
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Mechanical Engineering, Department of

8-20-2013

A Forward-Secure Certificate-based Signature Scheme A Forward-Secure Certificate-based Signature Scheme

Jiguo Li

Huiyun Teng

Xinyu Huang
University of South Carolina - Columbia, xyhuang@sc.edu

Yichen Zhang

Jianying Zhou

Follow this and additional works at: https://scholarcommons.sc.edu/emec_facpub

 Part of the Digital Communications and Networking Commons, and the Information Security

Commons

Publication Info Publication Info
Published in The Computer Journal, Volume 58, Issue 4, 2013, pages 853-866.

This Article is brought to you by the Mechanical Engineering, Department of at Scholar Commons. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/emec_facpub
https://scholarcommons.sc.edu/emch
https://scholarcommons.sc.edu/emec_facpub?utm_source=scholarcommons.sc.edu%2Femec_facpub%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarcommons.sc.edu%2Femec_facpub%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarcommons.sc.edu%2Femec_facpub%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarcommons.sc.edu%2Femec_facpub%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

© The British Computer Society 2013. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxt141

A Forward-Secure Certificate-Based
Signature Scheme

Jiguo Li
1∗

, Huiyun Teng
1
, Xinyi Huang

2
, Yichen Zhang

1

and Jianying Zhou
3

1College of Computer and Information Engineering, Hohai University, Nanjing, Jiangsu, China 210098
2School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, China 350000

3Institute for Infocomm Research (I2R), A*STAR, South Tower, Singapore 138632
∗Corresponding author: ljg1688@163.com; lijiguo@hhu.edu.cn

Cryptographic computations are often carried out on insecure devices for which the threat of key
exposure raises a serious concern. In an effort to address the key exposure problem, the notion of
forward security was first presented by Günther in 1990. In a forward-secure scheme, secret keys are
updated at regular periods of time; exposure of the secret key corresponding to a given time period
does not enable an adversary to ‘break’ the scheme for any prior time period. In this paper, we
first introduce forward security into certificate-based cryptography and define the security model of
forward-secure certificate-based signatures (CBSs). Then we propose a forward-secure CBS scheme,
which is shown to be secure against adaptive chosen message attacks under the computational Diffie–
Hellman assumption in the random oracle model. Our result can be viewed as the first step toward

solving the key exposure problem in CBSs and thus improving the security of the whole system.

Keywords: forward security; certificate-based signature; computational Diffie–Hellman assumption;
random oracle model

Received 8 January 2013; revised 20 August 2013
Handling editor: Chris Mitchell

1. INTRODUCTION

Nowadays, secret key exposure is arguably the greatest threat
against the security of a digital signature scheme, due to security
breaches of the underlying system or machine storing the
key. To deal with this issue, a variety of methods have been
proposed, including secret sharing [1], threshold cryptography
[2], proactive cryptography [3], leakage-resilient cryptography
[4–9] and forward security [10].

1.1. Related work

The notion of forward security was first proposed in the
context of key-exchange protocols by Günther [10]. A forward-
secure key-exchange protocol guarantees that exposure of long-
term secret information does not compromise the security of
previously generated session keys.

Anderson [11] introduced the notion of forward-secure
signatures to solve some defects in general digital signatures;
namely once the secret key is lost or stolen, the signatures
generated by this secret key will become invalid. Therefore,

forward security can reduce the influence of key exposure:
a lost or stolen key at a time period T will not affect the
validity of signatures produced before T . Bellare and Miner
[12] gave the first formal definition of forward-secure signatures
and presented a forward-secure digital signature scheme, which
is inspired by the Fiat and Shamir [13] and Ong and Schnorr
[14] identification and signature schemes. In their scheme,
the public key is constantly unchanged and the secret key is
generated by some one-way hash functions and previous time
period secret key. Therefore, signatures and secret key in each
time period are different. Even if the current time period secret
key is exposed, it would not affect the validity of previous
signatures. This is a countermeasure to alleviate the damage
caused by key exposure. In 2000, Krawczyk [15] presented
simple forward-secure signatures from any signature schemes.
Abdalla and Reyzin [16] proposed a new forward-secure digital
signature scheme with a shorter public key size. Their scheme
can be viewed as an improvement of the Bellare–Miner scheme
[12]. Tzeng and Tzeng [17] proposed a robust forward-secure
signature scheme which enhanced the security of Abdalla and
Reyzin’s forward-secure signature scheme by using threshold

The Computer Journal, 2013

 The Computer Journal Advance Access published December 3, 2013
 at U

niv of South C
arolina, T

hom
as C

ooper L
ibrary, Serial A

cq, C
olum

bia, SC
 292 on D

ecem
ber 1, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

2 J. Li et al.

and proactive mechanisms. Itkis and Reyzin [18] proposed
another forward-secure signature scheme, but the efficiency of
key generation and update algorithm is not satisfactory. The
performance of the above algorithms depends on the security
parameter as well as a priori maximum number of time periods
T . Therefore, setting T to an unnecessarily large number
will result in a considerable efficiency loss. In order to solve
this problem, Malkin et al. [19] constructed the first efficient
forward-secure digital signature scheme where the total number
of time periods for which the public key was used does not have
to be fixed in advance. Their scheme is a generic construction,
namely it can be realized on any underlying signature schemes,
and does not rely on specific computational assumptions like
discrete log or factoring. Furthermore, its forward security was
proved in the standard model. Subsequently, Kang et al. [20]
proposed two forward-secure signature schemes based on gap
Diffie–Hellman groups and proved their schemes to be secure
in a slightly stronger security notion than that used by Bellare
and Miner [12] in the random oracle model. To reduce the
risk of key exposure, forward-secure group signature was first
proposed by Song [21]. To simplify the integration of these
primitives into standard security architectures, Boyen et al.
[22] introduced the concept of forward-secure signatures with
untrusted updates where private keys are additionally protected
by a second factor (derived from a password). Key updates
can be made on encrypted version of signing keys so that
passwords only come into play for signing messages. The latter
works also suggested the integration of untrusted updates in the
Bellare–Miner forward-secure signature [12] and left open the
problem of endowing other existing forward-secure signature
systems with the same second factor protection. Libert et al. [23]
solved this problem by showing how to adapt the very efficient
generic construction of [19] in untrusted update environments.
Alomair et al. [24] proposed a generic construction method to
obtain a forward-secure signature scheme that is very efficient
in parameter size and computation times. Furthermore, they
showed that their scheme can be easily extended to proxy
signature schemes.

In Eurocrypt 2003, Gentry [25] introduced the notion of
certificate-based encryption (CBE). As in the traditional public
key infrastructure (PKI), each client in CBE generates its
own public/private key pair and the certificate authority (CA)
then generates a certificate that can guarantee the authenticity
of the client’s public key. In CBE, the certificate has an
additional feature, namely it also acts as a partial private key.
A successful decryption requires both the private key and the
up-to-date certificate. This provides an implicit verification of
one’s certificate and eliminates third-party queries for certificate
status. Since the CA does not know the client’s private key,
there is no key escrow problem in CBE. Certificate-based
cryptography is envisioned as a promising mechanism in
constructing efficient PKIs and has attracted a lot of attention
since it was proposed. Analogous to CBE, Kang et al. [26]
proposed the notion of certificate-based signatures (CBSs)

inspired by the idea of CBE presented by Gentry [25]. Li et al.
[27] first introduced key replacement attack into certificate-
based system and refined the security model of the CBS. They
showed that one of CBS schemes presented by Kang et al. [26]
was insecure under key replacement attacks. Furthermore, they
proposed a new secure and efficient CBS scheme, which was
shown to be existentially unforgeable against adaptive chosen
message attacks under the computational Diffie–Hellman
(CDH) assumption in the random oracle model. A generic
construction of CBSs was proposed by Wu et al. [28, 29]. Li
et al. [30] presented two new CBS schemes that are secure
against key replacement attacks. Compared with other designs,
their first scheme enjoys shorter signature length and less
operation cost. Their second scheme is the first construction
of a CBS secure against key replacement attacks in the standard
model. Recently, Li et al. [31] proposed an efficient short CBS
scheme, which requires only one pairing operation in signature
generation and verification. In addition, the signature size of
their scheme is only one group element. Furthermore, they
[32] proposed a new certificate-based signcryption scheme with
enhanced security features.

1.2. Motivations and contributions

CBSs have potential applications in trusted computing. Trusted
computing is undoubtedly a powerful technology, with a
huge range of possible applications. However, Balfe et al.
[33] pointed out some challenges for trusted computing,
which affects its widespread deployment. The most significant
challenge is the deployment and management of the PKI, which
is necessary to enable the general use of security services
(for example, some certificates from an endorsement CA, a
platform CA and one or more conformance CAs.) supported by
trusted computing. Another issue is that credential revocation
within a TC-PKI may introduce further inconvenience. Given
the complex dependencies between many of the TC-PKI
credentials, the compromise of an individual key and the
subsequent revocation of its associated public key certificate
will result in a cascading revocation of all dependent TPM
credentials. Solving the above problems seems to require a
lot of infrastructure. Similarly, the existing property-based
attestation solutions proposed by Chen et al. [34–36] require
a trusted third party to provide a reliable link of configurations
to properties, e.g. by means of certificates. A traditional PKI
system requires a large amount of computing time and storage
when the number of users increases rapidly. At the same
time, it is difficult for certificate revocation to distribute large
amounts of fresh certification information. The apparent need
for this infrastructure is regarded as a major reason, which
affects widespread implementation of public-key cryptography.
Therefore, traditional PKI is very difficult to directly apply
in a trusted computing setting. In Eurocrypt 2003, Gentry
[25] introduced the notion of CBE. The main motivation
of CBE/signature is to construct an efficient PKI requiring

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 3

less infrastructures, solve certificate revocation problem and
eliminate third-party queries in the traditional PKI. This new
cryptographic paradigm can supply practical methods for
general use of the above security services supported by trusted
computing. Forward-secure signature can guarantee that even if
the current time period secret key is exposed, it would not affect
the validity of previous signatures, which reduces the impact of
key exposure. Both CBSs and forward-secure signatures can
easily apply to security services required by trusted computing.
However, to date, there is no concrete design of forward-secure
CBSs. This paper is aimed at constructing an efficient forward-
secure CBS scheme, which enables general use of security
services supported by trusted computing.

