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Background: The transduction of the GLP1 receptor (GLP1R) requires interactions with accessory proteins.
Results: ATP6ap2, also known as the renin receptor, was shown to interact with GLP1R and to regulate both GLP1 and

glucose-stimulated insulin secretion.

Conclusion: ATP6ap2 is a novel GLP1R interactor that modulates insulin secretion.
Significance: Our study provides new insights into the fine-tuning GLP1R signaling in beta cells.

GLP1 activates its receptor, GLP1R, to enhance insulin secre-
tion. The activation and transduction of GLP1R requires complex
interactions with a host of accessory proteins, most of which
remain largely unknown. In this study, we used membrane-based
split ubiquitin yeast two-hybrid assays to identify novel GLP1R
interactors in both mouse and human islets. Among these,
ATP6ap2 (ATPase H*-transporting lysosomal accessory protein
2) was identified in both mouse and human islet screens. ATP6ap2
was shown to be abundant in islets including both alpha and beta
cells. When GLP1R and ATP6ap2 were co-expressed in beta cells,
GLPI1R was shown to directly interact with ATP6ap2, as assessed
by co-immunoprecipitation. In INS-1 cells, overexpression of
ATP6ap2 did not affect insulin secretion; however, siRNA knock-
down decreased both glucose-stimulated and GLP1-induced insu-
lin secretion. Decreases in GLP1-induced insulin secretion were
accompanied by attenuated GLP1 stimulated cAMP accumula-
tion. Because ATP6ap2 is a subunit required for V-ATPase assem-
bly of insulin granules, it has been reported to be involved in gran-
ule acidification. In accordance with this, we observed impaired
insulin granule acidification upon ATP6ap2 knockdown but
paradoxically increased proinsulin secretion. Importantly, as a
GLPIR interactor, ATP6ap2 was required for GLP1-induced
Ca?" influx, in part explaining decreased insulin secretion in
ATP6ap2 knockdown cells. Taken together, our findings iden-
tify a group of proteins that interact with the GLP1R. We further
show that one interactor, ATP6ap2, plays a novel dual role in
beta cells, modulating both GLP1R signaling and insulin pro-
cessing to affect insulin secretion.

GLP1? is an incretin hormone secreted from enteroendo-
crine L cells in the intestines. The ability of GLP1 to enhance
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insulin secretion upon stimulation by the uptake of glucose has
been well documented (1-5). Furthermore, GLP1 has been
shown to increase beta cell proliferation possibly through the
TCF712/Wnt pathway (6 —8). In addition to its effects in pan-
creatic beta cells, GLP1 also has diverse functions in a variety of
extrapancreatic tissues. In the heart, the cardiac effects of GLP1
analogs have led to the amelioration of myocardial ischemia
and to the restriction of infarct size (9), and GLP1 infusion
could improve heart function (10). GLP1 in plasma was associ-
ated with blood pressure levels in a human population study
(11). Further, GLP1 or its analogs were shown to lower blood
pressure in rodents and human subjects (12—14). In the brain,
GLP1 analogs induced the proliferation of neuronal progenitor
cells, implicating a potential involvement in the repair of neu-
rons (15-17).

The physiological and pharmacological effects of GLP1 are
mediated by the GLP1 receptor (GLP1R), a member of the B
class G protein-coupled receptor (GPCR) family (18). GLP1R is
widely expressed in pancreatic islets, as well as in the brain,
heart, kidney, and gastrointestinal tract (19 -21). Specifically in
the pancreas, GLP1R expression was confirmed in beta and
delta cells; however, it was 10-fold lower in delta cells when
quantified by quantitative real time PCR (qPCR) (21). In the
alpha cell population, very low expression of GLP1R was
detected (21). Like other B class GPCRs, GLP1R signals through
the G, protein complex and activates adenylyl cyclase, which
converts ATP into cAMP (22, 23). The increased intracellular
accumulation of cAMP triggers both the PKA and Epac2 path-
ways that are the common downstream pathways responsible
for a number of GLP1-induced intracellular actions (24 —26). In
addition to classical PKA and Epac2 signaling, GLPIR is also
found to activate PI3K signaling by transactivating the EGF
receptor (27, 28).

As is the case with many GPCRs, a wide number of receptor
activities and modes of signal transduction have been described
for the GLP1R. This phenomenon may be explained in part by
an interaction of the receptor with a large number of G protein-

2; MYTH, membrane-based split ubiquitin yeast two-hybrid; GPCR, G pro-
tein-coupled receptor; gPCR, quantitative real time PCR; TF, transcription
factor; GSIS, glucose-stimulated insulin secretion.
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FIGURE 1. Membrane-based split ubiquitin yeast two-hybrid. Left panel, membrane-bound ubiquitin protein was split into two halves: C terminus (Cub) and
N terminus (Nub, NubG is point mutation of Nub to avoid self-activation). Cub is associated with a TF that was fused to the bait GLP1R as GLP1R-Cub, and NubG
was fused to the prey interactors as interactor-NubG. Right panel, if the bait interacts with the prey, the resulting proximity of the ubiquitin halves induced by
the interaction will enable the reconstitution of Cub and NubG to form a functional pseudoubiquitin protein. Reconstitution recruits ubiquitin-specific
proteases that cleave TF downstream of Cub, allowing the TF to translocate into the nucleus to initiate the transcription of reporter genes, which serve as
readout of MYTH. As a result, the MYTH system does not rely on protein expression within the nucleus as does the traditional yeast two-hybrid system and can

be used to study membrane-bound proteins such as GLP1R and its interactors.

