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Modeling the noble metal/TiO2 „110… interface with hybrid DFT functionals:
A periodic electrostatic embedded cluster model study

Salai Cheettu Ammal and Andreas Heydena�

Department of Chemical Engineering, University of South Carolina, 301 S. Main St., Columbia,
South Carolina 29208, USA

�Received 12 April 2010; accepted 14 September 2010; published online 26 October 2010�

The interaction of Aun and Ptn �n=2,3� clusters with the stoichiometric and partially reduced rutile
TiO2 �110� surfaces has been investigated using periodic slab and periodic electrostatic embedded
cluster models. Compared to Au clusters, Pt clusters interact strongly with both stoichiometric and
reduced TiO2 �110� surfaces and are able to enhance the reducibility of the TiO2 �110� surface, i.e.,
reduce the oxygen vacancy formation energy. The focus of this study is the effect of Hartree–Fock
exchange on the description of the strength of chemical bonds at the interface of Au/Pt clusters and
the TiO2 �110� surface. Hartree–Fock exchange helps describing the changes in the electronic
structures due to metal cluster adsorption as well as their effect on the reducibility of the TiO2

surface. Finally, the performance of periodic embedded cluster models has been assessed by
calculating the Pt adsorption and oxygen vacancy formation energies. Cluster models, together with
hybrid PBE0 functional, are able to efficiently compute reasonable electronic structures of the
reduced TiO2 surface and predict charge localization at surface oxygen vacancies, in agreement with
the experimental data, that significantly affect computed adsorption and reaction energies. © 2010
American Institute of Physics. �doi:10.1063/1.3497037�

I. INTRODUCTION

The metal-oxide interface plays a crucial role in a vari-
ety of areas in nanomaterial science such as microelectron-
ics, catalysis, and photonics.1 Since Haruta2 and Goodman
and co-workers3 discovered the extraordinary catalytic prop-
erties of nanosized Au particles, extensive research has been
focused on this area.4 The unique catalysis by Au
nanoparticles5 has, in most cases, been attributed to the
three-phase boundary �TPB� of a gas-phase, small metal par-
ticle and a reducible oxide support, and it has been suggested
by Haruta6 that the mechanism of gold catalysis at the TPB
can also be applied to other noble metals such as Pt. Thus,
understanding the nature of the interactions at the metal-
oxide interface is of utmost importance for the rational de-
sign of this new class of catalysts, whose activity and selec-
tivity are primarily determined by the TPB of oxide
supported noble metals. An industrially relevant reaction sys-
tem constitutes the interface of Au and Pt clusters deposited
on the rutile TiO2 �110� surface. These catalytic systems are
known to be highly active for many heterogeneous catalytic
reactions including partial oxidation,7 partial hydrogenation,8

and the water-gas shift reaction9,10 �WGS� �CO
+H2O�CO2+H2�.

The structural and electronic properties of Au /TiO2

�110� and Pt /TiO2 �110� systems have recently been
studied extensively using a wide variety of experimental
techniques. These include atomic force microscopy,11,12

high-resolution electron microscopy,11,13 x-ray photo-
electron spectroscopy,12,14–16 ultraviolet photoemission

spectroscopy,15,17 transmission electron microscopy,18 and
scanning tunneling microscopy.3,19,20 While Pt /TiO2 has
been the prototype system for strong-metal-support interac-
tion where the reactivity of the metal particle is strongly
modified by the presence of the support either by an elec-
tronic interaction between the metal and the support or by a
chemical exchange that leads to the encapsulation of Pt clus-
ters by reduced oxides,16,20,21 Au /TiO2 does not undergo sig-
nificant encapsulation under equivalent annealing
conditions.22 In addition to experimental techniques, compu-
tational methods based on density functional theory �DFT�
calculations have become a powerful research tool for inves-
tigating the geometric and electronic properties of metal-
oxide interfaces. The common computational approach for
this study employs the conventional unit cell model with
periodic boundary conditions. The calculations are per-
formed with pure density functionals within the generalized
gradient approximation �GGA� where the valence electronic
states are expanded in a set of periodic plane waves. The
preference of this approach for the description of the catalyst
surface is due to the computational efficiency of plane wave
codes that naturally take the translational symmetry of the
system into account. However, because of the periodicity of
adsorbents and defects, often very large unit cells are neces-
sary to minimize the effect of the interaction between adsor-
bents and defects, which significantly increases the compu-
tational resource needs for these studies. Furthermore,
various studies23–25 have recently shown that hybrid DFT
functionals that contain a certain percentage of Hartree–Fock
exchange are essential for the accurate description of the
electronic structure of nonmetallic solid materials in general
and of oxygen defects in metal oxides in particular. However,
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periodic DFT calculations with hybrid DFT functionals are
still hardly affordable except for very small unit cells.

To circumvent some of these computational issues, we
have used, in the present study, the computationally highly
efficient embedded cluster model approach to investigate the
interaction of small Au and Pt clusters on stoichiometric and
partially reduced TiO2 �110� surfaces. In particular, we used
the periodic electrostatic embedded cluster method
�PEECM� �Ref. 25� functionality that has recently been
implemented in the TURBOMOLE program package.26 The
PEEC method provides electronic embedding of a finite
quantum mechanical cluster in a periodic infinite array of
point charges. Unlike electrostatic embedding with a finite
set of point charges, the PEEC method takes advantage of
the recent developments27 in the periodic fast multipole
method to provide the correct Madelung potential due to a
periodic array of point charges. This PEECM approach with
hybrid DFT functional has recently been employed to study
point defects in CaF2 and CeO2, and with a careful selection
of the quantum cluster model, an accurate description of the
atomic and electronic structures could be obtained for both
the defect-free and defective surfaces.25

One of the most common point defects observed on the
rutile TiO2 �110� surface is a bridging oxygen vacancy,
which significantly affects the surface chemistry and elec-
tronic properties of this material. Experimental observations
indicate that removing bridging oxygen atoms from the TiO2

surface produces a localized state approximately 0.8 eV be-
low the conduction band.28 The corresponding excess elec-
tron density is thought to be localized on the pair of Ti atoms
neighboring the vacancy. Due to the well known self-
interaction error of standard GGA-DFT, these methods pro-
duce delocalized holes and electrons on the defective TiO2

surface. Recent studies have shown that these deficiencies
can be corrected with the help of hybrid functionals24,29,30 or
the DFT+U approach.30,31 Both methods also predict a much
wider band gap than GGA-DFT functionals, which is again
in much better agreement with the experimental observa-
tions. Although it seems that these approaches can provide a
better electronic structure of the defective surface, it is still
not clear as to what extent they affect the interaction of metal
clusters on these surfaces. Here, we have investigated the
effect of Hartree–Fock exchange on the description of the
strength of chemical bonds at the interface of Au/Pt clusters
and the TiO2 �110� surface. We studied the interaction of Aun

and Ptn �n=2–3� clusters on the stoichiometric and partially
reduced TiO2 �110� surfaces using the PEECM approach and
compared the results to those obtained from standard GGA-
DFT functionals and periodic slab models. We note that we
decided not to use the DFT+U approach for this study, al-
though it seems to be a practical way to improve the elec-
tronic structure of reduced oxide surfaces, since there is cur-
rently very limited experience on the transferability of the
“U” parameter from a nondefective to a defective system and
the determination of the “U” parameter is likely very depen-
dent on the particular system and/or property of interest.

