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ABSTRACT

The goal of searching for 0νββ-decay is to probe an absolute neutrino mass

scale suggested by the mass-splitting parameters observed by neutrino oscil-

lation experiments. Furthermore, observation of 0νββ-decay is an explicit in-

stance of lepton-number non-conservation. To detect the rare events such as

0νββ-decay, half-lives of the order of 1025-1027 years have to be probed. Using

an active detector with a large volume, such as hundreds of kilograms of HPGe

in the case of MAJORANA, and taking efficient measures to mitigate back-

ground of cosmic and primordial origins are necessary for the success of a sen-

sitive 0νββ-decay experiment.

One focus of the present research is the analysis of data from Cascades,

a HPGe crystal array developed at Pacific Northwest National Laboratory in

Richland, WA, to determine an upper bound on primordial radiation levels

in the cryostat constructed with electroformed copper similar to that electro-

formed for MAJORANA. It will be shown, however, that there are sources

of background much more serious than cryostats in 76Ge experiments. Addi-

tionally, experimental applications of the Cascades detector were studied by

predicting the sensitivity for a 0νββ-decay experiment using GEANT4 simu-

lations. Tellurium-130, an even-even nucleus that can undergo 0νββ-decay to

either the ground state or first 0+
1 excited state of 130Xe, was used as an exam-

ple. The present work developed techniques that will be used for a number of

measurements of ββ-decay half-lives for decays to excited states of the daugh-

ter isotopes.
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CHAPTER 1

INTRODUCTION

1.1. NEUTRINOS

1.1.1. Overview. In the 1920’s, the observation of a continuous energy

spectrum of electrons emitted in beta-decay (β-decay) left physicists puzzled.

This continuous spectrum inferred the emitted electron was sharing its energy

with an unknown particle. Pauli explained this discrepancy in 1930 by pos-

tulating the existence of a neutral, spin-1/2 particle of small mass that would

ensure the conservation of energy, electric charge and angular momentum. He

theorized that this particle, which Fermi later dubbed “neutrino” (meaning “lit-

tle one” in Italian), was emitted with the β-decay electron such that the sum of

the energies was always constant [55].

With this hypothesis, the birth of neutrino physics was born. In the years

that followed Pauli’s theory, nuclear physicists made significant progress in un-

raveling the properties of neutrinos. In 1932, Fermi proposed his theory of β-

decay, which concurred with experimental data [29]. In 1934, Bethe and Critch-

field described the role of β-decay in thermonuclear reaction chains powering

the stars, showing that a large neutrino flux should be produced by the sun [20].

In 1956, Reines and Cowan confirmed the existence of the electron neutrino by

detecting a flux of electron antineutrinos from a nuclear reactor [34]. Other

flavors of neutrinos were later discovered and subsequently divided into three

groups: the electron-neutrino (νe), muon-neutrino (νµ), and tau-neutrino (ντ ).

Pontecorvo first suggested the possibility of neutrino oscillations in 1952 and

1



the concept of “mixing” between different neutrino eigenstates in 1962 with

Maki.

In 1956, Lee and Yang introduced the idea that weak interactions violated

parity. Madame Wu and her coworkers proved this hypothesis to be correct

by observing the β-decay of 60Co from oriented nuclei, confirming that all anti-

neutrinos were found to be right-handed [75]. This experiment had profound

implications. Since a fixed helicity demonstrated that weak interactions vio-

lated parity, it was concluded that neutrinos were traveling at the speed of light

and were hence massless. This assumption was included in the development of

the Standard Model (Glascow 1961, Salam 1968, Weinberg 1967), which uni-

fied electromagnetic and weak interactions.

Although observations of the weak neutral currents and intermediate vec-

tor bosons Z0 and W
± guaranteed the success of the Standard Model, incom-

pleteness in its formulism has been found throughout the years. In the late

1960’s, an experiment led by Davis of the Brookhaven National Laboratory

showed that the solar neutrino flux was between 1/3 and 1/2 of the predicted

flux [11]. This inconsistency, known as the solar-neutrino problem, was sup-

ported by Super-Kamiokande experiments in 1998 by the observation of the

oscillation of atmospheric neutrinos [33], followed by Subdury Neutrino Obser-

vatory experiments in 2000 [3]. The Kamioka Liquid scintillator Anti-Neutrino

Detector (KamLAND) experiment showed later showed that the large mixing

angle solution of the solar neutrino problem was strongly favored [25].

The mass of the neutrino has become a crucial topic in particle physics.

Neutrino oscillations take place because neutrinos of a definite flavor (νe, νµ,

ντ ) are not necessarily states of a definite mass (ν1, ν2, ν3) but rather a super-

position of the mass eigenstates. To this day, neutrino oscillation experiments

have precisely measured the difference in the square of mass eigenvalues of

neutrinos that undergo a flavor change, the mixing angles entering oscillation

2



amplitudes, and have placed a lower limit on the absolute mass scale of the

neutrino (see Figure 1.1). To obtain the absolute mass scale of the neutrino,

FIGURE 1.1. Normal (left) and inverted (right) mass hierarchies
schemes

it is necessary to turn to other types of experiments, i.e.- tritium endpoint-

energy measurements and neutrinoless double-beta decay (0νββ-decay). Since

0νββ-decay experiments already have a sensitivity corresponding to the small

neutrino mass scale, they are a much more sensitive probe to the neutrino

mass range [44]. In fact, if the mass scale is below ∼0.20 eV, 0νββ-decay ex-

periments could be the only way of measuring it [12]. However, for this process

to proceed, neutrinos must be their own anti-particles, i.e., Majorana particles.

Additionally, 0νββ-decay is the only practical experiment that can determine

the nature of the neutrino (Dirac or Majorana) and test for lepton-number con-

servation.

1.1.2. Dirac and Majorana Neutrinos. Particles differ from their anti-

particles through the property of charge. Charged leptons, for instance, have

opposite electrical charges from their anti-particles. In the case of electrically

neutral particles, other types of charge (for example baryon and lepton number)

have to be considered. The idea that some particles could be indistinguishable

from their anti-particles was first suggested by Majorana in 1937 [38]. This led

3



to the definition of a Majorana particle; a Dirac particle, on the other hand, is

distinguishable from its anti-particle.

In the framework of the Standard Model, a Dirac neutrino has four different

states assuming that it has mass and a leptonic charge. These four states

consist of a left-handed neutrino (νL), which is equivalent under a CPT trans-

formation to a right-handed anti-neutrino (ν̄R). Since the Dirac neutrino has

mass, a Lorentz transformation can flip the helicity of νL and ν̄R to yield two

additional states- a right-handed neutrino νR and a left-handed anti-neutrino

ν̄L (refer to Figure 1.2). This quadruplet of states is what defines the Dirac

FIGURE 1.2. Transformations between neutrinos: Dirac and
Majorana neutrinos are depicted on the left and right respec-
tively [5]

neutrino, νD.

The Majorana neutrino (νM ), on the other hand, does not carry a leptonic

charge, hence it is only composed of two states defined by their opposite helici-

ties. The existence of such a neutrino is appealing for various reasons; for one

the Dirac theory cannot explain the large mass difference between the neutri-

nos and their charged leptons, which belong to the same weak doublet. The

Majorana theory, however, can explain this discrepancy through the “see-saw”

4



mechanism- a mechanism first proposed in 1979 by Gell-Mann, Ramond, Slan-

sky and Yanagisawa in which left-handed and right-handed Majorana particles

acquire the small and large masses separately rather than form a Dirac neu-

trino [12].

1.2. DOUBLE BETA-DECAY

1.2.1. Overview. Double beta decay, first suggested by Wigner and re-

ported by Goeppert-Mayer in 1935 [37], is a second-order weak interaction and

one of the slowest processes in nature with half-lives usually surpassing 1018

years. This process would most probably be observable if single β-decay was not

possible energetically or strongly inhibited by an associated large spin change.

Complex nuclei become more stable by emitting electrons while the nucleus

changes atomic number by two and emits two beta particles:

(Z,A)→ (Z + 2, A) + 2β− + ¯2νe . (1)

To understand ββ-decay, we take a look at the parameterization of nuclear

mass M as a function of A and Z, known as the Weisäcker or semi-empirical

formula [14], [61], [74]. This formula predicts the mass of a nucleus and ac-

counts for the difference between its nucleons and their binding energies as

seen in the following equation:

M(A,Z) = NMn + ZMp + Zme − avA+ asA
2/3 (2)

+ ac
Z2

A1/3
+ aa

(N − Z)2

4A
+

δ

A1/2
,

where Mp is the mass of the proton, me is the mass of the electron, Mn is the

mass of the neutron, A is the mass number and Z is the atomic number. The

volume term (av), surface term(as), Coulomb term (ac), asymmetry term (aa)

and pairing term (δ) are all constants.
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A nucleus is more stable when it is composed of an even number of nucleons

to allow for coupling in pairs. This fact is accounted for in the Weisäcker for-

mula by the pairing term δ. By considering isobars in Equation 2, the nuclear

mass M(A,Z) can be plotted as a quadratic function of Z. The pairing term δ is

of particular interest because it gives rises to different curves depending on the

mass number A. For an odd-odd nucleus, δ > 0. For an odd-even nucleus, δ = 0.

Finally, for an even-even nucleus, δ < 0. An example can be seen in Figure 1.3,

which plots Equation 2 for the case of A = 76. From this diagram, it can be

FIGURE 1.3. Mass parabola for A=76 [31]

noted how the decay of 76Ge to 76As is forbidden energetically, and that an odd-

odd nucleus always has at least one more strongly bound even-even neighbor

such that the nucleus must ββ-decay to reach a more stable configuration. In

most cases ββ-decay proceeds from the 0+ ground state of a nucleus to the 0+

ground state of its daughter, however the decay to an excited state (0+ and 2+)

is also possible energetically [62]. A list of several double-beta candidates can

be found in Table 1.1.

1.2.2. Double-Beta Decay Modes. There are three modes of ββ-decay

that are commonly considered, which can be distinguished by the particles ac-

companying the emission of the two electrons [28].
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The first mode, which was introduced in Equation 1, releases two anti-

neutrinos and electrons while conserving lepton-number symmetry and adhe-

ring to the Standard Model (see Feymann diagram in Figure 1.4). This type of

ββ-decay yields a continuous electron spectrum (see Figure 1.6), in which the

position of the maximum peak is determined by the type of isotope undergoing

the decay, or more specifically, the Q-value (Qββ) of the isotope which is shared

by the two electrons and anti-neutrinos.

FIGURE 1.4. Feymann diagram of the 2νββ-decay mode

The second mode (0νββ-decay) was first suggested by Furry in 1939 [35]

and is forbidden in the Standard Model of electroweak interactions because of

its implied lepton-number violation. In this mode (see Figure 1.5 for Feynman

diagram), a left-handed neutrino being emitted is absorbed as a right-handed

neutrino by the opposite W− boson, and the decay is therefore neutrinoless.

Only two beta particles are emitted:

(Z,A)→ (Z + 2, A) + 2e− . (3)

Since the two electrons carry all of the available kinetic energy, 0νββ-decay
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FIGURE 1.5. Feymann diagram of the 0νββ-decay mode

is expected to yield a monoenergetic line (the sum of both the electron ener-

gies) at Qββ (see Figure 1.6). As discussed previously, observing this decay

would establish the neutrino as a Majorana particle and confirm the violation

of lepton-number symmetry.

Finally, the third type of double-beta decay (0νχββ) is also neutrinoless, but

is theorized to emit a massless Nambu-Goldstone boson known as the Majoron:

(Z,A)→ (Z + 2, A) + 2e− + χ̄ . (4)

This Majoron χ is said to be created in the spectrum of possible excitations as

a result of the spontaneous breaking of a global symmetry, which results in

the Goldstone boson [28]. Refer to Figure 1.7 for the Feynman diagram of this

decay.

1.2.3. Extracting the Neutrino Mass. The objective of a 0νββ-decay ex-

periment is to measure the rate at which the parent nucleus decays to the

daughter, i.e. the half-life T0ν
1/2 of the decay. This rate can be expressed as

follows [52]:

[T 0ν
1/2]

−1 = G0ν(Qββ, Z)|M0ν |2〈mββ〉2 , (5)
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FIGURE 1.6. 2νββ and 0νββ-beta spectra for an arbitrary isotope [44]

FIGURE 1.7. Feymann diagram of the 0νββ-decay mode
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where G0ν(Qββ, Z) is the phase space factor for the emission of the two elec-

trons, M0ν is the 0ν nuclear matrix element, and 〈mββ〉 is the effective Majorana

mass of the electron neutrino given by:

〈mββ〉 ≡ |
∑
k

mkU
2
ek| (6)

〈mββ〉 = m1|Ue1|2 +m2|Ue2|2ei(α2−α1) +m3|Ue3|2ei(−α1−2δ) , (7)

where Uek is the neutrino mixing matrix (also known as the Maki-Nakagawa-

Sakata matrix), which describes the probability that a neutrino of a given fla-

vor can be found in one of the three possible mass eigenstates. The imaginary

terms ei(α2−α1) and ei(−α1−2δ) introduce two phase angles, α and δ. The phase

factor α is present if the neutrino is a Majorana particle, while the phase factor

δ is present if CP is violated [10].

Equation 5 can be used to combine the nuclear model-dependent parame-

ters into the nuclear structure function FN , given by:

FN = G0ν(Qββ, Z)|M0ν |2m2
e , (8)

and a simplified expression for the effective neutrino mass can be written as:

〈mββ〉 = me[T
0ν
1/2FN ]−1/2 . (9)

The neutrino mass can then be extracted from an experimental measure-

ment by making use of Equation 9. Table 1.1 lists eleven ββ-decay candidates

along with the best-reported limits for T0ν
1/2 and 〈mββ〉.

As can be seen in Equation 5, 0νββ-decay rates and in their associated ef-

fective Majorana masses of the electron neutrino rely on the precise knowledge

of transition nuclear matrix elements. Unfortunately, nuclear matrix elements

are calculated and often have differing values depending on the model used for

the calculation. A renewed interest in the Shell Model has recently emerged
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TABLE 1.1. Candidate ββ-decay isotopes with their theoretical
end-point energies, limits for T0ν

1/2 and 〈mββ〉values [10].

ββ-Decay Candidates Qββ (keV) T0ν
1/2 (yrs) 〈mββ〉 (eV)

48Ca 4271 > 1.4× 1022 <7.2-44.7
76Ge 2039 > 1.9× 1025 < 0.35
76Ge 2039 (2.23+0.44

−0.31)× 1025 0.32± 0.03
76Ge 2039 > 1.57× 1025 < (0.33− 1.35)
82Se 2995 > 2.1× 1023 <(1.2-3.2)
100Mo 3034 > 5.8× 1023 <(0.6-2.7)
116Cd 2802 > 1.7× 1023 <1.7
128Te 868 > 7.7× 1024 <(1.1-1.5)
130Te 2527 > 3.0× 1024 <(0.41-0.98)
136Xe 2479 > 4.5× 1023 <(0.8-5.6)
150Nd 3367 > 3.6× 1021

due to the fast development of computer technologies, while the application

of the quasiparticle random phase approximation (QRPA) method and its ex-

tensions have allowed for much progress to be made over the past few years.

However, uncertainties and contradictions in the nuclear matrix elements to-

day still present a difficult problem to overcome for the interpretations of 0νββ-

decay results. This remains one of the more important motivations behind

measuring 2νββ-decay transitions, which help test the calculations of the nu-

clear matrix elements in models similar to those used to extract the absolute

neutrino mass from 0νββ-decay experiments [64].

1.3. THE MAJORANA PROJECT

1.3.1. Experimental Techniques. The experimental signatures for ββ-

decay are in principle very clear. A continuous spectrum with a well-defined

shape will result from 2νββ-decay, while the observation of a mono-energetic

peak at the Qββ value is expected in the case of 0νββ-decay. However, these
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characteristics can yield difficult identification. In general, several considera-

tions have to be made when designing an experiment to search for the ββ-decay

of an isotope. These considerations are as follows:

• Since a peak identifying 0νββ-decay is superimposed on a continuum, the

detector must have excellent energy resolution. Not only does this increase the

signal-to-background ratio for the peak, but it also ensures that events in the

2νββ-decay tail do not extend into the 0ν peak and contribute to an irreducible

background [9].

• Experimental backgrounds from primordial and cosmogenic activity must

be strictly controlled so as not to interfere with the identification of a candidate

signal.

• Since cosmogenic activity can build up in the shielding, detector and

source over time through nuclear reactions of cosmic-ray neutrons and their

secondary products, building the detector underground will greatly reduce this

background.