dependent and independent accessory proteins (interactors).
Receptor accessory proteins are reported to regulate GPCRs to
target subcellular trafficking and intracellular signaling (29).
For instance, KCTD isoforms 8, 12, 12b, and 16 are accessory
proteins of the GABAB receptor and are indispensable for its
function. These isoforms associate tightly with the GABAB2
receptor C terminus to increase agonist potency and markedly
alter G protein signaling, thus accelerating the onset of signal-
ing and promoting desensitization of the receptor in a subtype-
specific manner (30). However, very little is known thus far on
GLP1R accessory proteins. It has been reported that the GLP1R
interactor scaffolding protein -arrestin-1, a protein involved
in GPCR agonist-induced desensitization and endocytosis, is
required to stimulate cAMP production and insulin secretion
in INS-1 beta cell lines upon physical association with the
GLPIR (31). Furthermore, the GLP1 interactor caveolin-1
directly interacts with GLP1R, which may in part be directing
the trafficking of GLP1R to lipid rafts (32). In another study,
B-arrestin-1 was shown to associate with GLP1R and c-Src as a
complex, which is required for the proliferative action of GLP1
(33). According to our model, these reports raise the possibility
that GLP1R could be coupled to many accessory/interacting
proteins to form multimeric protein interactome complexes
capable of transducing context-specific downstream signaling
pathways that lead to an increasing number of cellular actions.

Recently, using a novel membrane-based split-ubiquitin
yeast two-hybrid system (MYTH), we discovered a series of
GLPIR interacting proteins in human fetal brain that were
shown to attenuate GLP1R activity (34). In this current study,
we used MYTH to reveal a GLP1R interactome in both mouse
and human islets: two tissues where GLP1R agonists have pro-
found and clinically relevant effects. This MYTH screen iden-
tified a host of novel putative GLP1R interacting proteins with
major differences seen between human and mouse islet librar-
ies. However, one interactor, ATP6ap2 (ATPase H" -transport-
ing lysosomal accessory protein 2), identified in both mouse
and human islet screens was shown to be abundantly expressed
in pancreatic islets. Further work demonstrated that ATP6ap2
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regulated insulin secretion from pancreatic beta cells in both
glucose and GLP1R dependent modalities.

Experimental Procedures

Cell Culture—MING cells (a gift from Dr. Susumu Seino from
Kobe University, Kobe, Japan) were maintained in DMEM (Life
Technologies Inc.) containing 10% FBS, 100 units/ml penicillin
G sodium, and 100 pg/ml streptomycin sulfate at 37 °C in 5%
CO,.INS-1832/3 cells (from Dr. Chris Newgard, Duke Univer-
sity, Durham, NC) were maintained in RPMI 1640 (11.1 mm
D-glucose) supplemented with 10% FBS, 100 units/ml penicil-
lin, 100 wg/ml streptomycin, 10 mm HEPES, 2 mm L-glutamine,
1 mm sodium pyruvate, and 50 um mercaptoethanol. Human
GLPIR overexpressing CHO cells (RC2) were maintained in
DMEM containing 10% FBS, 100 units/ml penicillin G sodium,
and 100 ug/ml streptomycin sulfate at 37 °C in 5% CO,. cDNA
plasmids and siRNA were transfected into cells using Lipo-
fectamine 2000 and Lipofectamine RNAIMAX (Invitrogen)
according to the manufacturer’s instructions. After transfec-
tion for 48 h, cells were used for analysis.

Isolation and Disperse of Mouse Islet—Mouse islets were iso-
lated and dispersed from male CD-1 mice (~2 months of age) as
described previously (35, 36). The intact islets were cultured in
RPMI 1640 medium containing 11.1 mm glucose supplemented
with 10% fetal bovine serum, 10 mm HEPES, 1% L-glutamate,
100 units/ml penicillin, and 100 pug/ml streptomycin at 37 °C in
5% CO.,.

The Split Ubiquitin Membrane Yeast Two-hybrid System—
The MYTH system (Fig. 1) methodology was described in detail
in previous studies (34, 37). Briefly, MYTH is based on the “split
ubiquitin system” (38 —41) in which ubiquitin can be split into
N-terminal (Nub) and C-terminal (Cub) halves. The reconsti-
tution of the two halves forms pseudoubiquitin, which is recog-
nized by ubiquitin specific proteases leading to proteasomal
degradation. In the MYTH system, the receptor (in this case
GLPIR) is fused with Cub followed by a transcription factor
(TF) to form the “bait,” whereas the interactor protein is fused
with NubG (mutational Nub Ile'? — Gly to reduce the affinity
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TABLE 1
Sequence of primers

ATP6ap2 Regulates Insulin Secretion

Primer sequences

Forward

Reverse

5'-GTTTTGCAGTTGGCTCCCAG-3'
5'-TTCTTCGGCATCTGTGTGCT-3’
5'-TCATGGGCATCTGGGCATTT-3’
5'-CAGCCTGAAGCAATGGATGC-3'
5'-TCGTGCTCACTGGCTACAAG-3'
5'-GGATCGGAAGATGGTGGGTG-3'
5'-TGACTGTAACAGGGTCCCCA-3'
5'-GACAGTGTCCAGGTGGTGTT-3’
5'-TGTCAACCTTGGCTACACCC-3’
5'-CTCTCCATCATCCACCAGCC-3'
5'-CCAGGAAACCCTCCACGAAG-3'
5'-TGCCTCGCAGTTTGAAACAAG-3’
5'-CGAAAAACCTACGAGGGGCT-3'
5'-ATGAGCAACGCGTGTAAGGA-3'
5'-GACATCCCCATGGAGAATGG-3’
5'-CTGAATGGCCCAGGTCTGA-3’
5'-CGGCGCTTTCCATGCTTTTA-3’
5'-CCACTGTCACCTAGCAGCAA-3’
5'-GAGCAACGCTTGTAAGGAGC-3'
5'-CGGTCTTCTCTGTCGCTAGG-3'
5'-CGCAGTGTCGATGGGAATACT-3’
5'-AGCTGGCTTCCTGTCCTTTC-3'
5'-CTGATCCTGACGTGCTCCAC-3'
5'-TGCTCCGCCCTCTTCTCTAA-3’
5'-TGTCAACCTTGGCTACACCC-3'