This paper is organized as follows. After describing the
models and summarizing the computational details in Sec. II,
the computational results are discussed in Secs. III–V. The

performance and accuracy of the PEEC methodology has
been validated in Sec. III based on Pt adsorption and oxygen
vacancy formation energies. Furthermore, we also investi-
gated the effect of different DFT methods, including the
double-hybrid density functional, on the Pt adsorption energy
in order to choose an appropriate DFT method for our
present investigation. A detailed investigation on the adsorp-
tion of Au and Pt dimers and trimers on the stoichiometric
and reduced TiO2 �110� surface is made in Sec. IV, and the
effect of the metal clusters on the reducibility of TiO2 �110�
surface is analyzed in Sec. V. Finally, conclusions are sum-
marized in Sec. VI.

II. COMPUTATIONAL DETAILS

A. Periodic DFT calculations

A periodic slab model is required to build and validate a
periodic electrostatic embedded cluster model. All periodic
DFT calculations presented here have been performed using
the VASP 4.6 program.32 We choose the Perdew–Burke–
Ernzerhof �PBE� �Ref. 33� functional within the generalized
gradient approximation to describe the exchange and corre-
lation effects. The number of valence electrons considered
for Ti, O, Au, and Pt are 10, 6, 11, and 10, respectively. The
bulk rutile TiO2 has a tetragonal structure with two TiO2

units per unit cell. The calculated PAW-PBE lattice con-
stants, a=4.649 Å and c=2.971 Å, are in close agreement
with the experimental values of 4.593 and 2.958 Å. These
lattice parameters were used to construct stoichiometric �2
�1� and �4�2� supercell �110� surface slabs with 12 atomic
layer thickness. A vacuum gap of 17 Å was found to give
converged adsorption energies. A �2�2�1� Monkhorst–
Pack k-mesh with an energy cutoff of 400 eV was used for
structure relaxations. The k-mesh was increased to �4�4
�1� whenever the smaller �2�1� supercell was used.
Monopole, dipole, and quadrupole corrections to the energy
were taken into account using a modified version of the Mar-
kov and Payne method.34 Harris–Foulke-type corrections35

have been included for the forces. Finally, fractional occu-
pancies of bands were allowed using a window of 0.05 eV
and the Gaussian smearing method. All atoms in the solid
and the clusters were relaxed except for the bottom 3 atomic
layers of the TiO2 �110� slab, which were fixed at their bulk
positions to mimic bulk behavior. For all Aun and Ptn adsorp-
tion studies, the metal clusters were allowed to adsorb only
on the relaxed side of the TiO2 surface. All calculations have
been performed spin-polarized and no symmetry restrictions
have been imposed during the geometry optimizations. The
energies of the isolated Aun and Ptn clusters were calculated
at the � point in a 12 Å cubic supercell. In order to avoid
artifacts in the electronic structure derived from nonrelaxed
atoms, density of states �DOS� calculations have been per-
formed from fully relaxed structures using the tetrahedron
method with Bloch corrections and a k-point grid enlarged to
4�4�2.

164703-2 S. C. Ammal and A. Heyden J. Chem. Phys. 133, 164703 �2010�
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B. Periodic electrostatic embedded cluster
calculations

PEECM calculations have been performed on a range of
neutral �TiO2�n cluster models, employing the PBE
exchange-correlation functional33,36 and its hybrid modifica-
tion PBE0 �Ref. 37� also called PBEh. To speed up the cal-
culations using the PBE functional, the resolution of identity
approximation has been applied for the Coulomb
potentials.38 The TURBOMOLE 6.0 program package39 is used
for all PEECM calculations. The selection of the cluster
models used in this study is explained in Sec. III. All clusters
have been embedded in a periodic field of point charges �+4
for Ti and �2 for O�. In order to avoid spurious polarization
of the outer cluster oxygen atoms, positive point charges
representing Ti atoms nearest to the cluster model have been
represented by total ion model potentials �TIMPs�, which
consist of a +4 charge and a Ti4+ effective core potential
�ECP�.40 Our reasons for using formal charges instead of
lower point charges �e.g., +2 /−1 for Ti/O� as used in previ-
ous studies41–43 employing embedded cluster models are dis-
cussed in Sec. III A. A surface slab unit cell with 30 atomic
layers thickness optimized with the VASP program has been
used to define the periodic field of point charges for the
PEECM calculations. The slab thickness has been systemati-
cally increased to yield converged HOMO-LUMO gaps
�convergence criterion: 10−3 eV�, vacancy formation ener-
gies �convergence criterion: 10−3 eV�, and Pt adsorption en-
ergies �convergence criterion: 10−4 eV�. The cluster Ti and
O atoms were represented by the all-electron TZVP basis
set.44 Au and Pt were represented by relativistic small core
ECPs �Ref. 45� together with a TZVP basis for the valence
electrons. The positions of Aun, Ptn, and all Ti and O atoms
in the cluster model �except those directly connected to the
TIMPs� have been relaxed during geometry optimizations.
Also, the DOS for the clusters are obtained using Gaussian
smearing of Kohn–Sham orbital energies.

Adsorption energies of Mn �M=Au, Pt� clusters,
Eads�Mn�, on the stoichiometric �S-TiO2� or reduced
�R-TiO2� surface are obtained using

Eads�Mn� = E�Mn/TiO2� − E�TiO2� − E�Mn� , �1�

where E�Mn /TiO2� and E�TiO2� are the total energies of
stoichiometric or reduced TiO2 with and without the metal
cluster on its surface, respectively, and E�Mn� is the total
energy of the metal cluster at its minimum energy configu-
ration in the gas phase. All the adsorption energies have been
corrected for the basis set superposition error �BSSE� with
the counterpoise method,46 unless stated otherwise. The sur-
face with an oxygen vacancy �R-TiO2� has been calculated
by removing a bridging oxygen atom and retaining the
“ghost” basis set of oxygen at the vacancy.

