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Abstract

Studying the nuclear reaction n(p, d)γ and calculating its cross-section is not only

a matter of interest from theoretical particle physics point of view but also from the

viewpoint of cosmology. We now know that the universe is made up of only ≈ 5 %

baryonic matter. So, computing the density of baryons is of particular importance

to physicists in general and cosmologists in particular. Deuterium production during

Big Bang Nucleo-synthesis (BBN) is very sensitive to the density of baryons, thus

baryon density can be inferred from the abundance of deuterium. In order to calcu-

late deuterium abundance one needs to use the cross-section of np→ dγ reaction as

one of the inputs. Hence, the importance of this cross-section calculation.

In this document, a leading-order (LO) calculation of n(p, d)γ cross-section is

presented using the framework of pion-less effective field theory with dibaryon fields.

The computation yielded a numerical value of σLO = 494 mb which is then compared

to the experimental value.
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Chapter 1

Introduction/Motivation

The early universe was a nuclear reactor. A few minutes after the Big Bang, a series

of reactions took place whereby the first light nuclei were formed. These are Deu-

terium (D), Tritium (3H), Helium 3 (3He), Helium 4 (4He) and Lithium 7 (7Li). The

process of formation of the above nuclei is known as the Big Bang Nucleo-synthesis

(BBN) which started when the universe was approximately 3 minutes old and lasted

for about half an hour after the Big Bang. The first step in nucleo-synthesis is the

binding of a proton p and a neutron n to build a deuteron d(the nucleus of a Deu-

terium atom) through the following reaction n + p → d + γ, where γ denotes a

photon.

In the following thesis, the cross-section for np→ dγ will be calculated up to leading-

order using pion-less effective field theory (EFT) with dibaryon fields. It is therefore

necessary and useful to give a general overview of EFTs paying particular attention

to pion-less EFT (EFT(π/)). This will be done in Chapter 3. The cross-section calcu-

lation which will be presented in details in Chapter 4 is one application of pion-less

EFT. As mentioned above, in the context of BBN, deuteron formation is the first

link in the chain of reactions that produce the other light elements. Furthermore,

deuteron production is very sensitive to the density of baryons, so deuterium abun-

dance gives the most accurate value for the baryon density. Calculating deuterium

abundance uses the cross-section of the reaction np→ dγ. The n(p, d)γ cross-section

calculation is also a matter of interest in the field of theoretical nuclear and particle

physics research. It is noteworthy to mention that further calculations have been
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done where the cross-section was evaluated to higher orders using again pion-less

EFT [1, 2, 3]. Moreover, the polarized np reaction ~n + ~p → d + γ has been studied

within the framework of EFT to calculate some spin-dependent observables [4]. We

will talk about this in a little bit more detail in the last chapter.

Now, let us begin with a discussion about BBN. But before we do that, it will be a

good idea to start with a brief synopsis of the history of the universe according to

the theory of the Big Bang.
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Chapter 2

Nucleo-synthesis in the Early Universe

The first few elements in the periodic table were synthesized approximately three

minutes after the birth of the universe at the time when the temperature was low

enough to allow the formation of light nuclei through the process of nucleo-synthesis.

In the course of this chapter, we will review in section one the history and stages of

the universe after the “big bang” took place up until the stage of BBN, which will be

discussed in the second section.

2.1 The Early Universe

How did the universe come into existence? Well, there is no one final and conclusive

answer that explains the birth of our universe. A few theories have been proposed

to unravel the mystery of the origin of the cosmos. The Big Bang model is the most

widely accepted cosmological theory of the early universe and its development after

the moment of the “big bang”. It was put in proposition as the “hypothesis of the

primeval atom” in 1931 by Georges Lemaitre [5], a Belgian priest and physicist, and

later supported and developed by Gamow [6].

According to the Big Bang theory, the universe emerged from a “singularity”, in-

finitely hot and dense. Why and how that happened are still unknown. The evolution

of the “baby” universe directly after the instant of the “big bang” is still speculative.

The reason is that we currently don’t have any theory that can account for the physics
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at the Planck scale which is around 1.22×1019 GeV. So we will not discuss what hap-

pened during the Planck era and shortly after that, but our discussion of the history

of the universe will start after the so called “inflationary epoch” when the early uni-

verse is permeated with a plasma of elementary particles, namely quarks, leptons and

their anti-particles and of course photons.

2.1.1 Evolution of the early universe after the quark epoch

About 10−6s after the “big bang”, the temperature dropped down to the point

where the average interaction energy between quarks fell below the binding energy

of hadrons inside which the quarks got confined. Before the formation of hadrons,

it is theorized that the universe was filled with quark-gluon plasma as the temper-

ature was too high for stable hadrons to form. The conditions that give rise to a

quark-gluon plasma are still unknown; however, the strong force that binds quarks

into hadrons is known to become weaker at very high temperatures, a property called

“asymptotic freedom”.

In what follows, I will base my description of the stages of cosmic evolution mostly

on Steven Weinberg’s The First Three Minutes [7].

At t≈0.01s after the “big bang”: The temperature is around 1011 K, and the

universe is in a state of thermodynamic equilibrium which means that there is no net

flow of matter or energy. A system in thermodynamic equilibrium is characterized by

a uniform temperature. The universe is dominated by a soup of matter that includes

electrons (e−), positrons (e+), neutrinos (ν), anti-neutrinos (ν̄) and radiation (pho-

tons). The percentage of nucleons is small at this time, in the ratio of one nucleon

for each 109 photons [7]. Due to the high temperature, the rate of collisions between

particles is high. The neutron to proton (n/p) ratio is kept in thermal equilibrium
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(n/p ≈ 1) due to the following two reactions

p+ e− ←→ n+ ν

and

n+ e+ ←→ p+ ν̄

The universe continues to cool and expand.

At t≈0.12s after the “big bang”: T≈ 3 × 1010 K and the state of the universe

is still pretty much the same. Expansion continues and as the temperature drops

further, the reaction in which neutrons turn into protons is favored because neutrons

are heavier and thus easier to form lighter protons. So the (n/p) ratio is no longer

equal to unity. The number of nucleons is now 38% neutrons and 62% protons.

At t≈1.10s after the “big bang”: The temperature cools down to about 1010

K. The density is decreasing as the universe is still expanding. This falling off in the

energy and density increases the mean free path of neutrinos and their anti-particles,

so they are almost free particles now. The neutrinos then decouple and cease to be

in thermal equilibrium with the rest of the other particles. Protons and neutrons at

this stage cannot combine to form the light nuclei because the temperature is still

relatively high for the nucleons to be bound.