5'-GACACCTACTACGACAGAAACAA-3’

5'-AACTGCCTCCACGGCAATAA-3’
5'-TGCTGTGGGCAACCTATTC-3'

5'-GGCTGTATTCTTCGGCATCT-3'
5'-AACTTTGGTGCTGTCTCCTC-3’
5'-AGAGGTCTCTGTGGGTCGAA-3'
5'-TGGCGAGACATGCAACATCT-3’
5'-TGCTTGCGCCTGGAAACTAT-3’
5'-AGTGTGGCTGTGGCAAAGG-3’

5'-TAGCCATCCAGGCTGTGTTG-3'

5'-GCCGCAATGTGACTGAAAGG-3'
5'-CTGTCGTTCTTGCTCCTGGT-3"
5'-TCCTTGTCTTGGCAGAGCAG-3’
5'-CGTAGGAGCTCCAGCATCAG-3'
5'-TCCTCCTCATCCTCCTGTGG-3"
5'-CCATCAGGATGCTGAGGACC-3’
5'-CTGCCTGTCGCCTGGATAAT-3'
5'-CATGGCCACTCCCACGATAG-3'
5'-CGCCACACCGAGATTGAGAT-3’
5'-AGTCGTCATGTAGGGGGACA-3'
5'-TCATCCACCAGCCATTGGAG-3'
5'-CACTGATCCCTATCGCCCAC-3’
5'-GAGACTCCGAAGGCCAAACA-3'
5'-GCTCTGGCAAACACAACAGG-3'

5'-TCGATGACGTGGTAGATGATGAG-3'

5'-CCCTGGCTGCCTCAACAC-3’

5'-GCTCTAGCCTTTGATCCGCA-3'
5'-TGGGGCTGGTTTCTTTGTCA-3’
5'-TGGCAAACACTACAGGGAGC-3'
5'-CCGGCTGTCTAACACCTGAC-3'
5'-GAGAGTCAGCCGGTGGATAC-3’
5'-TCTTAAAGCGGGTGCCTACC-3'
5'-AGTGTTACACCTGCGTGTCG-3'
5'-GTGCATGGGACGCTGTCTTA-3’
5'-TAGCTATTCACGGACGCCAC-3'

5'-CCAAGAATCCAACCATGAGAGA-3'

5'-CCCTTGGGCTTCCAAAGGTT-3’

5'-CTGCATTCTCCAAAGGGTAAGA-3'

5'-TTCCTGAGCTGTCGTTCTTG-3"
5'-CGGGAACATTCCCAGCTAAA-3’
5'-ACAAGGCACAAAGGGGGAAA-3'
5'-AATTCCAGGCCAACCCCATT-3'
5'-AACAGCAGGGCTGAAAGGAA-3’
5'-GGACCGCAACTCAGGACAA-3'

5'-GGAGCGCGTAACCCTCATAG-3'

Name Access number Species
Atp6ap2 NM_027439 Mouse
Aigl NM_025446 Mouse
Aphlb NM_177583 Mouse
Gnas NM_001077507 Mouse
Gprl08 NM_030084 Mouse
Iftm3 NM_025378 Mouse
ZIP13 NM_026721 Mouse
Z1P7 NM_008202 Mouse
Ly6e NM_001164040 Mouse
Syngr4 NM_021482 Mouse
Selk NM_019979 Mouse
Vamp3 NM_009498 Mouse
Slc2a5 NM_019741 Mouse
Leprotll NM_026609 Mouse
Kcnj11 NM_010602 Mouse
B-Actin NM_007393.3 Mouse
Zip7 NM_001008885 Rat
Zipl3 NM_001039196 Rat
Leprotll NM_001013188 Rat
Selk NM_207589 Rat
Gprl08 NM_199399 Rat
Syngr4 NM_001025644 Rat
Iftm3 NM_001136124 Rat
Aphlb NM_001047090 Rat
Ly6e NM_001017467 Rat
Slc2a5 NM_031741 Rat
Gnas NM_021845 Rat
Atp6ap2 NM_001007091 Rat
Aigl NM_001134425 Rat
Vamp3 NM_009498 Rat
PC1/3 NM_017091 Rat
PC2 NM_012746.1 Rat
CPE NM_013128.1 Rat
KCNJ11 NM_031358 Rat
B-Actin NM_031144 Rat

TABLE 2

cDNA libraries of mouse and human islets

Human islet library Mouse islet library

Islet source Nondiabetic human CD1 mouse
Library prey vector pPR3-N pPR3-N
Cloning site Directional/Sfi I Directional/Sfi I
First strand synthesis Oligo(dT) Oligo(dT)