In this paper, we introduce a new signature paradigm called
forward-secure CBS and formally define the security model.
It preserves the advantages of CBS such as implicit certificate
and no private key escrow. At the same time it also inherits
the properties of forward-secure signatures. We construct a
forward-secure CBS scheme. The key update algorithm in our
construction makes use of the pre-order traversal technique of
[37]. We associate time periods with all nodes of the tree, which
improves the efficiency of our key-generation and key-update
algorithm.

Organization. In Section 2, we review the notions of bilinear
mapping and the CDH problem, and introduce the formal
definition and security model of a key-evolving signature
scheme. In Section 3, we formally define the security model
of forward-secure CBSs. We define two different types of
adversaries: Type I adversary AI and Type II adversary AII ,
and describe their ability, respectively. In Section 4, we review
the pre-order traversal technique of binary trees and construct
a forward-secure CBS scheme. In Section 5, we prove the
security of our scheme in the random oracle model based on the
computation Diffie–Hellman assumption. Section 6 concludes
this paper.

2. PRELIMINARIES

In this section, we introduce several relevant background
knowledge including the bilinear mapping and CDH problem,
and review the formal definition and security model of forward-
secure signatures.

2.1. Bilinear mapping

Let G1 and G2 be two cyclic groups of prime order q, where
G1 is an additive group and G2 is a multiplicative group. Let
P be a generator of G1 and e : G1 × G1 → G2 be a bilinear
mapping with the following properties:

(1) Bilinear: For all P , Q ∈ G1 and all a, b ∈ Z
∗
q ,

e(aP, bQ) = e(P, Q)ab.
(2) Non-degenerate: e(P, P) �= 1 ∈ G2.
(3) Computable: e is efficiently computable.

2.2. The CDH problem

We assume that G1 is an additive cyclic group with prime order
q, and P is a generator of G1. Given (P, aP, bP), where a,
b ∈ Z

∗
q , compute abP. The advantage of an algorithm A in

solving the CDH problem in G1 is defined to be SuccCDH
A,G1

=
Pr[A(P, aP, bP = abP |a, b ∈ Z

∗
q].

The CDH assumption states that, for every probabilistic
polynomial-time algorithm A, SuccCDH

A,G1
is negligible.

2.3. A key-evolving signature scheme

A forward-secure digital signature scheme is, first of all, a key-
evolving digital signature scheme. A key-evolving signature
scheme is very similar to a standard one, except that its operation
is divided into time periods, each of which uses a different secret
key to sign a message. The keys are updated by an algorithm
that computes the secret key for the new time period based on
the current secret key. Meanwhile, the public key is unchanged
throughout the lifetime of the scheme. The following definition
of forward security is proposed by Abdalla and Reyzin [16].

Definition 1. A key-evolving digital signature scheme is a
4-tuple algorithm, FSIG = (FSIG.key, FSIG.update,
FSIG.sign, FSIG.vf), where

(i) FSIG.key, the key generation algorithm, takes as input
a security parameter k ∈ N (given in unary as 1k) and
the total number of periods N , and returns a pair (SK0,
PK), the initial secret key and the public key;

(ii) FSIG.update, the secret key update algorithm, takes as
input the secret key for the current period SKj and
returns the new secret key SKj+1 for the next period;

(iii) FSIG.sign, the signing algorithm, takes as input the
secret key SKj for the current time period j and a
message M to be signed, and returns a pair 〈j, sign〉,
the signature of M for time period j ;

(iv) FSIG.vf, the verification algorithm, takes as input the
public key PK, a message M and a candidate signature
〈j, sign〉, and returns 1 if 〈j, sign〉 is a valid signature
of M or 0, otherwise.

It is required that FSIG.vfPK (FISG.signSKj
(M), M) = 1

for every messageM and time period j .We assume that SKN+1is
an empty string and that FSIG.updateSKN

returns SKN+1.
When we work in the random oracle model, all the above-

mentioned algorithms would additionally have oracle access
to a public hash function H , which is assumed to be a random
oracle in the security analysis. Consider that an adversary is able
to obtain the secret key of some time period; following the idea
of Bellare and Miner [12], Abdalla and Reyzin [16] refined the
security model of forward-secure signatures. Recall that the goal
is that even under exposure of the current secret key, it should be
computationally infeasible for an adversary to forge a signature
with respect to a previous secret key. Formally, in order to attack

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4 J. Li et al.

forward-secure signature schemes, the adversary is modeled
via the following experiment in the random oracle model. In
this experiment, the adversary is denoted by F , and adversary’s
operation is divided into three phases: chosen message attack
(cma) phase, break-in (breakin) phase and forgery (forge)
phase.

Experiment 1. F-Forge-RO(FSIG,F)

Select H : {0, 1}∗ → {0, 1}l at random

(PK, SK0) ← FSIG.keyH (k, . . . , N)

j ← 0

repeat

j ← j + 1

SKj ← FSIG.updateH (SKj−1, j)

d ← F
H,FSIG.signH

SKj
(·)

(cma, PK)

Until (d = breakin) or (j = N)

If d �= breakin and j = T then j ← T + 1

(M, 〈b, sign〉) ← FH(forge, SKj)

If FSIG.vfHPK (M , 〈b, sign〉) = 1 and 1 ≤ b < j

and M was not queried of FSIG.signH
SKb

(·) in period b

then return 1 else return 0

In this model, an adversary knows the public key PK, the
total number of time periods N and the current time period j .
In the cma phase, according to time sequence, the adversary
can query signatures of messages which are chosen by himself,
and the challenger responds to the adversary’s queries by using
SK0, SK1, SK2, · · · .At the end of each time period, the adversary
can choose whether to stay in the same phase or switch to the
breakin phase. It cannot query signatures under previous secret
keys. The secret key will be exposed in time period j , so the
adversary can obtain a user’s secret key in time period j . In
the breakin phase, once the adversary has decided to break-in
in time period j , challenger will give the secret key of time
period j to the adversary. In the forge phase, the adversary
outputs a signature forgery 〈M, σ 〉 in period b, 0 < b < j .
The adversary is said to successfully attack the scheme FSIG
if FSIG.vf(M, 〈b, σ 〉) = 1 holds and M was not queried to
FSIG.signH

SKb
(·) in period b.

3. FORMAL DEFINITION AND SECURITY MODEL

Prior to describing our formal definition and security model in
detail, we first give a high-level introduction of how a signature
scheme works in certificate-based public key cryptography. The
following is a high-level description:

(i) A CBS scheme involves three parties: the certifier
(generates certificates), the signer (produces signatures)
and the verifier (verifies signatures).

(ii) At the very beginning, the certifier generates the system
parameter and a master private/public key pair (msk,
mpk). The system parameters and the master public key
mpk are assumed to be publicly known to all users in
the system.

(iii) An entity (say,Alice) generates a private/public key pair
(SKID, PKID) by taking system parameters as the input.

(iv) After that,Alice sends a certificate request to the certifier
and asks the latter to issue a certificate for PKID.

(v) The certifier verifies Alice’s request, and if everything
is correct, he/she will generate a certificate that binds
together Alice, PKID and other information. Depending
on concrete situations, Alice may need to provide the
proof of her knowledge of the relevant private key SKID.
At the end of this phase, the certificate is sent to its owner
Alice.

(vi) Alice then can produce signatures using the certificate
and her private key SKID.

(vii) The signature recipient verifies the signature using the
system parameters and the public keys of Alice and the
certifier. In particular, there is no need to verify Alice’s
certificate separately.

(viii) Alice needs to contact the certifier, in a regular time
period, for certificate updates.

This completes the high-level description of CBSs. The
reader is referred to [25–32] for details.

Inspired by the security models in [25–30], we define the
security model of forward-secure CBSs. In our security model,
the type I adversary AI can obtain a valid signature under
the public key which may be replaced by himself, with the
restriction that he can supply the corresponding secret key.
The type II adversary AII , who has the master secret key,
wishes to generate a valid signature under the public key
without the knowledge of the corresponding secret key. The
type II adversary AII mainly simulates a malicious certifier
who is able to produce certificates but is not allowed to replace
the target user’s public key. The security notion is defined
by the game between the challenger C and the adversary. In
this section, we give formal definitions of the forward-secure
CBS, describe several oracles that would be available to the
adversaries in forward-secure CBSs and define the attack power
of two adversaries, respectively.