At t≈13.83s after the “big bang”: We have now reached a temperature of 3×109

K which is less than the threshold energy to produce electron-positron pairs. So these
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particles are annihilated fast. Stable nuclei like 4He can now be formed; however,

this is not achieved during this phase. The reason behind that is the following: the

production of 4He happens gradually in a series of two-particle reactions starting with

deuteron production n+ p → d+ γ, but the deuteron nucleus is loosely bound. So

at the current temperature, as soon as deuteron nuclei are formed, they are quickly

dissociated by the inverse reaction d + γ −→ n + p. Thus, heavier nuclei are not

created.

At t≈ 3 minutes after the “big bang”: It is approximately 109 K at this period,

and our universe is mainly filled with neutrinos, their anti-particles and photons. A

reaction which further decreases the number of neutrons has started to take place:

the decay of free neutrons (n −→ p + e− + ν̄). The (n/p) ratio is now around 1:7.

The universe is still hot for the “deuteron bottleneck” to be overcome, in other words,

deuteron nuclei continue to be broken up once they are created.

A little later than three minutes, the temperature becomes low enough for deuteron

nuclei to form and not be destroyed, so then the phase of nucleo-synthesis “officially”

commences! But as I promised earlier in the “Motivation”, Big Bang Nucleo-synthesis

will be discussed in a somewhat thorough manner, and the upcoming section will be

devoted to that purpose.

2.1.2 Observational evidence of the Big Bang

The Big Bang model for the evolution of the early universe is supported by what is

known as the four pillars. The first is the expansion of the universe; in 1929, Edwin

Hubble was the first to observe that galaxies are receding away from us and from one

another. The cosmic microwave background (CMB) which was discovered by
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Penzias and Wilson is a relic of the big bang. The CMB is a “leftover” radiation from

the early stages of the development of the universe. The third supporting evidence is

the abundance of the first light elements as predicted by BBN. The calculated

abundances of the primordial elements are in close agreement with their measured

values. Galactic evolution as predicted and explained by the Big Bang theory

agrees with the observations of the formation and distribution of galaxies. This

constitutes the fourth pillar of the Big Bang model.

2.2 Big Bang Nucleo-synthesis

Before we talk about the physics of primordial nucleo-synthesis, it would be informa-

tive to mention very briefly the history of the theory of BBN.

In 1942, G. Gamow proposed that the elements that we know today had their origins

during the evolution of the universe after the “big bang”. In their seminal 1948 paper

entitled "The Origin of Chemical Elements", Alpher, Bethe and Gamow suggested

that elements of the periodic table were formed in a series of neutron capture re-

actions a few minutes after the birth of our universe [6]. However, further research

showed that the big bang was responsible for the production of the first few elements

only, mainly 4He [8], the reason being that nuclei with mass numbers 5 and 8 are un-

stable and the Coulomb repulsion dominates as the temperature drops. A few years

later, two independent research papers were published explaining that the remaining

elements of the periodic table (with high mass and atomic numbers) were created in

stellar reactions [9, 10].

The framework of BBN was used to calculate and predict the primeval abundances

of the light elements 2H, 3He, 4He and 7Li which turned out to be in agreement

with the observed values [11, 12, 13, 14]. More importantly, calculations done using

deuterium abundance succeeded in finding an upper limit to the baryon density in
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the universe [15]. BBN has been one of the pillars of the Big Bang model and a probe

of not only fundamental but also new physics [16].

2.2.1 The physics processes of BBN

At T � 1 MeV, thermodynamic equilibrium dominated the universe. Among other

factors, the nuclear reactions which maintained thermodynamic equilibrium are

n+ νe ↔ p+ e−,

n+ e+ ↔ p+ ν̄e,

n↔ p+ e− + ν̄e,

The neutron-to-proton ratio was fixed at (n/p) ' e−4m/T ≈ 1 where 4m = 1.293

MeV is the neutron-proton mass difference.

As the universe expanded and cooled down to around 1 MeV, the neutrinos and

their anti-particles, which were kept in thermal equilibrium also via weak interaction,

stopped interacting with the other particles (mainly e+ and e−). So the weak inter-

actions are said to“freeze-out”, and the (n/p) ratio also froze at about (1/6). At T≈1

MeV, nucleo-synthesis kind of began with the reaction

n+ p↔ d+ γ.

Deuteron started to form, but due to the high number density of photons (nγ) relative

to that of nucleons (nB), [η−1 = (nγ/nB) ≈ 1010], the deuteron nuclei were rapidly

photo-dissociated. Deuteron production was delayed and BBN did not kickoff until

the temperature fell below the deuteron binding energy of 2.2 MeV.

The dominant reaction at about 0.5 MeV was the free neutron decay which has a
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half-life of t1/2 ≈ 882s. This further dropped the (n/p) fraction to approximately

(1/7) by the time of nucleo-synthesis. It is important to know that the presence of

free neutrons was one of the necessary conditions for synthesizing the first few light

nuclei.

When the temperature reached ≈ 0.1 MeV, the universe was a few minutes old,

a little more than 3 minutes. At last, deuteron nuclei began to form via neutron

capture:

n+ p→ d+ γ,

without being dissociated, the reason being that the number of photons per baryon

with energies above the deuteron binding energy was well below unity. And so the

nucleo-synthesis chain started with the above reaction (deuteron production reac-

tion), and the other light nuclei were formed by a series of two-body, neutron-capture

reactions. Once deuteron formation took place, other nuclear reactions proceeded to

produce other light nuclei mainly 4He that has a higher binding energy (EB ∼= 28

MeV) than deuteron (Ed ∼= 2.2 MeV). Here are two possible sets of reactions (photo-

reactions) that ultimately produce Helium 4:

d+ n→ 3H + γ,

3H + p→ 4He+ γ,

d+ p→ 3He+ γ,

3He+ n→ 4He+ γ.

Due to the instability of nuclei with mass number 5, there was another bottleneck at
4He. Among the few light nuclides produced by BBN, 4He is the most tightly bound

which resulted in almost all neutrons bound in 4He nuclei. Despite the bottleneck
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at mass number 5, a few reactions where the Coulomb interaction got suppressed

managed to overcome the gap and form 7Li and 7Be. As the temperature fell below ≈

30 keV, and approximately 20 minutes passed since the“big bang”, Coulomb repulsion

and the near absence of free neutrons prevented any further reactions. Consequently

another gap appeared at mass number 8 (mass 8 nuclei are also unstable), and no

heavier nuclides were created until the first stars were born. This marked the end of

the primordial nuclear reactor and thus of the BBN phase.
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Chapter 3

Effective Field Theory (EFT)

The main part of my thesis is the calculation of the n(p, d)γ cross-section which is

presented in Chapter 4. The cross-section is calculated up to leading order (LO)

applying the framework of pion-less EFT with dibaryon fields. Before going into the

details of my calculation, I devote this chapter to introduce the general audience to

EFTs. I should note that my discussion on EFTs is by no means a thorough treat-

ment of this topic. I will just touch the surface trying to summarize the general

idea behind EFT and explain the main points. And so the interested general reader

can get more detailed and rigorous explanation/analysis in the following references

[21, 22, 23, 24, 25, 26] and many others.