Complexity 5.6 X 10° independent 6.9 X 10° independent
clones clones

Average insert size 1.04 kb 1.26 kb

Size range 0.5-5 kb 0.5-5kb

Vectors with insert 100% 100%

Inserts > 250 bp 100% 100%

of Nub for Cub and avoid self-activation) to form the “prey.”
When NubG interactors (prey) are transformed into yeast
expressing GSRs-Cub-TF (bait), the interaction between bait
and prey brings NubG and Cub to proximity with one another
to form a functional pseudoubiquitin, resulting in the release of
the TF upon recognition and cleavage of the pseudoubiquitin
by ubiquitin specific proteases. The TF further translocates into
the nucleus and induces the expression of reporter genes that
serves as a readout of protein-protein interaction.
Construction of Human and Mouse Islet cDNA Libraries
Compatible with MYTH—Mouse islets were isolated from
CD-1 mice (~2 months of age) as described previously (35, 36,
42). Human islets from review board-approved healthy donors
were provided by the Clinical Islet Laboratory (University of
Alberta, Edmonton, Canada). The total RNA of human and
mouse islets was prepared using the RNeasy mini kit (Qiagen)
and were used to produce a cDNA library that was compatible
to the MYTH system by Dualsystems Biotech, Inc. (Schlieren,
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Switzerland). pPR3-N (Dualsystems Biotech, Inc.) was used as
the prey vector for generating the cDNA library.

MYTH Analysis of GLPIR in Human and Mouse Islet cDNA
Library—The MYTH analysis was performed by Dualsystems
Biotech Inc. The technology and the bait vector pCCW-ste-
hGLP1R-cub were described in previous studies (34, 37).
Briefly, the bait and prey vector were co-transformed into Sac-
charomyces cerevisiae host THY.AP4 strain, and colony selec-
tion was performed on yeast minimal media/synthetic defined
agar plates deficient of tryptophan, leucine, histidine, and
adenine negative (—Trp/—Leu/—His/—Ade). All positively
selected colonies were inoculated in yeast, and the plasmids
harboring the interactor sequence were purified. The purified
plasmids were amplified in Escherichia coli strain XL-10 Gold.
All the plasmids were validated by sequencing. The candidates
were compared against pre-existing MYTH screening data-
bases from Dualsystem Biotech Inc., and only unique candi-
dates identified in our current screen were chosen as putative
interactors of GLP1R for further study.

¢DNA Plasmids, siRNA, and qPCR—The cDNA plasmid
pcDNA-ATP6ap2 was purchased from Origene (Rockville,
MD) and the Midi-Prep Kit (Qiagen) was used for plasmid puri-
fication. Short interfering RNA (SMARTpool siRNA) or scram-
bled siRNA (control) were purchased from Dharmacon,
Thermo Scientific (Waltham, MA). Total RNA from cells was
prepared using the RNeasy mini kit (Qiagen) according to the
manufacturer’s instructions. Purified RNA was converted to
¢DNA using a Moloney murine leukemia virus reverse tran-
scriptase cDNA kit (Sigma), and real time PCR was performed

JOURNAL OF BIOLOGICAL CHEMISTRY 25047
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FIGURE 2. Interactor networks of GLP1R identified from human and
mouse islet MYTH screens. A and B, mouseislet (A) and human islet (B) cDNA
libraries. Each interactor is represented by a separate dot. Pink dots represent
interactors identified in mouse islets, and blue dots represent interactors iden-
tified in human islets. Interactors common to both mouse and human islets
are identified in red.

using an ViiA7 real time PCR system (Applied Biosystems, Fos-
ter City, CA) according to the same protocol described in pre-
vious studies (43). A standard curve was generated using mouse
genomic DNA for quantification purposes. The measurements
of gene expression were normalized to B-actin transcripts
within the same sample. The sequences of the primers are
shown in Table 1.

Co-immunoprecipitation and Immunoblotting—INS-1 cells
co-transfected with GLP1R-His-V5-tagged and FLAG-tagged
interactor were washed with ice-cold PBS containing 137 mm
NacCl, 2.7 mm KCI, 10 mm Na,HPO,, and 1.76 mm KH,PO, to a
pH of 7.4. Cells were harvested in lysis buffer containing 10%
glycerol, 50 mm HEPES, 150 mMm NaCl, 2 mm EDTA, 0.25%
n-dodecyl-B-p-maltoside with complete protease inhibitor
mixture (Hoffmann-La Roche Limited, Ltd., Mississauga, Can-
ada). M2 Anti-FLAG affinity gel (Sigma-Aldrich) was used to
pull down FLAG-tagged interactor proteins. Briefly, the cell
extract (supernatant) was incubated with anti-FLAG-aga-
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rose that was equilibrated with wash buffer (0.1% digitonin, 5
mM imidazole with protease inhibitor mixture) for 2 h at
4 °C. The anti-FLAG affinity beads were washed three times
with wash buffer and eluted in 2X SDS loading buffer. The
precipitated proteins from each sample were loaded and
separated on a 10% polyacrylamide gel and transferred to PVDE-
plus™ membrane for immunoblotting. Anti-V5 (Invitrogen,
1:2500 dilution), anti-FLAG primary antibodies (Sigma-Al-
drich, 1:2000 dilution), and HRP-conjugated mouse secondary
antibody were used, and the fluorescence signal was detected
by Amersham Biosciences enhanced chemiluminescence
(GE Healthcare Lifesciences) with images acquired by the
Kodak Image Station 4000 Pro (Carestream Health Inc.,
Rochester, NY).