3.1. Formal definition

A forward-secure CBS is a 6-tuple algorithm, FSIG.CBS =
(Setup, UserKeyGen, CertGen, KeyUpdate, Sign, Verify),
where Setup and CertGen algorithms are run by the certifier.
These algorithms work as follows:

(i) Setup, this algorithm takes as input a security parameter
k ∈ N (given in unary as 1k) and the total number
of periods N , and returns the certifier’s master secret
key msk, master public key mpk and public parameter

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 5

params, where mpk and params are published in the
system;

(ii) UserKeyGen, the user key generation algorithm, takes
as input user ID, mpk, params, and returns the user’s
initial secret key and the public key pair (SK0, PKID);
the system public key is PK = (mpk, PKID, params);

(iii) CertGen, the certificate generation algorithm, takes as
input the master secret key msk, system parameter
params, the identity ID of a user and its public key PKID.
It outputs a certificate CertID;

(iv) KeyUpdate, the secret key update algorithm, takes as
input the secret key of the current period SKj and returns
the new secret key SKj+1 for the next period;

(v) Sign, the signing algorithm, takes as input the secret key
SKj of the current time period j , certificate CertID, user
ID and a message M to be signed, and returns a pair
〈j, sign〉, the signature of M for time period j ;

(vi) Verify, the verification algorithm, takes as input the
public key PK, a message M and a candidate signature
〈j, sign〉, and returns 1 if 〈j, sign〉 is a valid signature
of M or 0, otherwise.

It is required that VerifyPK(SignSKj ,CertID(M), M) = 1 for
every message M and time period j . We assume that SKN+1 is
an empty string and that KeyUpdateSKN

returns SKN+1.

Remark 1. To eliminate the need for online certificate status
checks in our scheme, which significantly reduces the workload
of a CA, we enhance the security notion of forward-secure
CBS that follows the idea of ‘certificate updating’ in [25, 26].
We can easily define it by replacing algorithm CertGen with
algorithms Upd1 and Upd2 in [25, 26]. Concrete algorithms are
as follows:

(i) Upd1, the CertifierUpdate algorithm, takes as input the
master secret key msk, system parameter params, i,
string s ∈ S, where S is a string space, the identity
ID of a user and its public key PK at the start of time
period i. It outputs Cert′i , which is sent to the user.

(ii) Upd2, the UserUpdate algorithm, takes as input system
parameter params, i, Cert′i , the identity ID of a user
and (optionally) Certi−1 at the start of time period i. It
returns Certi .

In the corresponding algorithm, we replace certificate
CertIDwith the updated certificate Certi , which does not affect
the security model, construction of our scheme and security
proof.

Remark 2. As stated in [25], it does not necessarily have to
be ‘certificate updating’, and it can be useful for applications
other than certificate management. In particular, it may be useful
in other situations where authorization or access control is an
issue. Therefore, we simplify our algorithms in our definition
in order to avoid complex symbols.

3.2. Adversary oracles

We first define the following oracles that can be accessed by the
adversary in the forward-secure CBSs.

UserKeyGen: This oracle maintains two lists L1 and L2,
which are initially empty and used to record the information for
each user ID. On a UserKeyGen query ID, if ID has already
been created, nothing is to be carried out by the challenger C.
Otherwise, C runs the algorithm UserKeyGen and obtains the
initial secret key and public key pair (SKID, PKID). Then it adds
(ID, SKID, PKID) into the list L1 and adds (ID, PKID) into the
list L2. Here, PKID = PKID. In this case, ID is said to be created.
In both cases, PKID is returned. It is noted that L1 provides the
information of ID’s secret key and the public key when it is
created; L2 provides the information of ID’s current public key,
denoted as PKID, which might not be the one generated by this
oracle.

PKReplace: On a PKReplace query (ID, PK′
ID), C finds

the user ID in the list L2, sets PKID = PK′
ID and updates

the corresponding information in the list L2. Note that PK′
ID

is chosen by the adversary. For a created user ID, the adversary
can replace the public key repeatedly.

CertGen: On a CertGen query ID, C runs algorithm
CertGen and returns the user’s certificate corresponding to the
user’s public key generated by UserKeyGen. Note that CertID
is the certificate of the pair (ID, PKID), where PKID is the public
key returned from the oracle UserKeyGen.

Corruption: On a Corruption query (ID, j), where ID
denotes the identity which has been created, C checks the list
L1 and returns the secret key (SKID, j) in current time period j .
Note that the secret key is the one corresponding to ID’s original
public key PKID returned by UserKeyGen.

Sign: On a Sign query (ID, m), where ID denotes the
identity which has been created. If the user’s public key
has been replaced, the adversary must supply the secret key
corresponding to PK′

ID. Otherwise, C runs algorithm Sign and
returns the signature σ in the current time period.

Breakin: On a Breakin query (ID, T), C returns the user
ID′s secret key SKT for a given time period T to adversary A;
A does not need to make any Corruption queries.

Remark 3. Corruption oracle mainly models a user collusion
attack in current time period j . Corruption oracle is not queried
in the break-in time period. While the break-in oracle is only
queried once before moving into the break-in phase, it models
forward security of the scheme.

3.3. Security against the key replacement adversary AI

In this section, we will consider the type I adversary AI . We will
describe the attack scenarios where an adversary wants to forge
a valid signature under the public key PKID∗ whose certificate
is not known to him in time period γ for some 0 ≤ γ < T ; T is
the key exposure time period. The public key PKID may be the

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6 J. Li et al.

genuine one generated by the user ID or the fake one chosen by
the adversary.

(1) AI can obtain some message/signature pairs (Mi, σi) in
any time periods α for some 0 ≤ α ≤ T generated by
user ID which is chosen by himself.

(2) AI can replace any user ID’s public key with PK′
ID which

is chosen by himself. He can dupe any other third party
to verify the user ID’s signatures using the false public
key PK′

ID.
(3) If AI has replaced the user ID’s public key, he cannot

obtain the certificate of the false public key from the
certifier.

In this game, the adversary AI knows the user’s public key
PKID, the total number of time periods N and the current time
period j . The adversary AI runs in three phases. In the first
phase, the chosen message attack phase, the adversary AI has
access to a signing oracle defined in Section 3.2, which it can
query to obtain signatures of messages of its choice with respect
to the current secret key. At the end of each time period, the
adversary can choose whether to stay in the same phase or switch
to the break-in phase. In the break-in phase, which models the
possibility of a key exposure, we give the adversary the secret
key (SKID, T) in the current time period T it decided to break
in. In the last phase, the forgery phase, the adversary AI outputs
a pair signature message, that is, a forgery. The adversary AI is
considered to be successful if it forges a signature of some new
message (that is, not previously queried to the signing oracle)
for some time period prior to T . The security of a forward-
secure CBS scheme against a key replacement and adaptively
chosen message attack is defined by the game between AI and
the challenger C as follows:

Chosen Message Attack Phase:
Setup: The challenger C runs the algorithm Setup and returns

(mpk, params) to AI .
Query: In polynomial time t , AI can adaptively submit

various queries except Breakin query defined in Section 3.2
and hash queries to the challenger in the current time period,
where we regard the hash function as a random oracle. Note
that AI can also submit the CertGen query. On A′

I s CertGen
query (ID, PKID), C runs the algorithm CertGen and returns
the user ID’s certificate CertID to AI .

In each time period, AI can choose whether to stay in the
same phase or switch to the breakin phase. It cannot query any
oracles in previous time periods.

Break-in Phase:
Breakin query: The challenger C models the possibility of

a key exposure and gives the user’s secret key for the specific
time period T to the adversary AI .

Forgery Phase:
At last, AI outputs a forgery < γ, M∗, σ ∗, ID∗, PKID∗ >. We

say that AI wins if all conditions have to be fulfilled.

(1) σ ∗ is a valid signature on the message M∗ under the
public key PKID∗ in the time period γ , 0 ≤ γ < T .

Here, PKID∗ is chosen by AI and might not be the one
returned from the oracle UserKeyGen.

(2) ID∗ has never been submitted as one of CertGen
queries.

(3) < M∗, ID∗ > has never been submitted as one of Sign
queries in time period γ .

We define the success probability of AI winning the above
game as Succcma,cida,breakin

AI
.

Definition 2. We say a forward-secure CBS scheme is secure
against a (t, q) chosen message and chosen identity adversary
AI if AI runs in polynomial time t , makes at most q queries
and Succcma,cida,breakin

AI
is negligible.

3.4. Security against the malicious certifier
adversary AII

In this section, we will consider the type II adversary AII .
Informally, we will describe the attack scenarios where the
malicious certifier wants to generate a valid signature under the
public key PKID∗ without the knowledge of the corresponding
secret key.

(i) AII has the knowledge of the certifier’s secret key msk.
(ii) AII can obtain some message/signature pairs (Mi, σi)

in any time periods α for some 0 ≤ α ≤ T generated
by user ID which is chosen by himself.

(iii) AII cannot replace any user’s public key.

The security of a forward-secure CBS scheme against a
type II adversary is defined by the game between AII and the
challenger C as follows:

Chosen Message Attack Phase:
Setup: The challenger C runs the algorithm Setup and returns

(mpk, msk, params) to AII .
Query: In polynomial time t , AII can adaptively submit

UserKeyGen, Corruption, Sign and hash queries to the oracles
in the current time period. Here AII has obtained the master
secret key, namely, he can calculate any user’s certificate by
himself. So AII does not need to submit any CertGen queries;
AII cannot submit public key replacement query.

Break-in Phase:
Break-in query: The challenger C models the possibility of

a key exposure and gives the user’s secret key for the specific
time period T to the adversary AII .

Forgery Phase:
At last, AII outputs a forgery < γ, M∗, σ ∗, ID∗ >. We say

AII wins if all conditions have to be fulfilled.

(i) σ ∗ is a valid signature on the message M∗ under the
public key PKID∗ and the system’s master public key
mpk in the time period γ , 0 ≤ γ < T . Not that PKID∗

is the public key output from the oracle UserKeyGen;
more explicitly, the adversary does not replace the target

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 7

user public key, i.e. he only commits to a non-target ID
at some point and then a user public key for this ID is
generated by the simulator.

(ii) < M∗, ID∗ > has never been submitted as one of Sign
queries in time period γ .