Let’s start our discussion by first asking the question: In Physics, what is an effec-

tive theory? Well, I think that almost all physicists would agree that the theories in

Physics which we know of so far are actually effective theories except a theory of

everything which has not been found yet! Nature and consequently the world that

we live in can be divided into different energy or length scales ranging from the Planck

scale (≈ 1.6× 10−35 m) to the length scales of galaxies. In each length/energy range,

physicists find a suitable or useful description of the important or relevant physics

processes (dynamics) taking place. The reason behind that lies in the basic principle

which states that the dynamics at long distances (low energies) do not depend on the

details of what is happening at short distances (high energies). And so, this suitable

description of the relevant physics at a particular energy scale is called “an effective
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theory”. The key idea behind an effective theory is to set the parameters that are

very small (negligible), in comparison to our physical quantities of interest, to zero

and set those which are very large to infinity; the effects of these parameters can

then be treated as small perturbations. In other words, an effective theory is valid

below a certain energy scale Λ and thus in a limited energy range. It is a systematic

approximation to a more “fundamental” theory which is valid at all energies including

arbitrarily high energies.

It is certainly not essential or mandatory to use an effective theory in cases where

the more fundamental theory is known and established, but it is actually more con-

venient and simpler to do so most of the times. One example is Newtonian Classical

Mechanics. We are taught classical mechanics as developed by Newton in high school

and later in college we learn about special relativity. In fact, Newtonian mechanics is

an effective theory valid in the range of small velocities compared to the speed of light

c. However, physicists encounter situations where they don’t know what the funda-

mental theory is or whether it exists. It could also be the case that the more basic

theory is known to exist but is very difficult to solve. Therefore, in these cases, it is

necessary to formulate an effective theory and employ it in order to find a useful and

simple picture of the important physics. For instance, theoretical particle physicists,

till the present moment, have not been able to solve Quantum Chromo-dynamics

(QCD), the theory of the strong interaction, at low energies. So a theoretical frame-

work known as Chiral Perturbation Theory (ChPT) was developed to analyze QCD

at low energies. ChPT is the QCD low-energy effective theory.

12



3.1 Effective Field Theory Techniques

ChPT, mentioned above, is one example of an effective field theory employed in

theoretical nuclear/particle physics. An EFT is a field theory framework appropriate

for the description of low-energy physical phenomena. When one says low-energy,

it is meant low with respect to some energy scale or energy cutoff Λ. In an EFT,

only the pertinent degrees of freedom (d.o.f) are taken into account, those with mass

m � Λ. The heavier fields whose mass M � Λ are eliminated out of the action.

In constructing an EFT, theoretical physicists usually use one of the two general

approaches, the bottom-up or the top-down. The top-down approach starts with the

action of the high-energy theory, and the effective action is obtained by systematically

integrating out the high-energy degrees of freedom. The other approach (bottom-up)

constructs the effective theory action without relying on a “more fundamental” action

because it is unknown. So, the effective action in the latter approach is built from

scratch. In both procedures, the effective Lagrangian which describes the EFT is an

expansion in terms of a sum of local operators (the sum is infinite)

Leff =
∑
i

ci Oi .

These operators Oi that are included in the effective Lagrangian must be consis-

tent with the symmetries of the high-energy theory and, as mentioned above, are

constructed from the light fields. The coefficients ci are the couplings. They carry

information on the high-energy d.o.f which have been integrated out.

As mentioned in the above paragraph, the most general effective Lagrangian that

is consistent with the symmetries of the underlying theory consists of an infinite

number of terms. Of course, it wouldn’t be any easier to use an EFT if we had to

compute an infinite number of terms. This isn’t an achievable task. The reason why

the EFT approach is useful lies in the fact that when calculating a physical observ-
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able, we only require a certain finite accuracy of our results. This leads us to the

concept of power counting. EFT corresponds to an expansion in q
Λ where q stands

for energy, mass or momentum such that q � Λ. Power counting basically helps

us determine the order up to which we need to expand so as to achieve a specific

accuracy (see e.g. Ref.[34]).

In field theories, while calculating observables in physical processes, one may en-

counter divergent integrals. Measurable physical quantities cannot be infinite. These

divergences appear as intermediate stages in field theory calculations, and they even-

tually get cancelled out yielding finite values for physical quantities. So, certain tech-

niques were developed in order to deal with these infinities. Treating the divergences

is a two-step process starting with “regularization” and then “re-normalization”. In

the first step, we “regulate” the divergent integrals, i.e. we make the apparent diver-

gences look finite by introducing what is called a “regulator”. In doing so, we can

then manipulate these integrals. In quantum field theory, there are a few regulariza-

tion methods such as cut-off regularization, Pauli-Villars, dimensional regularization

(DimReg), etc. More detailed discussion and examples can be found in [27, 28]. Later

in this chapter, I will present a calculation using dimensional regularization.

After regularization, the divergent integral denoted by I is parametrized in terms

of the regulator, which will be denoted by β. So I ≡ I(β), and the divergent behavior

is now embedded in the regulator β. The next step would be to actually get rid

of the infinities via what is known as “re-normalization”. Theoretical physicists em-

ploy different re-normalization schemes, minimal subtraction (MS), modified minimal

subtraction (MS), power divergence subtraction (PDS), etc. I will not be discussing

these different re-normalization schemes here. Re-normalization theory is a field of

study on its own. The main idea behind re-normalization in quantum field theories is
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the following: the divergences coming from the integrals (loop diagrams in field theo-

ries) can be removed by an appropriate redefinition of the parameters (bare couplings

ci0) in the Lagrangian density.

ci0 −→ ciR = ci0 + δci(β). (3.1)

The infinities from the integrals are absorbed by δci(β). So, the parameters ci0 get

“re-normalized” to ciR which are finite. ciR are the observed values that get measured

in experiments.

3.2 Pion-less EFT with Dibaryon Fields

As an example of EFT, I will discuss EFT(π/) with the use of dibrayon fields. Before

I go into the details of the theory, I should note that this will be a useful example

in which I calculate the dressed dibaryon propagator employing dimensional regular-

ization [38] and the PDS scheme [33]. The dressed dibaryon propagator will then be

used in the calculations of the upcoming chapter.

Pions play an important role in mediating the nucleon-nucleon (NN) interaction;

however, at low enough energies (momenta p � mπ), the pions are integrated out

of the effective Lagrangian as heavy fields. So, in EFT(π/), the only relevant degrees

of freedom are the nucleons. In other words, EFT(π/) is a low-energy theory suitable

to describe and study reactions (at momenta p � 1
R
) between particles with a

short-range (R) interaction that exhibits a large scattering length. The framework of

EFT(π/) has been employed to study many physical phenomena such as radiative neu-

tron capture (np → dγ) in the context of BBN [2, 29], electromagnetic form factors

of the deuteron [1, 30], and other processes that involve electro-weak gauge fields.

