edges directed from ci to ci+1 in −→C . ai− bi < ai+1− bi+1 for all i. This

implies a0− b0 < ak − bk < a0− b0, an obvious contradiction. It suffices to show that

every vector in W ∈ C matches some V(−→C ).

Another way to look at this is to take W and make a directed graph G on the

vertices of H where each edge with a positive coordinate in W takes the direction

from −→H , and each edge with a negative coordinate in W takes the opposite direction.

Ignore any edge whose coordinate in W is 0. If G has a directed cycle, then W
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matches V(−→C ) for that cycle. It suffices to show that G always has a directed cycle,

for which it suffices to show that G has no sinks. Pick a vertex v ∈ G. Assume v

has at least one in-edge, otherwise it is not a sink. Given a basis B for C, where

each Bi = V(−→C ) for some directed cycle, W =
∑
i

diBi. Define the matrix M(v) for

a vertex v, with a row for each edge incident to v, and a column for each Bi. Mi,j

is 0 if the ei /∈ Bi, -1 if the edge is directed into v in Bi, and 1 if it is directed out.

The edge ei is directed into v in G iff
∑
j

Mi,jdi is negative, and directed out iff the

sum is positive. Since the Bi are cycles, they have precisely 1 in edge and 1 out edge

incident to v, so the columns of M sum to 0, and Md sums to 0. By assumption v

has at least 1 edge directed in, so Md has at least 1 negative entry. It sums to 0, so

it must also have a positive entry, and therefore an out edge.

Projecting into the space complementary to C is 1-1, and thus a bijection with the

image. In order define the function which projects into the complementary space, a

basis of the complementary space can be found. Any basis can be used to construct

an orthonormal basis using the Gram-Schmidt process. Projecting into the com-

plementary space is then equivalent to taking inner products with this orthonormal

basis.

The complementary space will be called B. Recall the spanning forest T . For any

edge in T , removing it breaks the component containing that edge into 2 components,

call them A and B. Define the vector Ve ∈ B as the vector with a 1 for edge e if it is

directed from A to B in −→H , -1 if it is from B to A, and 0 otherwise. As each of these

cuts has a unique edge in T , these vectors are linearly independent, with a span of

dimension n− c. Since they are normal to C, they are contained in the complement.

C had dimension at least |E| − n+ c, so B must be the complement.

Projecting into B is bijective, so PH is isomorphic in the category of CW-complexes

with its image. To see that the result of the projection is a zonotope, it is proven

that PH projects onto the image of the unit hypercube under the same projection.
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Theorem 50. PH and [0, 1]m have the same projection in the cut space B.

Proof. The proof is by induction on |E|−n+ c. In the case that H is a forest there is

no projection as there is no cycle space, and PH maps onto the unit hypercube under
−→
f .

Pick x in the image of the unit hypercube projected into B, and let R be its

pre-image; that is R is the intersection of the unit hypercube, and the affine space

containing x + W for W ∈ C. Let E ′ be the set of edges whose coordinates are

either always 0 or always 1 in R. First, assume E ′ 6= ∅. Consider the graph H − E ′.

If A and B are separate components of H − E ′, then either all edges from A to

B in E ′ have coordinates of 1 in S, and edges from B to A have coordinates of 0,

or the other way around. If this is not true, then there is a cycle C whose V(−→C )

can be added so that those edges have coordinates in (0, 1). Note that for similar

reasons, all edges in E ′ are between two components of H − E ′. This induces a

partial order on the components of H − E ′, where A < B if there is a sequence of

components A = A1, A2, . . . , Ak = B such that all of the edges in E ′ from Ai to Ai+1

have coordinates that are always 1 in S. This is anti-symmetric, and transitivity is

preserved by a similar condition on a cycle that would result. So the components

of H − E ′ form a poset. For each component A of H − E ′, define the height η(A)

as one less than the length of the longest chain in H − E ′ with A as the maximal

element. Extend this to η(vi), so that η(vi) = η(A) if vi ∈ A. Define the set Si as

the set of vj such that η(vj) ≤ i. This defines a decreasing chain of sets of vertices

S = {V = S0, S1, . . . , Sk}. H − E ′ = H ↘ S. By induction, there exists a point

x ∈ PH↘S which maps into the restriction of R to edges not in E ′. By Theorem 47,

S corresponds to a cell D ∈ EH , and the closure D is isomorphic to PH↘S. Let y ∈ D

be the image of x under this isomorphism. −→f (y) ∈ R.