(iii) Once the adversary switches to the breakin phase, ID∗
has never been submitted as one of the Corruption
queries prior to the breakin phase again.

We define the success probability of AII winning the above
game as Succcma,cida,breakin

AII
.

Definition 3. We say a forward-secure CBS scheme is secure
against a (t, q) chosen message and chosen identity adversary
AII if AII runs in polynomial time t , and makes at most q

queries and Succcma,cida,breakin
AII

is negligible.

4. A FORWARD-SECURE CBS SCHEME

Inspired by the CBS scheme proposed by Li et al. [27, 30], we
utilize the pre-order traversal technique of binary trees [37] to
update the user’s secret key in the design of a forward-secure
CBS scheme. Our construction is existentially unforgeable
against adaptive chosen message attacks under the CDH
assumption in the random oracle model. Before introducing
our concrete scheme, we first summarize the pre-order traversal
technique.

4.1. Notations

The key-evolving method of our scheme employs the well-
known pre-order traversal technique of binary trees [37], which
is the advancement of the tree-traversal method in [38]. The pre-
order traversal technique associates time periods with all nodes
of the tree, while the tree-traversal method in [38] associates
time periods with the leaves only. Thus, the depth of binary tree
can be decreased from log2(N + 1) to log2(N + 1) − 1 (N is
the total of time periods) and the running time of the key update
algorithm can be reduced from O(logN) to O(1) [37].

If we use a full binary tree with depth l, then the number of
time periods is N = 2l+1 −1. The root of the tree is called node
ε. Denote the node (represented by a bit string) and its secret key
corresponding to the time period i by ωi and Sωi , respectively.
Let ωi0(ωi1) be the left (right) child node and let ωi |k be a k

bit-prefix of ωi . Let ω|k be the sibling node of ω|k. Pre-order
traversal can be defined as follows: ω0 = ε is the root node, and
if ωi is an internal node, then ωi+1 = ωi0. If ωi is a leaf node
and i < N − 1, ωi+1 = ω′1. ω′0 is the longest prefix of ωi .

The system public key PK remains fixed throughout the
lifetime of the system, which includes the master public
key mpk, the user public key PKID and the corresponding
parameters. In the time period i, the signer generates a signature
with respect to the node secret key Sωi , but the secret key SKi

contains secret keys of the right siblings of the nodes on the

ε

0

00

000 001

1

0

2

3 4

01

010 011

5

6 7

1

10

100 101

8

9

10 11

11

110 111

12

13 14

FIGURE 1. the key update algorithm based on the pre-order traversal
method of binary trees
time period 0: SK0 = {Sε};
time period 1: SK1 = {S1, S0};
time period 2: SK2 = {S1, S01, S00};
time period 3: SK3 = {S1, S01, S001, S000};
time period 4: SK4 = {S1, S01, S001};
time period 5: SK5 = {S1, S01};
time period 6: SK6 = {S1, S011, S010};
time period 7: SK7 = {S1, S011};
.

path from the root to ωi and the secret node key Sωi . That is,
whenever ω′0 is a prefix of ωi , SKi contains the secret key of
node ω′1. So the secret key of time period i is expressed by
SKi = (Sωi |1, Sωi |2, . . . , Sωi |n, Sωi), where ωi = ω1 · · · ωn and
Sωi |k = NULL if the last bit of ωi |k is 1.

The process of the key update algorithm can be easily
implemented via a stack. The secret key SKi can be organized as
a stack of node keys STACKSK, with the node secret key Sωi on
top.At the end of the time period i, the signer runs the key update
algorithm, first pops the current node secret key Sωi off the stack.

(i) If ωi is an internal node, ωi+1 = ωi0, then it generates
secret keys Sωi0 and Sωi1 of ωi0 and ωi1, respectively,
and pushes Sωi1 and then Sωi0 onto the stack. The new
top of the stack is Sωi0.

(ii) If ωi is a leaf, then the next key on top of the stack is
Sωi+1 .

After generating the secret key of ωi+1, it erases the secret
node key Sωi in storage.

For example, we suppose l = 3 and the root secret key is
Sε = SNε; then the key update algorithm based on the pre-order
traversal method of binary trees is as in Fig. 1, where the node
is in black numbers, and the time period is in black numbers
on a blue background. The total time period is N = 15, and
the time period is 0–14 (represented by a bit string). In our
example, node ε is the root node of the binary tree, node 0(1)
is the left (right) child node of the root node, node 00(01) is
the left (right) child node of the node 0, node 10(11) is the
left (right) child node of the node 1 and so on (see Fig. 1).

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

8 J. Li et al.

Then, by the pre-order traversal method of binary trees, we can
assign nodes to time periods. Denote the initial time period
corresponding to the root node, time period 1 corresponding to
node 0, time period 2 corresponding to node 00, . . ., time period
14 corresponding to node 111 (see Fig. 1). By SK we denote the
user’s time period secret key and they are organized as a stack
of node keys STACKSK, and Si is the node secret key of the
binary tree. Therefore, the process of the key update algorithm
as shown in Fig. 1.

4.2. Concrete scheme

We now construct a forward-secure CBS scheme FSIG.CBS
using bilinear maps.

Setup: Given a security parameter 1k and depth of the binary
tree l (the total number of time periods is N = 2l+1 − 1), the
algorithm works as follows:

(i) Let G1, G2 be groups of a prime order q in which there
exists a bilinear map e : G1 × G1 → G2.

(ii) Select a random number s ∈ Z
∗
q as the master secret key

msk, choose an arbitrary generator P ∈ G1 and compute
mpk = sP as the master public key.

(iii) Choose four secure cryptographic hash functions H1 :
{0, 1}∗ × G1 → G1, H2 : {0, 1}∗ × G1 → Z

∗
q ,

H3 : {0, 1}∗ × {0, 1}∗ × G1 × G1 → G1 and H4 :
{0, 1}∗×{0, 1}∗×{0, 1}∗×G1×G1 → G1. The system
parameters are params =< G1, G2, e, q, P, l, H1,

H2, H3, H4 >. It is seen that params and mpk are public,
and the algorithm keeps msk secret.

UserKeyGen: Given params, select a random number x ∈
Z

∗
q as the user initial secret key SK0 and compute the user public

key PKID = xP ∈ G1. Not that SNε = xH2(ε) is the root secret
key of binary tree corresponding to time period 0, where node
ε is the root node of the binary tree. The system public key is
PK = (mpk, PKID, params).

CertGen: Given params, msk, user public key PKID and user
identity ID ∈ {0, 1}∗, compute QID = H1(ID, PKID) ∈ G1;
then output the user certificate CertID = sQID ∈ G1.

KeyUpdate: The input is the current time period i ∈ [0, N −
1), the user secret key of current time period SKi = STACKSK

and the user public key PKID. Let ω be the node corresponding
to i. In general, the secret key of the node ω = ω1 · · · ωn

consists of n + 1 group elements1 and is denoted by Sω =
(Rω|1, Rω|2, · · · , Rω|n−1, Rω, SNω). For the special case of ω =
ε, we simply have SNε = Sε = xH2(ε) and the other values are
not present. It first pops the secret key Sω off the stack STACKSK

and then updates a secret key with respect to the position of node
ω in the tree as follows:

(i) If ω is an internal node, then it chooses random numbers
ρω0, ρω1 ∈ Z

∗
q , and computes Rω0 = ρω0P , SNω0 =

1The lower case “n” is associate with the position of the node in the tree.
As shown in Fig 1, for example, node 111(n = 3), node 10(n = 2).

SNω+hω0ρω0, Rω1 = ρω1P and SNω1 = SNω+hω1ρω1,
where hω0 = H2(ω0, Rω0) and hω1 = H2(ω1, Rω1).
So the left child node secret key is Sω0 = (Rω|1, . . . ,
Rω|n−1, Rω, Rω0, SNω0) and the right child node secret
key is Sω1 = (Rω|1, . . . , Rω|n−1, Rω, Rω1, SNω1). Then
pushes Sω1 and Sω0 in order into the stack, and erases Sω.

(ii) If ω is a leaf, then only erases Sω.

Sign: Take as input params, the user identity ID, the time
period i ∈ [0, N), the secret key SKi = STACKSK, the user
certificate CertID and message M ∈ {0, 1}∗, the signer pops
the top element in the stack STACKSK and uses it to generate a
signature. Let ω = ω1 · · · ωn. The algorithm works as follows:

(i) Choose a random number r ∈ Z∗
q and computeU = rP .

(ii) Compute V = H3(M, i, U, PKID), W = H4(M, i, ID,

U, PKID).
(iii) Compute FS = CertID + SNω · V + rW .
(iv) The signer outputs < i, σ = (U, FS, Rω|θ) > where

1 ≤ θ ≤ n as the signature of M .

Verify: Given the message/signature pair (M, σ =
(U, FS, Rω|θ)) where 1 ≤ θ ≤ n in time period i and the
system public key PK, this algorithm works as follows:

(i) Compute QID = H1(ID, PKID) ∈ G1, V = H3(M, i,

U, PKID), W = H4(M, i, ID, U, PKID), hω|θ = H2

(ω|θ, Rω|θ) for 1 ≤ θ ≤ n.
(ii) If e(P, FS) = e(mpk, QID)e(V , PKID + ∑n

θ=1 hω|θ
Rω|θ)e(U, W), then < i, σ = (U, FS, Rω|θ) > where
1 ≤ θ ≤ n is a valid signature of < i, M >, output true.
Otherwise, the signature is invalid, output false.