• Finally, it is advantageous to minimize the detector size, since the total ac-

tivity of an impure material will scale with volume. This can be accomplished

by designing an “active” detector, which features using the source as the detec-

tor itself [38].

1.3.2. First-Generation 0νββ-Decay Experiments. Many experiments

have been designed to search for ββ-decay, however they can be categorized into

three approaches: geochemical, radiochemical and direct counting measure-

ments [27]. Radiochemical and geochemical experiments consist of searching

for the presence of the daughters of ββ-decay in old geological samples, or loo-

king for isotopic anomalies in these ββ-decay daughters [38]. While these ex-

periments have an increased sensitivity due to their long exposure time, they

cannot distinguish between the different modes of ββ-decay and therefore do

not contribute to new advances in the field of particle physics.
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Direct counting measurements can distinguish between the 0νββ and 2νββ

modes and consist of measuring the ββ-decay energy and spectral shape while

sometimes allowing for event reconstruction. There are two distinct approaches

to these types of experiments: passive detectors, in which the source is distinct

from the detector, and active detectors, which have been previously explained

as building the detector with a material already containing the ββ active nu-

clei [38]. So far, direct experiments have consisted of various conventional

counters, such as solid state devices (germanium spectrometers and silicon de-

tector stacks), gas counters (time projection chambers, ionization and multi-

wire drift chambers) and scintillators (crystal scintillators and stacks of plastic

scintillators) [59]. Examples of ββ-emitters measured in direct counting expe-

riments include 48Ca, 76Ge, 96Zr, 82Se, 100Mo, 116Cd, 130Te, 136Xe and 150Nd [59].

Neutrinoless double-beta decay is even rarer than the 2νββ mode with half-

lives that are predicted to range higher than 1025 years. Consequently, experi-

ments aiming to measure these half-lives and their associated electron neu-

trino masses have to be designed with a very high sensitivity. Much progress

has been made throughout the years on placing limits on the electron neu-

trino mass for numerous isotopes (see Table 1.2). In particular, the Heidelberg-

Moscow (HM) and International Germanium Experiment (IGEX) experiments

have placed a limit for 〈mββ〉 ranging from (0.3 - 1.0 eV) taking into account

uncertainties resulting from the variety in the values of the nuclear matrix

elements [38]. By using several kilograms of 86%-enriched 76Ge in a conven-

tional, close-ended coxial geometry, both experiments achieved extremely low

levels of background by operating deep underground, using radiopure mate-

rials with active and passive shielding, and employing pulse-shape analysis

techniques that reduced the background rate to approximately 0.1 counts (keV-

kg-y)−1 [71].
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Next-generation strategies aim to push down limits on the electron neu-

trino mass by more than an order of magnitude. To reach these goals, addi-

tional techniques to suppress background events have to be developed on top

of excellent energy resolution and large detector size, while again operating the

experiment underground [71].

TABLE 1.2. Summary of current and proposed double-beta de-
cay experiments. The right arrow indicates the projected sensi-
tivity [32].

Experiment Isotope Technique Mass Enriched Qββ 〈mββ〉
(kg) (MeV) (eV)

HDSM 76Ge Ge crystals 9.9 86% 2.04 <0.40
IGEX 76Ge Ge crystals 9 86% 2.04 <0.44
UCI 82Se TCP foils 0.014 97% 2.99 <7.7
ELEGANT 100Mo Drift chambers 0.20 94.5% 3.03 <2.7
Kiev 116Cd CdWO4 crystals 0.09 83% 2.8 <3.3
Missouri 128Te Geochemical Te Ore No 0.87 <1.5
Milano 130Te Cryogenic TeO2 2.3 No 2.53 <2.6
UCI 150Nd TCP foils 0.015 91% 3.37 <7.1
NEMO3 82Se, Drift chambers Varies Yes Varies →0.1

100Mo,
116Cd,
150Nd

Cuoricino 130Te Cryogenic TeO2 2.3 No 2.53 →0.1
MAJORANA 76Ge Ge crystals 500 86% 2.04 →0.02
CAMEO 82Se, BOREXINO CTF 1 each Yes Varies →1

100Mo
116Cd

MOON 100Mo Scintillator foils 3400 No 3.03 →0.02
CUORE 130Te Cryogenic TeO2 210 No 2.53 →0.02
EXO 136Xe TPC 1000- Yes 2.47 →0.3-

10000 →0.01
EXO-200 136Xe TPC 200 Yes 2.47 →1.5
DBCA-II 150Nd Drift chambers 18 Yes 3.37 →0.05

1.3.3. Second-Generation 0νββ-Decay Experiments. The idea of using

HPGE detectors enriched to 86% in 76Ge to yield a substantially higher detec-

tion efficiency was first suggested by Ettore Fiorini [30].
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The originally proposed MAJORANA project planned to search for the 0νββ-

decay of 76Ge to 76Se in high-purity Ge-diode active detectors with a tech-

nique improved by advances in signal processing, detector design, and con-

trolling intrinsic and external backgrounds [69], [68], [70]. The proposed ex-

periment consists of an array of Ge detectors isotopically enriched to 86% in
76Ge with a total mass of hundreds of kilograms, such that a sensitivity within

the quasi-degenerate neutrino mass region can be reached within a reasonable

time frame. These HPGe crystals measure 62 mm in diameter, are 70 mm

long, have a mass of 1.1 kg each, and will be housed in an ultra-low back-

ground electroformed cryostat cooled by liquid nitrogen. The configuration of

the MAJORANA experiment is not yet fixed, however many have been evalu-

ated based on their cryogenic performance and design to maximize background

reduction and rejection [9]. Figure 1.8 depicts one the several proposed configu-

rations consisting of 57 1-kg HPGe detectors arranged in an electroformed-

copper cryostat.

FIGURE 1.8. One of the proposed MAJORANA modules [9]
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To probe the inverted mass hierarchy of the neutrino, the experiment must

be designed to reach sensitivities to the order of 1026 - 1027years. An equa-

tion measuring the discovery potential or sensitivity of a next-generation 0νββ-

decay experiment can be derived by requiring that:

Cββ = nσ
√
B , (10)

where Cββ is the number of 0νββ-decay events, nσ is the desired standard de-

viation of the measurement, and B is the number of background counts in the

region of interest (ROI). The following expression can then be obtained [9]:

T 0ν
1/2(nσ) =

4.16× 1026y

nσ

( εa
W

)√ Mt

b∆E
, (11)

where ε is the event-detection efficiency, a is the isotopic abundance in the

source material, W is the molecular weight of the source material (g/mol), M

is the total mass of the source (kg), b is the background rate in counts (keV-kg-

y)−1, and ∆E is the spectral resolution of the experiment in keV. The factor 1026

results from Avogrado’s number and from expressing the relation as a half-life

(years).

As it can be seen in Equation 11, the parameters to optimize the experi-

ment consist of a large source mass with a high isotopic abundance to account

for the rarity of the decay, a long-enough exposure time, a high event detection

efficiency, and an excellent energy resolution, which is essential for the dis-

tinction between 2νββ and 0νββ events. Lastly, a low background in the ROI

(2039.006 keV [26]) remains the most crucial point to address for a successful

next-generation 0νββ-decay experiment.

The 0νββ-decay signal rate is expected to be extremely low due to the long

predicted half-life. Therefore, the only plausible way of obtaining a large-

enough signal-to-noise ratio is to reduce the background from all sources [17].

These different sources can be categorized as follows in descending order of
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magnitude: 1) primordial radioactivity in the laboratory environment, 2) cos-

mic radiation, 3) primordial and manmade radioactivity in system components,

4) natural radon in the air, 5) 210Pb in modern lead shielding, 6) cosmogenic

radioactivities in system components, and 7) 2νββ-decay of 76Ge [17]. Back-

grounds produced by cosmic-rays are found in the germanium crystal (54Mn,
57,58Co, 65Zn, 68Ge) and in the copper used in the cryostat and for shielding

(54Mn, 56,57,58,60Co, 59Fe). Primordial contamination, on the other hand, consist

of the 238U and 232Th decay chains and bremsstrahlung radiation from the 210Pb

daughter 210Bi [44]. This type of radiation is found in the cryostat, internal

electronics components, and shielding materials. Cosmogenic and primordial

backgrounds can both decay by emitting positrons or gamma rays with high-

energy values above the 0νββ-decay ROI, risking contamination in the ROI

by compton-scattered events. Methods to mitigate these backgrounds include

the use of ultra-pure materials, shielding, depth underground, good energy

resolution, detector granularity, pulse-shape analysis, detector design and time

correlations [69], some of which will be discussed thoroughly in Chapter 2. In

particular, sophisticated copper electroforming techniques have been developed

to ensure the use of ultra-low background material in building the copper cryo-

stat.

Copper is an ideal element to use for building ultra-low background materi-

als [69]. This is due to its excellent physical, chemical and electronic properties,

as well as the fact it only has one relatively long-lived radioisotope. However

efforts must still be made to ensure it is not contaminated by radioactive impu-

rities or cosmic-ray-generated radioisotopes. These efforts include producing

ultra-pure copper by an electroforming process deep underground for use in

MAJORANA [69], which will be discussed further in Chapter 2. The total esti-

mated background rate for the MAJORANA experiment is projected to be 1.6
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counts/ROI/(ton-yr), however based on simulations and assay capabilities, a

rate of 1 count/ROI/(ton-yr) could possibly be achieved [69].

The MAJORANA demonstrator, a project developed to establish the fea-

sibility of constructing a larger tonne-scale experiment with such a low-back-

ground rate, is currently under construction at the Stanford Underground Labo-

ratory in Lead, South Dakota. Due to the need for rejecting multiple energy

depositions and differentiating efficiently between multiple scattering gamma

backgrounds and single-site 0νββ-decays, the MAJORANA demonstrator will

use p-type point contact germanium detectors [45]. The demonstrator will be-

gin with the construction of a prototype cryostat consisting of a few detectors

comprised of non-enriched germanium. Eventually these will be replaced by

one, then by two low-background cryostats with a maximum sensitive confi-

guration of 40 kg of germanium, 30 kg of which will be enriched to >86% in
76Ge [2]. In order to achieve this, the MAJORANA collaboration has developed

its own method for checking the purity of the GeO2 powder and reducing it to

a metal that is zone refined (see Section 2.3.2 of Chapter 2 for a discussion on

zone refinement) to a resistivity of < 47 Ohm-cm, which indicates a low con-

centration of electrically active impurities (∼1013cm−3) [2]. To test the process,

29 kg of natural isotopic abundance GeO2 was obtained and reduced to metal

with a yield of 98.3%. It was fabricated into two point-contact detectors, both

of which have excellent energy resolution. In September 2011, 29 kg of GeO2

enriched to 86% in 76Ge arrived from Russia. It was reduced to metal, zone

refined and sent to ORTEC Inc. in Oak Ridge, Tennessee where it has been

made into point-contact detectors. On October 23 2012, the final 32.6 kg of en-

riched GeO2 arrived from Russia and was reduced and zone refined just prior to

this writing. While not being processed, all of the enriched GeO2, germanium

metal and detectors, detector pieces and scraps are stored in an underground
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facility in the Cherokee Caverns near Oak Ridge. This location has an over-

burden of 100 meters of water equivalent (m.w.e.) to shield against cosmogenic

backgrounds [2].

FIGURE 1.9. The MAJORANA Demonstrator [2]

The goals of the MAJORANA demonstrator are to achieve a background

rate of 4 counts/ROI/(ton-yr), which Monte-Carlo simulations predict will re-

sult in a background rate of 1 count/ROI/(ton-yr) for the final MAJORANA

experiment. Out of this estimated 4 counts/ROI/(ton-yr) rate, the copper cryo-

stat is expected to contribute 0.11 counts/ROI/(ton-yr) or 7% of the total back-

ground [69]. To meet this goal, very low levels of impurities caused by primor-

dial contamination can be present in the copper. More specifically, the levels of
232Th cannot exceed 0.3 µBq/kg, which translates as an activity of 0.1 µBq/kg

for 208Tl (the source of a problematic 2615 keV γ-ray line) [69].

Investigating the efficiency of background mitigation methods to reduce

natural levels of 238U and 232Th in 0νββ-decay 76Ge experiments is one of the

motivations behind this dissertation. Simulations of the 238U and 232Th chains

were performed to predict levels of primordial radiation in the copper cryo-

stat of Cascades: a HPGe array constructed at Pacific Northwest National

19



Laboratory (PNNL), consisting of 14 HPGe crystals housed in two cryostats

made of copper electroformed with the same process that will be used in the

MAJORANA experiment [48]. These simulations were compared to actual

background data from Cascades to analyze the reduction in background due

to the copper electroforming process. As discussed later, however, it was dis-

covered through this effort that backgrounds in the copper were not the main

sources of background in Cascades. Other construction materials near the

detector, as well as the lack of careful low-background construction proticol

led to background levels well above those attributable to the copper. Lastly,

experimental applications of the Cascades detector were studied by predicting

the sensitivity for a ββ-experiment using as an example simulations of 130Te,

an even-even nucleus that can undergo 2νββ-decay and 0νββ-decay to the first

0+
1 excited state of 130Xe producing three possible γ-cascades as it transitions

to the ground state. Tellurium-130 will be discussed more thoroughly in Chap-

ter 4.

1.4. SUMMARY

Our understanding of neutrino physics is far from complete. The absolute

mass and nature of the neutrino, the observation of parity violation, possible

violation of lepton-number symmetry, the extreme mass differences between

neutrinos and their charged leptons, the existence of exotic particles such as

right-handed gauge bosons and of the Majoron, and what role the neutrino

would play as a Majorana particle in the baryon asymmetry of the universe via

leptogenesis are all important aspects of neutrino physics that could be probed

with ββ-decay experiments.

MAJORANA, a next-generation 0νββ-decay experiment, proposes to search

for the 0νββ-decay of 76Ge to 76Se using hundreds of kilograms of high purity

germanium enriched to 86% in 76Ge. The success of the experiment heavily
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depends on its capability to mitigate background caused by cosmogenic activi-

ty and primordial contamination, such as products of the 238U and 232Th decay

chains present in all materials. The use of ultra-pure copper in MAJORANA

could significantly lower these intrinsic levels of radiation. In the case of Cas-

cades, errors made in the construction techniques and neglecting to reduce

impurities in parts other than the copper cryostat led to high levels of primor-

dial background. This serves as important guidance and could help achieve

the goals of the MAJORANA experiment: to quantify the 0νββ-decay rate and

place a value on the effective Majorana electron neutrino mass by observing a

sharp peak at the ββ endpoint for 76Ge. This could open the door for a revised

Standard Model, altering our understanding of fundamental interactions and

the role of neutrinos in the universe.
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CHAPTER 2

TECHNICAL ASPECTS

2.1. BRIEF OVERVIEW OF GERMANIUM DETECTORS

The first germanium detector was built in the 1960’s using Li-donor com-

pensation of p-type germanium crystals [60]. Since then, germanium detec-

tors have undergone much development and remain today a detector of choice

for γ-ray detection with their high efficiency, excellent energy resolution, good

timing, and good signal-to-background ratio [71]. These characteristics are

achieved by a combination of crystal properties that include large electron and

hole mobilities, large lifetimes, the ability to grow crystals of large sizes with

high purity and low crystal defects, and a small band gap for the semiconductor

germanium [71].

Advances in electronics go hand-in-hand with the development of germa-

nium detectors [69]. Improved contact segmentation techniques have allowed

for high accuracy and efficiency measurements of the positions, energies and

paths of photon interactions in the detector, as well as the development of low-

noise electronics for better energy resolution (particularly at low energies),

low-noise signal amplification and filtering, and fast digitization [71]. Fast

digitization enables the precise analysis of pulse shapes in germanium detec-

tors to obtain additional information, such as the positions and energies of

interactions and the distinction between full-energy and partial-energy depo-

sition gamma-rays. Furthermore, the distinction between single and multiple

interactions allows for electrons and Compton-scattered γ-rays interacting in

the detector to be differentiated [69]. This helps suppress γ-rays and unwanted
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backgrounds for sensitive experiments, such as searching for the 0νββ-decay

using HPGe detectors enriched in 76Ge.

Today large-volume germanium detectors are built thanks to advances in

the field of crystal growth and purification [71]. First suggested in 1971 by

Hall, the idea of growing germanium crystals of high purity was developed as

a result of the main drawback of Ge(Li) detectors- the high mobility of lithium

donors in germanium which, to keep the detector operable, required a time-

consuming re-drifting process that would limit the size of the germanium de-

tectors [39]. It took another ten years for HPGe crystals to replace Ge(Li) detec-

tors. Today, refinement in the crystal growth process has allowed for crystals

to be grown up to almost 100 mm in diameter [71].