Immunohistochemistry—Tissues and cells were fixed in 10%
neutral buffered formalin, dehydrated in 70% ethanol, and
embedded in paraffin. Paraffinized samples were sliced (5 wm)
and adhered to glass slides, rehydrated, and blocked with 3%
H,O, for 30 min. Following PBS washing, sections were
incubated in nonimmune serum-free protein block solution
(Dako Canada Inc., Burlington, Canada) for 30 min. Sections
were blotted to remove excess blocking solution prior to
overnight application of primary anti-ATP6ap2 antibody
(Sigma-Aldrich, 1:500 dilution) and anti-insulin (Invitrogen,
1:100 dilution) at 4 °C. Images of each section were acquired
using Aperio Imagescope version 11.0.2.725 (Aperio Tech-
nologies, Vista, CA).

Immunofluorescence and Confocal Microscopy—The expres-
sion of ATP6ap2 was determined in dispersed human islets
from both normal and type 2 diabetic donors (44) with primary
anti-ATP6ap2 (1:125, Sigma), and the cells were co-stained
with anti-insulin (1:100, Dako) and anti-glucagon (1:2000,
Sigma), followed by Alexa Fluor® 488 goat anti-mouse (1:500,
Molecular Probes, Life Technologies), Alexa Fluor® 555 don-
key anti-rabbit (1:500, Molecular Probes, Life Technologies), or
Alexa Fluor® 488 donkey anti-guinea pig (1:500, Jackson
ImmunoResearch, West Grove, PA) secondary antibody.
Images were acquired on LSM510 Zeiss confocal microscope
(Zeiss) at 40X magnification with an oil lens. The relative fluo-
rescence intensity was quantified using LSM510 software and
normalized by area.

Glucose-stimulated Insulin Secretion and Intracellular
cAMP Assays—Glucose-stimulated insulin secretion (GSIS)
studies were carried out as previously described (43). Briefly,
cells were preincubated for 2 h in 2.5 mm glucose HEPES bal-
anced salt solution (114 mm NaCl, 4.7 mm KCIl, 1.2 mm
KH,PO,, 1.16 mm MgSO,, 2.5 mm CaCl,, 25.5 mm NaHCO;,
20 mm HEPES, and 0.2% (w/v) bovine serum albumin, essen-
tially fatty-acid free, pH7.2) and then in the same HEPES bal-
anced salt solution buffer containing different indicated glu-
cose concentrations for 1 h with 30 nm GLP1 (GLP1-induced
insulin secretion) (Bachem Inc., Torrance, CA). Insulin
secreted was measured using the homogenous time-resolved
fluorescence kit (Cisbio Bioassays, Bedford, MA) and normal-
ized to total protein content. Intracellular cAMP content was
measured as previously described (42, 34) by using the homog-
enous time-resolved fluorescence assay kit (Cisbio Bioassays).
Cells were incubated for 1 h with cryptate anti-cAMP antibody
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FIGURE 3. The expression of selected interactors in MING6 (A), INS1 832/3
cells (B), and mouse islets (C) presented as the percentage of -actin in
the cell. The values are represented by the averages * S.E. from triplicates in
three independent experiments.

and D2-labeled cAMP. Fluorescence signals in both insulin and
cAMP assays were measured using the PHERAstar Plus micro-
plate reader (BMG LABTECH, Guelph, Canada).

Transmission Electron Microscopy—Cells were fixed, and
images were acquired as previously described (45). Briefly, the
samples were observed under a Philips CM100 electron micro-
scope operating at 75 kV. Images were recorded digitally using
Kodak 1.6 Megaplus camera system operated using AMT soft-
ware (Advanced Microscopy Techniques Corporation). Gran-
ule numbers were manually quantified using Image]J software
(45).

High Content Imaging—Images were acquired and analyzed
on a Thermo Fisher Cellomics ArrayScan® VTI HCS reader
using iDEV™ software. The filter settings for each dye were
excitation/emission: 577/590 nm for LysoTracker Red DND-
99, excitation/emission: 494/516 nm for Fluo4AM, and excita-
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tion/emission: 350/461 nm for Hoechst 33342 (Molecular
Probes, Life Technologies). Each dye was loaded into live INS-1
cells or dispersed mouse islet cells according to the manufactu-
rer’s recommendation.

Statistics—Paired t tests were performed to determine statis-
tical significance. p values less than 0.05 were considered statis-
tically significant.

Results

Generation and Analysis of Human and Mouse Islet cDNA
Libraries—To better understand the mechanisms through
which GLP1R fine tunes the regulation of insulin secretion,
we generated cDNA libraries from both human and mouse
islets that were equipped with the physiological machinery
necessary for insulin secretion. GLP1R was shown to be
abundantly expressed in islet beta cells, less in delta cells, and
very low in alpha cells (21). As such, we reasoned that iso-
lated human and mouse islets would serve as reasonable
models to study the GLP1R interactome in the setting of the
pancreatic beta cell. Using purified RNA from isolated
human and mouse islets, we generated human and mouse
islet cDNA libraries with the complexity and titer required
for MYTH screening. The human islet cDNA library gener-
ated contained ~5.6 X 10° independent clones, ranging in
sizes from 0.5 to 5.0 kb with 100% of all vectors containing
cDNA inserts. The mouse islet library contained 6.9 X 10°
independent clones with a size range equal to that of the
human islet library generated (Table 2).