Correctness
If σ is a genuine signature generated from algorithm Sign,

then

e(mpk, QID)e(V , PKID +
n∑

θ=1

hω|θRω|θ)e(U, W)

= e(mpk, QID)e(PKID, V)e

(
V,

n∑
θ=1

hω|θRω|θ

)
e(U, W)

= e(mpk, QID)e(P, xV)e

(
V,

n∑
θ=1

hω|θρω|θP

)
e(U, W)

= e(P, sQID)e(P, xV)e

(
P,

n∑
θ=1

hω|θρω|θV

)
e(P, rW)

= e

(
P, sQID + xV +

n∑
θ=1

hω|θρω|θV + rW

)

= e(P, CertID + SNω · V + rW)

= e(P, FS).

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 9

5. SECURITY ANALYSIS

This section provides the security analysis on the proposed
scheme. We will prove that the security of our scheme
FSIG.CBS depends on the hardness of the CDH problem onG1.

Theorem 1. If there is a (t, qR) Type I adaptively chosen
message and chosen identity adversary AI which makes at most
qR queries to random oracles, and AI wins the game defined
in Section 3.3 with probability Succcma,cida,breakin

AI
, then there

exists another algorithm B which can solve a random instance
of the CDH problem in polynomial time with success probability

SuccCDH
B,G1

= 1
N(qR+1)

(
1 + 1

qR+1

)
Succcma,cida,breakin

AI
.

Proof. In the proof, we consider hash functions as random
oracles. Let AI be an adversary attacking FSIG.CBS; then we
construct an algorithm B which can make use of AI in solving
the CDH problem. Let P be the generator of G1. Algorithm
B is given a challenge (P, aP, bP) = (P, P1, P2) and its
goal is to compute abP. For that purpose, algorithm B will
simulate the oracles and interact with the adversary AI as the
subroutine.

It is seen that B selects a total time period N and guesses
the time period T , where 0 ≤ T ≤ N − 1. In time period
T , AI will ask the breakin query. Let ωT = ω1ω2 · · · ωs be
a bit string of the node corresponding to the time period T .
Note that B chooses hωT , ρωT and hωT |θ̄ , ρωT |θ̄ at random in
Z

∗
q , and computes RωT = ρωT P , RωT |θ̄ = ρωT |θ̄ P , where

1 ≤ θ ≤ n and ωθ = 0. We see that B sets the master
public key mpk = aP = P1, where P1 is the input of the
CDH problem. Then B sets H2(ω

T |θ̄ , RωT |θ̄) = hωT |θ̄ and
H2(ω

T , RωT) = hωT . These result in generating the node secrets
contained in the secret key SKT . Then B gives params =<

G1, G2, e, q, P, l, H1, H2, H3, H4 >, mpk and N to AI . It is
found that B responds to hash queries, user key generation
queries, certificate queries, public key replacement queries,
corruption queries, sign queries and break-in queries from AI

as follows.
Chosen Message Attack Phase:
B initializes α = 0. Let ωα = ω1 · · · ωn be the node

corresponding to the time period α. We assume that AI outputs
d = 0 after the chosen message attack for period 0. If d �=
breakin and α �= N , AI continues to make chosen message
attacks in the next time period.

UserKeyGen. On a new UserKeyGen query IDi , B
randomly selects xIDi

∈ Z
∗
q , sets (SKIDi

, PKIDi
) =

(xIDi
, xIDi

P), then adds (IDi , SKIDi
, PKIDi

) into the list L1 and
adds (IDi , SKIDi

, PKIDi
) into the list L2, where PKIDi

= PKIDi
.

It is noted that B returns PKIDi
to AI .

KeyUpdate. Note that this procedure is done by B without
any requests of AI . It is just preparing answers for queries of
next time periods and breakin query. Given current time period

α, B simulates the key update algorithm as follows:

(1) If ωα is a leaf node or α = N , B skips the key update
procedure.

(2) If ωα is an internal node, then B selects hωα0,

hωα1, ρωα0, ρωα1 ∈ Z
∗
q at random, and computes

Rωα0 = ρωα0P , Rωα1 = ρωα1P , H2(ω
α0, Rωα0) =

hωα0, H2(ω
α1, Rωα1) = hωα1.

Then B can compute the user IDi’s secret key SKIDi
in the next

time period α, and use the new secret key SKIDi
to update the

list L1. Note that these result in generating the secret key SKT .
H1 queries. On a new H1 query < IDi , PKIDi

>, B chooses
a random number coini ∈ {0, 1} such that Pr[coin = 1] = δ,
where the value of δ will be determined later.

(i) If coini = 0, B chooses a random number ci ∈ Z
∗
q and

sets H1(IDi , PKIDi
) = ciP .

(ii) Else coini = 1,B chooses a random number ci ∈ Z
∗
q and

sets H1(IDi , PKIDi
) = ciP + P2, where P2 is another

input of the CDH problem.

In both cases, B will add (< IDi , PKIDi
>, ci, coini) into

H1 − list and return H1(IDi , PKIDi
) to AI .

H2 queries. H2 does not need to be simulated as a random
oracle. We suppose that H2 is a secure cryptographic hash
function with collision resistance. The adversary can issue
queries to a real hash function.

H3 queries. On a new H3 query <Mi, α, Ui, PKIDi
>, B

chooses a random number di ∈ Z
∗
q and sets H3(Mi, α, Ui,

PKIDi
) = diP . Then B adds (<Mi, α, Ui, PKIDi

>, di) into H3-
list and returns H3(Mi, α, Ui, PKIDi

) to AI .
H4 queries. On a new H4 query <Mi, α, IDi , Ui, PKIDi

>, B
chooses a random number λi ∈ Z

∗
q and sets H4(Mi, α, IDi , Ui,

PKIDi
) = λiP . Then B adds (<Mi, α, IDi , Ui, PKIDi

>, λi,

λiP) into H4-list and returns H4(Mi, α, IDi , Ui, PKIDi
) to AI .

PKReplace. On a public key replacement query
<IDi , PK′

IDi
>, this oracle finds the user IDi in the list

L2, sets PKIDi
= PK′

IDi
and updates the corresponding

information as <IDi , PK′
IDi

>.
CertGen. On a certificate query IDi , B first checks the

list L1 and L2 to obtain IDi’s original public key PKIDi
and

IDi’s current public key PKIDi
. If PKIDi

�= PKIDi
, it means

that IDi’s public key has been replaced by the adversary. In
this case, B rejects to respond. Otherwise, PKIDi

= PKIDi
,

the user IDi’s public key is the original public key returned
by UserKeyGen; then B works as follows. First, we assume
that (<IDi , PKIDi

>, ·, ·) has been in H1 − list. If not, B adds
(<IDi , PKIDi

>, ci, coini) into H1 − list in the same way that
he responds to H1 queries.

(i) If coini = 0, which means QIDi
= H1(IDi , PKIDi

) =
ciP , B returns the certificate CertIDi

= ciP1 to AI .
(ii) Otherwise, B aborts.

Corruption. On a Corruption query IDi in time period α, if
0 ≤ α < T , B first checks the list L1 and returns SKIDi

to AI .
Otherwise, α = T and B aborts.

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

10 J. Li et al.

Sign. On a Sign query < Mi, IDj >, B first checks the list
L1 and L2 to obtain IDj ’s original public key PKIDj

and IDj ’s
current public key PKIDj

. If PKIDj
�= PKIDj

, B will ask the
adversary to supply the current secret key SKIDj

corresponding
to PKIDj

. After that, B uses SKIDj
and the certificate for PKIDj

to generate Mi’s signature σi . Otherwise, PKIDj
= PKIDj

, and
B responds to its signature query as follows:

If α �= T , B first checks the list H1 − list to obtain
(<IDj , PKIDj

>, cj , coinj). If coinj = 0, B can generate
the certificate CertIDj

as he responds to theCertGen queries
and uses (CertIDj

, SKIDj
) to generate Mi’s signature σi . Else,

coinj = 1 and H1(IDj , PKIDj
) = cjP + P2. Then B chooses a

random number ri ∈ Z
∗
q and sets Ui = riP − P1.

(i) B checks H3 − list: if (<Mi, α, Uj , PKIDj
>, ·) does not

exists in H3 − list, B will add (<Mi, α, Uj , PKIDj
>, di)

into H3 − list in the same way that he responds to H3

queries.
(ii) B checks H4 − list: if (<Mi, α, IDj , Ui, PKIDj

>, ·, ·)
exists in H4 − list, a collision occurs, and B
must reselect the number ri . Then B further sets
H4(Mi, α, IDj , Ui, PKIDj

) = λiP + P2 and adds
(<Mi, α, IDj , Ui, PKIDj

>,λi, λiP) into H4 − list.
(iii) B computes FSi = cjP1 + (xIDj

+ ∑n
θ=1 hω|θ

ρω|θ)H3(Mi, α, Ui, PKIDj
) + λiUi + riP2 and outputs

σi = (Ui, FSi) as the signature in time period α.

Correctness

e(P, FSi)

= e

(
P, cjP1 +

(
xIDj

+
n∑

θ=1

hω|θρω|θ

)

× H3(Mi, α, Ui, PKIDj
) + λiUi + riP2

)

= e

(
P, cjP1 +

(
xIDj

+
n∑

θ=1

hω|θρω|θ

)

× H3(Mi, α, Ui, PKIDj
) + λiUi + riP2 − abP + abP

)

= e

(
P, a(cjP + P2) +

(
xIDj

+
n∑

θ=1

hω|θρω|θ

)

× H3(Mi, α, Ui, PKIDj
)+λi(riP − P1) + ribP −abP

)

= e

(
P, a(cjP + P2) +

(
xIDj

+
n∑

θ=1

hω|θρω|θ

)

× H3(Mi, α, Ui, PKIDj
) + (ri − a)λiP + (ri − a)P2

)

= e

(
P, a(cjP + P2) +

(
xIDj

+
n∑

θ=1

hω|θρω|θ

)

× H3(Mi, α, Ui, PKIDj
)

+ (ri − a)H4(Mi, α, IDj , Ui, PKIDj
)

)

= e(mpk, QIDj
)

× e

(
H3(Mi, α, Ui, PKIDj

), PKIDj
+

n∑
θ=1

hω|θRω|θ

)

× e(Ui, H4(Mi, α, IDj , Ui, PKIDj
)).