Gamma-ray detection in germanium detectors is detected through the in-

teraction of radiation with germanium atoms [53]. This can occur through

three different processes: photoelectric absorption, which is more significant

at low energies (<150 keV), Compton scattering, which dominates at energies

ranging between 150 keV and 8 MeV, and pair production, which is most likely

to occur for energies higher than 8 MeV [53]. Through the ionization of the

germanium atoms, these three interactions produce primary charge carriers

(electron-hole pairs). Electron-hole pairs drift under the influence of an ex-

ternal electric field towards their respective electrodes, where their motion is

recorded as displacement current provided this displacement current is larger

than the leakage current caused by the small band gap and thermal excitation

of the charge carriers [53]. To ensure this is the case, a germanium detector is

operated as a reverse-bias diode, in which a voltage Vd is applied to deplete the

crystal of most free charge carriers and increase the sensitive volume of the

detector. This voltage Vd is given by:

Vd =
Nd2

2ε
, (12)
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where N is the electrically active net-impurity concentration in the crystal, d is

the depletion depth equal to the wafer thickness, and ε is the external electric

field [53]. The low leakage current is further reduced by cooling the HPGe

crystals to below 120 K [71].

2.2. BACKGROUNDS

To detect the rare 0νββ-decay of 76Ge to 76Se, half-lives of the order of 1025-

1027 years have to be probed. Using an active detector with a large volume

(hundreds of kilograms in the case of MAJORANA) and further enriching the

7.83%-naturally abundant germanium to 86% is necessary for the success of

the experiment. More importantly, the detector must compete with processes

in the environment that are much more prolific, such as background [56]. Back-

ground greatly reduces the sensitivity of a counting experiment. If an experi-

ment with counting time t is composed of a detector with N ββ-decay active

nuclei, the experimental upper limit on the effective majorana neutrino mass

〈mββ〉 scales as 〈mββ〉 ≈ 1/(Nt)1/2 assuming zero-background, but as 〈mββ〉 ≈

1/(Nt)1/4 assuming the background is directly proportional to Nt [32]. One can

easily see that it is necessary to make background mitigation a primary objec-

tive of any sensitive ββ-decay experiment.

In order to take efficient measures, the causes and sources of backgrounds

must be well understood. The following sections deal with categorizing the

sources of background present in a germanium experiment, followed by an in-

depth discussion of experimental methods used to mitigate these backgrounds.

2.2.1. Background Sources. Backgrounds in germanium-based experi-

ments fall into two categories: cosmogenic backgrounds and primordial con-

tamination.

2.2.1.1. Cosmogenic Backgrounds. Cosmic radiation on Earth is a subject

that has been studied for many years [54]. Cosmic-rays originate from various
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extrasolar sources, such as active galactic nuclei, radio galaxies, quasars, pul-

sars, supernovae and black holes. These “primaries”, approximately composed

of 90% protons, 9% α-particles and 1% heavier particles, hit the Earth’s atmo-

sphere at a rate of 1000 m−2s−1 [66]. Their interactions with the atmosphere

at high altitude create showers composed of neutrons, electrons, neutrinos,

protons, muons and pions (secondaries). The relative intensity of charged pi-

ons:protons:electrons:neutrons:muons is approximately 1:13:340:480:1420 by

the time these particles reach sea level, although their flux depends on the

geomagnetic latitude and the 11-year solar cycle [41]. Secondary cosmic-rays

directly interact with the detector itself and/or with other secondary neutrons

and photons resulting from other showers produced in non-detector compo-

nents such as the rock or shielding [32]. Most photons and electrons are ab-

sorbed by the detector shielding or the amount of rock above the detector, com-

monly referred to as overburden, such that the relevant backgrounds of concern

for underground experiments are generally induced by muons, neutrons, and

the production of radioisotopes.

Muons created in the atmosphere lose energy through ionization, brems-

strahlung, e+e− pair production and photoproduction as they interact with the

overburden and shielding of the detector. This energy loss, however small com-

pared to the fraction of the primary energy, combined with the relativistic ex-

tended effects of the muons’ decay lifetime, enable the muons to penetrate deep

underground. The muon flux can therefore be significantly reduced at greater

depths, with a differential muon spectrum shifted to higher energies at larger

depths [21].

Although muon events can be vetoed as they pass through the detector by

using active shielding, they are still considered a nuisance as they contribute

to the experiment’s dead time and produce tertiary neutrons at the event site.

This tertiary neutron production is enhanced in high Z material, such as lead
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shielding at a depth of a few meters water equivalent (m.w.e.), while fission and

(α,n)-derived neutrons produced by the concentrations of 238U and 232Th in the

continental upper crust (refer to Section 2.2.1.2) dominate at a depth of below

a few hundred meters water equivalent [41]. Neutrons from secondary cosmic-

rays can also directly interact with the detector through inelastic scattering

and radiative capture (see radioisotope production further below).

Tertiary neutrons are created via several different mechanisms, such as

electromagnetic showers produced by the passage of muons through matter re-

sulting in the emission of photons and electrons from bremsstrahlung and pair

production. Other processes that produce neutrons involve muon interactions

with nuclei through the exchange of virtual photons (muon spallation), muon-

nucleon quasielastic scattering and secondary neutron production from any of

these interactions [32]. Figure 2.1 shows the flux of secondary cosmic-rays and

tertiary neutrons in a typical lead shield vs. the overburden of the detector in

meters water equivalent.

Secondary cosmic-rays can also contribute to background by the production

of radioisotopes through neutron capture (the dominant process at the Earth’s

surface), photodisintegration, in which high-energy gammas knock out a pro-

ton or neutron from a nucleus, and other reactions due to muons and alpha

particles [32]. Radioisotopes produced in this manner in germanium-based

experiments include 54Mn, 57,58Co, 65Zn, 68Ge in the germanium crystal, and
54Mn, 56,57,58,60Co, 59Fe in copper used in the cryostat and for shielding. Back-

grounds created by these shorter-living radioisotopes generally dominate the

background at the beginning of an underground experiment [6]. For a detailed

listing of γ-ray lines caused by cosmogenic activity typical to germanium ex-

periments, refer to Tables 2.1 - 2.8 at the end of this chapter.

For the sake of completeness, we add that neutrinos can also contribute to

the background of germanium experiments, though their contribution is fairly
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FIGURE 2.1. Flux of muons, tertiary neutrons, and neutrons pro-
duced from fission and (α,n) reactions shielded in lead vs. the
shielding depth (m.w.e.) [41]

minimal compared to muons and neutrons. Neutrinos can interact with the

detector in the following ways:

ν̄l + p→ l+ + n , (13)

νl + n→ l− + p , (14)

ν̄l + N→ ν̄l + N∗ , (15)

where l can take on any leptonic flavor (e, µ, τ ) and N is a target nucleus [32].

Methods to mitigate cosmogenic backgrounds will be discussed in Section 2.3.

2.2.1.2. Primordial Backgrounds. On some level, primordial radiation con-

taminates all rock environment, detector components, and shielding materials.
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The most important primordials consist of three long-lived isotopes with

half-lives to the order of 109 years: 40K, 238U, and 232Th. They are found in the

continental upper crust with an average concentration of 850 Bq/kg, 36 Bq/kg

and 44 Bq/kg respectively, and their concentrations are approximately halved

in soil with the exception of 232Th which remains the same [41]. The three

primordials emit a variety of by-products (other types of nuclei, neutrons, α-

particles, β-particles and γ-rays) in a wide-ranged spectrum. Most γ-rays from

which detectors must be shielded are emitted from the decays of these three

primordials, as the cosmic-ray flux only constitutes a small fraction (�1%) of

the total photon flux (approximately 10 photons cm−2s−1 at sea level) [41].

Potassium-40 β-decays to the stable isotope of 40Ca or undergoes electron

capture to the stable isotope of 40Ar [31] as seen in Figures 2.2 and 2.3. The

FIGURE 2.2. The β-decay of 40K [31]

natural abundance of 40K is only 0.0117% and normally occurs in rock and

concrete as K2O and K2CO3, both of which are present at a level of around

1% [32]. These low concentration levels and low γ-ray energies render 40K the

least troublesome of the three primordials.

More dangerous sources of background are the long-lived isotopes 238U and
232Th, which eventually decay to the the stable isotopes 206Pb and 208Pb after
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FIGURE 2.3. 40K undergoing electron capture [31]

a complex series of decays. Simplified schemes are depicted in Figures 2.4

and 2.5, along with a list of γ-ray energies with intensities higher than 5%.

FIGURE 2.4. Scheme of the 238U-chain to the stable 206Pb with
energies (keV) listed for the highest intensities (%)

Decay chains of 232Th and 238U produce radon gas (222,220Rn), which is of

great concern. Radon can escape solid formation by either recoil on ejection

29



FIGURE 2.5. Scheme of the 232Th-chain to 208Pb (stable) with en-
ergies (keV) listed for the highest intensities (%)

of an α-particle or by diffusion, which threatens to contaminate the detector’s

sensitive region [41]. The concentration of radon present in the air varies, but

average levels of 40 Bq/m3 are common in underground experiments [41].

The most prominent source in airborne radioactivity is 222Rn, which is re-

leased at a rate of approximately 1300 Bq m−2day−1 [46] through the 238U decay

chain. Radon-222 feeds into 214Bi, a problematic isotope with its γ-ray lines of

2204.21 keV (4.86% intensity) and 2447.86 keV (1.5% intensity). The 222Rn

family dies out with the production of 214Pb (τ1/2 = 26.8 m) which eventually

decays to the stable isotope 206Pb. Although 222Rn has a relatively short half-

life of 3.82 days, it also is a distant parent to 210Pb, another long-lived isotope
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with τ1/2 = 22.3 years. Lead-210, which can also be a source of contamination

from the shielding of the detector, feeds into the daughter nuclides 210Bi and
210Po. Out of these two isotopes, 210Po is the least problematic as its radiation

hardly ever escapes self-absorption [41]. The β-decay of 210Bi, however, re-

leases an electron with energy 1.16 MeV which produces bremsstrahlung and

characteristic x-rays in lead and can severely contaminate the background at

low energies. This can interfere with dark matter and axion searches.

Radon-220 has a shorter half-life than 222Rn with τ1/2=55.6 s and a con-

centration level in air usually lower than 222Rn. Radon-220 eventually feeds

into the production of 208Tl, the source of another problematic 2614.53 keV

γ-ray emitted with a 99% relative intensity. Unlike 222Rn, the 220Rn family

dies out quickly with its daughter 212Pb (τ1/2=10.64 h) which eventually de-

cays to the stable isotope of 208Pb [41]. The importance of eliminating radon

in low-level experiments cannot be overstated, and methods to mitigate radon-

induced backgrounds and other backgrounds from environmental activity and

radioimpurities in the detector will be discussed in Section 2.3.

Uranium-238 and 232Th are also responsible for low-energy neutron and

photon backgrounds in underground experiments through α-decays present in

the decay chains [32]. For 238U, these alpha emitters include 216,212Po with α-

particles of energies 6.8 MeV and 6.0 MeV respectively. In the case of 232Th,

the most important α emitters are 218,214,210Po with energies 6.0 MeV, 7.7 MeV

and 5.3 MeV. The dominant production mechanism is usually (α, n), but direct

fission neutrons can also be created from 238U and 232Th in the rock above the

detector [32]. The intensity and energy range of this neutron flux is dependent

upon the the type of rock and the natural levels of 238U and 232Th present.

For a detailed listing of γ-ray lines caused by primordial backgrounds, refer

to Tables 2.1 - 2.8 at the end of this chapter. This list is neither complete nor

are all lines expected to be present in each germanium spectrum.
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2.3. METHODS TO MITIGATE BACKGROUNDS

The difficulty inherent to all 0νββ-decay experiments is the extremely low-

background levels required to reach the needed sensitivity. These necessary

low-background levels are driven by the extremely long half-lives of the can-

didate isotopes. Fortunately, most backgrounds can be mitigated in carefully

constructed experiments with the use of several techniques and methods of

analysis developed and studied over the years [69]. The specific techniques

discussed in this section will include passive shielding, underground depth,

radon purging and using ultra-pure materials through material treatment.

2.3.1. Passive Shielding.

2.3.1.1. Outer and Inner Shield. Although decay products of the 232Th and
238U chains make up the largest portion of background radiation, they are also

the easiest to mitigate by the use of a massive lead shield [69]. This will cause

an additional background source of bremsstrahlung radiation from the 210Bi

beta particle up to approximately 850 keV [15]. The shield should be lined

with ancient lead to minimize background from the few hundred Bq/kg of 210Pb

that make up contemporary lead [16]. An inner shield of electroformed copper

is also generally used to screen out contributions from the bulk lead itself, as

well as any additional cosmic background [69].

2.3.1.2. Underground Depth. The most effective way to protect a sensitive

ββ-decay experiment against cosmic radiation is to operate the detector deep

underground as to reduce the background contribution from fast neutron elastic

and inelastic scattering, cosmogenic radioactive isotope production and muon

capture [69]. Figure 2.6 illustrates the importance of both depth underground

and proper passive shielding.

2.3.1.3. Radon Purging. In order to protect a germanium detector from

natural levels of 222Rn and 220Rn in the air, nitrogen gas is used to purge an
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FIGURE 2.6. Background spectra for a germanium detector with
0.5 kg of active volume without shield (top spectra), with a 15-cm
lead shield (middle spectra) and with the same shield at around
500 m.w.e. [41].

environment of radon. The physical properties of radon versus nitrogen, such

as radon being heavier than nitrogen and having a lower boiling point, ensure

that boil-off gas in a tank of liquid nitrogen remains adequately pure as radon

remains in liquid form and evaporates at a slower rate. The configuration

details of the radon purging system for a typical low-background germanium

experiment will be discussed in Chapter 3.

2.3.2. Ultra-Pure Materials. The use of ultra-pure materials in the de-

tector is crucial in background reduction, i.e.- the degree of radiopurity in the

detector assembly, which in turn is connected to the level of improvement that

can be achieved for all detector components [41]. In order to reduce levels of

natural radioactive impurities in the detector, sophisticated techniques in zone
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refinement, crystal growth and copper electroforming have been developed over

the years.

The process of zone refinement involves melting a bar of polycrystalline

germanium by slowly moving a heat source (an RF induction coil) along its

length while sealing this bar in a vessel to prevent oxidation [69]. Since most

impurities in germanium have a segregation coefficient of less than 1, (their

concentrations are higher when melting at equilibrium rather than in the solid

form), electrochemical impurities are concentrated in the melt and swept down

to the ends of the bar, leaving a pure central region behind [69]. Multiple passes

are performed in order to reach the required low impurity concentration [69].

The Czochralski crystal growth method, named after its inventor Jan Czoch-

ralski, involves melting the zone-refined polycrystalline germanium into a silica

crucible [65]. A single germanium seed is dipped into the melt and rotated

while a single germanium crystal is grown onto the seed from the molten ger-

manium [65]. All germanium in the crucible must be consumed during a crys-

tal growth run as any remaining germanium will freeze and crack the crucible

during the procedure [65]. The net impurity concentration of germanium crys-

tals must lie within a narrow range of (0.5 - 1.5 x 1010) cm−3 for the proper

fabrication of a large-volume coaxial germanium detector, although this range

depends on the detector’s diameter [69]. A highly non-uniform electric field will

result from an impurity concentration that is too low, while an impurity concen-

tration that is too high creates the need of an excessive high depletion voltage

and hence risks possible electrical breakdown [69]. Despite these preventa-

tive measures, products of the 238U and 232Th decay chains may still present

on some undetectable level in the germanium, and hazardous cosmogenic iso-

topes, i.e.- 56−60Co and 68Ge, are also accumulated while the germanium is

above ground [41].
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FIGURE 2.7. The pulling of a HPGe crystal from a melt contained
in a silica crucible at 936oC as hydrogen gas flows inside a quartz
envelope [69]

Contamination is most likely unevenly spread between all electronic parts,

surface coating and structural materials in the detector, however the most mas-

sive component of an ultra-low background HPGe detector is its copper cryo-

stat [57]. The most severe cosmic-ray generated radioisotope 60Co (τ1/2= 5.2 y,

Qβ = 2.505 MeV) results from (n,α) reactions on 63Cu [69], while contamination

from primordial radiation measures at approximately 10 µBq/kg [57]. In order

to minimize the production of these cosmogenic impurities and reach a desired

level of around 1 µBq/kg in 238U and 232Th, all copper used in MAJORANA must

be electrolyrically purified.