To estimate the oxygen vacancy formation energy �Evf�
on the TiO2 �110� surface, we used

Evf = E�R-TiO2� + 1
2E�O2� − E�S-TiO2� , �2�

where E�O2� is the energy of a gas-phase oxygen molecule.
In order to avoid difficulties associated with the GGA-DFT
treatment of the triplet state of gas-phase O2,47 the O2 ener-

gies are obtained from the H2O splitting reaction �Eq. �3��
using the experimental reaction energy and calculated DFT
energies of H2 and H2O in the gas phase,48

EO2

tot = 2��EH2O
DFT + EH2O

ZPE �

− �EH2

DFT + EH2

ZPE� − Ehof� − EO2

ZPE, �3�

where the experimental zero point energies �EZPE� of H2O,
H2, and O2 are 0.558, 0.273, and 0.098 eV, respectively.49

Ehof is the experimental heat of formation of a gas-phase
H2O molecule ��2.505 eV�,49 and EDFT is the energy calcu-
lated with the PBE functional. For reaction energies calcu-
lated with the PBE0 functional, we used the O2 energy as
obtained from our present calculations without such a correc-
tion since the calculated oxygen binding energy using the
PBE0 functional ��5.24 eV� agrees well with the experi-
mental value ��5.12 eV�.50

III. VALIDATION OF THE PEEC MODELS

A. Adsorption of Pt on the stoichiometric TiO2 „110…
surface

The structure of the top layers of the TiO2 �110� surface
is shown in Fig. 1�a�. The surface is composed of atoms with
different local environments such as five- and sixfold coor-
dinated Ti atoms �Ti5c and Ti6c�, threefold coordinated sur-
face oxygen atoms �Os�, and doubly coordinated bridging
oxygen atoms �Ob�. The present study involves the adsorp-
tion of metal clusters and the presence of oxygen vacancies
on the TiO2 �110� surface. In order to assess the performance
of the PEEC methodology and to choose an appropriate clus-
ter model for this study, we chose a range of neutral �TiO2�n

cluster models and tested their suitability by comparing the
Pt monomer adsorption energies and the oxygen vacancy for-
mation energies with those obtained from periodic slab mod-
els. The adsorption of a Pt atom on two different sites, the H
�fourfold hollow site over Ti5c, Fig. 1�b�� and T sites �on top
of Os, Fig. 1�c��, was considered for this comparison. These
two sites were reported to be the most stable adsorption sites
for Pt on the TiO2 �110� surface. Figures 1�d�–1�g� illustrate
the cluster models used for this Pt monomer adsorption
study. The calculated adsorption energies for the periodic
slab and PEEC models are listed in Table I. Pt adsorption
energies for the hollow site �H�, obtained from the periodic
slab models, agree well with the previously reported values
by Iddir et al.51,52 These authors predicted, using the PW91
functional,36 that Pt adsorption on the hollow site �H� is more
stable than Pt adsorption on top of a surface oxygen atom
�T�. Although our periodic slab calculations with PBE func-
tional predict the adsorption of Pt at the T site to be more
favorable, the adsorption energy difference for the H and T
sites is less than 0.1 eV. Furthermore, the results illustrated in
Table I suggest that adsorption energies calculated with the
Ti17O34 model are converged with respect to cluster size to
within 0.1 eV for the H site and 0.03 eV for the T site. The
cluster models predict slightly larger adsorption energies �by
about 0.3 eV� compared to the periodic slab models. Based

164703-3 Modeling the noble metal/TiO2 �110� interface J. Chem. Phys. 133, 164703 �2010�
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on this cluster model convergence test, we consider all the
investigated cluster models suitable for further adsorption
studies.

The adsorption of single metal atoms, such as Cu,42

Ag,42 Au,42 and Pd,41,43 as well as the Pd dimer41 on the TiO2

�110� surface has been studied earlier using cluster models
embedded in a finite array of point charges. A set of smaller
point charges �+2 /−1 for Ti/O� has been used for embedding
in most cases. Moreover, Sanz et al.43 tested the effect of

various embedding point charges including different sets of
fractional point charges for Pd adsorption on the TiO2 �110�
surface. In particular, they showed that the use of formal
charges �+4 /−2� for embedding makes the cluster too ionic,
which leads to too much net charge transfer from the metal
to the TiO2 surface as well as too large adsorption energies.
However, the cluster models used in these reports are signifi-
cantly smaller than the cluster models used in the present
study. Also, no surface relaxation was permitted in these ear-
lier adsorption studies. To test the effect of point charges on
our cluster models, we calculated the adsorption energies of
Pt �at T position; Fig. 1�c�� on the models shown in Figs.
1�d�–1�f� using �+2 /−1� and �+4 /−2� point charges for the
Ti/O atoms and an 18-electron ECP �Ref. 40� together with
+2 and +4 charges for the TIMPs, respectively. For this set
of calculations, we used the PBE functional and �as argued
below� we allowed to relax the positions of only a limited
number of Ti and O atoms in the cluster together with the Pt
atom. The effect of point charges has been analyzed by com-
paring the HOMO-LUMO gap of the cluster, the Pt adsorp-
tion energy, and the charge on the Pt atom obtained from
natural population analysis �NPA�.53 Table II illustrates that
the adsorption energy and the charge on the Pt atom are
overestimated by about 0.4 eV and 0.16 e, respectively, for

FIG. 1. �a� Stoichiometric rutile TiO2 �110� surface. Atoms are labeled as follows: Ob—bridging oxygen atom; Os—in-plane surface oxygen atom;
Ti5c—fivefold coordinated Ti atom; and Ti6c—sixfold coordinated Ti atom. ��b� and �c�� TiO2 �110� structures with an adsorbed Pt atom at the fourfold hollow
site over Ti5c �H� and on top of the surface Os �T� site, respectively. ��d�–�g�� Cluster models used to study Pt adsorption on the TiO2 �110� surface: �d� Ti17O34,
�e� Ti23O46, �f� Ti29O58, and �g� Ti33O66.

TABLE I. The calculated Pt adsorption energies �Eads� on a TiO2 �110�
surface using different computational models.

Method Modela

Eads

�eV�

Ha Ta

Periodic slab �PBE� �2�1� surface cell �1.83 �1.88
�4�2� surface cell �1.95 �2.00

PEECM �PBE� Ti17O34+Ti15 �TIMPs� �2.21 �2.29
Ti23O46+Ti18 �TIMPs� �2.31 �2.29
Ti29O58+Ti21 �TIMPs� �2.30 �2.26
Ti33O66+Ti26 �TIMPs� �2.29 �2.26

aRefer to Fig. 1. Adsorption energies for PEECM models are BSSE cor-
rected, which changed the metal adsorption energy by less than 0.1 eV.
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the smaller cluster �Ti17O34� when using formal charges in-
stead of the lower
�+2 /−1� point charges. However, this energy and charge dif-
ference decreases with an increase in the cluster size. For the
larger Ti29O58 cluster, the difference in the adsorption energy
is only 0.17 eV and the charge on the Pt atom is practically
the same. Another important property is the HOMO-LUMO
gap. While computations with formal charges predicted a
HOMO-LUMO gap for all clusters in the range of 1.7–2 eV,
which is in close agreement with the gap between occupied
and unoccupied bands �1.7 eV� obtained from periodic slab
calculations, the gap is nearly zero for clusters optimized
with lower point charges. An upward shift of the molecular
orbital energies and a very diffuse charge distribution of the
highest occupied molecular orbitals have been observed
whenever lower point charges were used. A similar trend in
orbital energies with lower point charges was observed by
Reinhardt et al.54 in their CO adsorption study on TiO2 �110�
using a cluster model surrounded by multipoles. Such an
electronic distribution slows down SCF convergence and
leads to surprisingly unphysical structures if more than a
very limited number of atoms in the cluster models are re-
laxed during optimization. Considering that no such prob-
lems have been observed whenever we used formal charges,
all following PEECM calculations use formal charges with
relatively large cluster models.