For a more detailed discussion of EFT(π/), please see [26].
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When dealing with the deuteron, it was shown (see references [31, 32]) that it’s

more convenient to introduce an auxiliary field called dibaryon (that can be thought

of as a bound state of two nucleons), denoted by t, which simplifies computations. In

Chapter 4, I will calculate the cross-section of np→ dγ up to LO using EFT(π/) with

the dibaryon field. The calculation involves two LO Feynman diagrams which are

schematic drawings showing interaction vertices and propagators. So, to carry out

the calculation, we first need to find the nucleon and dibaryon propagators and also

compute the Feynman rules for the vertices. The reason why I present the dressed

dibaryon propagator calculation now is that it involves a loop integral that needs

to be regularized and then re-normalized, so it is a good example relevant to this

chapter.

3.2.1 Dressed Dibaryon Propagator

The dibaryon propagator that enters in the cross-section calculation of the reaction

n(p, d)γ is the “dressed” (full) propagator. The bare dibaryon propagator gets dressed

by nucleon bubbles (loops) to all orders (see Figure 3.1). Let me denote the bare

propagator by Sd and the dressed propagator byD. Sd can be derived from the kinetic

term for the dibaryon field in the Lagrangian. The Lagrangian density describing the

dynamics in both the 3S1 and 1S0 channels is [32]

LdPC = N †(i∂0 +
~∂2

2M )N − t†i (i∂0 +
~∂2

4M− M(3S1))ti

− g(3S1)[t†iNTP
(3S1)
i N + h.c.]− s†a(i∂0 +

~∂2

4M− M(1S0))sa (3.2)

− g(1S0)[s†aNTP (1S0)
a N + h.c.] + e

2MN † (κ0 + τ3κ1)~σ · ~BN

Here, N and N † are the nucleon fields, M is the nucleon mass, κ0 and κ1 are the
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Figure 3.1 Dressed Dibaryon Propagator

isoscalar and isovector nucleon magnetic moments, g2 = 8π
M2r

and M= 2
Mr

( 1
a
− µ)

are the couplings with r and a denoting the effective range and scattering length,

respectively, while µ is a re-normalization scale that appears later in re-normalizing

the loop integral.

The dibaryon fields in the 3S1 and 1S0 channels are represented by ti and sa, respec-

tively.

P (1S0)
a = 1√

8
τ2τaσ2, (3.3)

P
(3S1)
i = 1√

8
τ2σ2σi (3.4)

are the normalized projection operators where τa and σi, a, i = 1, 2, 3, are the Pauli

isospin and spin matrices, respectively.

As mentioned above, the bare dibaryon propagator can be derived from the dibaryon

kinetic term,

〈t†i |(−t†a)(i∂0 +
~∂2

4M− M)tbδab|tj〉 . (3.5)

So this gives

Sd(p0, ~ptotal) = δij

−p0 + ~p2
total

4M + M +iε
, (3.6)

(note that the convention I am using is that in a Feynman diagram, a line stands for

i×propagator).

As shown in Figure 3.1, the dressed dibaryon propagator is obtained by summing

an infinite number of nucleon loops at all orders. The reason we do this infinite

17



re-summation is explained by power counting [32]. The bare dibaryon propagator

Sd ∼ Q−2 where Q is a small momentum expansion parameter. Each vertex is

∼ Q1/2, and each loop contributes a factor of Q. So, by applying the latter power

counting scheme, every diagram in figure 3.1 counts as Q−2. Therefore, the nucleon

bubbles must be summed to all orders.

The calculation involves computing the nucleon loop integral which will be denoted

by Iloop. This integral will be regularized by DimReg then re-normalized by PDS.

Although we are summing an infinite number of terms, we notice that this sum is a

geometric series which has a closed form

iD = iSd(
1

1− i Iloop Sd
) . (3.7)

Loop integral Iloop calculation

We first need to take a look at the loop diagram below. Let me note that we are

Figure 3.2 Nucleon bubble

working in the center of mass frame, and the incoming dibaryon has total energy

E and zero momentum (E,~0). This energy gets distributed between the two nucle-

ons where one has (E2 + p0, ~p), and the other has (E2 − p0,−~p), where p0 and ~p are

loop/integration momenta. As seen in figure 3.2, there are two interaction vertices

which we need to compute. The “Feynman rules” give the following vertices:

a) Incoming dibaryon to two outgoing nucleons:

−iy〈N †AN
†
B | N

†
RP

j†

RSN
†
Stj | ti〉 = −iyP i†

AB, (3.8)

18



Figure 3.3 Dibaryon to two nucleons vertex

b) Two incoming nucleons to outgoing dibaryon:

−iy〈t†i | t
†
jNRP

j
RSNS | NANB〉 = −iyP i

AB, (3.9)

Figure 3.4 Two nucleons to dibaryon vertex

Let me note that the A, B, R, and S are spin and isospin indices carried by the

nucleon fields, that is A=(a,α), B=(b,β), etc. where a,b and α,β, etc. are the isospin

and spin indices, respectively. To avoid confusion, let me point out that the ‘y’

appearing in equations (3.8) and (3.9) is a general coupling that gets replaced later

by the appropriate coupling constant in the different 3S1 and 1S0 channels.

Also needed is the nucleon propagator which can be derived from the nucleon kinetic

term in the Lagrangian which gives

SN(k0, ~k) = 1
k0 −

~k2

2M + iε
. (3.10)
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We are now in good shape to calculate the loop integral. So,

Iloop = (−2iyP i†

AB) (−iyP j
AB)

∫ d4p

(2π)4
i

E
2 + p0 − ~p2

2M + iε

i
E
2 − p0 − ~p2

2M + iε

= −2y2P i†

AB P
j
BA

∫ d4p

(2π)4
1

E
2 + p0 − ~p2

2M + iε

1
E
2 − p0 − ~p2

2M + iε

= −2y2Tr(P i†P j)
∫ d4p

(2π)4
1

E
2 + p0 − ~p2

2M + iε

1
E
2 − p0 − ~p2

2M + iε
(3.11)

= −2y2(1
2δ

ij)
∫ d4p

(2π)4
1

E
2 + p0 − ~p2

2M + iε

1
E
2 − p0 − ~p2

2M + iε

= y2δij
∫ d4p

(2π)4
1

E
2 + p0 − ~p2

2M + iε

1
−E

2 + p0 + ~p2

2M − iε
.

The factor of ‘2’ is a symmetry factor coming from the two different ways of connecting

the nucleon lines to form the full loop. Note that I now used ‘p’ instead of ‘k’ for the

nucleon momentum, but that doesn’t really matter since the ‘k’ that appeared in the

propagator SN is just a dummy variable.