In the electroforming copper process, a copper anode induces the produc-

tion of positive copper ions through an acidic CuSO4 solution under the in-

fluence of a low-voltage. These ions reach a stainless steel mandrel that acts

initially as the cathode where large high purity copper crystals are formed [69].

One of the problems of the electroforming process is that mechanically sound
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copper is obtained by forming smaller-sized crystals [69]. Hence factors such

as bath temperature, rate of plating, pH, the use of crystal-growth inhibiting

chemicals and especially the electroforming potential are carefully limited and

well monitored in order to produce the best quality copper mechanical proper-

ties and purity [57].

There has been significant progress made in producing high purity cop-

per through the electrochemical process used for copper electroforming. This

progress has been recorded throughout the years as follows:

• In 1995, a limit of <9 µBq/kg for 232Th was measured in IGEX electro-

formed copper with a 90-day radiometric measurement of ∼10 kg at 4000 me-

ters water equivalent [18].

• In 2004, it was shown that recrystallization of the CuSO4 starting mate-

rial could extensively purify the CuSO4 bath solution used in the electroforming

process [69].

• In 2004, a source of commercially electroformed copper was tested to

<12 µBq/kg for 232Th [42].

• In 2005, a limit of <8 µBq/kg for 232Th was measured on MEGA cop-

per with a 1-minute measurement of <1 g copper with an inductively coupled

plasma mass spectrometer (ICPMS) [19].

• In 2005, it was shown that levels of 230Th could be suppressed by a factor

of >8000 through electroforming [19].

• In 2005, assay sensitivities of 2 - 4 µBq/kg for 232Th were achieved by

improved methods [19].

• In 2006, levels of 232Th in electroformed samples were shown to be essen-

tially at background, indicating that <2 µBq/kg could be attainable [69].

• At this writing, the best ICPMS assay of primordial activity in copper

electroformed at PNNL is currently 0.6 µBq/kg for 232Th and 1.3 µBq/kg for
238U, although these results are not yet published [43].
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In the context of this dissertation, the goals of the MAJORANA experiment

are to reach a contaminant level of 0.1 µBq/kg in 208Tl and 0.4 µBq/kg in 214Bi,

which would correspond to an activity of 0.3 µBq/kg in 232Th [69]. Research

on electrochemical behavior, Th/U rejection rates and other predictive efforts

will allow further insight and improvement to be made in the electroforming

process needed to reach these low levels of impurities.

2.4. SUMMARY

Necessary steps to protect germanium detectors from primordial radiation

and cosmogenic activity must be taken regarding depth underground, shielding,

proper materials selection and materials purification, radon purging and elec-

tronic signal processing to ensure the best experimental optimization [15]. Fo-

cusing more time and resources on perfecting these background-reducing tech-

niques will be key for the success of any ββ-decay experiment. One focus of the

present research is the analysis of data from an experiment to determine an

upper bound on primordial radiation levels in Cascades, a HPGe multi-crystal

array and cryostat constructed with electroformed copper similar to that elec-

troformed for MAJORANA.
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TABLE 2.1. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 0 - 130 keV [40].

γ-line Isotope Parent Reaction Iγ Remarks
(keV) produced reaction (%)

14.41 57Fe 57Fe(p,n)57Co 8.8 cosmic reaction
56Fe(p,γ)57Co (τ1/2=271.3 d)
56Fe(d,n)57Co

46.50 210Bi 210Pb 3.65 238U series
(τ1/2=22.28h)

50.10 223Ra 227Th 7.28 235U series
(τ1/2=11.43 d)

53.40 73mGe 72Ge(n, γ)73mGe 10.50 cosmic reaction
(τ1/2=0.5 s)

63.32 234Pa 234Th 4.49 238U series
(τ1/2=24.1 d)

68.70 63Ge 73Ge(n,n’)73Ge cosmic reaction

72.80 Pb Pb x-ray
74.97
84.45
84.94
87.30

84.21 231Pa 231Th 6.60 235U series
(τ1/2=25.5 h)

92.60 234Pa 234Th 5.16 238U series
(τ1/2=24.1 d)

93.32 67Zn 65Cu(α,2n)67Ga 48.00 cosmic reaction
(τ1/2=78.3 h)

109.89 19F 19F(n,n’)19F cosmic reaction

122.40 57Fe 57Fe(p,n)57Co cosmic reaction
56Fe(p,γ)57Co (τ1/2=271.3 d)
56Fe(d,n)57Co
57Co(n,n’)57Co
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TABLE 2.2. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 130 - 220 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

131.20 234U 234Pa 20.00 238U series
(τ1/2=6.7 h)

136.47 57Fe 57Fe(p,n)57Co 11.00 cosmic reaction
56Fe(p,γ)57Co (τ1/2=271.3 d)
56Fe(d,n)57Co
57Co(n,n’)57Co

139.70 75mGe 74Ge(n, γ)75mGe 39.0 cosmic reaction
(τ1/2=48 s)

143.80 231Th 235U 10.90 235U series
(τ1/2=7.05×108 yr)

159.70 77mGe 76Ge(n, γ)77mGe 11.00 cosmic reaction
(τ1/2=52.9 s)

163.30 231Th 235U 5.00 235U series
(τ1/2=7.05x108 yr)

184.59 67Zn 65Cu(α,2n)67Ga 62.00 cosmic reaction
(τ1/2=78.3 h)

185.70 231Th 235U 57.50 235U series
(τ1/2=7.05×108 yr)

185.91 66Cu 65Cu(n,γ)66Cu cosmic reaction

198.40 71m2Ge 70Ge(n,γ)71m2Ge 99.00 cosmic reaction
(τ1/2=22 ms)

203.10 64Cu 63Cu(n,γ)64Cu 6.64 cosmic reaction

205.30 231Th 235U 5.00 235U series
(τ1/2=7.05×108yr)

215.50 77As 76Ge(n,γ)77mGe 21.00 cosmic reaction
(τ1/2=52.9 s)
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TABLE 2.3. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 220 - 425 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

226.40 234U 234Pa 5.90 238U series
(τ1/2=6.7 h)

227.20 234U 234Pa 5.50 238U series
(τ1/2=6.7 h)

236.00 223Ra 227Th 11.20 235U series
(τ1/2=11.43 d)

238.60 212Bi 212Pb 43.60 232Th series
(τ1/2=10.64 h)

241.98 214Bi 214Pb 7.50 238U series
(τ1/2=26.8 m)

256.00 223Ra 227Th 7.60 235U series
(τ1/2=11.43 d)

269.20 219Rn 223Ra 13.60 235U series
(τ1/2=11.43 d)

271.20 215Po 219Rn 9.90 235U series
(τ1/2=3.96 s)

277.40 208Pb 208Tl 6.31 β−-decay
(τ1/2=3.05 m)

278.80 64Cu 63Cu(n,γ)64Cu 30.12 cosmic reaction

295.20 214Bi 214Pb 18.50 238U series
(τ1/2=26.8 m)

351.92 214Bi 214Pb 38.50 238U series
(τ1/2=19.9 m)

367.94 200Hg 199Hg(n,γ)200Hg 81.35 cosmic reaction

401.70 215Po 219Rn 6.64 235U series
(τ1/2=3.96 s)
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TABLE 2.4. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 425 - 610 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

427.89 125Te 124Sn(p,γ)125Sb 29.40 cosmic reaction
(τ1/2=2.27 a)

510.80 208Pb 214Tl 22.60 232Th series
(τ1/2=3.05 m)

511.00 Annihilation

558.20 76Ge 76Ge(n,n’)76Ge 79.71 cosmic reaction

563.30 134Ba 133Cs(n,γ)134Cs 8.38 reaction waste
(τ1/2=2.06 a)

569.50 234U 234Pa 10.00 238U series
(τ1/2=6.7 h)

569.79 207Pb 207Pb(n,n’)207Pb cosmic reaction
206Pb(n,γ)207Pb

583.20 208Pb 208Tl 84.50 232Th
(τ1/2=3.05 m)

595.90 74Ge 73Ge(n,γ)74Ge 34.65 cosmic reaction
73Ge(n,n’)74Ge

600.55 124Sn(p,γ)125Sb 17.78 cosmic reaction
(τ1/2=2.77 y)

604.70 134Ba 133Cs(n,γ)134Cs 97.60 reactor waste
(τ1/2=2.06 a)

606.64 125Te 125Sn(p,γ) 5.02 cosmic reaction
(τ1/2=2.77 y)

609.30 214Po 214Bi 44.80 238U series
(τ1/2=19.9 m)
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TABLE 2.5. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 610 - 805 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

635.90 125Te 124Sn(p,γ)125Sb 11.32 cosmic reaction
(τ1/2=2.77 y)

651.00 114Cd 113Cd(n,γ)114Cd 15.23 cosmic reaction

661.66 137mBa 137Cs 85.00 reactor waste
(τ1/2= 30.17 y)

669.60 63Cu 63Cu(n,n’)63Cu cosmic reaction

691.00 72Ge 72Ge(n,n’)72Ge cosmic reaction

727.30 212Po 212Bi 6.25 232Th series
(τ1/2=1.0 h)

751.80 65Zn 63Cu(α,2n)65Ga 50.70 cosmic reaction
(τ1/2=15 m)

768.40 214Po 214Bi 4.88 238U series
(τ1/2=19.9 m)

769.70 73As 73Ge(p,nγ)73As cosmic reaction

770.80 65Cu 65Cu(n,n’)65Cu cosmic reaction

794.90 228Th 228Ac 4.34 232Th
(τ1/2=6.15 h)

795.80 134Ba 133Cs(n,γ)134Cs 85.40 reaction waste
(τ1/2=2.06 a)

801.90 134Ba 133Cs(n,γ)134Cs 8.73 reaction waste
(τ1/2=2.06 a)

805.00 114Cd 113Cd(n,γ)114Cd 5.10 cosmic reaction
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TABLE 2.6. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 810 - 930 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

810.80 58Fe 59Co(γ,n)58Co cosmic reaction
59Co(n,2n)58Co (τ1/2=63 s)
58Fe(p,n)58Co
57Fe(p,γ)58Co
57Fe(d,n)58Co
58Fe(n,p)58Mn

833.95 77Ge 72Ge(n,n’)72Ge cosmic reaction

834.60 54Cr 54Cr(p,n)54Mn 100.00 cosmic reaction
53Cr(d,n)54Mn (τ1/2=312.2 d)
53Cr(p,γ)54Mn

846.80 56Fe 56Fe(n,n’)76Fe 19.00 cosmic reaction

846.80 56Fe 56Fe(p,n)56Co cosmic reaction
(τ1/2=78.76 d)

860.60 208Pb 208Tl 12.42 232Th series
(τ1/2=3.05 m)

868.1 73Ge 72Ge(n,γ)73Ge 30.12 cosmic reaction

880.51 234U 234Pa 9.00 238U series
(τ1/2=6.7 h)

883.24 234U 234Pa 15.00 238U series
(τ1/2=6.7 h)

911.20 238Th 228Ac 26.60 232Th series
(τ1/2=6.15 h)

926.00 234U 234Pa 11.00 238U series
(τ1/2=6.7 h)

927.10 234U 234Pa 11.00 238U series
(τ1/2=6.7 h)
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TABLE 2.7. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 930 - 1240 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

946.00 234U 234Pa 12.00 238U series
(τ1/2=6.7 h)

962.10 65Cu 63Cu(n,n’)63Cu cosmic reaction

964.80 228Th 228Ac 5.11 232Ht series
(τ1/2=6.15h)

969.00 228Th 228Ac 16.20 232Ht series
(τ1/2=6.15h)

1039.50 70Ge 70Ge(n,n’)70Ge cosmic reaction

1063.64 207Pb 207Pb(n,n’)207Pb cosmic reaction
206Pb(n,γ)207Pb

1097.30 116Sn 115In(n,γ)116m1 55.70 cosmic reaction
(τ1/2=54.1 m)

1115.50 65Cu 65Cu(n,n’)65Cu 50.75 cosmic reaction
65Cu(p,n)65Zn (τ1/2=244 d.

1120.40 214Po 214Bi 14.80 238U series
(τ1/2=19.9 m)

1124.51 65Cu 70Ge(n,α2n)65Zn 50.75 cosmic reaction
(τ1/2=244 d)

1173.20 60Ni 59Co(n,γ)60Co 100.00 reaction in steel
(τ1/2=5.172 y)

1204.10 74Ge 74Ge(n,n’)74Ge cosmic reaction

1238.26 56Fe 56Fe(p,n)56Co 13.40 cosmic reaction
(τ1/2=78.76 d)

1238.80 214Po 214Bi 5.86 238U series
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TABLE 2.8. Common background lines observed in Ge-Spectra
for γ-rays with a probability of occurrence Iγ ≥ 5% for energies
ranging from 1240 - 2615 keV [40].

γ-line Isotope Parent Iγ Remarks
(keV) produced reaction (%)

(τ1/2=19.9 m)

1291.65 59Co 58Fe(n,γ)59Fe 57.00 cosmic reaction
(τ1/2=45.1 d)

1293.50 116Sn 115In(n,γ)116mIn 85.00 cosmic reaction
(τ1/2=54.1 d)

1293.64 41K 40Ar(n,γ)41Ar 99.16 cosmic reaction
(τ1/2=1.83 h)

1327.00 63Cu 63Cu(n,n’)63Cu cosmic reaction

1332.50 60Ni 59Co(n,γ)60Co 100.00 (τ1/2=5.172 y)

1377.60 57Co 58Ni(γ,n)57Ni 30.00 τ1/2=36 h
58Ni(n, 2n)57Ni

1412.10 63Cu 63Cu(n,n’)63Cu cosmic reaction

1460.80 40Ar 40K 99.16 τ1/2=1.277×108 y

1481.70 65Cu 65Cu(n,n’)65Cu cosmic reaction

1547.00 63Cu 63Cu(n,n’)63Cu cosmic reaction

1764.50 214Po 214Bi 15.96 238U series
τ1/2=19.9 m

2204.10 214Po 214Bi 238U series
(τ1/2=19.9 m)

2223.20 2H 1H(n,γ)2H 100.00 cosmic reaction

2614.60 208Pb 208Pb(n,n’) 99.20 232Th series
208Pb208Tl cosmic reaction

τ1/2=3.05 m
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CHAPTER 3

THE CASCADES DETECTOR

3.1. OVERVIEW

The Cascades detector was constructed at PNNL (Pacific Northwest Na-

tional Laboratory) in Richland, Washington and was developed following guide-

lines from the MEGA (Multi-Element Gamma-Array) project [47]. Its primary

goals are to measure atmospheric particulates collected on filter paper sam-

ples and to quantify radionuclides of interest, hence improving γ-ray analysis

capabilities for nuclear detonation detection applications [49]. The inherent ex-

cellent energy resolution of germanium combined with ultra-low background

construction techniques, such as the use of ultra-pure materials and highly

effective shielding, should increase the signal-to-noise (S/N) ratios of measure-

ments [48]. Additionally, the detector was designed to have the potential to

measure the extent to which samples are chemically purified, and contribute

to other basic nuclear physics research such as the study of rare decay events

through γ-γ coincidence analysis [50]. The design requirements for Cascades

can be summarized as followed: 1) a maximum background reduction such that

sample activity dominates the signal in the detector; 2) the highest possible γ-

ray detection efficiency; 3) multiple HPGe crystal arrays packaged to maximize

the detection of both single and coincident gamma-rays [48].

The Cascades detector consists of two vacuum cryostats facing one another

and constructed with electroformed copper, each housing a hexagonal array

of seven p-type semi-coaxial HPGe crystals operated in a reverse-biased diode

configuration. The crystal arrays face each other in their individual cryostats
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and are mounted on a cold plate connected to a liquid nitrogen dewar that

maintains the temperature of the germanium crystals near 87 K with a coldfin-

ger. Schematics of the total assembly housed in a lead shield (see Section 3.6 for

further detail on shielding) and attached to the dewar are shown in Figures 3.1

and 3.2. The lower cryostat and its components can be observed in Figure 3.3,

FIGURE 3.1. Depiction of two 7-crystal arrays surrounded by the
lead cave

including a thin copper entrance window to improve the detection efficiency for

lower-energy gamma rays (refer to Figure 3.4). The HPGe crystals each have a

∼70% relative efficiency and are arranged in a hexagonal pattern, as observed

in Figure 3.5. Housing these germanium crystals in a close-packed array in

large vacuum cryostats allows for a closer placement of crystals, improving the

detection efficiency for both single and coincident gammas and increasing the

solid-angle coverage of the detector [58]. One unfortunate drawback of this de-

sign is that the entire 7-crystal array needs to be warmed and opened should a

single crystal require maintenance [48]. However, typical cryostats can operate
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FIGURE 3.2. Schematic of Cascades surrounded by its lead cave
and attached to the LN dewar

FIGURE 3.3. Detailed parts of the lower cryostat
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FIGURE 3.4. Thin copper entrance window of the bottom cryostat

for many years without encountering difficulties, such that the advantages of

using two arrays packed with HPGe crystals outweighs the risks of one of the

cryostats requiring service [48].