Next, we investigated the effect of different flavors of
DFT on the Pt adsorption energy using the Ti17O34 cluster
model. Table III illustrates that geometries obtained with
various methods are very similar, suggesting that we are not
required to use hybrid functionals for geometry optimiza-
tions but can use the computationally more efficient PBE
functional. However, we note that this may not be the case
for surfaces with vacant sites, where the description of the
electronic structure is more dependent on the computational
method. Table III further shows that adsorption energies cal-
culated with the hybrid DFT functional PBE0 and the
double-hybrid functional B2PLYP �Ref. 55� differ by less
than 0.2 eV and are very close to those obtained with the
�4�2� supercell periodic slab calculations, indicating that
the PBE functional is able to correctly describe all interac-
tions with the stoichiometric TiO2 �110� surface. We note

here that Grimme and co-workers56 recently showed that the
B2PLYP functional with at least triple-� quality atomic or-
bital basis sets has an accuracy that is competitive with the
computationally very expensive coupled-cluster methods for
transition metal complexes and noble metal clusters such as
Au8.57 Finally, our calculations show that the popular B3LYP
functional55,58 significantly underestimates the adsorption en-
ergy by about 0.5 eV compared to the B2PLYP functional
that has been shown59 to provide a significantly improved
accuracy. This again explains our selection of the hybrid
PBE0 functional instead of the more commonly used B3LYP
functional.

B. The partially reduced TiO2 „110… surface

In the next step of our PEECM validation procedure, we
focus on the partially reduced TiO2 �110� surface with oxy-
gen vacancies. The reduced surface is created by removing a
bridging oxygen �Ob� atom from the surface. Upon removal
of the Ob atom, the two Ti6c atoms neighboring the oxygen
vacancy become fivefold coordinated, which introduces
structural and electronic changes in the first layer and sub-
surface atoms prohibiting the use of the cluster models illus-
trated in Figs. 1�d�–1�g�. Instead, a different set of cluster
models illustrated in Fig. 2 that are symmetric with respect to
the bridging oxygen row has been selected for the study of
oxygen vacancy formation energies. Again, the vacancy for-
mation energy calculated with the periodic slab model �3.76
eV� is in good agreement with the previously reported
values31,60,61 for a similar oxygen vacancy concentration and
supercell dimension. The PEECM results shown in Table IV
indicate that the vacancy formation energy calculated with
PBE functional decreases with increasing size of the cluster
model and seems to converge to the value obtained with the
periodic slab model for the Ti46O92 cluster. This observation
can be explained by the tendency of the PBE functional to
delocalize the excess charge produced by reducing the sur-
face over Ti atoms in the subsurface layers instead of local-
izing them on the Ti atoms neighboring the vacancy. The
extent of delocalization is maximized in the larger clusters,
and thus larger reduced clusters are more stable than smaller
reduced cluster. However, hybrid PBE0 calculations present
a different picture. Figure 3 illustrates that the hybrid ex-
change functional fully localizes the excess charge on the Ti
atoms neighboring the vacancy. A similar localization of

TABLE II. Effect of point charge field on the adsorption of Pt on �TiO2�n

cluster models calculated with PBE functional.

Cluster Property

Point charges used for Ti/O

�+2 /−1� �+4 /−2� �a

Ti17O34 HOMO-LUMO gap �eV� �0.05 1.95
Eads �Pt at T� �eV�b �1.85 �2.29 0.44
NPA charge on Pt 0.43 0.59 0.16

Ti23O46 HOMO-LUMO gap �eV� 0.07 1.82
Eads �Pt at T� �eV�b �1.93 �2.25 0.32
NPA charge on Pt 0.47 0.56 0.09

Ti29O58 HOMO-LUMO gap �eV� 0.00 1.78
Eads �Pt at T� �eV�b �2.07 �2.24 0.17
NPA charge on Pt 0.52 0.55 0.03

aDifference in property computed with two different sets of point charges.
bAdsorption energies are not corrected for BSSE.

TABLE III. The calculated Pt adsorption energies �Eads� on a TiO2 �110�
surface using the PEEC model with various flavors of DFT.

Model Method

Eads

�eV�

Ha Ta

PEECM PBE //PBE �2.29 �2.39
�Ti17O34� B3LYP //PBE �1.57 �1.60

B3LYP //B3LYP �1.59 �1.62
PBE0 //PBE �1.85 �1.99

PBE0 //PBE0 �1.87 �1.99
B2PLYP //PBE �2.02 �2.12

aRefer to Fig. 1. Adsorption energies are not corrected for BSSE.
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charge density was observed for all symmetric clusters used
for the calculation of vacancy formation energies �Fig. 2�.
The reduced cluster optimized with PBE0 functional is there-
fore less stable than the cluster optimized with PBE func-
tional, i.e., the formation of an oxygen vacancy is more en-
dothermic �Evf�4.2–4.4 eV� and the effect of cluster size is
reduced due to localization of charge at the vacant site. Evf

slightly increases for the larger clusters with three bridging
oxygen rows �Figs. 2�c� and 2�d�� because more atoms are
allowed to relax in these clusters, which stabilize the nonre-
duced clusters. Overall, vacancy formation energies seem to
be converged to within 0.1 eV for the largest clusters. Mor-
gan et al.31 reported a similar charge density localization for
the reduced TiO2 �110� surface using the DFT+U method
and a periodic slab model. However, our results disagree
with those of Di Valentin et al.,24 who predicted localization
at nonequivalent Ti5c and Ti6c sites when using the B3LYP
functional.

Various test calculations by us with different cluster
models showed that the size and symmetry of the cluster
play a significant role in predicting localization of charge
density on the surface. For instance, PBE0 calculations for
the reduced clusters shown in Figs. 1�d�–1�f� predicted local-

ization at nonequivalent Ti5c and Ti6c sites. The reasons for
this prediction are that the oxygen vacancy in these clusters
is too close to the embedding point charges and that the
vacant site is surrounded by nonequivalent atoms. Whenever
both points have been considered during the design of cluster
models, localization of charge density at the vacant site has
always been observed. Next, we note that the computation of
the vacancy formation energy for a single vacant site has
always been a problematic issue for periodic slab models
because of the periodicity of defects on the surface. Previ-
ously reported values62 highly depended on the slab thick-
ness, the number of atomic layers kept fixed in their bulk
positions, and the vacancy concentrations. All of these fac-
tors seem to have no influence on the calculations with clus-
ter models and we believe that it is possible to calculate
accurate vacancy formation energies for a single vacant site
with the PEEC methodology and reasonably large clusters.