The above integral diverges linearly in 4 dimensions, so we use DimReg (see e.g. Ref

[34]) to regulate this divergence. Going to n dimensions, we get

In = (µ2 )4−n
∫ dnp

(2π)n
1

E
2 + p0 − ~p2

2M + iε

1
−E

2 + p0 + ~p2

2M − iε

= (µ2 )4−n
∫ dp0d

n−1p

(2π)n
1

E
2 + p0 − ~p2

2M + iε

1
−E

2 + p0 + ~p2

2M − iε
(3.12)

= (µ2 )4−ni
∫ dn−1p

(2π)n−1
1

E − ~p2

M
+ iε

= −iM(µ2 )4−n
∫ dn−1p

(2π)n−1
1

~p2 −ME − iε
.

Performing the angular integration first using
∫ π

0 dθ sinm(θ) =
√
πΓ(m+1

2 )
Γ(m+2

2 ) , we arrive at

the following expression

In = −iM(µ2 )4−n (2π)π n−3
2

(2π)n−1Γ(n−1
2 )

∫ ∞
0

dp
pn−2

~p2 + (−ME − iε) . (3.13)

We now let t = p2

−ME−iε ,

In = 1
2(−ME − iε)

n−3
2

∫
dt
t
n−1

2 − 1
t+ 1 . (3.14)
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Using B(x, y) =
∫∞
0 dt tx−1

(1+t)x+y = Γ(x)Γ(y)
Γ(x+y) , we finally arrive at

In = −iM(µ2 )4−n(−ME − iε)
n−3

2 (4π)
1−n

2 Γ(3− n
2 ) . (3.15)

Notice that the above integral is divergent for n=3. In order to re-normalize the

integral, we apply the Power Divergence Subtraction (PDS) scheme where the residue

of the pole of the Gamma fucntion at n=3 is subtracted from the integral for n=4

[33]. So, one has to find the residue of Γ(3−n
2 ). To do this, we use Γ(z + 1) = zΓ(z)

to rewrite

Γ(3− n
2 ) = 2

3− nΓ(1 + 3− n
2 ) . (3.16)

Let ε = 3− n, then we have Γ( ε2) = 2
ε
Γ(1 + ε

2). For small ε, we expand Γ(1 + ε
2) in a

Taylor series to get

Γ(ε2) = 2
ε

+ Γ′(1) + ε

2Γ′′(1) +O(ε2) . (3.17)

We also expand (−ME − iε) ε2 by rewriting it as

(−ME − iε) ε2 = exp[ε2 ln(−ME − iε)] = 1 + ε

2 ln(−ME − iε) +O(ε2) . (3.18)

Combining terms together we arrive at the residue of the Gamma function at n=3

which I will denote by

δI = −iµM4π . (3.19)

Going back to n=4,

I = i
M

4π (−ME − iε) 1
2 . (3.20)

Now, in the CM frame, each nucleon has energy ~p2

2M , so the total energy is E = ~p2

M
=⇒

p =
√
ME, then (−ME − iε) 1

2 = i
√
ME + iε which for ε → 0 gives i

√
ME = ip

Finally,

IPDS = i
M

4π (ip)− (−iµM4π )

= i
M

4π (µ+ ip) . (3.21)
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Then the final result for IPDSloop is

IPDSloop = y2IPDS

= iy2M

4π (µ+ ip) . (3.22)

Now we go back to the equation for the dressed dibaryon propagator.

iD = iSd(
1

1− i Iloop Sd
) (3.23)

Having calculated IPDSloop , we can put the pieces together and find the expression for

the full (or dressed) dibaryon propagator.

iD = iSd(
1

1− i IPDSloop Sd
),

D = 1
−p0 + ~p2

total

4M + ∆ + iε

1
1 + y2M

4π (µ+ ip) 1

−p0+
~p2
total
4M +∆+iε

(3.24)

= 1
−p0 + ~p2

total

4M + ∆ + iε+ y2M
4π (µ+ ip)

.

In CM frame, ~ptotal = ~0, then we get

D(p0) = 1
−p0 + ∆ + y2M

4πµ+ y2M
4π ip

= 4π
My2

1
µ+ 4π

My2 ∆− 4π
My2p0 + ip

. (3.25)

Knowing that p0 = E and p =
√
ME, we find that

D(E) = 4π
My2

1
µ+ 4π

My2 ∆− 4π
My2E + i

√
ME

. (3.26)

Calculating the deuteron wavefunction re-normalization

I will go one extra step and calculate the deuteron wavefunction re-normalization

denoted by Zd. The reason I do this is because we need Zd in the next chapter to
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compute the invariant amplitude for n(p, d)γ.

The dressed dibaryon propagator can be written as

D(E) = Z(E)
E +B

, (3.27)

where B is the deuteron binding energy and Z(−B) ≡ Zd.

Now,

∂D−1(E)
∂E

∣∣∣∣∣
E=−B

=
[ 1
Z(E) + (E +B) 1

Z2(E)
∂Z(E)
∂E

]∣∣∣∣∣
E=−B

= 1
Zd
. (3.28)

So we get,

Zd =
∂D−1(E)

∂E

∣∣∣∣∣
E=−B

−1

. (3.29)

The inverse of the dressed dibaryon propagator is

D−1(E) = My2

4π (µ+ 4π
My2 ∆− 4π

My2 )E + i
√
ME. (3.30)

Then
∂D−1(E)

∂E
= −1 + i

r
√
ME

, (3.31)

where I have used y2 = 8π
M2r

[26].

So we get,
∂D−1(E)

∂E

∣∣∣∣∣
E=−B

= 1− r
√
MB

r
√
MB

. (3.32)

And finally, we arrive at

Zd = r
√
MB

1− r
√
MB

. (3.33)

We’re now ready to calculate, in the upcoming chapter, the cross-section of n(p, d)γ

up to leading order (LO) employing the framework of EFT(π/) with dibaryon fields

(dEFT(π/)).
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Chapter 4

LO np −→ dγ cross-section in dEFT(π/)

As promised previously, the details of the cross-section calculation of n(p, d)γ will be

presented in this chapter. The computation is done in the framework of EFT(π/) with

the use of dibaryon fields. The Lagrangian density is given in equation (3.2). The

cross-section is

σ ∼ Σ |M|2 (4.1)

where the summation is over spin and isospin, andM is the invariant amplitude of

np −→ dγ which can be parametrized as follows [35]

M = eXNT τ2σ2[(~σ ·~q)(~ε ∗(d) ·~ε ∗(γ))− (~σ ·~ε ∗(γ))(~q ·~ε ∗(d))]N + ieY εijkε∗
i

(d)q
jε∗

k

(γ)(NT τ2τ3σ2N)

(4.2)

where ~ε(d) and ~ε(γ) are the polarization vectors of the deuteron and photon, respec-

tively, ~q is the outgoing photon momentum, NT and N are the nucleon fields, and e

> 0 is the absolute value of the electron charge.