To facilitate their cooling, the seven crystals of each array are enclosed in an

infrared (IR) shield, which is coupled tightly to the cold plate. Each crystal is

mounted in an individual mounting package that minimizes materials between

crystals (see Figure 3.6), improving the detection efficiency of γ-rays that scat-

ter from one crystal into an adjacent crystal. Additionally, the lack of materials

between the crystals could allow the reconstruction of pair production events

where one or both annihilation γ-rays escape the crystal.
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FIGURE 3.5. Lower detector array with seven crystals mounted
on cold plate and arranged in a hexagonal pattern

3.2. DETECTOR ASSEMBLY

It was intended traditional methods for the construction of low-background

detectors would be practiced, such as using materials with low radioactive con-

taminants and ultra pure reagents, as well as following clean room assembly

protocol. Using PNNL-improved methods of electroforming, copper was elec-

troformed for the main body of the cryostats, as well as long parts such as

the cross arm and coldfinger [48]. Based on inductively coupled plasma mass

spectrometry analysis (ICPMS), the electroformed copper for Cascades has es-

timated impurity levels 0.6 µBq/kg for 232Th and 1.3 µBq/kg for 238U, although

these results are not yet published [43]. This is important to the conclusion of

this work.

50



FIGURE 3.6. Mounting packages for individual crystals

With the exception of the IR shield and HPGe crystals, the first cryostat

was assembled in 2009 with the installation of the Low-Background Front-

End Electronics Package (LFEP), which will be discussed in Section 3.4, wiring,

and preamplifiers [48]. Prior to installing the HPGe crystals, cryostat vacuum

and thermal performance were tested successfully (see section 3.3). By mid-

May of 2010, the first seven HPGe crystals were installed in the bottom cryo-

stat following these steps: the cryostat was first disconnected from the dewar,

then high-voltage (HV) wires were attached to the center connection of each

crystal, fed through the appropriate hole in the cold plate and attached once

again [50]. Electroformed nuts were used to bolt the crystals onto the coldplate,

after which they were inverted one-by-one to allow crimping of the HV wire to

leads attached to the gates of the LFEP [50]. Figure 3.7 details the installation

of the HPGe crystals.
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FIGURE 3.7. Installation of HPGe crystals and crimping of HV
wires [50]

Electroforming the thin IR shields and domed entrance of the copper win-

dow was initially challenging due to the heating process used to remove the

thin copper from the stainless steel (SS) mandrels. Removing an electroformed

piece from its mandrel requires heating the piece to ∼300oC before rapidly

cooling it in a bath of cold water. However since this proved to be problem-

atic for parts electroformed on 304 SS mandrels, an alternative process was

used. Hardened steel rollers were run over the surfaces of the electroformed

IR shields, stretching the thin copper and thus removing it from the 304 SS

mandrels [49]. The thin copper dished portion of the cryostat was electro-

formed separately and electron-beam welded onto an annular plate, producing

a ∼0.04”-thick window over a 5”-diameter window [48], as shown in Figure 3.4.
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Although the construction of the entire Cascades detector was originally

scheduled to be completed in 2010, problems mentioned above and throughout

this chapter delayed the completion of the project. The construction of the

second array in 2012 was delayed when thermal testing of a custom commercial

dipstick revealed the crystals would not reach a low-enough temperature at

which to operate [51]. The temperature with no thermal load stabilized at

83 K; however when a 8.1 W thermal load was applied to the dipstick with a

Zener diode, the temperature stabilized at 135 K [51]. Some further analysis

indicated the problem laid with the diameter of the vertical portion of the cold

path, hence a new dipstick had to be designed and fabricated at PNNL [51].

3.3. VACUUM AND THERMAL PERFORMANCE

A liquid-nitrogen dewar with a 100 liter capacity was custom-built by Tech-

nifab corporation and provides cooling for both cryostats [49]. The dewar, seen

in Figure 3.8, uses about 1 kg of liquid nitrogen per day with no external load

but around 7 liter/day when both cryostats are attached [50]. For proper ther-

FIGURE 3.8. The liquid nitrogen dewar of Cascades prior to being
attached to the lower cryostat with a thermal connection

mal testing, a known thermal load was injected into the system with a Zener

diode and measured by a Lakeshore silicon diode (located along the cold path
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from the dewar to the cold plate) and four silicon resistance temperature de-

tectors (RTDs) located on the cold plate [49], [43]. Upon this initial test, it was

noted the first cryostat did not cool sufficiently for the operation of the HPGe

crystals, and also caused ice to form on the cross arm. The problem was identi-

fied as a thermal short between the horizontal cold finger and cross arm, caused

by contact between the inner cold finger (kept at ∼87 K) and the cross arm (the

outer vacuum jacket). Figure 3.9 illustrates this thermal short. This problem

FIGURE 3.9. Ice on the cross arm after the first thermal testing

was resolved by modifying the section of the copper that directly connects to the

dewar, or copper dewar extension, thus eliminating the thermal short between

the cold finger and the cross arm [49]. The steel bolts fixing a clamp connecting

the copper dewar extension to the cold finger were also changed from 304 SS

to 18-8 SS [49]. After these changes, the cold plate reached a temperature of

89.5 K. The largest single temperature change across a material interface was

reported to be ∼6 K; this was later improved by inserting gold foil at the dewar

between the copper and aluminum [43].
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Additionally, the cryostats had to be tested for vacuum performance. In or-

der to verify that a cryostat would not fatigue and fail under vacuum cycling,

each cryostat was successfully cycled over 15 times [49]. Complications oc-

curred with the installation of the first cryostat, as vacuum behavior was not

as stable as predicted due to a loose vacuum flange [49]. Despite this, the array

was successfully cooled to a temperature range of 82.5 K - 83.5 K at the copper

dewar extension [49]. The HPGe crystals were then installed as discussed in

Section 3.2.

3.4. LOW-BACKGROUND FRONT-END ELECTRONICS PACKAGE

Since HPGe detectors produce signals much too small to be directly mea-

sured, amplification is required to measure energies deposited in the crystals.

In HPGe detector systems, this amplification occurs in two stages. The first

stage is a low-level amplification, generally referred to as the “front end”, that

occurs very close to the HPGe crystal so as to avoid the introduction of noise.

The second stage further amplifies the signal to a degree at which the signal

can be measured using modern data acquisition electronics. Since the front-

end is positioned only a few centimeters away from the front of a crystal, the

radiopurity of the front-end is extremely important; however, its mix of ac-

tive and passive electronic components presents a bigger radiopurity challenge

than electroforming the more massive copper cryostat parts [1]. Because com-

mercial solutions are not available, custom solutions have been developed at

PNNL to address this issue. Front-ends have been developed starting with

commercial units and have evolved to other designs of Low-background Front-

end Electronics Packages. This design evolution can be observed in Figure 3.10.

For Cascades, the LFEP-II front-end was used (see Figure 3.11). Figure 3.12 il-

lustrates a close-up on the sockets into which the LFEP-II boards are mounted

with the components facing into the sockets. Figure 3.13 shows the location

55



FIGURE 3.10. Evolution of LFEPs from commercial units to
LFEP-II for Cascades [49]

of the boards in relation to the crystals, which are hanging “down”, or into

the page. While it is possible to produce front-ends from low-background com-

ponents, it is not yet possible to produce the second stage of amplification in

similar fashion. This complication is driven by the nature of the modern am-

plifier design. As a result, the second stage of amplification in low-background

HPGe systems must be placed away from the crystals. In the case of the Cas-

cades detector, the second stage occurs outside of the lead shield and consists of

14 RG11B/C charge-sensitive preamplifiers from Princeton Gamma Tech (with

one preamplifier per crystal). A close-up of the preamplifiers and their location

with respect to the germanium components are seen in Figures 3.14 and 3.15.

To measure events, a charge-integrating loop is formed by HPGe ampli-

fiers and LFEP units, which convert charge deposited in germanium crystals

56



FIGURE 3.11. Assembled LFEP-II board

FIGURE 3.12. Close-up of sockets into which LFEP-II boards are
mounted
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FIGURE 3.13. Location of LFEP-II boards in relation to the crys-
tals, which are pointing into the page

FIGURE 3.14. Close-up of a RG11B/C preamplifier
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FIGURE 3.15. Location of RG11B/C preamplifiers with respect to
the sensitive germanium elements

by ionizing radiation into a voltage change that is measured by digitizers de-

scribed in Section 3.6. A representative circuit design of the LFEP is illustrated

in Figure 3.16.

3.5. PASSIVE AND ACTIVE SHIELDING

To shield from environmental and cosmic backgrounds, the Cascades detec-

tor is operated at a depth of ∼35 meters water equivalent, and both active and

passive shielding are used. The detectors are shielded by 10” of lead and cop-

per. Lead-210 shields against 238U and 232Th backgrounds, while its innermost

∼2”-copper layer shields the detector from the 210Pb bremsstrahlung resulting

from the use of modern lead. The need to perform detector maintenance or to
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FIGURE 3.16. Circuit design of the LFEP

place a variety of samples in the detector is achieved by rolling the lead door

out of the shield with the use of an electric motor [48], as seen in Figure 3.17.

Because of the movable door, pieces of extruded aluminum are used at the bot-

tom to raise the lead off the floor as well as for structural support. The lead

shield is wrapped in a thin layer of cadmium (Figure 3.18), which serves to cap-

ture neutrons that are thermalized by the 6” of high-density borated polyethy-

lene located outside the lead (Figure 3.19). In order to properly purge radon

from the system, an enclosure surrounds the lead. Although this portion of the

shield was designed to be sealed tightly, the radon enclosure of Cascades is not

yet fully operational at this writing; however, boil-off gas nitrogen gas from a

much larger dewar is used to purge the system at a rate of 9 SCFH (standard

cubic feet per hour).

The goal of the active cosmic veto shield is to detect and exclude cosmic-ray

generated interactions with germanium. In the case of Cascades, 15 BC-408
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FIGURE 3.17. Electric motor used to roll the lead door in and out
of the cave

FIGURE 3.18. Lead shield wrapped in a thin layer of cadmium
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FIGURE 3.19. Sample of high-density borated polyethylene

plastic scintillator panels each measuring approximately 17.5” x 2” x 70” sur-

round the lead shield and the door side of the detector [50]. To detect scin-

tillation light, a single photomultiplier tube is mounted to the end of each

veto panel. Three veto panels are required to cover each side of the Cascades

shield. A preamplifier (Camberra model 2005) re-combines the three signals

from each side, which are then read out by an XIA PIXIE-4 waveform digi-

tizer [49]. Figure 3.20 illustrates a typical energy spectrum produced by one

side of the cosmic-ray veto after matching the individual PMT gains through

bias adjustments.

An excellent time resolution of a veto system is extremely important since

it will decrease the inclusion of false events. The original time resolution of

the veto system of Cascades was 200 ns, however the anti-coincidence window

was later significantly widened to ±1 µs to decrease background [49]. The 511

keV annihilation peak was measured to be suppressed by 94.2% [50]. The back-

ground rejection rate efficiency was at first measured at 73% and was primarily

dominated by 210Pb-associated bremsstrahlung and radon daughter isotopes
222Rn and 220Rn [50]. Since this measurement, the 210Pb-associated continuum

has been further reduced with the addition of thick copper lining measuring

slightly less than two inches [50]. Today background rates range at an average

of 347 counts (keV-y-kg)−1 in the 40-2700 keV range. Some background peaks
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FIGURE 3.20. Muon-spectrum collected by active-veto on the top
surface of the lead shield [49]

and “shark fins” associated with neutron interaction with germanium can be

observed in Figure 3.21. Background features include the continuum, radon

daughters 222Rn and 220Rn, 210Pb x-rays, the 511 keV annihilation peak and

other peaks from the neutron activation of germanium and lead.

3.6. DATA ACQUISITION AND ANALYSIS FRAMEWORK

The data acquisition pathway of Cascades begins near the crystal where

sockets for the PNNL Low-Background Front-End Electronics Packages (LFEP)

are mounted onto the cold plate. The very small signal from each detector is

modestly amplified by an LFEP, as discussed in Section 3.4, and then sent

through a Belden 8700 micro coaxial cable to a 50-pin vacuum feedthrough

connector located on the service body (refer to Figure 3.12). In order to miti-

gate radioactive backgrounds, the PVC jacket of the Belden cable was removed.

On the non-vacuum side of the 50-pin feedthrough, the signal is routed to a

PGT RG11B/C charge-integrating preamplifier located on the distribution box

mounted to the bottom of the service body. There are seven preamplifiers per
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FIGURE 3.21. Background features observed in a 16.59-day back-
ground run measured with the 2 arrays of Cascades

box and one preamplifier per crystal, such that the signals from each of the

14 preamplifiers (for all 14 crystals) are digitized by an XIA Pixie-4 waveform

digitizer. For Cascades, a total of five Pixie-4 4-channel digitizers are used,

while the additional Pixie-4 channels are used for the veto scintillators.

A Linux-based in-house data acquisition program called NXY controls the

DAQ hardware [23]. Data collection is operated by NXY and permits the user

to generate basic MCA-style spectra with time and energy values for each crys-

tal, and also has the capability of digitizing waveform data for each observed

pulse [43]. Coincident hit pattern information is also recorded with NXY [50].

The data acquisition system described above permits event data from the 14
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crystals of Cascades to be reconstructed in several ways. The Cascades ana-

lysis software, called “Melusine”, was developed using the C++ programming

language and relies on the library tools provided by the ROOT framework [22]

and on Qt for graphical user interface functionality [49]. The PNNL data acqui-

sition software NYX receives binary data produced by PIXIE-4 digitizers and

stores these data on disk [50]. The binary data are then processed using Melu-

sine1, a preprocessor that converts XIA data format to a ROOT data structure.

Melusine2, the analysis code, provides the functionality to produce histograms

for individual and summed crystals. Figure 3.22 illustrates this multi-step

process.

FIGURE 3.22. Cascades data processing steps [50]
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Melusine2 creates configuration files that allow the user to select exactly

which histograms and analyses are desired, such as performing energy calibra-

tions, identifying isotopes, and extracting their activities and peak efficiencies

from analyzing one or two-dimensional spectra. Options include establishing

coincidence requirements, cuts, fits, and calibrations by either editing confi-

guration files or using a graphical user interface (GUI). Spectra can also be

restricted based on graphical cuts, channel, multiplicity, energy range, veto

status and other features extended in the analysis framework of ROOT.

The Melusine software is flexible in its usage. With well-defined ROOT

tree forms, the user can quickly examine the validity of data and produce sim-

ple histograms with minimal effort before diving into an extended analysis.

Another clear advantage is the separation of the data formatting from the

analysis tools (Melusine1 versus Melusine2); this allows the system to han-

dle data produced by other sources such as simulations or has the potential for

decoding data from other types of detector arrays [50]. Additionally, a straight-

forward isotope identification algorithm has been implemented in Melusine

based on nuclear data files written by the Coincidence Lookup Library (CLL)

[73]. This portion of the code scans an energy spectrum and identifies iso-

topes based on observed lines or specified centroid energy criteria [51]. In or-

der to perform this extensive analysis, a mixed isotope standard suitable for

the energy calibration of complex detectors was utilized with a single measure-

ment and used to calibrate spectra. This will be discussed further in Chapter 5

with reference to background and calculating activities from primordial radia-

tion in the Cascades detector.

Fitting algorithms for doublet and multiplet peaks based on Gaussian peaks

and linear backgrounds were also implemented in Melusine, based on the code’s

ability to recognize overly-broad peaks and split them consequentially [51].
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Figure 3.23 demonstrates the ability of Melusine to perform automated mul-

tiplet fitting of 143Ce, 95Zr and multiple 132I peaks. Other code features such

as adaptive ROI fitting to avoid poor background continuum caused by neigh-

boring peaks can also be observed [51]. If the peaks under consideration are

within the displayed energy range, they are also highlighted (in green with

regards to Figure 3.23) by the user interface.