C. Cluster model for the metal-oxide interface

The results described above clearly indicate that the
PEEC methodology, together with a careful selection of a
cluster model, is able to reproduce both adsorption and oxy-
gen vacancy formation energies. However, the cluster mod-
els shown in Fig. 1 are not suitable to model the reduced
surface and the ones in Figs. 2�a�–2�c� are not suitable for the
adsorption of more than one metal atom, considering that
metal clusters adsorb on the TiO2 �110� surface between two
bridging oxygen rows. As a result, we chose the Ti46O92

cluster model �Fig. 2�d�� for further studies. Using the PBE
functional, the calculated Pt adsorption energies ��2.12 eV
at H site; �2.24 eV at T site� and the oxygen vacancy for-
mation energy �3.75 eV� for this cluster are in good agree-
ment with periodic slab model calculations. A similar test
with this cluster and lower �+2 /−1� embedding point
charges, as described in Sec. III A, predicts a difference in Pt
adsorption energy of less than 0.1 eV and almost no differ-
ence in the natural charge on Pt. Insight into the electronic

FIG. 2. Cluster models used to study the oxygen vacancy formation on TiO2 �110� surfaces: �a� Ti22O44, �b� Ti32O64�1�, �c� Ti32O64�2�, and �d� Ti46O92.

TABLE IV. Oxygen vacancy formation energies �Evf� of a rutile TiO2 �110�
surface calculated with different cluster models.

Method Model

Evf

�eV�

PBEa PBE0b

Periodic slab �4�2� surface cell 3.76 ¯

PEECM Ti22O44+Ti24 �TIMPs� 4.04 4.18
Ti32O64�1�+Ti28 �TIMPs� 3.56 4.16
Ti32O64�2�+Ti26 �TIMPs� 4.04 4.27

Ti46O92+Ti30 �TIMPs� 3.75 4.37

aO2 energy is calculated using Eq. �3�.
bO2 energy used to calculate Evf is computed with the PBE0 functional
without correction.
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structure of this embedded cluster can furthermore be ob-
tained from the DOS. Figure 4�a� shows the total DOS
�TDOS� of this cluster computed using the Mulliken popula-
tion analysis with PBE and PBE0 functionals, together with
the TDOS obtained from periodic slab model calculations
�PBE functional�. Both periodic DFT and PEECM calcula-
tions with PBE functional compute band gaps of 2.0 and 1.9
eV, respectively. In contrast, the cluster model calculations
with the PBE0 functional yield a much wider band gap of 4.1
eV. Figure 4�b� illustrates the TDOS of the reduced surface
�Ti46O91 cluster� with PBE and PBE0 functionals. The PBE
calculation predicts a band gap of 2.1 eV and no gap state
between the valence and the conduction bands. In contrast,
the hybrid PBE0 calculation predicts a band gap of 4.0 eV
and two gap states at 1.2 and 1.0 eV below the conduction
band. Our PBE0 results are in reasonable agreement with the
experimentally observed gap state 0.8 eV below the conduc-
tion band63 and previous DFT+U �Ref. 31� and B3LYP
calculations.24 Although the hybrid PBE0 calculations over-
estimate the band gap of the TiO2 surface by �1 eV �the
experimental value is �3 eV�, it allows us to visualize the
localized states in the band gap and compare the position of
these states to experimental observations. To conclude, it

seems that the selected Ti46O92 cluster model, together with
the hybrid PBE0 functional, is a reasonable surface model
that has been used for all subsequent investigations.

IV. ADSORPTION OF Aun AND Ptn „n=2,3… CLUSTERS
ON THE STOICHIOMETRIC AND REDUCED TiO2
„110… SURFACE

The interaction of small Au clusters with the stoichio-
metric and reduced TiO2 �110� surfaces has previously been
investigated using periodic DFT methods.64–66 For example,
Chrétien and Metiu60,67 reported a detailed investigation on
the adsorption of Aun �n=1–7� on the stoichiometric and
partially reduced TiO2 �110� surface based on structure,
binding mechanism, and charge density distribution. Also,
Madsen and Hammer65 studied the effect of subsurface Ti
interstitials on the bonding of small gold clusters on the
rutile TiO2 �110� surface, and Pabisiak and Kiejna68 studied
the adsorption of Aun nanorows and Aun clusters on the re-
duced TiO2 �110� surface. In contrast, studies on the Pt /TiO2

�110� system are scarce. Iddir et al.51 studied the adsorption
and diffusion of a single Pt atom on stoichiometric and re-
duced TiO2 �110� surfaces and later discussed the interaction

FIG. 3. Spin density distribution for the reduced Ti32O63�1� cluster optimized with �a� PBE and �b� PBE0 functionals. Density plots show the spin density
isosurface of 0.02 e /Å3.

FIG. 4. �a� TDOS of the stoichiometric TiO2 �110� sur-
face computed using a periodic DFT code with PBE
functional �on top�, the PEEC method with PBE func-
tional �Ti46O92 cluster; middle�, and PEEC method with
hybrid PBE0 functional �bottom�. �b� The same as in �a�
for the reduced TiO2 �110� surface.
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of Pt2 with the reduced TiO2 �110� surface.52 A few other
reports were also made on the interaction of small Pt clusters
with the anatase TiO2 �101� surface.69,70 All of these compu-
tational studies were done using periodic slab models with
the GAA-PW91 or PBE functional. In this study, our focus
has primarily been on the effect of hybrid exchange on these
systems and to compare our results with those obtained with
GGA functionals.

A. Adsorption energies and geometries of „Mn…

clusters on the TiO2 „110… surface

The lowest energy structures corresponding to the ad-
sorption of Au2, Pt2, Au3, and Pt3 on the stoichiometric
�Ti46O92 cluster� and reduced �Ti46O91 cluster� TiO2 surface
using the PBE0 functional are shown in Fig. 5. Various pos-
sible structures were considered for the geometry optimiza-
tion in order to locate the minimum energy structure for each
complex. The results suggest that the adsorption mode for all
four clusters on the stoichiometric as well as reduced surface
obtained with PBE0 functional is virtually identical to the
results obtained with PBE functional. Table V lists the ad-

sorption energies calculated for the Au and Pt dimer and
trimer on the stoichiometric and reduced cluster models and
periodic slab models with �4�2� supercell. The calculated
adsorption energies for the Au2 and Au3 clusters on the pe-
riodic slab models agree well with values previously re-
ported by Chrétien and Metiu using the PW91 functional.60,67

In the case of adsorbed Pt complexes, Iddir et al.52 computed
a slightly stronger Pt2 adsorption energy on the reduced TiO2

surface ��3.62 eV versus �3.33 eV�, which is likely the
result of a different computational setup and the use of a
different DFT functional.