Now assume E ′ = ∅. There exists a point t ∈ R such that all of the edges are in

(0, 1). Pick a spanning forest T of H, and label the edges not in T as e1, e2, . . . , ek.
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For any t ∈ R there exists y ∈ PH such that for all edges e ∈ T , −→f e(y) = te. Call

this point y(t). For each edge ei not in T , define gi(t) = ti − fei
(y(t)). It suffices to

find a point in R where all of the g’s are 0. hi(t) will be defined to map any point

t ∈ R to a point in R where gj(hi(t)) = 0 if j ≤ i. The hi’s are built up inductively,

starting with h0(t) = t.

Each ei induces a cycle Ci, which induces a vector Wi ∈ C, Wi = V(Ci). hi(t) =

t+∑i
j=1 αjVj for some collection of α’s. Let t be given. Let Ai(t) be the set of points in

R of the form t+∑i
j=1 αjVj. Ai−1(t) ⊆ Ai(t), and for any s ∈ Ai(t), Ai(s) = Ai(t), and

hi−1(s), hi−1(t) ∈ Ai(t). Let Bi(t) = hi−1(Ai(t)). The Wj are linearly independent,

so there is a unique way to write each point in Ai(t) in the given form. Let ∼ be

an equivalence relation on Ai(t), where two points are equivalent if they have the

same αi. hi−1 is well-defined and continuous on Ai(t)/ ∼. Ai(t) is the intersection

of two closed sets, so it is closed. There exists a point with the minimum αi over all

of Ai(t), call it β. For any ε > 0, β − εWi /∈ R, so βe = 0 for some edge e ∈ Ci.

Since hi−1(β) ∈ Ai(t) has the same αi value, it too has a 0 for some edge in Ci.

gi(hi−1(β)) ≤ 0. Similarly, let γ ∈ Ai(t) be the point with the maximum αi, implying

gi(hi−1(γ)) ≥ 0. By the intermediate value theorem, there is a point in x ∈ Ai(t)/ ∼

such that gi(hi−1(x)) = 0. hi(t) = hi−1(x).

Then hk(t) is a point with all of the gi’s 0, so it is the image of a point in PH .

hk(t) ∈ R, and x is in the image of the projection of PH . Therefore the projection is

onto, as claimed.

The resulting zonotope is the intersection of finitely many closed half-spaces. As

the zonotope is full dimensional, the hyperplanes defining the half-spaces each in-

tersect the zonotope in a space of dimension n − 1, where n is the dimension of the

zonotope. The cells of the natural CW-complex on the zonotope results from labeling

each point with the supporting hyperplanes it is incident to. The dimension of the

cell is the dimension of the zonotope minus the number of supporting hyperplanes.

64



Corollary 51. The CW-complex PH is isomorphic as a CW-complex with the natural

CW-complex of the zonotope formed under projection onto the cut space B.

Proof. It suffices to show that the image of an (n− c− k)-cell in the CW-complex is

an (n − c − k)-face in the zonotope. Let F be an (n − c − k)-face of the zonotope.

F is determined by k supporting hyperplanes. Let R be the pre-image of F in

[0, 1]|E|−n+c. The pre-image of the supporting hyperplanes of the zonotope must be

supporting hyperplanes of the hypercube. A supporting hyperplane of the hypercube

forces a given set of coordinates to be 1, and another set to be 0. As this hyperplane

is the preimage of a hyperplane in B, it is closed under the addition of any element of

C. As described in the previous proof, this means that the edges which are fixed at 0

and 1 induce a cut in H, as well as a poset on the resulting components. Let E ′ be

the set of edges whose coordinates are either always 0 or always 1 in R. Because R

has k supporting hyperplanes, and each must fix the coordinate of at least one edge

which no other hyperplane does, H − E ′ has at least c + k components. Using the

poset as in the previous proof, a chain S = {V = S0, . . . , S`} is defined. Let D ∈ EH

be the cell corresponding to this chain. Every element of C is mapped into R, and

any element mapped into R is in C. Thus there is a homeomorphism between C and

F , so they are cells of the same dimension.