If α = T , B randomly selects di , λi , ri ∈ Z
∗
q and computes

H3(Mi, α, IDj , PKIDj
) = diP , H4(Mi, α, IDj , Ui, PKIDj

) =
λiP , Ui = riP ; B gives <T, σ = (Ui, FSi)> and RωT |θ
(1 ≤ θ ≤ n) to AI , where FS = CertIDj

+ SNωT · V + λiUi .
Break-in Phase:
When AI outputs a decision value d, B simulates the breakin

phase as follows. When α < T and d = 0, then AI increments
α and moves into the cma phase for period α. When α = T

and d = breakin, B returns the current secret key SKT =
(SωT |1, SωT |2, · · · , SωT |n−1, SωT), where ωT = ω1ω2 · · · ωn, as
the response of breakin query to AI . If none of the above cases
occur, B fails and aborts. Note that if AI comes into the breakin
phase, it cannot get access to the previous oracle.

Forgery phase:
After the above attack process, AI outputs a forgery

<γ, M∗, σ ∗ = (U∗, FS∗), ID∗, PKID∗> for 0 ≤ γ < T , ωγ =
ω1ω2 · · · ωn. It is seen that PKID∗ is chosen by AI

and might not be ID∗’s public key output from the
oracle UserKeyGen. We assume that (<ID∗, PKID∗>,

c∗, coin∗), (<M∗, γ, U∗, PKID∗>, d∗), (<M∗, γ, ID∗, U∗,
PKID∗>, λ∗, λ∗P) have been in H1−list, H3−list and H4−list,
respectively. If σ ∗ is a valid signature of the message M∗ in time
period γ , then

FS∗ = CertID∗ + SNωγ · V ∗ + r∗λ∗P
= aH1(ID

∗, PKID∗)

+
(

xID∗ +
n∑

θ=1

hωγ |θρωγ |θ

)
· d∗P + λ∗U∗

= aH1(ID
∗, PKID∗) + d∗PKID∗

+
n∑

θ=1

d∗hωγ |θRωγ |θ + λ∗U∗.

(1) If coin∗ = 1 and d = breakin, H1(ID∗, PKID∗) =
c∗P + P2, B can compute

abP = FS∗ −
(

c∗P1 + d∗PKID∗

+
n∑

θ=1

d∗hωγ |θRωγ |θ + λ∗U∗
)

.

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 11

(2) Otherwise, B fails to solve this instance of the CDH
problem.

According to the simulation, B can compute the value of abP
if and only if all the following four events happen:

Event E1: B does not abort during the simulation.
Event E2: AI outputs α = T and d = breakin.
Event E3: AI outputs a valid forgery in time period γ

for 0 ≤ γ < T .
Event E4: In the forgery output by AI , coin∗ = 1.

Therefore, the probability that B solves this instance of the
CDH problem is SuccCDH

B,G1
= Pr[E1 ∧ E2 ∧ E3 ∧ E4] =

Pr[E1] Pr[E2|E1] Pr[E3|E1 ∧ E2] Pr[E4|E1 ∧ E2 ∧ E3]. All
simulations can be done in polynomial time. From the
simulation, we have Pr[E1] ≥ (1 − δ)qR , Pr[E2|E1] ≥ 1/N ,
Pr[E3|E1 ∧ E2] = Succcma,cida,breakin

AI
and Pr[E4|E1 ∧ E2 ∧

E3] = δ. Thus, SuccCDH
B,G1

≥ δ(1 − δ)qR Succcma,cida,breakin
AI

/N .
When δ = 1/(qR + 1), this probability is maximized at

SuccCDH
B,G1

= 1

N(qR + 1)
(1 + 1

qR + 1
)Succcma,cida,breakin

AI
.

Theorem 2. If there is a (t, qR) Type II adaptively chosen
message and chosen identity adversary AII which makes at
most qR queries to random oracles, and AII wins the game
defined in Section 3.4 with probability Succcma,cida,breakin

AII
, then

there exists another algorithm B which can solve a random
instance of the CDH problem in polynomial time with success
probability

SuccCDH
B,G1

≥ (1 − 1/q ′)qR Succcma,cida,breakin
AII

/(q ′N),

where 1 �= q ′ ≤ qR denotes the number of queries submitted to
the oracle UserKeyGen.

Proof. Like the proof of Theorem 1, we consider hash
functions as random oracles. Let AII be an adversary attacking
FSIG.CBS; then we construct an algorithm B which can solve
the CDH problem. Let P be the generator of G1. Algorithm
B is given a challenge (P, P1, P2), where P1 = aP ∈ G1,
P2 = bP ∈ G1, and its goal is to compute abP. Algorithm B
will simulate the oracles and interact with the adversary AII as
the subroutine.

It is noted that B selects a total time period N and guesses
the time period T , where 0 ≤ T ≤ N − 1; AI will ask the
breakin query in time period T . Let ωT = ω1ω2 · · · ωn be a
bit string of the node corresponding to the time period T . It is
seen that B chooses ρωT , hωT and ρωT|θ̄ , hωT|θ̄ at random in Z

∗
q ,

and computes RωT = ρωT P , RωT|θ̄ = ρωT|θ̄ P , where 1 ≤ θ ≤
n and ωθ = 0. It is found that B sets H2(ω

T|θ̄ , RωT|θ̄) =
hωT|θ̄ and H2(ω

T, RωT) = hωT ; B selects a random number
s ′ ∈ Z

∗
q , and sets the master secret key msk = s ′ and the

master public key mpk = s ′P . Then B gives msk, mpk, N and

params =< G1, G2, e, q, P, l, H1, H2, H3, H4 > to AII . It
is noted that B simulates hash queries, user key generation
queries, corruption queries, sign queries and the break-in query
from AII .

Chosen Message Attack Phase:
B initializes α = 0. Let ωα = ω1 · · · ωn be the node

corresponding to the time period α. We assume that AII outputs
d = 0 after the chosen message attack for period 0. If d �=
breakin or α �= N , AII moves into the next time period and
continues to make chosen message attacks.

UserKeyGen. In time period 0, AII can submit some
UserKeyGen queries, and B acts as follows. Suppose that there
are up to q ′ UserKeyGen queries; then B will choose a random
number π ∈ {1, 2, · · · , q ′}.

(i) If IDi is the πth query, B sets SKIDi
= ⊥. Here, ⊥

indicates that B does not know the corresponding value.
(ii) Otherwise, B chooses a random number SKIDi

∈ Z
∗
q and

sets PKIDi
= SKIDi

P .

Then B adds (IDi , SKIDi
, PKIDi

) into the list L1 and returns
PKIDi

to AII .
KeyUpdate. Note that this procedure is done by B without

any requests of AII . It is just preparing answers for queries of
next time periods and breakin query. Given current time period
α, B simulates the key update algorithm as follows.

(i) If ωα is a leaf node or α = N , B skips the key update
procedure.

(ii) Otherwise, ωα is an internal node; then B selects
hωα0, hωα1, ρωα0, ρωα1 ∈ Z

∗
q at random and computes

Rωα0 = ρωα0P , Rωα1 = ρωα1P , H2(ω
α0, Rωα0) =

hωα0, H2(ω
α1, Rωα1) = hωα1.

Then B can compute the user IDi’s secret key SKIDi
in the

next time period α, and use the new secret key SKIDi
to update

the list L1.
H1 queries. On a new H1 query <IDi , PKIDi

>, B chooses
a random number ci ∈ Z

∗
q and sets H1(IDi , PKIDi

) = ciP . It
is found that B will add (<IDi , PKIDi

>, ci) into H1 − list and
return H1(IDi , PKIDi

) to AII .
H2 queries H2 does not need to be simulated as a random

oracle. We suppose that H2 is a secure cryptographic hash
function with collision resistance. The adversary can issue
queries to a real hash function.

H3 queries. On a new H3 query <Mi, α, Ui, PKIDi
>,

B chooses a random number di ∈ Z
∗
q and sets

H3(Mi, α, Ui, PKIDi
) = diP + P2. Then B adds (<Mi, α, Ui,

PKIDi
>, di, diP +P2) into H3 − list and returns H3(Mi, α, Ui,

PKIDi
) to AII .

H4 queries. On a new H4 query <Mi, α, IDi , Ui, PKIDi
>,

B chooses a random number λi ∈ Z
∗
q and sets H4(Mi, α, IDi ,

Ui, PKIDi
) = λiP . Then B adds (<Mi, α, IDi , Ui, PKIDi

>,

λi, λiP) into H4 − list and returns H4(Mi, α, IDi , Ui, PKIDi
)

to AII .

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

12 J. Li et al.

Corruption. On a Corruption query IDi in time period α, if
0 ≤ α < T , B first checks the list L1 and returns SKIDi

to AI .
Otherwise, α = T or SKIDi

= ⊥, and B aborts.
Sign. On a Sign query <Mi, IDj>, B responds to its query

as follows:
If α �= T , B first checks the list H1 − list to obtain (<IDj ,

PKIDj
>, cj).