Adsorption energies for the metal clusters on the stoichi-
ometric surface calculated with the PEECM methodology
and PBE functional are, except for the Au3 cluster, within 0.3
eV to results from periodic slab calculations. For the Au3

cluster, the energy difference between models is 0.8 eV. This
large energy difference is expected to originate from a dif-
ferent delocalization of the excess charge on the TiO2 surface
computed by the periodic slab and PEEC models. The pres-
ence of an unpaired electron in a high-energy singly occu-
pied molecular orbital of the Au3 cluster stimulates a charge

FIG. 5. Optimized structures, selected bond distances �in Å�, and adsorption energies �in eV� of the Mn /TiO2 surface calculated using the stoichiometric and
reduced rutile TiO2 �110� cluster model Ti46O92 /Ti46O91 with PBE0 functional �only a part of the structure is given here for clarity�.
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transfer from Au3 to the TiO2 surface. The periodic slab
calculations performed by us and also from an earlier study60

showed that this excess charge density is delocalized over all
the Ti atoms located in the top two layers. The PEEC model
used here cannot reproduce such symmetric delocalization of
charge density because of restrictions applied to the cluster
model. Here, the excess charge density is delocalized over
the Ti atoms mostly in the subsurface layer, especially on Ti
atoms that are close to the ECPs and point charges, which
results in larger adsorption energies. A similar explanation
holds for the reduced system where the excess charge density
in the Ti46O91 cluster is delocalized over the subsurface Ti
atomic layers of the cluster. When the metal cluster makes a
covalent bond to the Ti atoms at the vacant site, as in the
case of Pt2 and Au3 clusters, the adsorption energy for the
reduced cluster is increased by about 0.4 eV. For Au2 and Pt3
clusters, the adsorption energy is again within 0.3 eV to re-
sults from periodic slab calculations. However, we argue
here that the delocalization of the excess charge density over
all Ti atoms on the surface is unphysical and is a result of the
self-interaction error of GGA-DFT functionals. In contrast,
computations with hybrid PBE0 functional predict, in our
opinion, more physical electronic structures that show local-
ization of the excess charge density on one Ti atom on the
TiO2 surface in the case of the Au3 complex on the stoichi-
ometric surface and on the Ti atoms neighboring the oxygen
vacancy in the case of the reduced cluster. In other words, we
expect the PEEC model when used together with hybrid
PBE0 functional to compute more accurate adsorption ener-
gies for systems with unpaired electrons.

On the stoichiometric surface, adsorption energies calcu-
lated with the PBE0 functional are for all studied metal clus-
ters quite similar to those obtained with PBE functional.
However, the PBE0 functional predicts a stronger adsorption
for all metal clusters on the reduced surface compared to the
PBE functional. As mentioned above, the reduced cluster
�Ti46O91� optimized with PBE0 functional has the excess
charge density localized at the vacant site and thus predicts a
higher energy due to repulsive interaction between the two
unpaired electrons. Adsorption of metal clusters at this site
either use these electrons to form covalent bonds or move

them to the Ti atoms in the subsurface layer in TiO2 �110� �in
the case of Au2 /Ti46O91� to minimize the repulsive interac-
tion. The energy gained due to the adsorption of metal clus-
ters on the reduced TiO2 �110� surface is therefore larger if
computed with PBE0 functional as compared to PBE func-
tional.

The selected structural parameters for all complexes op-
timized with PBE0 functional are shown in Fig. 5. In gen-
eral, Pt clusters interact more strongly with both the stoichi-
ometric and the reduced TiO2 surfaces than Au clusters. The
Pt–Pt bond distance in the adsorbed Pt2 complexes is longer
than the Pt–Pt bond distance �2.52 Å� in the gas phase. In
contrast, for adsorbed Au2 complexes no significant change
in the Au–Au bond distance is observed �dAu–Au=2.55 Å�
compared to the gas phase molecule. The stronger Ptn ad-
sorption also results in shorter Pt–Ti5c, Pt–Obr, and Pt–Os

distances when compared to the corresponding distances in
the Aun complexes. Au clusters do not exhibit any interaction
with the Os atoms on the TiO2 surface. Comparing the inter-
action of Pt2 and Pt3 with the TiO2 surface, differences in the
bond distances suggest a slightly weaker interaction for Pt3.
The smaller cluster has more undercoordinated metal atoms
and therefore interacts more strongly with the surface. In
contrast, the interaction of Au3 with the TiO2 surface is
stronger than for Au2 due to the presence of an unpaired
electron in the Au3 complex, which facilitates charge transfer
from Au3 to the TiO2 surface.

B. Charge transfer between adsorbed „Mn… clusters
and the TiO2 „110… surface

Metal atom adsorption on an oxide surface is accompa-
nied by charge transfer between the metal and the oxide sur-
face affecting the oxidation state of the adsorbed metal at-
oms. The oxidation state of the metal atoms is believed to be
closely linked to their catalytic activity for many important
industrial reactions, such as the WGS reaction, and there is
an intense debate in literature on the nature of the active
metal atoms, i.e., whether they are cationic, anionic, or
metallic.10,71,72 In this section, we investigate the oxidation
state of metal clusters on the TiO2 �110� surface by compar-

TABLE V. Adsorption energies �Eads� of Au and Pt clusters on stoichiometric and reduced TiO2 �110� surface
models.

Surface Metal
Ground state
configuration

Eads

�eV�

VASP �PBE�

PEECM �Ti46O92�
a

PBE PBE0

TiO2 Au2 Singlet �0.97 �1.24 �1.19
Au3 Doublet �1.68 �2.53 �2.86
Pt2 Singlet �1.83 �2.10 �2.44
Pt3 Singlet �3.15 �3.13 �2.92

TiO2−x Au2 Triplet �1.22 �1.16 �1.94
Au3 Doublet �2.11 �2.51 �3.09
Pt2 Singlet �3.33 �3.74 �4.71
Pt3 Singlet �4.04 �3.73 �4.18

aBSSE corrections changed the metal adsorption energy by less than 0.1 eV/metal atom.
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ing the amount of charge transfer between the metal clusters
and the surface. The total electronic charge on the metal
clusters, q�Mn�, calculated with different methodologies are
presented in Table VI. For periodic slab models using Bad-
er’s charge analysis,73 the calculated Au cluster charges are
in close agreement with the previously reported values.60,67

There is no significant charge transfer between Au2 and the
stoichiometric TiO2 �110� surface consistent with the weak
interaction between Au2 and the surface. In contrast, Au3

transfers a significant amount of charge �0.59 e� to the TiO2

surface due to the presence of an unpaired electron in its
high-energy singly occupied molecular orbital. For Pt2 /TiO2

and Pt3 /TiO2 complexes, the adsorbed clusters have positive
charges �+0.20 and +0.32, respectively�, indicating again
some charge transfer between the occupied orbitals of the
metal cluster and the unoccupied Ti 3d-orbitals and explain-
ing the shorter metal-Ti distances for Pt clusters in compari-
son to Au clusters displayed in Fig. 5.