MYTH Analysis of GLPIR in Human and Mouse Islets (Func-
tional Involvement)—The structure of the bait vector overex-
pressing human GLP1R and its ability to respond to GLP1 was
previously described by Huang ez al. (34). By using the bait
GLP1R vector, we observed 43 positive interactor proteins from
the human islet library and 37 such interactor proteins from the
mouse islet library. By eliminating highly abundant proteins
and common nonspecific MYTH screen interactors (those
interactors that appeared in over 50% and 20-50% of all per-
formed MYTH screens done by Dualsystems Biotech Inc.), we
obtained 31 and 29 unique interacting proteins from the human
(Table 3) and the mouse islet libraries (Table 4), respectively.
Apart from Gag, which is known to be linked to GLP1R func-
tion, these putative interactors identified in the MYTH screen
have not previously been described with GLP1R. Collectively
they represent many known functional groups such as intracel-
lular transport, metabolism and ion transport, or signal trans-
duction (Fig. 2). Some interactors were suggested to be relevant
to pancreatic beta cell function, such as zinc transporters
(SLC39A7 and SLC39A13), fructose transporters (SLC2A5),
and insulin exocytotic SNARE proteins (VAMP3) etc. Among
the putative interactors, ATP6ap2 and SELK were identified as
two proteins present in both the human and mouse islet library
screens (Fig. 2).

Expression of Selected Interactors in Pancreatic Beta
Cells—Because ATP6ap2 and SELK were identified from
both libraries, we examined their expression using qPCR in
three distinct sources of pancreatic beta cells (MIN6, INS1,
and isolated mouse islets). Since the GLP1R is primarily
expressed at the plasma membrane, we also included 11
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FIGURE 4. ATP6ap2 expression in the pancreas and islets. A, immunohistochemistry showing ATP6ap2 localization in the mouse pancreatic sections. The
right panels show the enlarged images of the left panels. Bar, 100 um. B, immunofluorescence showing ATP6ap2 localization in dispersed human islets. Bar, 20

mum. Representative images are from three independent experiments.

membrane-bound putative interactors in addition to
ATP6ap2 and SELK found in our screens. Among the 13
interactors examined, ATP6ap2 was consistently the most
abundant (Fig. 3) in all three cell types, whereas SELK was
not. Some other membrane-bound interactors such as
SYNGR4, APH1B, and GNAS showed only very low abun-
dance compared with our control, Kcnjl1, the subunit of the
K,rp channel required for glucose-stimulated insulin secre-
tion (Fig. 3). The transcript expression profile pattern of
these interactors was comparable among all three cell types,
whereas only SLC39A7 and Leprotll had relatively higher
expression levels compared with other interactors in mouse
islets. Taken together, based on the expression pattern,
ATP6ap2 identified from both islet MYTH screening was
most highly expressed across all three cell types and was
therefore chosen for further functional analysis.

ATP6ap2 has been shown to be expressed in several tissue
including brain, heart, kidney, liver, pancreas, and adipose tis-
sues (43, 44) with the highest levels reported in MIN6 cells
(BioGPS (46, 47)). To localize ATP6ap2 expression within the
pancreas, both immunohistochemistry and immunofluores-
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cence staining were performed on mouse pancreatic slices and
dispersed human islet cells, respectively. In mouse pancreata,
ATP6ap2 was expressed in insulin immunopositive cells but
not in acinar tissue (Fig. 4A4). Further, in dispersed human islet
cells, ATP6ap2 was shown to be expressed in both alpha and
beta cells (Fig. 4B).

Interestingly, we found that the intensity of ATP6ap2
staining appeared weaker in islets from diabetic donors (Fig.
5A). The percentage of islet cells with strong fluorescence
(>600 relative fluorescence intensity) decreased remarkably
in diabetic islet cells compared with normal islet cells,
whereas the percentage of those with weak fluorescence
increased (Fig. 5A). These observations suggested decreased
ATP6ap2 expression in diabetic islets. Further, we examined
whether or not there was decreased expression in both alpha
and beta cells. After co-staining with insulin or glucagon, we
showed that ATP6ap2 expression was decreased primarily in
beta cells (Fig. 5B). Importantly, correlating with ATP6ap2,
islets from diabetic donors had impaired glucose-stimulated
insulin secretion (GSIS) compared with controls (Fig. 5C).
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FIGURE 5. ATP6ap2 expression and GSIS in human islets from normal and diabetic donors. A, representative images and quantitative analysis (quantifi-
cation of fluorescence intensity and distribution of fluorescence intensity within cell population) of ATP6ap2 expression in human islets from normal and
diabetic donors. Bar, 20 um. B, ATP6ap2 expression in human dispersed islets from diabetic donors. Arrow indicates reduced ATP6ap2 expression in insulin-
positive cells. Bar, 10 wm. Quantitative analysis of ATP6ap2 expression in both insulin- and glucagon-positive cells is shown (normal donors, n = 3; diabetic
donors, n = 2). C, glucose-stimulated insulin secretion in human islets from diabetic donors.

Effect of Overexpressing ATP6ap2 on Insulin Secretion and
cAMP Accumulation in INS-1 Cells—To further validate the
interaction of GLP1R with ATP6ap2 employing the INS-1 cell
line, we co-expressed epitope tagged GLP1R-V5 and ATP6ap2-
FLAG. ATP6ap2 overexpression was detected using both anti-
FLAG and anti-ATP6ap2 (Fig. 6A4). GLP1R was detected after
affinity purification of ATP6ap2-FLAG but not in GLP1R-ex-
pressing cell lysates alone, suggesting the interaction between
two proteins in pancreatic beta cells (Fig. 6B) validating the
MYTH assay results.
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ATP6ap2 has been found to act as an adapter protein of the
V-ATPase receptor complex (48) that maintains the acidic
environment within vesicles required for the maturation and
priming of insulin protein in pancreatic beta cells (49, 50). We
further examined the effect of overexpressing ATP6ap2 in
INS-1 cells. Interestingly, ATP6ap2 overexpresssion did not
have any significant effect on insulin secretion under basal glu-
cose conditions nor upon glucose or GLP1-induced insulin
secretion (Fig. 6C) under the conditions studied. ATP6ap2
overexpression had no effect on GLP1-induced cAMP forma-
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tion (Fig. 6D), which is a key second messenger molecule in
GLP1 signaling.