FIGURE 3.23. Multiplet fitting of Melusine code [51]

3.7. SUMMARY

As discussed in this chapter, the construction of Cascades was delayed sig-

nificantly due to unforeseen problems in thermal and vacuum testing, copper

electroforming, and detector assembly. A variety of measurements have been

made and analyzed to date, such as standard calibration sources, mixed fission

product samples, neutron activation samples, and Fukushima-related sea life

samples. To illustrate the measurement sensitivity of Cascades, minimum ac-

tivities of ∼2 mBq for 60Co and 137Cs were detected by a 7-day measurement of

ultra-high-molecular-weight polyethylene with the lower array [51]. Activity

calculations for both single and coincident signatures, efficiency calculations,

and decay calculations for half-life data can be extracted based on the CLL

and Melusine algorithms. Although Melusine today shows great progress and
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potential, future work such as tailing functions, stepped backgrounds, more ef-

ficient coincidence analysis techniques, error propagation and other additions

should be implemented to complete the software. Other tests and simulations

were conducted to determine the suitability of the Cascades detector for the

measurement of rare events, as will be discussed in Chapters 4 and 5.
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CHAPTER 4

SIMULATIONS

4.1. PERFORMANCE MODELING

A model of the Cascades detector was built using GEANT4 (Geometry and

Tracking) [67], a C++-based simulation framework that relies on random sam-

pling by using computational algorithms to simulate the interaction of particles

with matter. In this section, the configurations of the model are discussed and

simulations of 137Cs γ-rays are presented for validation purposes.

4.1.1. GEANT4 Model. The GEANT4 Cascades geometry consists of two

arrays of seven semi-coaxial p-type HPGe crystals looking head-on. Figure 4.1

shows a cross-section view of the Cascades detector in between the center of the

two arrays. It is important to note in this diagram that colors do not represent

FIGURE 4.1. Cross-section view of the Cascades detector with ra-
dioactive sample in between the two arrays
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specific parts of the detector, but rather boundaries between different materi-

als. Several features of the cryostat mechanical design have been simplified in

the GEANT4 model in order to reduce complexity. Attention was focused on

ensuring that the crystals were located at the right coordinates and that the

copper thickness was as accurate as possible. Details such as the three copper

rods that are part of the crystal mount were neglected due to their low mass in

comparison to the remainder of the copper in the cryostat.

In the GEANT4 model shown in Figure 4.1, the magenta represents the

outer boundary of the 5-mm vacuum jacket and the orange represents the in-

ner boundary. The space between these two bounding surfaces is defined in

GEANT4 to be copper. Features such as the thin copper entrance window (with

diameter 149.5 mm) are shown as a reduction in the distance between the outer

magenta and inner orange surfaces. The thickness of the cold plate on the rear

side of the crystals can be seen by the increase in the separation of these two

surfaces. The grey shell between the copper and the crystals (yellow) is the

thin 0.1-mm thick copper IR shield. All crystals are simulated with the same

dimensions: 62 mm in diameter and 70 mm in height, which includes a dead

layer of 0.25 mm. This is a representative size for the actual crystals. The

BGO (Bismuth germanium oxide scintillator) anti-Compton shield is present

to catch higher energetic events that scatter outside of the array.

4.1.2. Validating the GEANT4 Model. In order to validate the GEANT4

model of Cascades, the radioactive decay of 137Cs was simulated using GEANT4

with radioactive decay data obtained from the PNNL Coincidence Look-up Li-

brary (CCL) [73] and compared to actual measurements made with the detec-

tor.

Cesium-137 β-decays to 137Ba by emitting a β-particle (Eβ = 513.97 keV) and

a γ-ray (Eγ = 661.61 keV) with an 85.1% probability as seen in Figure 4.2. A

point source of 137Cs with an activity of 0.669 µCi at the time of measurement
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FIGURE 4.2. Decay Scheme of 137Cs [31]

was placed on the face of the detector above the center crystal (Crystal 1) and

two outer ring crystals (Crystal 2 and Crystal 4), then raised by 1”, then 10”

above the detector face and the outer ring crystals (refer to Figure 4.3 for a

vizualisation of the numbered crystals in the bottom array). These nine runs

FIGURE 4.3. Numbered crystals in bottom array of Cascades
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lasted 300 seconds for the on-face and 1” positions, and 600 seconds for the

10” positions with an average ∼83.4% live time. Using live times, the number

of γ-rays emitted based on the source activity, and peak areas and background

subtractions extracted from Melusine, the software developed for Cascades (re-

fer to Chapter 3), experimental peak efficiencies for the 661.66 keV energy peak

were calculated.

At the time of this experiment, only the lower array of the Cascades detector

was functional, hence one array was turned off while running simulations in

order to replicate the measurements with accuracy. To obtain high-enough sta-

tistics, millions of decays were simulated for each position. These decays were

emitted isotropically from a 137Cs disk measuring 0.5 cm in diameter and 0.318

cm in thickness. These data files were then converted from ASCII to ROOT

files with a ROOT macro, in which events forming the 661.66 keV peak were

summed for each individual crystal. Peak efficiencies were calculated based on

the detected number of events while subtracting a linear background estimate

for the 661.66 keV region. Figure 4.4 shows an example of simulating a 137Cs

source placed 10” above Crystal 4 and generating a spectrum from summing

the events recorded in Crystal 1. The 661.66 keV peak can be observed, as well

as the continuum spectrum to the left. A linear background estimate is sub-

tracted and calculated from averaging counts that border the left of the peak

area (the continuum).

To calculate peak efficiencies for the total array, two summing methods were

implemented. In the first method, referred to as “Total1”, the histogram is filled

with energies deposited in each crystal; hence for one 7-crystal array, the his-

togram could be filled up with a maximum of seven values for one event. In the

second method, referred to as “Total2”, energies deposited in each of the seven

crystals are added before filling the histogram. With Total2, the true energy

of an incident γ-ray that undergoes Compton scattering can be reconstructed
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FIGURE 4.4. Events summed in Crystal 1 from simulating the
decay of a 137Cs source placed 10” above Crystal 4

by adding the energies of different crystals together. The disadvantage of this

method arises when multiple γ-rays are incident on multiple crystals in the

array for a given event. This might occur in the case of a γ-γ coincident de-

cay, such as in 60Co. In this example, adding the 1173 keV event to the 1332

keV event would reduce the detection efficiency of the individual gammas since

they are summed-out of their respective peaks. Keeping this in mind, analysis

and summing methods should be carefully considered and picked appropri-

ately depending on the efficiencies they yield. Figure 4.5 shows an example of

an experimental energy peak resulting from placing a 137Cs source on the face

of Crystal 1, then adding the events with the Melusine software from all seven

crystals using the Total2 summing method. Abbreviated results comparing

experimental and simulated efficiencies of individual Crystals 1 and 2 (Xtal1

and Xtal2) are shown in Table 4.1, as well as the total array efficiencies (Total1

and Total2) for two of the three positions. The percentage deviation between

experimental and simulated efficiencies is calculated for validation purposes.
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FIGURE 4.5. Experimental 661.66 keV peak in 7 crystals fitted
with Melusine

4.2. SIMULATIONS OF PRIMORDIAL BACKGROUND

Chapter 2 explained in depth how primordial radiation can contaminate

ROIs with the decay products of 232Th and 238U chains. This section focuses on

simulating isotopes from these chains assuming an even distribution of 232Th

and 238U in the copper cryostat of Cascades in order to determine if there are

other main sources of primordial radiation present in the detector.

An engineering drawing of the lower cryostat can be observed in Figure 4.6.

Based on these dimensions and the density of copper, each cryostat was deter-

mined to have a total mass of approximately M = 15238.85 grams and was

constructed with GEANT4 in four distinct parts: the sidewalls (with m1 =

4316.67 g), the thick entrance window (m2 = 3406.01 g), the thin entrance

window (m3 = 106.510 g) and the coldplate (m4 = 7409.66 g), with M = m1 +

m2 + m3 + m4. These four parts were then coded as containing uniformly dis-

tributed primordial radioactive sources, i.e.- radiation from the 232Th and 238U

chains was emitted from the copper cryostat itself in the simulations rather

than from a source positioned above the HPGe crystals. Background events
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TABLE 4.1. Experimental vs. simulated efficiencies (ε) in Cas-
cades for the decay of 137Cs. Xtal1 and Xtal2 refer to efficiencies
of the individual crystals.

Position Analysis Exp.ε Sim. ε % dev.
of sample method

Face Xtal1 Total1 0.04311 ± 0.00024 0.04204 ± 0.00006 2.5467
Total2 0.04138 ± 0.00023 0.04107 ± 0.00005 0.74787
Xtal1 0.01491 ± 0.00009 0.01481 ± 0.00003 0.61980
Xtal2 0.00441 ± 0.00003 0.00440 ± 0.00002 0.26583

1” off Xtal1 Total1 0.03587 ± 0.00021 0.03585 ± 0.00006 0.06642
Total2 0.03858 ± 0.00022 0.03850 ± 0.00006 0.21688
Xtal1 0.00914 ± 0.00006 0.00913 ± 0.00003 0.13435
Xtal2 0.00414 ± 0.00003 0.00412 ± 0.00002 0.38797

Face Xtal 2 Total1 0.02403 ± 0.00014 0.02336 ± 0.00004 2.8665
Total2 0.02585 ± 0.00015 0.02493 ± 0.00004 3.6891
Xtal1 0.00411 ± 0.00003 0.00401 ± 0.00002 2.4659
Xtal2 0.01049 ± 0.00007 0.01015 ± 0.00003 3.3028

1” off Xtal 2 Total1 0.01999 ± 0.00012 0.01958 ± 0.00004 2.1050
Total2 0.02184 ± 0.00013 0.02122 ± 0.00004 2.9330
Xtal1 0.00395 ± 0.00003 0.00389 ± 0.00002 1.5860
Xtal2 0.00551 ± 0.00004 0.00537 ± 0.00002 2.6289

were simulated using input files coded with information from the Coincidence

Lookup Library [73] and the Table of Isotopes [31]. The γ-rays with the high-

est intensities and probabilities of being observed in primordial background

spectra are presented in Table 4.2.

In order to normalize the events to the total mass M of the cryostat, a spe-

cific number of events was generated for each cryostat part based on its fraction

of the total mass. The four cryostat parts were summed together for each in-

dividual chain, resulting in two separate 232Th and 238U background spectra

(see Figures 4.7 and 4.8). To sum the events of the background, an additional

summing method was implemented, which will be referred to as “Total3”. The
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FIGURE 4.6. Cross-sectional view of lower cryostat with dimensions

TABLE 4.2. Prominent energy lines from primordial radiation chains

Parent Daughter Energy Relative
Isotope Isotope (keV) Intensity (%)

232Th 228Ac 911.2 26.6
232Th 228Ac 969.0 16.2
232Th 208Tl 583.2 84.5
232Th 208Tl 2615.5 99.0
238U 214Bi 609.31 44.8
238U 214Bi 1120.29 14.8
238U 214Bi 1764.49 15.4

Total3 summing method treats the two arrays as a single detector by summing

the events in all 14 crystals before filling energy histograms in ROOT. A fi-

nal simulated background spectrum was generated by adding the two 232Th

and 238U background chains together, as seen in Figure 4.9. Analysis of these
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FIGURE 4.7. Simulated background from 232Th decay chain

FIGURE 4.8. Simulated background from 238U decay chain

simulations and comparison to experimental background spectra with calcu-

lated 232Th and 238U activities present in the Cascades detector will be shown

in Chapter 5.
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FIGURE 4.9. Simulated background from primordial radiation
(232Th and 238U chains)

4.3. SIMULATIONS OF TELLURIUM-130

In this section, the possibility of detecting rare events such as ββ-decay

with the Cascades detector is discussed, using the 0νββ-decay of 130Te to the

first excited 0+
1 state of 130Xe as an example.

4.3.1. Tellurium-130. As seen in Chapter 1, the goal of searching for 0νββ-

decay is to probe an absolute neutrino mass scale suggested by the mass-

splitting parameters observed by neutrino oscillation experiments. Further-

more, observation of 0νββ-decay is an explicit instance of Lepton-number non-

conservation. The half-life T0ν
1/2 of the decay is expressed as follows: [52]:

[T 0ν
1/2]

−1 = G0ν(Qββ, Z)|M0ν |2〈mββ〉2 , (16)

where G0ν(Qββ, Z) is the phase space factor for the emission of the two elec-

trons, M0ν is the 0ν nuclear matrix element, and 〈mββ〉 is the effective Majorana

mass of the electron neutrino. Studies of 0νββ-decay have recently been ex-

tended to include transitions to excited final states. A transition to the 2+
1 state

78



is unlikely to be detected due to angular momentum suppression [12], so efforts

have shifted to studying the 0νββ-decay to the first 0+
1 excited state of a daugh-

ter nuclide. Since decays to the excited state imply smaller transition energies,

the probability of occurrence is suppressed in comparison to a transition to

the ground state [13]. However, a transition to the excited state provides ex-

perimentalists exact signatures to exploit, since the excited daughter nucleus

decays to the ground state via γ-ray emission. Provided isotopes with high Q

values and detectors with low backgrounds are used, a 0νββ-decay experiment

to first 0+
1 excited state can thus be conducted.

An excellent 0νββ-decay candidate isotope is 130Te with a 34.08% natural

abundance, which makes the cost of enrichment viable, and a high Q-value of

2527.52 keV [63]. The latest value of the 0νββ-decay of 130Te to the first 0+
1

excited state of 130Xe was measured in 2012 with the CUORICINO detector as

τ1/2 > 9.4 x 1023 years [4]. Both 0νββ-decay and 2νββ-decay are of second order

weak interaction and are inherently slow. However, the phase space factor

G0ν(Qββ, Z) scales as ∼Qββ
5 for 0νββ-decay versus ∼Qββ

11 for 2νββ-decay [7].

Furthermore, the ratio of Q0νββ[130Tegs] → Q0νββ[130Te0+1
] is ∼ 34, (where “gs”

stands for ground state), while Q2νββ[130Tegs] → Q2νββ[130Te0+1
] is > 2000 [72].

Searching for the ββ-decay of 130Te to the first 0+
1 excited state of 130Xe in the 0ν

mode would therefore have a much larger detection efficiency and observation

probability.

As 130Te 0νββ-decays to the first 0+
1 excited state of 130Xe (refer to Equa-

tion 17), the two emitted electrons peak at 735.3 keV:

130Te→ 130Xe + 2e−, (17)

which leaves the remaining 1793.50 keV to be emitted in one of three dis-

tinct γ-ray cascades as 130Xe decays to the ground state (refer to Figure 4.10).

Detecting the signature of interest therefore entails searching for the 1257 keV
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FIGURE 4.10. Decay scheme of 130Te and relative γ-ray intensities

and 536 keV γ-rays either individually or as a coincidence signature, since their

emission occurs with the highest probability (86.5%). In the 0+ → 2+ → 0+

γ-ray cascade, angular momentum conservation dictates a strong angular cor-

relation between the two gammas which can be derived in terms of Legendre

polynomials as seen in Figure 4.11.

4.3.2. Designing a Sensitive 0νββ-decay Tellurium-130 Experiment.

In an ideal experiment designed to detect the 0νββ-decay of 130Te to the first

0+
1 excited state of 130Xe, a large sample mass should be used in order to ac-

count for the rarity of the decay and its associated long half-life. In the case of

this particular experiment, it is important to understand the measurement effi-

ciencies for having either a small diameter sample disk (matching the thin cop-

per entrance window diameter) or a large diameter sample disk (matching the

maximum diameter of the cryostats). In the latter case, adding large amounts

of additional sample at large radii may only give a small increase in the mea-

surement sensitivity due to the thicker copper cryostat walls and reduced solid
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FIGURE 4.11. Angular correlation W(θ) = 1 + 0.356p2(cosθ) +
1.14p4(θ) between 1257 keV and 536 keV γ-rays [8]

angle for absorption of the gamma-rays emitted after decays at large sample-

disk radii. To optimize the experiment, the geometrical configurations and

their associated efficiencies yielding the highest sensitivity for the experiment

(the longest half-life that could potentially be measured) need to be determined.

In order to determine the detector efficiency for a corresponding sample

mass, simulations of the 536 keV and 1257 keV γ-ray cascade were performed.

Two sets of simulations were run with a sample of 130Te positioned in between

the Cascades arrays of the GEANT4 model. The first set of simulations (Run 1)

was performed for a 130Te disk of diameter d = 14.5 cm, matching the diameter

of the detectors thin copper entrance window. The thickness σ of the sample

was varied from 1 cm to 5 cm (maximum vertical distance between the two

arrays) to investigate self-attenuation effects. Figure 4.12 shows a 130Te disk

sample with d = 14.5 cm and σ = 5 cm positioned in between the two HPGe

arrays. The second set of simulations (Run 2) was performed for a 130Te disk of

d = 29.5 cm, matching the outer diameter of the cryostat, while again varying
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FIGURE 4.12. Three-dimensional view of a 130Te sample placed
between the 2 HPGe arrays

σ from 1 cm to 5 cm. The purpose of the second run was to investigate the pos-

sibility that sensitivity could be improved with a larger sample in spite of the

thick copper of the cryostat attenuating the γ-rays. The strong angular correla-

tion between the two emitted gammas (0+ → 2+ → 0+) was taken into account

in the simulations. Figure 4.13 shows the energy spectrum resulting from the

simulation of a 130Te disk with d = 14.5 cm and σ = 5 cm and the associated 536

keV and 1257 keV peaks with their 1793 keV sum peak. Simulated peak and

coincidence efficiencies (ε) for Runs 1 and 2 for the signature of interest are cal-

culated as seen in Tables 4.3 and 4.4 using the Total1 summing method. This

summing method was selected as it yielded higher efficiencies, thus improving

the sensitivity of the experiment.