Our calculation is up to LO. The X-term appearing in Eq. (4.2) is higher order and

is thus not taken into consideration.

At leading order (LO), only two diagrams (figure 4.1) contribute to the amplitude Y

appearing in equation (4.2). The first is a tree-level diagram and the second involves

a one-loop integral.

To start, we first need the interaction vertices, the nucleon and the dressed

dibaryon propagators, SN and D, respectively. Fortunately, we have calculated most

of these in the previous chapter. The interaction vertices are given by equations (3.8)
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(a) (b)

Figure 4.1 Leading-order (LO) diagrams contributing to the np −→ dγ
cross-section. Green solid lines denote nucleons, thick black lines denote dressed
dibaryons, and wavy lines denote photons. The small purple circle stands for the
photon coupling to the nucleon magnetic moment, and the gray oval for the
deuteron interpolating field.

and (3.9). SN and D are given by equations (3.10) and (3.26), respectively. We still

need to compute one more interaction vertex (figure 4.2):

Incoming nucleon to outgoing photon and nucleon:

〈 N †Am (q) | ie2MN † (κ0 + τ3κ1)~σ · ~B N | N〉 = e

2Mqjδkm (κ0 + τ3κ1)σiεijk, (4.3)

Figure 4.2 Photon vertex

where ~σ · ~B = σiεijk∂jAk, ~B = ~∇× ~A, Am is the outgoing photon field and qj is

the outgoing photon momentum.

At this point, we have all the “ingredients” to start our calculation.
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4.1 LO calculation of the amplitude Y

At LO, the amplitude Y appearing in equation (4.2) has a tree-level contribution and

a one-loop integral contribution. We will first compute the tree-level diagram (figure

4.1 (a)) and then the one-loop integral (figure 4.1 (b)).

Tree-level contribution: diagram (a) in figure 4.1

The deuteron is in a 3S1 state, and the photon is coupled to the nucleon through a

magnetic interaction vertex. Therefore, the incoming nucleons are in a relative 1S0

state. So we can write

iM(a) = 4
√
Zd ε

∗i
(d) (−ig(3S1) P i

A′B)NT
B

i

(−B)
e

2Mqjδkm (κ0 + τ3κ1)σpεpjk ε∗
m

(γ) NA,

(4.4)

where subscripts A’, A and B are spin-isospin indices, and B is the binding energy of

the deuteron (also the energy of the outgoing photon). The factor of 4 is a symmetry

factor.

Notice that there are two contributions, one from κ0 and the other from κ1. So, there

will be

(A) P i
A′Bτ3κ1σpεpjk = 1√

8
σ2σiτ2τ3κ1σpεpjk

= 1√
8
σ2τ2τ3κ1(δip + iεiplσl)εpjk. (4.5)

The δip-term gives

σ2τ2τ3κ1εijk. (4.6)

The second term with the εipl vanishes because

NT
Bσ2σlτ2τ3NA = 0, (4.7)
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the reason being the Pauli exclusion principle.

The κ0 contribution is

(B) P i
A′Bκ0σpεpjk = 1√

8
σ2σiτ2κ0σpεpjk

= 1√
8
κ0τ2σ2(δip + iεiplσl)εpjk, (4.8)

where the δip-term vanishes because of the Pauli exclusion principle (NT
Bτ2σ2NA = 0).

The other term contains τ2σ2σi which corresponds to a 3S1 state and when projected

onto the 1S0 initial NN state gives zero.

So the only term that survives is the one appearing in equation (4.6) yielding the

following

iM(a) = 4√
8

√
Zd ε

∗i
(d) (−ig(3S1)) i

(−B)
e

2Mqjε
∗k
(γ)ε

ijkκ1N
Tσ2τ2τ3N. (4.9)

Upon substituting g(3S1) =
√

8π
M2r(3S1) and Zd =

√
γr(3S1)

1−γr(3S1) , we arrive at

iM(a) = − 2e
M

√
π

γ3
1√

1− γr(3S1)
κ1ε

ijkε∗
i

(d)q
jε∗

k

(γ)(NTσ2τ2τ3N). (4.10)

From equation (4.10), one can read off

Y(a) = 2
M

√
π

γ3
1√

1− γr(3S1)
κ1. (4.11)

One-loop contribution: diagram (b) in figure 4.1

The deuteron has spin +1 and orbital angular momentum L = 0. So it’s in a spin

triplet state with S = 1. Using the 2S+1LJ notation where S is spin angular momen-

tum, L is orbital angular momentum, and J = L+S is total angular momentum, the

deuteron state is 3S1. In diagram (b) of figure 4.1, the photon couples to the nucleon

via a magnetic coupling σiεijk∂jAk which takes away spin angular momentum. Thus

the initial NN state must be in a relative 1S0. Also both dibaryon-nucleon vertices

before the photon coupling correspond to a 1S0 state. The cross-section is being cal-

culated at threshold energy E = 0. Keeping all of the above information in mind, we
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can now write down the expression for the invariant amplitude as

iM(b) = 8
√
Zd ε

∗i
(d) [−ig(3S1) NA(Pi)ABNB] e

2MqjδkmN
†
C [(κ0 + τ3κ1)σpεpjm]CDND ε∗

m

(γ)

×
∫ d4k

(2π)4
i

[k0 −
~k2

2M + iε]
i

[k0 −B − (~k− ~B)2

2M + iε]
i

[−k0 −
~k2

2M + iε]

× [−ig(1S0) N †E(P †a )EFN †F ] 4π
Mg2

(1S0)

i

µ+ 4π
Mg2

(1S0)
∆

[−ig(1S0) NTPaN ], (4.12)

where B ' 2.2 MeV is the deuteron binding energy which is taken away by the

emitted photon. Thus the photon is also released with linear momentum ~B. The

factor of ‘8’ is the symmetry factor of diagram (b).