Effect of Knocking Down ATP6ap2 on Insulin Secretion and
cAMP in INS-1 Cells—Because we did not observe significant
effects in cells overexpressing ATP6ap2, to further elucidate
the role of ATP6ap2 within pancreatic beta cells, we knocked
down ATP6ap2 by siRNA (Fig. 7A). When ATP6ap2 was effec-
tively knocked down (Fig. 7A), insulin secretion was
decreased significantly under high glucose conditions (11.5
mwm; Fig. 7B), as was GLP1-induced insulin secretion (Fig.
7B). This reduction in insulin secretion was not associated
with cell death (data not shown) nor decreases in total insu-
lin content (Fig. 7C). Furthermore, we showed that this
attenuating effect only occurred at stimulatory glucose con-
centrations (11.5, 16.7, and 20 mMm), not at low or moderate
glucose levels (2.8 or 5.6 mm) (Fig. 7D). The inhibitory effect
of ATP6ap2 knockdown was seen across a range of GLP1
concentrations (Fig. 7E).

GLPI1R signaling effects are primarily mediated by the sec-
ond messenger cCAMP. In line with this, we found that down-
regulation of ATP6ap2 led to a decrease in GLP1-stimulated
cAMP accumulation in INS-1 cells (Fig. 7F). However, this
effect was only observed at 0.1 and 10 nm GLP1 concentrations
but not at a 1 pm GLP1 concentration (Fig. 7F), suggesting that
the decrease in cAMP accumulation might be concentration-
dependent. To confirm that the observation was specific, we
also treated the siATP6ap2 transfected cells with forskolin
(direct stimulation on adenylyl cyclase) and GIP (incretin act-
ing on beta cells and sharing similar structure and signaling
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pathways with GLP1R). We did not observe any difference in
cAMP accumulation between control and ATP6ap2 knock-
down cells (Fig. 7G). This suggested that down-regulation of
ATP6ap2 specifically decreased GLPIR stimulated cAMP
accumulation. The fact that we did not observe an ATP6ap2
effect in the overexpression model is likely due to the high
abundance of native ATP6ap2 in INS-1 cells. Conversely,
knocking down endogenous ATP6ap2 would likely exhibit
more profound effects on the cells.

Effect of Knocking Down ATP6ap2 on Insulin Granule Mor-
phology and Acidification—Because decreased insulin secre-
tion and impaired insulin processing were observed in
ATP6ap2 knockdown INS-1 cells, we next examined whether
there were defects in insulin granule morphology using elec-
tron microscopy. We did not observe any change in granule
morphology (Fig. 84) or the number of insulin granules in
siRNA treated INS1 cells (Fig. 8B), but the percentage of gray
and empty granules was increased by more than 2-fold in
ATP6ap2 knockdown cells (Fig. 8C). These results indicated
that decreased insulin secretion was not due to the reduction of
insulin granules per se but was possibly due to impaired insulin
biosynthesis.

To further explore a processing defect, we detected an
increased ratio of proinsulin versus insulin peptide in ATP6ap2
knockdown cells under all conditions including basal glucose,
stimulated glucose, and GLP1 stimulation (Fig. 94). This also
suggested a possible impairment of insulin processing in
ATP6ap2 knockdown cells. To address this, the expression of
the prohormone convertases involved in insulin processing
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including PC1/3, PC2, and CPE (51-55) were examined. There
was no difference in the transcript expression of these three key
enzymes (Fig. 9B), suggesting that other factors are contribut-
ing to impaired insulin processing. It was reported that acidifi-
cation within insulin granules was critical for their maturation
and priming (56). To examine whether ATP6ap?2 is involved in
the acidification of the insulin granules, we loaded the cells with
acidotropic LysoTracker, a dye that accumulates specifically in
acidic organelles. In pancreatic beta cells, the majority of cellular
acidic structures are indeed insulin granules; therefore Lyso-
Tracker staining can be used to evaluate the acidity of the granule
given the fact that insulin granule number did not change in
ATP6ap2 knockdown cells compared with the control (Fig. 8B).
Consistent with previous studies (57), the cells treated with V-
ATPase inhibitor bafilomycin were barely stained with Lyso-
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Tracker, suggesting that granule acidification was blocked (Fig.
9C). Similarly, LysoTracker staining in ATP6ap2 knockdown cells
was shown to be decreased significantly when compared with con-
trol cells, suggesting that insulin granule acidification was
impaired (Fig. 9C). Taken together, these results suggest that
decreased insulin processing and secretion upon ATP6ap2 knock-
down could be due to impairment of acidification within individ-
ual insulin granules.

ATP6ap? Effects on GLPI-stimulated Ca®" Influx—GLP1 R
activation increases intracellular Ca®>" mediated by PKA and
Epac (cAMP) (26, 58). We observed a robust increase in intra-
cellular Ca®>" in control dispersed mouse islets upon GLP1
stimulation (Fig. 104, upper two panels). However, when we
knock down ATP6ap2 in dispersed islet cells (Fig. 10B), the
GLP1-induced increase in Ca”>* was completely diminished,
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suggesting that ATP6ap2 was required for GLP1-induced Ca*"
influx (Fig. 104, lower two panels).