(1) If SKIDi
= ⊥, B will choose random numbers Ui = riP ∈

G1 and di ∈ Z
∗
q . Then B adds (<Mi, α, Ui, PKIDi

>, di, diP)

into H3 − list. If a collision occurs, B reselects Ui and di . In
addition, B will add (<Mi, α, IDj , Ui, PKIDj

>, λi, λiP) into
H4 − list, and then respond to H4 queries. We suppose that
(<IDj , PKIDj

>, cj) has already been in H1 − list. It is noted
that B computes FSi = CertIDj

+diPKIDj
+∑n

θ=1 dihω|θRω|θ +
λiUi , and returns signature σi = (Ui, FSi) to AII .

Correctness

e(P, FSi)

= e

(
P, CertIDj

+ diPKIDj
+

n∑
θ=1

dihω|θRω|θ + λiUi

)

= e(P, CertIDj
)e

(
P, diSKIDj

P +
n∑

θ=1

dihω|θRω|θ

)

× e(P, λi · riP)

= e(mpk, H1(IDj , PKIDj
))

× e

(
H3(Mi, α, Ui, PKIDj

), PKIDj
+

n∑
θ=1

hω|θRω|θ

)

× e(H4(Mi, α, IDj , Ui, PKIDj
), Ui)

(2) Otherwise, B uses CertIDj
and SKIDj

to generate Mi’s
signature in the time period as the response of Sign query toAII .

If α = T , B randomly selects di , λi, ri ∈ Z
∗
q and computes

H3(Mi, α, Ui, PKIDj
) = diP , H4(Mi, α, IDj , Ui, PKIDj

) =
λiP , Ui = riP . B gives <T, σ = (Ui, FSi)> and RωT |θ (1 ≤
θ ≤ n) to AII , where FS = CertIDj

+ SNωT · V + λiUi .
Break-in Phase:
When AII outputs a decision value d , B simulates breakin

phase as follows. When α < T and d = 0, then AII increments
α and moves into the cma phase for period α. When α = T

and d = breakin, B returns the current secret key SKT =
(SωT |1, SωT |2, . . . , SωT |n−1, SωT), where ωT = ω1ω2 · · · ωn, as
the response of breakin query to AII . If none of the above
cases occur, B fails and aborts. Note that if AII comes into the
breakin phase, it cannot get access to the previous oracle.

Forgery phase:
After the above attack process, AII outputs a forgery <γ,

M∗, σ ∗ = (U∗, FS∗), ID∗, PKID∗> for 0 ≤ γ < T , ωγ =
ω1ω2 · · · ωn. Here, PKID∗ must be the genuine public key
of ID∗. We assume that (<ID∗, PKID∗>, c∗), (<M∗, γ, U∗,
PKID∗>, d∗, d∗P) and (<M∗, γ, ID∗, U∗, PKID∗>, λ∗, λ∗P)

have been in H1 − list, H3 − list and H4 − list, respectively.

If σ ∗ is a valid signature of the message M∗ in time period γ ,
then FS∗ = s ′ · c∗P + SNγ (d∗P + P2) + λ∗U∗.

If PKID∗ = P1, ID∗’s initial key SKε should be a. Thus, B
can compute

abP = FS∗−(s ′·c∗P+d∗P1+
n∑

θ=1

hω|θRω|θ (d∗P+P2)+λ∗U∗).

Correctness

FS∗ = s ′ · c∗P + SNγ (d∗P + P2) + λ∗U∗

= s ′ · c∗P +
(

a +
n∑

θ=1

hω|θRω|θ

)
(d∗P + P2) + λ∗U∗

= s ′ · c∗P + d∗P1 + abP

+
n∑

θ=1

hω|θRω|θ (d∗P + P2) + λ∗U∗.

Otherwise, B fails to solve this instance of the CDH problem.
According to the simulation, B can compute the value of abP

if and only if all the following four events occur:

Event E1: B does not abort during the simulation.
Event E2: AII outputs α = T and d = breakin.
Event E3: AII outputs a valid forgery in time period γ

for 0 ≤ γ < T .
Event E4: In the forgery output by AII , PKID∗ = P1.

Therefore, the probability that B can solve this instance of
the CDH problem is SuccCDH

B,G1
= Pr[E1 ∧ E2 ∧ E3 ∧ E4] =

Pr[E1] Pr[E2|E1] Pr[E3|E1 ∧ E2] Pr[E4|E1 ∧ E2 ∧ E3]. All
simulation can be done in polynomial time. From the simulation,
we have Pr[E1] ≥ (1−1/q ′)qR , Pr[E2|E1] ≥ 1/N , Pr[E3|E1 ∧
E2] = Succcma,cida,breakin

AII
and Pr[E4|E1 ∧ E2 ∧ E3] = 1/q ′.

Thus, SuccCDH
B,G1

≥ (1 − 1/q ′)qR Succcma,cida,breakin
AII

/q ′N , where
1 �= q ′ ≤ qR denotes the number of queries submitted to the
oracle UserKeyGen.

6. CONCLUSION

In this paper, we first introduced forward security into CBSs and
defined the security models of forward-secure CBSs. We then
constructed a forward-secure CBS scheme. Based on the CDH
assumption, our scheme is proved existentially unforgeable
against adaptive chosen message attacks in the random oracle
model. Our design uses the pre-order traversal method of
the binary tree to construct the forward-secure signature and
improves the efficiency of signature generation and verification.
However, how to make the signature generation and verification
independent of binary tree hierarchy is a problem worth further
investigation. Recently, Buchmann et al. [39, 40] proposed an
efficient post-quantum forward-secure signature scheme with
minimal security assumptions. Furthermore, they presented

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Forward-Secure Certificate-Based Signature Scheme 13

the first implementation of a forward-secure signature scheme
on a smart card, which solved the problem of on-card key
generation and reduced the key generation time. Abdalla et al.
[41] proposed a forward-secure signature scheme with tighter
reductions. They showed that the tighter security reductions
provided by their proof methodology could result in concrete
efficiency gains in practice. Therefore, another open problem is
how to construct an efficient forward-secure CBS scheme with
tighter security reductions.

ACKNOWLEDGEMENTS

We would like to thank anonymous referees for their helpful
comments and suggestions to improve our paper.

FUNDING

This work was supported by the National Natural Science
Foundation of China (60842002, 61272542, 61202450,
61103183, 61103184); the Fundamental Research Funds
for the Central Universities (B13020070, 2010B07114);
China Postdoctoral Science Foundation Funded Project
(20100471373); the “Six Talent Peaks Program” of Jiangsu
Province of China (2009182); Distinguished Young Scholars
Fund of Department of Education, Fujian Province, China
(JA13062); Ph.D. Programs Foundation of Ministry of
Education of China (20123503120001); and Program for New
Century Excellent Talents in Hohai University.

REFERENCES

[1] Shamir, A. (1979) How to share a secret. Comm. ACM, 22, 612–
613.

[2] Desmedt, Y. and Frankel, Y. (1990) Threshold Cryptosystems.
Proc. CRYPTO 89, Santa Barbara, CA, USA, August 20–21,
Lecture Notes in Computer Science 435, pp. 307–315. Springer,
Berlin.

[3] Ostrovsky, R. and Yung, M. (1991) How to Withstand Mobile
VirusAttacks. Proc. 10th ACM Symp. on Principles of Distributed
Computing (PODC 91), Washington, DC, USA, October 27–31,
pp. 51–59. ACM, New York, NY, USA.

[4] Dziembowski, S. and Pietrzak, K. (2008) Leakage-Resilient
Cryptography. Proc. FOCS 2008, Philadelphia, PA, October 26–
28, pp. 293–302. IEEE Computer Society Press, Los Alamitos,
CA, USA.

[5] Alwen, J., Dodis, Y. and Wichs, D. (2009) Leakage-Resilient
Public-Key Cryptography in the Bounded-Retrieval Model. Proc.
CRYPTO 2009, Santa Barbara, CA, USA,August 16–20, Lecture
Notes in Computer Science 5677, pp. 36–54. Springer, Berlin.

[6] Naor, M. and Segev, G. (2009) Public-Key Cryptosystems
Resilient to Key Leakage. Proc. CRYPTO 2009, Santa Barbara,
CA, USA, August 16–20, Lecture Notes in Computer Science
5677, pp. 18–35. Springer, Berlin.

[7] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S. and Wichs,
D. (2010) Public-Key Encryption in the Bounded-Retrieval
Model. Proc. EUROCRYPT 2010, French Riviera, 30 May–3
June, Lecture Notes in Computer Science 6110, pp. 113–134.
Springer, Berlin.

[8] Chow, S., Dodis, Y., Rouselakis, Y. and Waters, B. (2010)
Practical Leakage-Resilient Identity-Based Encryption from
Simple Assumptions. Proc. 17th ACM Conf. on Computer
and Communications Security (CCS 2010), Chicago, IL, USA,
October 4–8, pp. 152–161. ACM, New York, NY, USA.

[9] Katz, J. and Vaikuntanathan, V. (2009) Signature Schemes with
Bounded Leakage Resilience. Proc. ASIACRYPT 2009, Tokyo,
Japan, December, Lecture Notes in Computer Science 5912, pp.
703–720. Springer, Berlin.

[10] Günther, G. (1990) An Identity-Based Key-Exchange Protocol.
Proc. EUROCRYPT 89, Houthalen, Belgium, April 10–13,
Lecture Notes in Computer Science 2501, pp. 29–37. Springer,
Berlin.

[11] Anderson, R. (1997) Invited Lecture. Proc. 4th Annual Conf.
on Computer and Communications Security (CCS 97), Zurich,
Switzerland, April 2–4. ACM, New York, NY, USA.