For the reduced surface, the oxygen vacancy is believed
to be an electron donor site due to excess charge density left
behind when the bridging oxygen atom is removed from the
surface. Thus, metal atoms at this vacant site become nega-
tively charged due to electron transfer from the surface.
Bader charges on the metal atoms �calculated from periodic
slab models� are negative except for the Au2 cluster. The
absence of a net charge transfer from the reduced surface to
Au2 can be understood from the lowest energy structure of
Au2 /TiO2−x �Fig. 5� that has both Au atoms positioned at the
vacant site interacting weakly with the neighboring bridging
oxygen atoms.

Next, we discuss the Bader charges for the PEEC models
calculated with both PBE and PBE0 functionals. Table VI
illustrates that the Bader charges on the metal clusters are
independent of the functional quite similar and about 0.2
electron more positive than the corresponding charges ob-
tained from the periodic slab models. This trend is in agree-
ment with the slightly larger adsorption energies predicted by
the PEEC models compared to the periodic slab models.
Also, for adsorbed metal clusters on the reduced surface, we
observe, except for Au2, a negative charge with magnitude
slightly smaller than the one obtained from the periodic slab
models.

Considering the ongoing debate in literature on the
charge state of the metal atoms, we also computed NPA
charges and Mulliken charges for the PEEC models. In the
following, we only discuss NPA charges; the Mulliken
charges are qualitatively identical to NPA charges. Table VI
illustrates that NPA charges on the metal clusters are consis-
tently more positive than Bader charges. Nevertheless, the
relative trends in net charge transfer between the metal clus-
ters and the oxide surfaces are in good agreement with our
Bader charge analysis. It is still important to note that the
NPA charges of the metal clusters adsorbed on the reduced
surface are consistently positive, contrary to our Bader
charge analysis. To further investigate this phenomenon,
Table VII illustrates the charges on individual metal atoms
for the very negatively charged �Bader analysis� Pt2 /TiO2−x

and Au3 /TiO2−x complexes using different methodologies.
Bader charges for the metal atoms directly adsorbed at the
vacancy �Pt�1� and Au�1�� are very similar for the PEEC and
periodic slab models and are independent of DFT functional.
In contrast, natural population analysis predicts that the Pt�1�
in Pt2 /TiO2−x and the Au�1� in Au3 /TiO2−x display a metallic
or even a cationic behavior. Overall, the question remains
whether the metal atoms adsorbed on the reduced TiO2 �110�
surface are truly negatively charged? We only note here that
Cramer74 has previously discussed different charge models
and concluded that Bader charges should not be used for
analysis whenever the lower atomic multipole moments are
quantitatively important as they likely will be for the reduced
TiO2−x surface. We will further discuss the oxidation state of
metal atoms adsorbed at oxygen vacancies in a future study.

C. Binding mechanism and orbital overlap between
„Mn… clusters and the TiO2 „110… surface

To shed more light on the origin of the differences in the
adsorption behavior of Aun and Ptn clusters, we have ana-
lyzed the electronic structure changes accompanying the ad-
sorption of Au2 and Pt2. The total DOS and the atom-
projected DOS for adsorbed Au2 and Pt2 on the
stoichiometric TiO2 �110� surface are shown in Figs. 6�a� and
6�c�, respectively. We note that the DOS calculated with the
PBE functional �not shown� for the adsorbed Pt2 and Pt3

TABLE VI. The calculated charges �e� on the metal cluster at the Mn /TiO2 �110� interface.

Surface
Metal
cluster

q�Mn�

Periodic slab �PBE�

PEECM �Ti46O92�

PBE PBE0

Bader Bader NPA Bader NPA

TiO2 Au2 0.10 0.35 0.79 0.33 0.78
Au3 0.59 0.79 1.02 0.82 1.03
Pt2 0.20 0.36 0.92 0.36 0.89
Pt3 0.32 0.56 1.04 0.47 0.96

TiO2−x Au2 �0.04 0.27 0.64 0.25 0.64
Au3 �0.39 �0.07 0.70 �0.10 0.70
Pt2 �0.54 �0.30 0.44 �0.40 0.34
Pt3 �0.25 0.04 0.85 �0.14 0.71
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clusters on both the stoichiometric and reduced surfaces dis-
plays no band gap, indicating metallization of the system. In
contrast, hybrid DFT calculations suggest the presence of
metal states in the band gap close to the Fermi level. These
states are known as metal induced gap states �MIGS�66,70,75

as they appear in the band gap of the clean TiO2 �110� sur-
face. Figure 6�a� indicates that these MIGS emerged from the
molecular Au2 orbitals with no mixing with the O 2p states.
The corresponding molecular orbital pictures �see Fig. 6�b��
illustrate that the Au–O interaction is thus a weak filled-filled

interaction. In the case of the Pt2 complex, the Pt d states at
the Fermi level are closer to the conduction band �about 2 eV
apart; Fig. 6�c�� than the corresponding states in the Au2

complex �about 2.6 eV apart; Fig. 6�a��. A strong overlap
between the Pt and TiO2 molecular orbitals �see Fig. 6�d�� is
observed, indicating localized covalent bonding between Pt
and oxygen atoms enabled by nearby Ti-centered electron-
accepting empty states. The molecular orbitals corresponding
to the remaining MIGS not shown in Figs. 6�b� and 6�d�
originate primarily from pure Au or Pt d orbitals.

TABLE VII. The calculated charges �e� on individual metal atoms for selected Mn /TiO2−x �110� systems.

Surface
Metal atoms adsorbed

on the oxygen vacancya

q�M�

Periodic slab �PBE�

PEECM �Ti46O92�

PBE PBE0

Bader Bader NPA Bader NPA

TiO2−x¯Pt2 Pt�1� �0.31 �0.25 0.20 �0.32 0.12
Pt�2� �0.23 �0.05 0.24 �0.08 0.22

TiO2−x¯Au3 Au�1� �0.32 �0.22 0.07 �0.24 0.06
Au�2� �0.05 0.01 0.23 0.07 0.24
Au�3� �0.02 0.14 0.40 0.08 0.40

aMetal atoms are numbered based on their distance from the oxygen vacancy site. M�1� is adsorbed at the
vacancy site.