The efficiency values of Tables 4.3 and 4.4 suggest the thick copper of the

cryostat attenuates a significant portion of the γ-ray cascade. Tellurium-130

self-attenuation effects are also observed to play an important role in detector

efficiency, since an inversely proportional relationship clearly exists between
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FIGURE 4.13. Simulated energy spectrum of the 0νββ-decay of
130Te to the first 0+

1 excited state of 130Xe with the 536 keV peak,
1257 keV peak and 1793 keV sum peak. The 586 keV, 672 keV
and 1122 keV γ-rays from other much less probable cascades can
also be seen.

the efficiencies and the sample’s thickness. Error bars for the coincidence case

are neglected due to their small values.

4.4. SUMMARY

Percent deviations between the experimental and simulated 137Cs peak effi-

ciencies range from 0.066% to 3.69% in Table 4.1. With these small deviations

and errors, it can be stated that the GEANT4 model accurately portrays the

performance of the Cascades detector. The simulations presented in this chap-

ter are thus taken at face value. Further analysis, such as the calculation of the
238U and 232Th levels present in Cascades, along with predicting the sensitivity

of an experiment measuring the 0νββ-decay of 130Te to the first 0+
1 excited state

of 130Xe, will be presented in Chapter 5.
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TABLE 4.3. Run 1 (d = 14.5 cm): simulated peak and coincidence
efficiencies (ε) in Cascades for the 0νββ-decay of 130Te

σ Peak Energy Peak ε Coincidence ε
(cm) (keV)

1 536 0.0775±0.0002 0.0027
1257 0.0345±0.0001

2 536 0.0608±0.0002 0.0018
1257 0.0289±0.0001

3 536 0.0501±0.0002 0.0013
1257 0.0258±0.0001

4 536 0.0422±0.0002 0.0010
1257 0.0231±0.0002

5 536 0.0367±0.0002 0.0008
1257 0.0211±0.0002

TABLE 4.4. Run 2 (d = 29.5 cm): simulated peak and coincidence
efficiencies (ε) in Cascades for the 0νββ-decay of 130Te

σ Peak Energy Peak ε Coincidence ε
(cm) (keV)

1 536 0.0422±0.0001 0.0009
1257 0.0216±0.0001

2 536 0.0329±0.0001 0.0006
1257 0.0183±0.0001

3 536 0.0263±0.0001 0.0004
1257 0.0157±0.0001

4 536 0.0219±0.0002 0.0003
1257 0.0136±0.0001

5 536 0.0186±0.0002 0.0002
1257 0.0121±0.0001
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CHAPTER 5

ANALYSIS

5.1. PRIMORDIAL RADIATION ACTIVITY IN CASCADES

As seen in Chapters 1 and 2, investigating the efficiency of the copper

electroforming technique to reduce natural levels of 238U and 232Th is one of

the motivations behind this dissertation. Simulations of these chains were dis-

cussed in Chapter 4 to predict levels of primordial radioactivity in the copper

cryostat of an experiment named Cascades: an ultra-low background HPGe

array constructed at PNNL, consisting of 14 HPGe crystals housed in two

cryostats made of copper electroformed with the same process that will be used

in MAJORANA [48]. In this section, simulations of primordial radiation are

compared to actual background data from Cascades. These comparisons, along

with ICPMS assays of PNNL-electroformed copper, will help determine what

the primary sources of primordial radiation are in the Cascades detector. Since

the radon enclosure of Cascades was incomplete at the time of background col-

lection, focus was shifted on placing upper limits as opposed to precise values

on the levels of 238U and 232Th present.

5.1.1. Calibration and Background spectra. A background run lasting

16.59 days (with 98.28% live time) was measured with both arrays of Cas-

cades. In order to calibrate the background, a calibration spectrum was pro-

duced using a filter paper sample containing a variety of radioactive sources,

as seen in Figure 5.1. Highlighted features include a 241Am x-ray peak at 59.3

keV, a 109Cd peak at 88.14 keV, a 57Co peak at 122.06 keV, standard 661.66
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keV, 1173.23 keV and 1332.51 keV peaks from 137Cs and 60Co, and a number

of backscatter, single-escape and double-escape peaks. Keeping in mind that

FIGURE 5.1. Features of calibration spectrum with prominent
137Cs and 60Co peaks

Crystal 10 was not functional at the time of background collection, the remain-

ing 13 crystals in the two HPGe arrays were calibrated. Energy calibration

curves were fitted with the standard polynomial equation (ax2 + bx + c) in order

to extract calibration coefficients (a, b, c) for each crystal (refer to Figure 5.2).

The same coefficients were then used to calibrate the crystals individually in

the background spectrum. Finally, the spectra of these calibrated crystals were

summed together. Since the gammas of interest listed in Table 4.2 of Chap-

ter 4 (emitted γ-rays from 228Ac, 208Tl and 214Bi) are all emitted in coincidence

for each isotope, the Total1 summing method was used as it allows for a better
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FIGURE 5.2. Calibration coefficients for Crystals 1 - 14, with the
exclusion of Crystal 10

reconstruction of coincidence events as discussed in Chapter 4. The final back-

ground spectrum can be observed in Figure 5.3 with annotated features of both

cosmic and primordial origin.

The goals of the MAJORANA experiment are to reach a contaminant level

in copper of 0.4 µBq/kg in 214Bi and 0.1 µBq/kg in 208Tl (the source of a problem-

atic 2615 keV γ-ray line), which would correspond to an activity of 0.3 µBq/kg

in 232Th [69]. This said, the best ICPMS assay of copper electroformed at PNNL

is at 0.6 µBq/kg in 232Th and 1.3 µBq/kg in 238U at this writing, as mentioned

in Chapter 2. At first glance, however, the numerous background peaks of

Figure 5.3 are of high concern and suggest the Cascades detector is not ope-

rating at an ultra-low background level. Due to the high intensity of the 228Ac,
208Tl and 214Bi peaks, this direct counting method might not allow for a proper

screening of the primordial activity in copper, since the levels of impurity ap-

pear to be coming from other small parts.

5.1.2. Activity Analysis. The background spectrum for each cryostat was

first analyzed separately. It was noted the two cryostats had very different

energy resolutions; this can be observed in Figure 5.4, where a 1171 keV peak
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FIGURE 5.3. Background features observed in a 16.59-day back-
ground run measured with the two arrays of Cascades

is recorded separately with the upper array (blue spectrum) and the lower ar-

ray (red spectrum). Since both cryostats were constructed and electroformed

separately, summing the spectra of both arrays together would only result in

averaging out levels of primordial radioactivity in the two cryostats. Attention

was hence shifted to analyzing spectra separately from the upper and lower

cryostats.

Using the parameters of Figure 5.5, peak searches were conducted with

the Melusine software. Additionally, since the radon enclosure of Cascades

remains incomplete at this writing, it was deemed important to calculate levels

of 232Th and 238U choosing isotopes in the decay chains falling both before and
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FIGURE 5.4. Difference in resolution of the two HPGE arrays of
Cascades, with blue and red respectively representing the upper
and lower cryostats

after the production of radon daughters 220,222Rn, if statistics allowed for such

analysis.

5.1.2.1. Upper Array. As mentioned earlier, Crystal 10 in the upper cryo-

stat was not operational. A crystal-by-crystal examination revealed Crystal 14

had particularly poor energy resolution compared to the rest of the array. This

crystal was therefore ignored in the analysis of the upper cryostat. To fit 232Th

peaks to the background spectrum, the following daughters were picked for

the analysis: the isotope 228Ac, with peaks of 911.21 keV (26.6% relative pro-

bability) and 968.97 keV (16.2%), which falls before the production of 220Rn in

the 232Th decay chain, and the isotope 208Tl, with peaks of 583.19 keV (44.8%)

and 2614.5 keV (99%), which are produced post-radon from 212Bi. These peaks

are fitted with the Melusine software in Figures 5.6 - 5.9 using an optimal ROI

window of 1.2 FWHM [24]. The optimum window ensures the background is
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FIGURE 5.5. Parameters for peak searches in background spectra

still recognized with a wide-enough energy range, while making sure the sig-

nificance of the background is not reduced by selecting an energy window that

is too large. As Figure 5.7 reveals, the 969 keV energy peak has too much in-

FIGURE 5.6. 911 keV peak from 228Ac in the upper cryostat

terference from its neighboring 965 keV peak (also a γ-ray emitted from 228Ac)
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FIGURE 5.7. 969 keV peak from 228Ac with the interference of a
965 keV peak in the upper cryostat

FIGURE 5.8. 583 keV peak from 208Tl in the upper cryostat

and is fitted as a doublet with the Melusine software. Although the peaks both

have good statistics, their interference with one another would not allow for an

accurate background estimate to be made. Therefore, neither peaks are sui-

table candidates for the calculation of 228Ac levels in the electroformed copper.

To fit 238U peaks to the background spectrum of the upper array, many

lower energy peaks were examined to find a suitable pre-radon isotope for the

analysis of 238U levels in the copper. The 63.29 keV peak from 234Th (4.8%)

and 186.10 keV peak from 226Ra (3.50%) were selected and are fitted with the
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FIGURE 5.9. 2615 keV peak from 208Tl in the upper cryostat

Melusine software in Figures 5.10 and 5.11. The 63 keV peak of Figure 5.10 is

FIGURE 5.10. 63 keV peak from 234Th with the interference of
the production of 73mGe in the upper cryostat

not deemed suitable for analysis, since it is completely dominated by the pro-

duction of 73mGe at 66.7 keV [72Ge(n, γ)73mGe], which results from thermalized

neutrons (of cosmic origin) interacting with the germanium of the detector. As

for the 186.10 keV peak, it has a rather low S/N ratio but an attempt to extract

a level of 238U in the copper from this fit will still be made in the upcoming

analysis.
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FIGURE 5.11. 186 keV peak from 226Ra in the upper cryostat

The production of 222Rn feeds into 214Bi, from which the 609.3 keV (with

44.8% relative probability), 1120.3 keV (14.80%), and 1764.5 keV (15.36%) γ-

rays were selected for the analysis (see Figures 5.12, 5.13, and 5.14). Due

FIGURE 5.12. 609 keV peak from 214Bi in the upper cryostat

to the interference of 65Cu production seen with γ-rays of energies 1115.5 keV

and 1124.51 keV in Figure 5.13, a background estimate for the 1120 keV energy

peak would not be reliable as for the other peaks, so it is disregarded from the

analysis of the 214Bi levels in the copper.
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FIGURE 5.13. 1120 keV peak from 214Bi with the interference of
65Cu production in the upper cryostat

FIGURE 5.14. 1765 keV energy peak from 214Bi in the upper cryostat

For each accepted peak discussed above, signal counts were extracted with

algorithm-based background subtractions generated by the Melusine software.

Efficiencies based on simulations presented in Chapter 4 were calculated, ta-

king into account which crystals were being used for the analysis. Using the

simulated efficiency and the intensity of the γ-ray, a number of decays was

calculated as follows:

Decays =
Signal counts

ε× I
, (18)
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where ε is the simulated efficiency of the peak and I is its intensity (relative

probability of being emitted). Knowing the total time t of the background run

in seconds, the total mass M of the cryostat in kilograms, the activity A of an

isotope can then be obtained in mBq/kg:

A =
Decays

t
× 103

M
. (19)

Final activity results in the upper cryostat are presented in Table 5.1. An in-

TABLE 5.1. Activity (Act.) and upper limits (Act.+) levels of 232Th
and 238U present in the electroformed copper of the upper cryostat

Daughter Energy S/N Simulated Act. Act.+
nucleus (keV) ratio efficiency (mBq/kg) (mBq/kg)

228Ac 911 3.55 0.00801 ± 0.00010 4.26 4.60
208Tl 583 2.02 0.00968 ± 0.00008 1.40 1.50
208Tl 2615 16.0 0.00322 ± 0.00009 2.37 2.58
226Ra 186 0.120 0.02870 ± 0.00016 5.64 6.19
214Bi 609 4.90 0.01093 ± 0.00010 5.72 5.98
214Bi 1765 5.53 0.00550 ± 0.00009 6.48 7.14

depth discussion of these results will follow the analysis of the lower array of

Cascades.

5.1.2.2. Lower Array. All seven crystals in the lower array were functional,

however, as mentioned earlier, the lower cryostat had much poorer resolution

than the detector’s upper array. The same energy peaks were examined and

fitted, with the exclusion of the 234Th 63 keV γ-ray and 214Bi 969 keV and 1120

keV γ-rays, which presented the same problems as discussed previously. The

same optimum window of 1.2 FWHM was used. Tweaking the peak search

parameters of Figure 5.5 did not amount to any significant change, as many of

these peaks had to be fitted manually due to the poor energy resolution. The

other peaks can be observed in Figures 5.15 - 5.20. Both the 583 keV and

186 keV peaks of Figures 5.16 and 5.18 are buried in background and result
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FIGURE 5.15. 911 keV peak from 228Ac in the lower cryostat

FIGURE 5.16. 583 keV peak from 208Tl in the lower cryostat
buried in background

in a null signal count. Signal counts were extracted from the remaining peaks

using the Melusine software, and activities were calculated using Equations 18

and 19, again with simulated efficiencies corresponding to the array. Final

activity results in the lower cryostat are presented in Table 5.1.

5.1.3. Discussion of Activity Results. The results of Tables 5.1 and 5.2

are about three orders of magnitude higher than the expected µBq/kg levels
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FIGURE 5.17. 2615 keV peak from 208Tl in the lower cryostat

FIGURE 5.18. 186 keV peak from 226Ra in the lower cryostat
buried in background

TABLE 5.2. Activity (Act.) and upper limits (Act.+) levels of 232Th
and 238U present in the electroformed copper of the lower cryostat

Daughter Energy S/N Simulated efficiency Act. Act. +
nucleus (keV) ratio (mBq/kg) (mBq/kg)

228Ac 911 0.90 0.00769 ± 0.00008 1.63 1.84
208Tl 2615 2.90 0.00320 ± 0.00007 0.85 0.97
214Bi 609 1.09 0.01051 ± 0.00008 3.20 3.39
214Bi 1765 1.79 0.00533 ± 0.00008 5.37 5.97
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FIGURE 5.19. 609 keV peak from 214Bi in the lower cryostat

FIGURE 5.20. 1765 keV energy peak from 214Bi in the lower cryostat

of 232Th and 238U in the electroformed copper. The analysis shows the back-

grounds in Cascades are unlikely coming from the electroformed copper compo-

nents. This assumption is based upon the knowledge that commercially availa-

ble Oxygen-Free High Conductivity (OFHC) copper has 232Th and 238U content

much lower than the concentrations resulting from the analysis. Additionally,

as stated previously, assay of PNNL copper shows values of <0.6 µBq/kg for
232Th and <1.3 µBq/kg for 238U. The origin of the backgrounds is likely to be

in the plastics and other small parts of the cryostat, such as LFEPs, LFEP
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sockets, wiring, wiring feedthroughs in the coldplate, copper rods of the crystal

mounts, etc. A definitive statement about the origin of the background can-

not be made because the majority of these small parts were not screened to

the necessary level of radiopurity, since the screenings were performed above

ground on commercial non-low background counters.