3.4 Special Cases

As discussed above, the CW-complex PH is isomorphic to the natural CW-complex

formed by projection onto the cut space B, complementary to the cycle space C. A

tree has no cycles, and thus no cycle space. As a result the zonotope for a tree on n

vertices is the (n− 1)-hypercube.

Now consider the cycle graph Cn. The cycle space has only 1 cycle, so the cycle

space is generated by the vector (1, . . . , 1), assuming without loss of generality that

the same directions were chosen for the cycle as a cycle and as the graph. The resulting
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zonotope for PCn is the projection of the n-hypercube onto the complementary space.

PC3 is a hexagon, and PC4 is a rhombic dodecahedron.

Finally, consider the complete graph Kn. The resulting zonotope is the (n − 1)-

dimensional permutohedron. In order to prove this, it is simpler to project onto the

canonical permutohedron in Rn, which is defined as the convex hull of all permutations

of (1, . . . , n). An orthonormal basis is constructed to define the projection, which is

then modified in order to map the hypercube into the hyperplane containing the

permutohedron.

Proposition 52. PKn is isomorphic in the category of CW-complexes to the (n− 1)-

dimensional permutohedron.

Proof. Define −→Kn by labelling each vertex 1, 2, . . . , n, and directing edges from larger

numbers to smaller numbers. Define the tree T as the edges incident to vn. For i > j,

let ξi,j be the vector with a 1 in the coordinate for the edge from j to i, and 0 in all

other coordinates. For 1 ≤ i ≤ n, define

Bi =
i−1∑
j=1

ξi,j −
n∑

j=i+1
ξj,i.

If i 6= j, Bi · Bj = −1, and Bi · Bi = n− 1. For 1 ≤ i ≤ n− 1, the Bi’s form a basis

of B.

Ni = Bi + 1
i+ 1

n−1∑
j=i+1

Bj

If k > i,

Ni ·Bk = −1 + n− 1
i+ 1 −

n− i− 2
i+ 1 = 0

The Ni are orthogonal.

Ni ·Ni = Ni ·

Bi + 1
i+ 1

n−1∑
j=i+1

Bj

 = Ni ·Bi = n− 1− n− i− 1
i+ 1

= ni− i+ n− 1− n+ i+ 1
i+ 1 = ni

i+ 1

66



Vi =
√

i+1
ni
Ni forms an orthonormal basis. U ∈ Rn is the space where u ∈ U iff

u · (1, 1, . . . , 1) = 0. For 1 ≤ i ≤ n, define Di ∈ U .

Di = (1, . . . , 1,−(n− 1), 1, . . . , 1),

where the −(n− 1) is in the ith position, and there are n− 1 ones. This is a linearly

independent set for 1 ≤ i ≤ n− 1. For i 6= j,

Di ·Dj = −2n− 1
4 + n− 2

4 = −2n+ 2 + n− 2
4 = −n4

Di ·Di = n− 1
4 + (n− 1)2

4 = n

4 (n− 1)

Just as with the Bi’s, an orthogonal set is formed by

Mi = Di + 1
i+ 1

n−1∑
j=i+1

Dj

Wi =
√

i+1
ni
Mi are not unit length, but are an orthogonal basis with all of the vectors

the same length.

Let α =
(

1
2 , . . . ,

1
2

)
. For any X in the unit hypercube there are unique ai such

that

X ∈ α +
n−1∑
i=1

aiVi + C.

F is the function which maps X to the permutohedron. Let β = (n+1
2 , . . . , n+1

2 ).

F (X) = β +
n−1∑
i=1

aiWi

Note that

F (α +
n∑
i=1

biBi + C) = β +
n∑
i=1

biDi

If ∑n
j=1 bj = 0,

Bi ·
n∑
j=1

bjBj = bj(n− 1)−
∑
j 6=i

bj = bin.

For any X,
n∑
i=1

X ·Bi = 0, so X ∈
n∑
i=1

X ·Bi

n
Bi + C.