FIG. 6. ��a� and �c�� The total and partial DOS of �a�
Au2 and �c� Pt2 adsorbed on the stoichiometric TiO2

�110� surface computed with the PEEC methodology
using the PBE0 functional �Ti46O92 cluster�. Projections
of the MIGS are shown on the right side of the DOS
plots. ��b� and �d�� The selected occupied molecular or-
bitals corresponding to the interaction of �b� Au2 and
�d� Pt2 on Ti46O92 �indicated by arrows in the DOS
plots�. The energies shown under each molecular orbital
are relative to the corresponding HOMO energy. The
isosurfaces are colored according to the sign of the
wave function and drawn for 0.02 e /Å3.
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The type of interaction of both Au2 and Pt2 clusters with
the reduced surface is slightly different from that of the stoi-
chiometric surface. While Au2 places both Au atoms at the
vacant site making overlaps with the neighboring bridging
oxygen atoms, as shown in Fig. 5�b�, Pt2 places only one Pt
atom at the vacant site making a strong interaction with the
two Ti atoms neighboring the vacancy and the other Pt atom
interacting with the Ti5c atom �see Fig. 5�d��. The excess
charge density originally localized on the two Ti atoms
neighboring the oxygen vacancy is not used for the
Au2 /TiO2−x interaction, it remains on the surface. DOS cal-
culated for Au2 /TiO2−x shown in Fig. 7�a� indicates that the
gap state near the Fermi energy corresponds to charge den-
sity localized on two Ti atoms in the subsurface layer of the
surface. The remaining gap states originate mainly from Au2

molecular orbitals. The molecular orbitals shown in Fig. 7�b�
confirm that the high-energy molecular orbitals of
Au2 /TiO2−x are combinations of the eigenstates of Au2 and
orbitals localized on the bridging and surface oxygen atoms.
In contrast, for the Pt2 /TiO2−x system, the DOS shown in
Fig. 7�c� and the molecular orbital diagrams shown in Fig.
7�d� illustrate that the excess charge density left on the re-
duced surface is used to form covalent bond type interactions
between the Pt2 cluster and the surface. Here, the frontier
molecular orbitals originate from the interaction of the HO-
MOs of the Pt2 molecule and the Ti 3d orbitals. Thus, a

stronger interaction of Pt2 with the stoichiometric and re-
duced surfaces involves both surface Ti and O atoms, while
Au2 interacts only weakly with the TiO2 surface through the
oxygen atoms.

V. REDUCIBILITY OF THE TiO2 SURFACE

One key aspect in the study of metal-surface interactions
is the effect of metal deposition on the reducibility of the
surface. Earlier studies revealed that metal deposition on the
TiO2 surface is accompanied by a strong polarization of the
adsorbed atoms, which eventually leads to electron density
transfer to the surface. Recent studies on oxide supported Au
and Pt catalysts for the WGS reaction indicate that the role of
the dispersed metallic phase is not restricted to providing
sites for CO adsorption, but that it furthermore affects the
reducibility of the support, thereby creating new active sites
for the WGS reaction.71,76 We have investigated this hypoth-
esis by calculating the oxygen vacancy formation energies
�Evf� in the presence and absence of metal clusters. We used
the following equation to calculate Evf in the presence of
metal clusters:

Evf�Mn� = Evf�clean� + Eads�Mn/R-TiO2�

− Eads�Mn/S-TiO2� , �4�

where Eads�Mn /R-TiO2� and Eads�Mn /S-TiO2� are the BSSE

FIG. 7. ��a� and �c�� The total and partial DOS of �a�
Au2 and �c� Pt2 adsorbed on the reduced TiO2 �110�
surface computed with the PEEC methodology using
the PBE0 functional �Ti46O91 cluster�. Projections of the
MIGS are shown on the right side of the DOS plots.
��b� and �d�� The selected occupied molecular orbitals
corresponding to the interaction of �b� Au2 and �d� Pt2

on Ti46O91 �indicated by arrows in the DOS plots�. The
energies shown under each molecular orbital are rela-
tive to the corresponding HOMO energy. The isosur-
faces are colored according to the sign of the wave
function and drawn for 0.02 e /Å3.
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corrected adsorption energies of Mn on the reduced and stoi-
chiometric TiO2 �110� surfaces, respectively. The calculated
Evf values using both periodic slab and PEEC models are
illustrated in Table VIII. The PEECM and periodic slab
model calculations with PBE functional result in very similar
Evf values, indicating the ability of PEEC models to repro-
duce reaction energies obtained from periodic slab calcula-
tions. As mentioned earlier in Sec. III B, the oxygen vacancy
formation energy calculated with PBE0 functional for the
clean surface is about 0.6 eV higher than the one obtained
with PBE functional. This energy difference arises from the
different electronic structures obtained with the two func-
tionals for the reduced surface.

In general, Pt clusters promote a stronger reducibility of
the TiO2 surface than the Au clusters. PBE functional com-
putations indicate that Au clusters do not have any significant
effect on the reducibility of the TiO2 surface. However, hy-
brid DFT calculations reveal that the Au clusters may help
reduce the TiO2 surface by about 0.7 and 0.2 eV for the Au2

and Au3 clusters, respectively. The effect of reducibility de-
creases with an increase in the metal cluster size due to the
stronger adsorption of smaller clusters on the reduced sur-
face. The enhanced reducibility of the TiO2 surface in the
presence of metal clusters can, in general, be attributed to the
formation of MIGS induced by metal cluster adsorption.
These MIGS offer states suitable for accommodating extra
electrons and facilitate the reduction. In the case of Pt ad-
sorption, this leads to the formation of MIGS at the Fermi
energy that are quite close to the conduction band �in com-
parison to Au adsorption, see Figs. 6�a� and 6�c�� so that the
oxygen vacancy formation energy is reduced by as much as
1–2 eV.

VI. CONCLUSIONS

The metal /TiO2 interface has been investigated for small
Au and Pt clusters using the periodic slab and PEEC models.
Both methodologies predict similar metal adsorption and
oxygen vacancy formation energies, with the PEEC method-
ology being significantly more efficient if hybrid exchange
functionals are used. Tests on the effect of different DFT
functionals, including the double-hybrid B2PLYP functional,
indicate that the GGA-PBE functional is able to predict the
strong Pt adsorption energy on the stoichiometric TiO2 sur-
face fairly accurately, while the popular B3LYP functional

seems to underestimate the Pt adsorption energy by about 0.5
eV. In contrast, reasonable electronic structures cannot be
obtained with the GGA-PBE functional. PEECM computa-
tions with hybrid PBE0 functional result in more physical
electronic structures with wider band gaps. Particularly for
the reduced TiO2 surface, the excess charge produced by
reducing the surface is fully localized on the Ti atoms neigh-
boring the vacancy if the PBE0 functional is used, while it is
delocalized if the GGA-PBE functional is used. This differ-
ence in the electronic structure is found to be important for
metal cluster adsorption on the reduced TiO2 surface and for
the effect of metal clusters on the reducibility of the TiO2

surface. Hybrid PBE0 calculations predict that the oxygen
vacancy formation energy decreases by about 1.2–2.2 eV in
the presence of Pt clusters and by about 0.2–0.7 eV in the
presence of Au clusters. In contrast, GGA-PBE calculations
predict that the oxygen vacancy formation energy decreases
only by 0.9–1.5 eV in the presence of Pt clusters and by
0.2–0.4 eV in the presence of Au clusters. The effect is more
pronounced for Pt clusters since Pt makes a strong covalent
type interaction with the TiO2 surface, while Au makes only
a weak filled-filled type interaction with TiO2.
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