Although the copper for the Cascades detector was not electroformed in a

MAJORANA-like clean-room environment, this is very unlikely the primary

cause of such large activity levels of primordial contamination in the cryostat

of Cascades. Rather, as suggested above, these high levels indicate that parts

other than the copper of the cryostat are contaminated by 232Th and 238U. Fur-

thermore, these small parts are not identical for each cryostat. For instance,

different plastic was used for the crystal mounts of the upper and lower arrays

(UHMW HPDE versus PCTFE respectively). Additionally, six of the seven crys-

tals of the upper array were supplied by a different manufacturer and could

have different levels of primordial radiation. This would perhaps explain the

difference in activities of the two cryostats. Although they were electroformed

separately, the electroforming procedure remained the same and the activity

numbers would not be expected to differ by so much. Even more importantly,

these small parts are positioned very close to the crystals. It is possible acti-

vity levels to the order of µBq/kg were reached, but that these close positions

are resulting in very high efficiencies for the emitted gammas of isotopes 228Ac,
208Tl and 214Bi, which would result in high activity numbers. These small parts

are different for the lower and upper cryostats and also help explain the in-

consistencies in the activities of the copper. There were also some last-minute

additions to the detector, such as lining the inner lead shield with OFHC copper

to absorb bremsstrahlung x-rays, that could be contributing to the background.
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It is important to note the upper activity limits in Tables 5.1 and 5.2 were

obtained taking into account statistical uncertainties only; this also helps ex-

plain the larger-than-error-bars discrepancies between some of the upper ac-

tivity limits determined by analyzing γ-rays of the same isotope, which should

have approximately the same activity value. If systematic errors were in-

cluded, upper activity limits would be much larger. Sources of systematic er-

rors in the Cascades detector could include, amongst others, uncertainty on

the signal efficiency, the energy scale, the data acquisition system, the cosmic

muon veto system and the simulations. Simulations were performed as a close

approximation only and with an idealized geometry. Crystals were constructed

identically to one another in the GEANT4 model, when in fact their dimensions

varied slightly (probably by ∼1 - 2 mm). Other details, such as the inner cop-

per shield and the copper mounts of the crystal, were not coded in the model.

Another source of systematic error lies in the Melusine software, especially

when analyzing peaks of very small intensity. Tweaking the parameters some-

times resulted in large differences in peak counts and background estimates,

and it became arbitrary as to which results were more accurate.

Table 5.1 shows numbers that are more or less consistent with one another.

An initial level of 232Th of 4.26±0.33 mBq/kg is calculated with the 911 keV

energy peak of 228Ac. As expected, this activity is reduced with the production

of 212Bi, 36% of which feeds into 208Tl. With this branching ratio, we get a pro-

jected 208Tl activity level of <1.53±0.12 mBq/kg (the lower limit is present be-

cause some nitrogen purging is taking place), assuming the activity of 228Ac is

correct. However, the analysis reveals two levels of 208Tl that differ moderately

from one another. The 585 keV peak carries a value of 1.40±0.10 mBq/kg with

a S/N ratio of 2.02, while the 2615 keV peak measures at 2.37±0.21 mBq/kg

with a 16.0 S/N ratio. These differences could be attributed to a number of
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uncertainties, such as the exclusion of systematic error analysis or poor fit-

ting estimates from the Melusine software due to the high number of cosmic-

generated peaks in the background. On the other hand, the levels of 238U are

more consistent with one another as expected, since they are calculated from

isotopes that do not branch out; the upper activity limits vary from 5.98 mBq/kg

to 7.14 mBq/kg.

Since the copper was electroformed separately, and the high activity num-

bers suggest there is a lot of primordial activity coming from small parts, we

do not expect the activities of both cryostats to be the same. As expected there

is a drop from the activity level of 228Ac (1.63±0.21 mBq/kg) to 208Tl (0.85

±0.12 mBq/kg). Taking into account the 36% branching ratio, we expect a
208Tl level of <0.59±0.072 mBq/kg with the purging of radon gas by nitrogen,

which is a little higher than the calculated 208Tl level. The 238U upper limits

also offer some discrepancy with 3.39 mBq/kg for the 609 keV energy peak and

5.97 mBq/kg for the 1765 keV energy peak. It is hard to gauge with such low

S/N ratios which isotopes (228Ac, 208Tl or 214Bi) offer more accurate results due

to the poor energy resolution of the cryostat.

5.2. SENSITIVITY OF A 0νββ-DECAY 130TE EXPERIMENT

As seen in Chapter 1, an equation measuring the discovery potential or sen-

sitivity of a next-generation 0νββ-decay experiment can be derived by requiring

that:

Cββ = nσ
√
B , (20)

where Cββ is the number of 0νββ-decay events, nσ is the desired standard de-

viation of the measurement, and B is the number of background counts in the

region of interest. In the case of a 130Te experiment, the source does not play

the part of the detector, so Equation 20 is derived to measure the sensitivity of
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this experiment such that [24]:

T 0ν
1/2(nσ) =

4.16× 1026y

nσ

(
Mεa

W

)√
t

b∆E
, (21)

where ε is the event-detection efficiency, a is the isotopic abundance in the

source material, W is the molecular weight of the source material (g/mol), M is

the total mass of the source (kg), b is the background rate in counts (keV-y)−1

of the detector, and ∆E is the spectral resolution of the experiment in keV. The

factor 1026 results from Avogrado’s number and from expressing the relation as

a half-life (years).

In Equation 21, a confidence level of three sigma (nσ = 3), a run time of 10

years, and a sample of 130Te powder with density ρ= 5900 kg/m3 and 90% en-

richment were selected as parameters for the sensitivity calculation. Since the

energy resolution of the lower array was so poor, the energy resolution curve

from the upper cryostat was used to optimize the experiment (see Figure 5.21).

Calculations revealed the detectors energy resolutions were 1.62 keV and 2.10

FIGURE 5.21. Resolution curve of upper cryostat

keV for the 536 keV and 1257 keV ROIs respectively. In order to calculate
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the optimum energy windows, an optimum ROI of 1.2 FWHM was once again

assumed [24], which resulted in calculated optimum energy windows of 2.16

keV for the 536 keV ROI and 2.94 keV for the 1257 keV region of interest. To

account for the fact the full peaks were not included in the ROIs, the detector

efficiencies for 130Te were reduced accordingly by a factor of 0.838 [24].

Background rates for the ROIs were determined by examining the peaks

of interest in the 16.59-day background spectrum, as seen in Figures 5.22

and 5.23. This revealed background rates of approximately 5453 counts (keV-

FIGURE 5.22. Background rate of a 16.59-day run in the 536 keV ROI

y)−1 and 1467 counts (keV-y)−1 for the 536 keV and 1257 keV ROIs respectively.

Predicting the sensitivity of the experiment in coincidence mode is more

challenging since the current measurement of the background had a null re-

sult. It is possible that a longer background measurement would yield different

results, but in this case, a 16.59-day background measurement resulted in no

counts in the coincidence plane region of interest. If the number of observed

events nobs is zero, the standard confidence belt approach for upper confidence
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FIGURE 5.23. Background rate of a 16.59-day run in the 1257
keV ROI

limits suggests fixing an upper 90% C.L. of 2.3 events for µ + b, where µ and

b are the number of signal and background events [36]. Assuming that a total

background of 2.3 counts would be detected in a 16.59-day experimental mea-

surement, this results in a worse case for the coincidence background rate of

50.6 counts/yr. To obtain the best case scenario, a total background spectrum of

2.3 counts is presumed for the entire run of the experiment (t = 10 years), yiel-

ding a background rate of 0.23 counts/yr. The omission of the energy resolution

term in Equation 21 and (keV)−1 units in the background rates is justified by

the rarity of these particular coincidence events. The worst-case and best-case

sensitivity limits for an experiment designed to detect the 536 keV and 1257

gammas in coincidence can then be calculated.

With these numerous values, a range of half-life bounds (τ1/2) for the dif-

ferent parameters of the experiment searching for the 536 keV and 1257 keV

gammas separately as well as in coincidence are obtained using Equation 21.
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The parameters (diameter d and thickness σ of a 130Te disk of associated mass

M and detection efficiency ε) yielding the largest sensitivities are shown in

Table 5.3.
TABLE 5.3. 130Te disk parameters yielding the highest discovery
potential searching for the 536 keV, 1257 keV and coincident γ-
rays for a 10 yr-experiment

Experiment σ(cm) d(cm) Mass (kg) ε % τ1/2 (yr)

536 keV peak 5 29.5 20.2 1.86 9.34×1021

1257 keV peak 5 29.5 20.2 1.21 1.03×1022

Coinc. (worse case) 3 29.5 12.1 0.041 1.80×1021

Coinc. (best case) 3 29.5 12.1 0.041 2.68×1022

In Table 5.3, the highest half-life value of the 0νββ-decay of 130Te to the first

0+
1 excited state of 130Xe is 2.68×1022 years. Hence the experiment that would

reach the highest discovery potential should be designed by placing a 12.1-kg
130Te powder sample of diameter d = 29.5 cm and thickness σ = 3 cm in between

the HPGe arrays of Cascades and searching for the 536 keV and 1257 γ-rays

in coincidence.

Tellurium-130 is ideal from the point of view that the 2νββ-decay to the

first 0+
1 excited state of 130Xe is very suppressed by the loss of phase space,

although 0νββ-decay is somewhat suppressed as well. A better isotope to use

would be 100Mo, since the 2νββ-decay of 100Mo is not suppressed and dominates

over 0ν-decay. Furthermore, using 100Mo in a bolometer coincidence experi-

ment in which the electron energies are also recorded would allow to distin-

guish between 0ν and 2νββ-decay processes.

5.3. SUMMARY

As seen in Tables 5.1 and 5.2, the measured activities in Cascades are

higher than what could be expected for by the copper cryostats by three or-

ders of magnitude. Although the copper was not electroformed in a clean room
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environment like MAJORANA, these high numbers indicate other small parts,

such as plastic, wiring, LFEPs, copper mounts, etc. are contaminated by pri-

mordial activity at a higher than desirable level and are a main source of pri-

mordial background. This contamination is more efficiently detected by parts

close to the crystal and appears to be skewing the activity results with a larger

margin. Evidently, reducing the radioactivity of these small parts should be

considered far more important than reducing the impurities present in the cop-

per.

Due to the generalization of the Melusine software fitting and background

subtraction estimates, larger than desired uncertainties are also most likely

present in the peak areas used to calculate the activities. Additionally, the

background spectrum of Figure 5.3 shows that despite the underground depth,

active shielding and passive shielding of Cascades, there is still a large number

of peaks resulting from the cosmic-ray activation of the copper and germanium

present in the spectrum. These secondaries can reduce the S/N ratios of the

energy peaks of interest and create more uncertainties in their fit. Building

the detector as an idealized geometry in GEANT4, or not coding last-minute

additions to the detector, such as copper lining in the lead shield, could also

partially lie at the source of these discrepancies.

A 10-year experiment designed to measure the 0νββ-decay of 130Te to the

first 0+
1 excited state of 130Xe with Cascades would allow half-lives to the or-

der of 1022 to be probed, specifically τ1/2 = 2.68×1022 years at best. Running

this experiment would therefore neither confirm nor improve the lower limit

of τ1/2 > 9.4×1023 years determined in 2012 [4]. It could, however, confirm the

experimental 2νββ-decay value of τ1/2 > 2.3×1021 years determined in 2001 by

low-background HPGe detectors [13]. In conclusion, the code developed in this

dissertation can be applied to many other isotopes that can ββ-decay to excited

states of the daughters in both 0ν and 2ν modes.
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CHAPTER 6

CONCLUSION

6.1. SUMMARY OF THESIS

One of the goals of this dissertation was investigating the efficiency of back-

ground mitigration techniques to reduce natural levels of 238U and 232Th in the

MAJORANA experiment: an array of HPGe detectors isotopically enriched to

86% in 76Ge with a total mass of hundreds of kilograms with goals of searching

for the 0νββ-decay of 76Ge to 76Se. This was attempted with Cascades, a HPGe

array constructed at PNNL, consisting of 14 HPGe crystals housed in two

cryostats made of copper electroformed with the same process that will be used

in MAJORANA. Additionally, experimental applications of the Cascades de-

tector were studied by predicting the sensitivity for a ββ-experiment using as

an example simulations of 130Te, an even-even nucleus that can undergo 0νββ-

decay to the first 0+
1 excited state of 130Xe producing three possible γ-cascades

as it transitions to the ground state. There are many other isotopes that could

be measured with the method developed in this thesis.

In Chapter 1, the general properties of neutrinos and the motivations be-

hind studying ββ-decay were presented. The observation of parity violation,

possible violation of lepton-number symmetry, the extreme mass differences

between neutrinos and their charged leptons, the existence of exotic particles

such as right-handed gauge bosons and of the Majoron, the absolute mass and

nature of the neutrino, and what role the neutrino would play as a Majorana
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particle in the baryon assymmetry of the universe via leptogenesis are all im-

portant aspects of neutrino physics that could be probed with ββ-decay experi-

ments.

The success of a next-generation 0νββ-decay experiment, such as MAJO-

RANA, heavily depends on its capability to mitigate background caused by cos-

mogenic activity and primordial radiation present in all materials. Sources of

background and techniques to increase the signal-to-noise ratios of events were

presented in Chapter 2. Using ultra-pure materials through effective zone re-

finement and crystal growth methods, and electroforming copper to build the

cryostat for Cascades, were discussed as necessary to reach low levels of 238U

and 232Th in the background, two long-lived primordials that contaminate re-

gions of interest by decaying into a series of products and emitting various α-

particles, β-particles, γ-rays, neutrons and other nuclei of a wide energy range.

In Chapter 3, the structure and construction of Cascades was discussed

in detail along with its ROOT-based analysis package, Melusine. Measures

to mitigate background sources for Cascades were discussed, such as passive

and active shielding, depth underground, copper electroforming and a radon

enclosure that remains at this writing incomplete.

In Chapter 4, the construction of a GEANT4 model of Cascades was pre-

sented and validated with a 137Cs calibration source. Simulations of the 238U

and 232Th decay chains were performed to predict levels of primordial radia-

tion in Cascades. Additionally, the properties of the 0νββ-candidate 130Te were

discussed. Simulations of its most probable coincident signature (two 536 keV

and 1257 keV γ-rays emitted with a strong angular correlation) were presented

with sample disks of varying diameter and thickness placed in between the two

HPGe arrays.

In the first part of Chapter 5, the simulations of primordial radiation were

compared to actual background data from Cascades to analyze the reduction
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in background due to the copper electroforming process and gauge whether

additional sources of primordial activity were present in the detector. Acti-

vity levels of 238U and 232Th were quantified by analyzing the following peaks:

911 keV from 228Ac, 583 keV and 2615 keV from 208Tl, 186 keV from 226Ra,

and 609 keV and 1764 keV from 214Bi. The analysis discovered levels of about

three orders of magnitude higher than the best ICPMS assay of copper elec-

troformed at PNNL of 0.6 µBq/kg in 232Th and 1.3 µBq/kg in 238U at this wri-

ting. Although the copper was not electroformed in a clean room environment

like MAJORANA, these high levels indicate other small parts, such as plastic,

wiring, LFEPs, copper mounts, etc. are contaminated by primordial radiation

at higher than desirable levels. These small parts are positioned very close

to the crystals, which renders the detection efficiency of the primordials much

higher than in reality and gives inaccurate large activities. Other sources of

uncertainty are systematic, such as the fact simulations are based on an idea-

lized geometry and the inaccuracy of the Melusine software when fitting peaks

of very low intensity. Additionally, the fitting could be skewed by additional

background resulting from the cosmic-ray activation of germanium and cop-

per.

In the second part of Chapter 5, sensitivity bounds were placed on measu-

ring the 0νββ-decay of 130Te to the first 0+
1 excited state of 130Xe using simu-

lated efficiencies and observed background rates in the 1257 keV and 536

keV regions of interest. Careful analysis revealed the current lower limit of

τ1/2 > 9.4×1023 years for the 0ν rate could not be probed, for a best-case sce-

nario experiment running for 10 years revealed a 0νββ-decay half-life of τ1/2 =

2.68×1022 years. The experiment could verify, however, the 2νββ-decay value

of τ1/2 > 2.3×1021 years determined in 2001 by low-background HPGe detec-

tors [13]. The present work developed the techniques that will allow Cascades
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to be used for the measurement of a number of ββ-decay half-lives for decays

to the excited states of the daughter isotopes.

6.2. CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

• Upper bounds on primordial radiation levels were determined in Cas-

cades, a HPGe multi-crystal array and cryostat constructed with electroformed

copper similar to that electroformed for MAJORANA. It was deduced there

were some levels of primordial activity present in the smaller parts of Cas-

cades, which could appear higher due to the close position of these small parts

to the crystals. More emphasis should therefore be placed on reducing the ra-

dioactivity of these small parts, along with more effective screening.

• Parameters of an experiment probing the 0νββ-decay of 130Te to the first

excited 0+
1 state of 130Xe with Cascades were optimized, with the understanding

that the method developed in this thesis can be used for many other ββ-decay

candidates.

•A successful model of the Cascades detector was built with GEANT4 and is

accessible for future simulations of the cryostat, such as for radioactive samples

positioned between the two HPGe arrays (with or without angular correlations)

and for probing the half-lives of other rare decays.
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