Rearranging some terms we get

iM(b) = 8
√
Zd ε

∗i
(d) [−ig(3S1) (Pi)AB] e

2Mqjδkm[(κ0 + τ3κ1)σpεpjm]BD ε∗
m

(γ)

×
∫ d4k

(2π)4
i

[k0 −
~k2

2M + iε]
i

[k0 −B − (~k− ~B)2

2M + iε]
i

[−k0 −
~k2

2M + iε]

× [−ig(1S0) (P †a )DA] 4π
Mg2

(1S0)

i

µ+ 4π
Mg2

(1S0)
∆

[−ig(1S0) NTPaN ]

= 8 1
8

√
Zd ε

∗i
(d) [−ig(3S1)] e

2Mqjδkmεpjm ε∗
m

(γ)

×
∫ d4k

(2π)4
i

[k0 −
~k2

2M + iε]
i

[k0 −B − (~k− ~B)2

2M + iε]
i

[−k0 −
~k2

2M + iε]
[−ig(1S0)]

× 4π
Mg2

(1S0)

i

µ+ 4π
Mg2

(1S0)
∆

[−ig(1S0) NTPaN ] Tr[σ2σiσpσ2]× Tr[τ2(κ0 + τ3κ1)τaτ2]

(4.13)

Three-Propagator Integral:

In order to complete the calculation, we have to evaluate the following three-propagator

integral:

I =
∫ d4k

(2π)4
1

[k0 −
~k2

2M + iε]
1

[k0 −B − (~k− ~B)2

2M + iε]
1

[−k0 −
~k2

2M + iε]
(4.14)

To achieve the task of evaluating the integral in equation (4.14), we follow these steps.

We first perform the k0 integration by closing the contour in a convenient way which
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would be in the upper-half complex plane. Integrating over k0 gives

I = i
∫ d3k

(2π)3
1

[−~k2

M
+ iε]

1
[− ~k2

2M −B −
1

2M (~k2 − 2~k · ~B + ~B2) + iε]
. (4.15)

After rearranging some terms and neglecting the term B2

4M in comparison with B

(knowing that B=2.2 MeV and M=940 MeV)we get the integral

I = −iM2
∫ d3k

(2π)3
1

[~k2 − iε]
1

[MB + (~k − ~B
2 )2 − iε]

. (4.16)

The next step is to introduce Fourier transforms f(~r) and g(~r) of the propagators

such that

FT [f(~r), ~p] = 1
~p2 − iε

, (4.17)

FT [g(~r), ~p] = 1
MB − ~p2 − iε

. (4.18)

In general,

FT [h(~r), ~p] =
∫
d3r h(~r)e−i~p·~r, (4.19)

and it can be shown that

g(~r) = 1
4π

e−
√
MBr

r
. (4.20)

Taking the limit B −→ 0 in g(~r) gives f(~r) = 1
4πr . Before I continue with the

evaluation of the integral, let me take a few lines to show that

g(~r) = 1
4π

e−
√
MBr

r
. (4.21)

In order to do this, we need to insert

g(~r) = 1
4π

e−
√
MBr

r
(4.22)

into ∫
d3r g(~r) e−i~p·~r (4.23)
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and show that it’s equal to 1
MB+~p2−iε .

Plugging in g(~r) from equation (4.22) into equation (4.23) gives
∫
d3r

e−
√
MBr

4πr e−i~p·~r =1
2

∫
dr dθ sin θ re−

√
MBr e−ipr cos θ

= i

2p

∫ ∞
0

dr [e−(
√
MB+ip)r − e−(

√
MB−ip)r]

= i

2p ( 1√
MB + ip

− 1√
MB − ip

) (4.24)

= i

2p ( −2ip
MB + p2 )

= 1
MB + p2

as claimed above.

We now rewrite the propagators in the integral I in terms of their Fourier trans-

forms. So,

I = −iM2
∫ d3k

(2π)3 [
∫ d3r

4πre
−i~k·~r

∫ d3r′

4πr′ e
−
√
MBr′e−i(

~k− ~B
2 )·~r′ ]. (4.25)

This can be rearranged to give

I = −iM2
∫ d3k

(2π)3 e
i~k·(−~r−~r′)

∫ d3r d3r′

16π2
1
r

e−
√
MBr′

r′
ei

~B
2 ·~r′ . (4.26)

First, we perform the k integration and then the remaining integrations over r and

r′. Notice that the integral over k gives a δ3(~r + ~r′).

After integrating over r′ using the Dirac delta function, we get

I = −iM2
∫ d3r

16π2
1
r2 e

−
√
MBr′ e−i

~B
2 ·~r′ . (4.27)

Next, we integrate over the angles φ and θ which are both simple integrations to

arrive at

I = −iM
2

2πB

∫ ∞
0

dr
e−γr

r
sin(Br2 ), (4.28)

where γ =
√
MB. Using

∫ ∞
0

dr
e−γr

r
sin(Br2 ) = arctan( B2γ ), (4.29)
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we find that

I = −iM
2

2πB arctan( B2γ ). (4.30)

Expanding the arctan [arctan(x) = x − x3

3 + .....] and keeping the lowest order term

gives

I = −iM
2

2πB ( B2γ ) = −iM
2

4πγ . (4.31)

Going back to the one loop diagram

For ease of reading, we report below the amplitude expression of Eq.(4.13)

iM(b) =
√
Zd ε

∗i
(d) [−ig(3S1)] e

2Mqjδkmεpjm ε∗
m

(γ)∫ d4k

(2π)4
i

[k0 −
~k2

2M + iε]
i

[k0 −B − (~k− ~B)2

2M + iε]
i

[−k0 −
~k2

2M + iε]
[−ig(1S0)]

4π
Mg2

(1S0)

i

µ+ 4π
Mg2

(1S0)
∆

[−ig(1S0) NTPaN ] Tr[σ2σiσpσ2]× Tr[τ2(κ0 + τ3κ1)τaτ2].

(4.32)

Now we plugin the value of the three-propagator integral given in Eq.(4.30) into the

amplitude expression given above to obtain

iM(b) =
√
Zd ε

∗i
(d) [−ig(3S1)] e

2Mqjεpjk ε
∗k
(γ) (−M

2

4πγ )[−ig(1S0)]

4π
Mg2

(1S0)

i

µ+ 4π
Mg2

(1S0)
∆

[−ig(1S0) NTPaN ] 2δip 2κ1δ3a (4.33)

Using Zd = γr(3S1)

1− γr(3S1) , g
2 = 8π

M2r
, ∆ = 2

Mr
( 1
a
− µ) and Pa = 1√

8
τ2τaσ2, the one-loop

invariant amplitude becomes

iM(b) = 2
M

√
π

γ3
1√

1− γr(3S1)
γe a(1S0) κ1 qj εijk ε

∗k
(γ) ε

∗i
(d) N

T τ2τ3σ2N. (4.34)

From the above amplitude (Eq.(4.34)), we can read off

Y(b) = − 2
M

√
π

γ3
1√

1− γr(3S1)
κ1 γ a

(1S0). (4.35)
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The total amplitude

Y = Y(a) + Y(b)

= − 2
M

√
π

γ3
1√

1− γr(3S1)
κ1(γa(1S0) − 1). (4.36)

4.2 From amplitude to cross-section

The cross-section is given by Eq. (4.1), and the invariant amplitude by equation (4.2)

where Y has already been calculated (Eq. (4.36)). The next step is to evaluate |M|2,

so we need the nucleon and proton fields, Nn and Np, respectively. They are given

by

Nn = 1
2(1− τ3)N, (4.37)

and

Np = 1
2(1 + τ3)N. (4.38)

Next, we have

NT
n ONp = NT 1

2(1− τ3)O1
2(1 + τ3)N, (4.39)

where O = τ2τ3σ2. Plugging in equation (4.39) into |M|2 gives

|M|2 =MM† = [ieY εijkε∗i(d)q
jε∗

k

(γ)N
T
A′

1
2(1− τ3)A′A(τ2τ3σ2)AB

1
2(1 + τ3)BB′NB′ ]

× [−ieY εabcε∗a(d)q
bε∗

c

(γ)N
†
C′

1
2(1 + τ3)C′C(τ3τ2σ2)CD

1
2(1− τ3)DD′(NT )†D′ ] (4.40)

where A’, A, B’, B, etc are combined spin-isospin indices carried by the nucleon fields.