α ·Bi = 1
2

i−1∑
j=1

1−
n∑

j=i+1
1
 = 1

2(i− 1− n− i) = i− n+ 1
2
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X ∈ α +
n∑
i=1

(
n+ 1

2n − i

n
+ X ·Bi

n

)
Bi + C

F (X) = β +
n∑
i=1

(
n+ 1

2n − i

n
+ X ·Bi

n

)
Ci

Fi(X) = n+ 1
2 − (n− 1)

(
n+ 1

2n − i

n
+ X ·Bi

n

)
+
∑
j 6=i

(
n+ 1

2n − i

n
+ X ·Bi

n

)

= n+ 1
2 − n

(
n+ 1

2n − i

n
+ X ·Bi

n

)
= i−X ·Bi

For F (X) to be in the permutohedron, it suffices to show that for every subset S of

the numbers 1 to n,
|S|∑
i=1

i ≤
∑
i∈S

Fi(X) ≤
|S|∑
i=1

n+ 1− i

Let S be given.

∑
i∈S

Fi(X) =
∑
i∈S

(i−X ·Bi) =
∑
i∈S

i−∑
j<i

ξi,j ·X +
∑
i<j

ξj,i ·X



=
∑
i∈S

i−∑
j<i
j /∈S

ξi,j ·X +
∑
i<j
j /∈S

ξj,i ·X

 (3.1)

≥
∑
i∈S

i−∑
j<i
j /∈S

1

 =
∑
i∈S

1 +
∑
j<i
j∈S

1

 =
|S|∑
i=1

i

Starting again from Equation 3.1,

≤
∑
i∈S

i+
∑
i<j
j /∈S

1

 =
∑
i∈S

n−∑
i<j

1 +
∑
i<j
j /∈S

1

 =
∑
i∈S

n−∑
i<j
j∈S

1



=
|S|∑
i=1

n+ 1− i

The image of the hypercube is contained in the permutohedron.

Let σ be a permutation of the numbers 1 to n. There is a point in PKn which

corresponds to the Cauchy sequence A(k) = (kσ1 , . . . , kσn). Let X be the image of

this sequence under −→f . X · ξi,j = 1 for i > j if σi < σj, and X · ξi,j = 0 otherwise.
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It is worth noting here that this corner of the hypercube is represented by the upper

triangle of the permutation graph corresponding to σ.

Bi ·X =
∑
j<i

ξi,j ·X −
∑
i<j

ξj,i ·X

= |{j|j < i and σi < σj}| − |{j|i < j and σj < σi}|

= |{j|j < i and σi < σj}| − |{j|i < j and σj < σi}|

+|{j|j < i and σj < σi}| − |{j|j < i and σj < σi}|

= |{j|j < i}| − |{j|σj < σi}| = i− 1− (σi − 1) = i− σi

X ∈ α +
n∑
i=1

(
n+ 1

2n − σi
n

)
Bi + C

F (X) = β +
n∑
i=1

(
n+ 1

2n − σi
n

)
Di

Fi(X) = i− (i− σi) = σi.

The image of the hypercube contains the permutohedron.

69



Chapter 4

Application to Random Walks on Graphs

4.1 Introduction and Definitions

This chapter will examine the use of graphical projective spaces as the ambient space

for weights in the graph random walk problem examined in Chapter 2. In particular,

G is a directed graph on n vertices with a starting vertex vstart = v1, and an ending

vertex vend = vn. H is the hypergraph on the vertices of G, where the edges of H

are the out-neighborhoods of G. The vertices of G are given weights by identifying

with a point W ∈ PH . The probability of going from vi to vj is given by the function

fN+(vj),vi
(W ).

4.2 Occupation Times

Let A be the adjacency matrix of G, that is Ai,j = 1 if vi → vj. Ã is the adjacency

matrix for G with an added edge from vn to v1. Define the probability matrix P̃ as

P̃i,j = fN+(vj),vi
(W ). The expected number of visits is given by the unique eigenvector

D with Dn = 1 such that P̃D = D. Alternatively, let P be the (n−1)×(n−1) leading

principal submatrix of P̃ , and let D be the first n− 1 entries of D. D = (I−P )−1χ1.