[12] Bellare, M. and Miner, S.K. (1999) A Forward-Secure Digital
Signature Scheme. Proc. CRYPTO 99, Santa Barbara, CA, USA,
August 15–19, Lecture Notes in Computer Science 1666, pp.
431–448. Springer, Berlin.

[13] Fiat, A. and Shamir, A. (1987) How to Prove Yourself: Practical
Solution of Identification and Signature Problem. Proc. CRYPTO
86, Santa Barbara, CA, USA, August 11–15, Lecture Notes in
Computer Science 263, pp. 186–196. Springer, Berlin.

[14] Ong, H. and Schnorr, C. (1991) Fast Signature Generation with
a Fiat-Shamir Like Scheme. Proc. EUROCRYPT 90, Aarhus,
Denmark, May 21–24, Lecture Notes in Computer Science 473,
pp. 432–440. Springer, Berlin.

[15] Krawczyk, H. (2000) Simple Forward-Secure Signatures from
Any Signature Scheme. Proc. 7th ACM Conf. on Computer
and Communications Security (CCS 2000), Athens, Greece,
November 1–4, pp. 108–115. ACM, New York, NY, USA.

[16] Abdalla, M. and Reyzin, L. (2000) A New Forward-Secure
Digital Signature Scheme. Proc. ASIACRYPT 2000, Kyoto,
Japan, December 3–7, Lecture Notes in Computer Science 1976,
pp. 116–129. Springer, Berlin.

[17] Tzeng, W.G. and Tzeng, Z.J. (2001) Robust Forward-Secure
Signature Schemes with Proactive Security. Proc. PKC 2001,
Cheju Island, Korea, February 13–15, Lecture Notes in Computer
Science 1992, pp. 264–276. Springer, Berlin.

[18] Itkis, G. and Reyzin, L. (2001) Forward-Secure Signature with
Optical Signing and Verifying. Proc. CRYPTO 2001, Santa
Barbara, CA, USA, August 19–23, Lecture Notes in Computer
Science 2139, pp. 332–354. Springer, Berlin.

[19] Malkin, T., Micciancio, D. and Miner, S. (2002) Efficient Generic
Forward-Secure Signatures with an Unbounded Number of Time
Periods. Proc. EUROCRYPT 2002, Amsterdam, Netherlands, 28
April–2 May Lecture Notes in Computer Science 2332, pp. 400–
417. Springer, Berlin.

[20] Kang, B.G., Park, J.H., Hahn, S.G. A new forward secure
signature scheme. Cryptology ePrint Archive, Report 2004/183.
Available from http://eprint.iacr.org/2004/183/.

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://eprint.iacr.org/2004/183/
http://comjnl.oxfordjournals.org/

14 J. Li et al.

[21] Song, X.D. (2001) Practical Forward Secure Group Signature
Schemes. Proc. 8th ACM Conf. on Computer and Communica-
tions Security (CCS 2001), Philadelphia, PA, USA, November
6–8, pp. 225–234. ACM, New York, NY, USA.

[22] Boyen, X., Shacham, H., Shen, E. andWaters, B. (2006) Forward-
Secure Signatures with Untrusted Update. Proc. 13th ACM
Conf. on Computer and Communications Security (CCS 2006),
Alexandria, VA, USA, October 30–November 3, pp. 191–200.
ACM, New York, NY, USA.

[23] Libert, B., Quisquater, J. and Yung, M. (2007) Forward-Secure
Signatures in Untrusted Update Environments: Efficient and
Generic Constructions. Proc. 14th ACM Conf. on Computer
and Communications Security (CCS 2007), Alexandria, VA,
USA, 29 October–2 November, pp. 266–275. ACM, New York,
NY, USA.

[24] Alomair, B., Sampigethaya, K. and Poovendran, R. (2008) Effi-
cient Generic Forward-Secure Signatures and Proxy Signatures.
Proc. EuroPKI 2008, Trondheim, Norway, June 16–17, Lecture
Notes in Computer Science 5057, pp. 166–181. Springer, Berlin.

[25] Gentry, C. (2003) Certificate-Based Encryption and the
Certificate Revocation Problem. Proc. EUROCRYPT 2003,
Warsaw, Poland, May 4–8, Lecture Notes in Computer Science
2656, pp. 272–293. Springer, Berlin.

[26] Kang, B.G., Park, J.H. and Hahn, S.G. (2004)A Certificate-Based
Signature Scheme. Proc. CT-RSA 2004, Moscone Center, San
Francisco, USA, February 23–27, Lecture Notes in Computer
Science 2964, pp. 99–111. Springer, Berlin.

[27] Li, J.G., Huang, X.Y., Mu, Y., Susilo, W. and Wu, Q.H.
(2007) Certificate-Based Signature: Security Model and Efficient
Construction. Proc. EuroPKI’2007, Palma de Mallorca, Spain,
June 28–30, Lecture Notes in Computer Science 4582, pp. 110–
125. Springer, Berlin.

[28] Wu, W., Mu, Y., Susilo, W. and Huang, X.Y. (2009) Certificate-
Based Signatures: New Definitions and a Generic Construction
from Certificateless Signatures. Proc. WISA 2008, Jeju Island,
Korea, September 23–25, Lecture Notes in Computer Science
5379, pp. 99–114. Springer, Berlin.

[29] Wu, W., Mu, Y., Susilo, W. and Huang, X.Y. (2009) Certificate-
based signatures revisited. J. Univers. Comput. Sci., 15,
1659–1684.

[30] Li, J.G., Huang, X.Y., Mu, Y., Susilo, W. and Wu, Q.H. (2010)
Constructions of certificate-based signature secure against key
replacement attacks. J. Comput. Secur., 18, 421–449.

[31] Li, J.G., Huang, X.Y., Zhang, Y.C., Xu, L.Z. (2012) An efficient
short certificate-based signature scheme. J. Syst. Softw., 85,
314–322.

[32] Li, J.G., Huang, X.Y., Hong, M.X. and Zhang, Y.C. (2012)
Certificate-based signcryption with enhanced security features.
Comput. Math. Appl., 64, 1587–1601.

[33] Balfe, S., Gallery, E., Mitchell, C.J. and Paterson, K.G.
(2008) Challenges for trusted computing. Technical Report,
RHUL-MA-2008-14, 26 February 2008. http://www.rhul.ac.uk/
mathematics/techreports.

[34] Sadeghi, A. and Stüble, C. (2004) Property-Based Attestation for
Computing Platforms: Caring about Properties, Not Mechanisms.
Proc. NSPW 2004, Nova Scotia, Canada, September 20–23, pp.
67–77. Springer, Berlin.

[35] Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.
and Stüble, C. (2006) A Protocol for Property-Based Attestation.
Proc. 1st ACM Workshop on Scalable Trusted Computing (STC
2006),Alexandria, VA, USA, 30 October–3 November, pp. 7–16.
ACM, New York, NY, USA.

[36] Chen, L., Löhr, H., Manulis, M. and Sadeghi,A. (2008) Property-
Based Attestation without a Trusted Third Part. Proc. ISC 2008,
Taipei, Taiwan, September 15–18, Lecture Notes in Computer
Science 5222, pp. 31–46. Springer, Berlin.

[37] Canetti, R., Halevi, S. and Katz, J. (2007) A forward-secure
public-key encryption scheme. J. Cryptol., 20, 265–294.

[38] Canetti, R., Halevi, S. and Katz, J. (2003) A Forward-Secure
Public-Key Encryption Scheme. Proc. EUROCRYPT 2003,
Warsaw, Poland, May 4–8, Lecture Notes in Computer Science
2656, pp. 255–271. Springer, Berlin.

[39] Buchmann, J., Dahmen, E. and Hülsing, A. (2011) XMSS-a
Practical Forward Secure Signature Scheme Based on Minimal
Security Assumptions. Proc. PQCrypto 2011, Taipei, Taiwan,
29 November–2 December, Lecture Notes in Computer Science
7071, pp. 117–129. Springer, Berlin.

[40] Hülsing,A., Busold, C. and Buchmann, J. (2013) Forward Secure
Signatures on Smart Cards. Proc. Selected Areas in Cryptography
(SAC 2012), Windsor, ON, Canada,August 15–16, Lecture Notes
in Computer Science 7707, pp. 66–80. Springer, Berlin.

[41] Abdalla, M., Hamouda, F.B. and Pointcheval, D. (2013) Tighter
Reductions for Forward-Secure Signature Schemes. Proc. 16th
Int. Conf. on Practice and Theory in Public-Key Cryptography
(PKC 2013), Nara, Japan, 26 February–1 March, Lecture Notes
in Computer Science 7778, pp. 292–311. Springer, Berlin.

The Computer Journal, 2013

 at U
niv of South C

arolina, T
hom

as C
ooper L

ibrary, Serial A
cq, C

olum
bia, SC

 292 on D
ecem

ber 1, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://www.rhul.ac.uk/mathematics/techreports
http://www.rhul.ac.uk/mathematics/techreports
http://comjnl.oxfordjournals.org/

	A Forward-Secure Certificate-based Signature Scheme
	Publication Info

	1 INTRODUCTION
	1.1 Related work
	1.2 Motivations and contributions

	2 PRELIMINARIES
	2.1 Bilinear mapping
	2.2 The CDH problem
	2.3 A key-evolving signature scheme

	3 FORMAL DEFINITION AND SECURITY MODEL
	3.1 Formal definition
	3.2 Adversary oracles
	3.3 Security against the key replacement adversary AI
	3.4 Security against the malicious certifier adversary AII

	4 A FORWARD-SECURE CBS SCHEME
	4.1 Notations
	4.2 Concrete scheme

	5 SECURITY ANALYSIS
	6 CONCLUSION