Using ∑
spin,isospin

NT
A′(NT )†D′ = δA′D′ (4.41)

and ∑
spin,isospin

NB′N
†
C′ = δB′C′ , (4.42)

32



we obtain

∑
spin,isospin

|M|2 = e2Y 2

16
∑
{εijkεabcε∗i(d)ε

∗a
(d)ε
∗k
(γ)ε

∗c
(γ)q

jqb×Tr[(1− τ3)(τ2τ3σ2)

(1 + τ3)(1 + τ3)(τ3τ2σ2)(1− τ3)]}.

(4.43)

Next, we use ∑
ε∗
i

(d)ε
∗a
(d) = (−δia +

ki(d)k
a
(d)

M2
(d)

) (4.44)

and ∑
ε∗
k

(γ)ε
∗c
(γ) = (−δkc + qkqc

q2 ) (4.45)

where k(d) and q are the deuteron and photon momenta, respectively. M(d) is the

deuteron mass.

Since we are calculating the cross-section of unpolarized n(p, d)γ, we will need to

average over initial spins which introduces a factor of (1/4). So we arrive at

1
4
∑
|M|2 = 1

4
e2Y 2

16 εijkεabc(−δia +
ki(d)k

a
(d)

M2
(d)

)(−δkc + qkqc

q2 )qjqb × 4Tr[(1− τ3)(τ2τ3σ2)

(1 + τ3)(τ3τ2σ2)].

(4.46)

After a couple lines of algebraic manipulations, we get to the following expression

1
4
∑
|M|2 = e2Y 2q2. (4.47)

Knowing that the differential cross-section at threshold is given by (see e.g. Ref. [37])

dσ

dΩ = γ2 + p2

16π2p

∑
|M|2, (4.48)

where γ2 = MB, B being the binding energy of the deuteron and also the energy of

the outgoing photon, p is the momentum of the proton in the center of mass (CM)

frame, and M is the nucleon mass.

After substituting equation (4.47) for ∑ |M|2, the total cross-section is

σ = 4πe2γ
2 + p2

16π2p
q2Y 2. (4.49)
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where q = p2+γ2

M
is the outgoing photon momentum, which when inserted in the

expression above yields the final LO result [32]

σ = α(γ2 + p2)3

M2p
Y 2 (4.50)

with α = e2

4π .

Having derived the expression for the n(p, d)γ cross-section (Eq. (4.50)), let us find

a numerical value for σLO. Inserting the following:

α = 1
137 , γ =

√
MB ≈ 45.68 MeV = 0.23 fm−1, r(3S1)=1.75 fm, a(1S0)=-23.71 fm,

κ1 ≈ 2.35, p = plab
2 = 3.45× 10−3 MeV (plab = Mβlab = M vlab

c
with vlab = 2200 m/s)

into Eq. (4.50) where Y is given by Eq (4.36) yields a value of

σLO ≈ 49.4 fm2 = 494 mb (4.51)

Note that since p � γ, I have neglected the p2 term in the numerator of Eq. (4.50)

while performing the numerical calculation. Setting c = ~ = 1, we can use 1

MeV= 1
197.3 fm .

Brief discussion of our result

Our LO calculation of n(p, d)γ cross-section using EFT(π/) with dibaryon fields yielded

a value of σLO = 494 mb. This is approximately 1.5 times greater than the experimen-

tal value which is σexp = 334.2 ± 0.5 mb [39]. The energy at which we calculated

the cross-section is 0.025 eV which is the kinetic energy of a thermal neutron. This

energy corresponds to the most probable speed of a Maxwell-Boltzmann distribution

at room temperature.

The expansion parameter is Q ∼ γ
Mπ

where the deuteron binding momentum γ is

a typical momentum scale, and Mπ is the pion mass. The two LO diagrams (Fig.

4.1) contributing to the amplitude Y are of O(Q0). Since our cross-section is a “sim-

ple” LO computation involving only two diagrams, we can’t expect to do better. At

next-to-leading order (NLO), O(Q), there’s a contribution from one diagram which
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corresponds to a four-nucleon operator coupling to the magnetic field

e
L1

M
√
r(1S0)r(3S1)

tj
†
s3Bj

where tj and sa are the dibaryon fields in the 3S1 and 1S0, respectively. The coefficient

L1 is to be fixed either from QCD or experimentally (see e.g. Ref. [32]). There are

no other diagrams that enter at NLO. So, in order to improve our result, we can

calculate the contributions of higher-order diagrams which has actually been done by

for example Rupak [2] and Chen and Savage [29].
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Chapter 5

Conclusion

In this thesis, I have shown the details of the unpolarized n(p, d)γ cross-section cal-

culation up to LO employing the framework of EFT(π/) with dibaryon fields. The

predicted numercial value is σLO = 494 mb. The cross-section calculation presented

here is only a ‘simple’ application of EFT. Further work using EFTs has been done.

The np→ dγ cross-section has been calculated to higher orders [1, 2, 3]. The inverse

reactions γd→ np and ~γd→ np have also been studied using EFT(π/) with dibaryon

fields [3]. Furthermore, EFT has been applied to study the polarized n(p, d)γ reaction

at threshold [4] and parity-violating effects [35, 36].

The n(p, d)γ reaction was put in the context of BBN. The fact that deuterium for-

mation is very sensitive to the density of baryonic matter (Ωb) in the universe, its

abundance provides a measure of Ωb (see for example [15]). Deuteron production

cross-section enters in Ωb calculations, so computing this cross-section to higher pre-

cision is a big matter of interest. A precision calculation of n(p, d)γ cross-section at

BBN energies was done by Rupak [2].

As mentioned earlier, BBN is one of the four pillars upon which the validity of the

Big Bang model rests. The accuracy of most BBN predictions, for instance, light

element abundances, provides supportive evidence of the standard big bang scenario.

However, it is worth mentioning that BBN is being used to probe for new physics.

In their recent paper, Pospelov and Pradler explore nonstandard cosmological and

particle physics scenarios by showing how new physics can modify standard BBN

[16].
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