Thus as long as I−P is invertible, D is defined forW , and by continuity is the limit of

the sequence D(i) formed by any sequence W (i) converging to W . The invertibility

of I − P is linked with the irreducibility of P̃ . By the Perron-Frobenius theorem,

since P̃ is non-negative and all columns sum to 1, it has 1 as an eigenvalue with

multiplicity 1 iff it is irreducible.
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The irreducibility of P̃ when W ∈ Rn
>0 comes from the fact that every vertex is

on a path from v1 to vn, along with the added edge from vn to v1. On the boundary

of PH , every face produces a chain induced hypergraph of H, H ↘ S. H ↘ S is

the neighborhood hypergraph of G′, where G′ is obtained from G by removing all

directed edges which have probability 0 at W . Clearly P̃ (W ) will be irreducible iff G′

also has the property that every vertex is on a path from v1 to v2. In this case P̃ is

clearly defined, so we can get I−P , and it will be invertible by the Perron-Frobenius

Theorem. The domain for the process will be the faces of PH which give such G′.

Note that the vector of expected occupation times D will still be in Rn
>0, as each

vertex is still being visited.

4.3 Finding the Weights

Some definitions are recalled to state the results. The trace of a walk ω at vi is defined

as tri(ω), the number of times ω visits vi. Then tr(ω) is the vector giving the number

of visits to each vertex. The set of proper walks Λ is the set of walks which start

at v1, end at vn, and only visit vn once. For ω ∈ Λ, p(ω) is the probability of the

walk ω. A set Ω ⊆ Λ covers an edge e ∈ G if there exists a walk ω ∈ Ω such that ω

uses the edge e. Ω covers all edges of G if such an ω exists for each edge in G. D is

a convex combination of traces of walks, so it is contained in the convex hull of the

traces of proper walks, this convex hull is called C. The minimal hyperplane in Rn

which contains C is the affine hull of the traces of Λ, called H. The hypergraph H

is the hypergraph on the same vertices as G such that e ⊆ V (G) is an edge in H iff

there exists vk such that e = N+(vk). c = c(G) is the number of components of H,

and Ci is the set of vertices in the ith component of H for 1 ≤ i ≤ c. R ⊆ V is a set

of representatives of the components, that is |R ∩Ci| = 1. R(vi) is used to mean the

representative of the component containing vi. ξS = 1 if v1 ∈ S, and 0 otherwise for
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S ⊆ V , with ξi = ξ{vi}.

Fi(W ) = Di − ξi −
∑

j∈N−(vi)
DjfN+(vj),vi

(W )

The following theorem was proven in Chapter 2 for the case when the weights are

in Rn
>0.

Theorem 3. The following are equivalent

1. There exists a set of weights W such that D is the vector of expected occupation

times on G.

2. D is in the relative interior of C with respect to H.

3. There exists Ω ⊆ Λ which covers all edges of G such that D is a strict convex

combination of the traces of walks in Ω.

4. For every 1 ≤ i ≤ c and for every S ⊆ Ci

∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = Ci or S = ∅.

5. For every S ⊆ V , ∑
vj∈S

Dj ≤
∑

vj∈N−(S)
Dj + ξS

with equality iff S = ∪i∈σCi for some σ ⊆ [c]

6. For every set of representatives, R, there exists a set of weights W such that

Fi(W ) ≤ 0 for all i ∈ V −R.

Very little about these properties change when the weights are allowed to be

chosen from the sections of PH for which the expected occupation time is defined.

The following theorem gives a list of equivalent properties for this case.
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Theorem 4. The following are equivalent

1. There exists a set of weights W ∈ PH such that I − P (W ) is invertible, and

D ∈ Rn
>0 is the vector of expected occupation times on G.

2. D is in the intersection of Rn
>0 and C

3. There exists a subgraph G′ of G where every vertex is on a v1 to vn path such

that there exists Ω ⊆ Λ which covers all edges of G′ such that D is a strict

convex combination of the traces of walks in Ω.

4. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding graph H ′ with c′ components C ′i such that for 1 ≤ i ≤ c′ and for

every S ⊆ C ′i ∑
vj∈S

Dj − ξS ≤
∑

vj∈N−(S)
Dj,

with equality iff S = C ′i or S = ∅.

5. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding graph H ′ with c′ components C ′i such that for every S ⊆ V ,

∑
vj∈S

Dj − ξS ≤
∑

vj∈N−(S)
Dj,

with equality iff S = ∪i∈σCi for some σ ⊆ [c]

6. There exists a subgraph G′ of G where every vertex is on a v1 to vn path, with

corresponding hypergraph H ′ such that for every set of representatives of H ′, R,

there exists a set of weights W such that Fi(W ) < 0 for all i ∈ V −R.

7. There exists a set of weights W ∈ Rn
>0 such that D is the expected occupation

times on G′.

Proof. 1 ⇒ 2: By assumption D ∈ Rn
>0. It suffices to show that D is in the convex

hull of the traces of the proper walks on G. D is vector of expected occupation times,
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so it is the sum of the traces of the walks times the probabilities of the walks. This

implies that it is in the convex hull of these traces.

2⇒ 3: By assumption D is the convex combination of traces of some set of proper

walks. Let G′ be the subgraph of G containing only edges which are used in these

walks.

3⇒ 4⇒ 5⇒ 6⇒ 7: These all follow from applying Theorem 3 to G′.

7 ⇒ 1: The out-neighborhood graph of G′ is H ′ = H ↘ S for some S. The

weights W ∈ PH↘S, but PH↘S is isomorphic to a cell of PH . This isomorphism

maps W into PH , but the image produces the same probability matrix, and therefore

returns the same vector of expected occupation times.

Given a vector D of expected occupation times, a subgraph G′ of G can be con-

structed. Applying our original algorithm to D on G′ gives weights in PH↘S, from

which can be mapped into PH . So the only remaining question is how to identify G′

from D.

G′ can be identified from the inequalities from properties 4 and 5. Applying the

inequalities to the components of H, weak inequality still holds, but equality might

hold with a set other than a component, call this set S. S will be a component of H ′.

For any edge containing vertices in S and Ci−S, replace them with edges containing

only the vertices in S. S becomes its own component, and Ci is broken up into

different components. Repeating this process for any S which is not a component of

H ends with H ′. This process of restricting the edges in H corresponds to removing

any edges in G from N−(S) to Ci − S.
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Chapter 5

Open Problems

There are several remaining questions related to those explored here.

1. The biggest missing piece is still the uniqueness of the weights which give a par-

ticular vector of expected occupation times; uniqueness is desired over Rn
>0/ ≈

as any two weights which are ≈ have the same probability matrices.

2. If the weights are unique in Rn
>0/ ≈, does this also holds for PH?

3. There are many ways to extend the domain of the process of finding expected

occupation times to the entirety of PH . Essentially this is done by allowing the

number of visits to be 0 or∞. In particular, this can be done by inducing some

graph J on the vertices, and allowing the expected occupation times to come

from PJ . Is there a way to do this which allows a set of weights in PH to be

recovered?

4. Rn
>0 is a semi-group under addition, and is metric space. Both of these proper-

ties are retained in PH for any H. What other nice properties does PH have?

5. When H is the hypergraph on n vertices with the one n-vertex edge, PH is the

projectivization of the closed first orthant. What properties of projective spaces

do the other PH ’s have?

6. The graphical projective spaces induce a correspondence between simple graphs

and zonotopes. There are many interesting questions that arise out of this. How

can the number of faces of a particular dimension be calculated? How are the
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zonotopes connected with other graph metrics? The 1-skeleton of the zonotopes

is itself a simple graph. What connections are there between the graph G and

the 1-skeleton graph of the zonotope PG?

7. It seems like there is a similar connection between the hypergraphs in gen-

eral and zonotopes. Can the correspondence noted between simple graphs and

zonotopes be extended to hypergraphs?

8. The CW-structure seems to be visible in the image of PH , where the cells are

smooth, and have singularities separating them. Can this be formalized when

H is a graph? When it is a hypergraph?

9. The zonotope images of PH when H is a graph have edges of equal length.

The images when H is a hypergraph do not seem to; they seem to present

variations, even when they are the same as CW-complexes. Is there an alternate

formulation, or additional structure that can be taken into account to describe

the spaces?
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