Discussion

The GLPIR and its associated signaling pathways have
gained much attention over the past several years because they
are targets for current and future medications to treat type 2
diabetes. In this study, we have used a novel MYTH assay (Fig.
1) to screen mouse and human islet cDNA libraries, enabling us
to discover over 50 novel putative interactors of GLP1R. Each of
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these interactors has the potential to regulate pancreatic beta
cell function through GLP1R. The interactor, ATP6ap2, was
identified in both mouse and human islet screens and pursued
in further studies because of its consistently high expression
across beta cell lines and primary islets. Our results showed that
ATP6ap?2 plays an important dual role; first, it regulates GLP1R
signaling through cAMP, and second, it likely facilitates the
processing of insulin through granule acidification. We realize
that the latter effect appears GLP-1R-independent and may be
a more global permissive effect of ATP6ap2 on insulin secre-
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tion. Future studies will further delineate the mechanistic link
between GLPIR signaling and more general permissive beta
cell effects.

In this study, we chose to identify potential interactors of
GLPIR from MYTH screens on mouse and human islet cDNA
libraries. Previous studies conducted by us have focused on a
human fetal brain ¢cDNA library, using a similar approach.
However, we reasoned that pancreatic islet tissue is a more
appropriate model from which to screen for interactors of
GLPI1R with the intension of understanding GLP1R signaling in
the beta cell specifically. The pancreatic islet consists of a com-
position of cells including beta, alpha, and delta cells; however,
the expression pattern of GLP1R predominantly in beta cells
has been widely accepted (19-21), much less in alpha or delta
cells (21). However, it is possible that other glucagon receptor
subfamily or GPCR interactors that normally are not found in
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GLP1R-expressing cells may in islet tissue interact with GLP1R,
requiring rigorous testing for specificity. Notwithstanding this
possibility, the pancreatic islet appears to be a good model tis-
sue in which to study the GLPIR interactome in a beta cell
specific setting.

Our study was able to identify a series of novel interactors
involved in a variety of intracellular functions (Fig. 2), support-
ing the dynamic role that GLP1R plays in the regulation of pan-
creatic beta cell function. Of the common interactors identified
from both mouse and human islet screens, the interactor
ATP6ap2 was expressed at abundant levels in MIN6, INS-1,
and mouse islets. Furthermore, by immunohistochemistry in
mouse pancreatic sections, we showed that ATP6ap2 was
expressed in endocrine islets but not acinar cells (Fig. 44). Further
analysis on human dispersed islets revealed ATP6ap2 expression
in both pancreatic beta and alpha cells (Fig. 4B).
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ATP6ap2 is known as an accessory protein of the V-ATPase
(59) composed of a transmembrane proton-translocation
domain (V,) and extramembrane pump domain (V, sectors)
(60). Although there is no direct evidence demonstrating the
effect of ATP6ap2 on insulin secretion in pancreatic beta cells,
previous studies have demonstrated that the ATP6V B subunit
of V-ATPase increased 2.38-fold in human diabetic versus nor-
mal islets by microarray analysis (61). Also, the islet tropic a3
isoform (membrane-intrinsic subunit) of V-ATPase was
reported to regulate insulin secretion from pancreatic beta cells
(12). We observed reduced expression of ATP6ap2 in human
diabetic versus normal islets, and the reduction was not in alpha
but beta cells (Fig. 5). The reduced expression of ATP6ap2
was accompanied by an impaired GSIS in the human diabetic
islets. In line with these observations, we showed that the
down-regulation of ATP6ap2 resulted in decreased GSIS and
GLP1-induced insulin secretion, suggesting a regulatory role of
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ATP6ap2 in insulin secretion from pancreatic beta cells.
cAMP-PKA is an important pathway for GLP1-induced insulin
secretion, and V-ATPase is required for the full activation of PKA
inresponse to glucose stimulation (14). In our studies, cAMP accu-
mulation was significantly decreased at GLP1 concentrations of
0.1 and 10 nMm but not at 1 pMm, and this effect was not observed in
forskolin- or GIP-treated cells (Fig. 7G), suggesting that the
cAMP-PKA pathway might be involved in GLP1-induced insulin
secretion. The downstream molecules of cAMP are PKA and
Epac. Because GLP1R activation increases intracellular Ca>*
via PKA and Epac (26, 58), one would expect ATP6ap2
knockdown could affect Ca®>" influx associated with GLP1.
Indeed, we found that the GLP1-induced increase in Ca®"
was abolished in ATP6ap2 knockdown cells, suggesting a
requirement of ATP6ap2 for GLP1R Ca®" signaling. This
could also in part explain the decreased insulin secretion in
cells with ATP6ap2 knocked down.
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ATP6ap2 has been shown to be involved in the maintenance
of acidity within secretory vesicles (62). Previously, it was dem-
onstrated that whole body knock-out of ATP6ap2 was lethal in
mice (63); whereas, tissue specific knock-out studies of
ATP6ap2 in cardiomyocytes or in podocytes resulted in detri-
mental defects after birth including heart failure or renal fail-
ure, respectively (64, 65). These studies confirmed the require-
ment of ATP6ap2 association with V-ATPase, as well as the
functional role of ATP6ap2 in maintaining the acidity of
microenvironments within intracellular vesicles. Previous
studies have shown the involvement of acidic secretory vesicles
in insulin processing and maturation (66). Specifically, propro-
tein convertases 3 (PC1/3) and 2 (PC2) responsible for insulin
processing from proinsulin are strictly pH-dependent (51, 67).
In line with this, the gene expression of insulin-processing
enzymes PC1/3, PC2, and CPE were not changed in ATP6ap2
knockdown cells. However, granule acidification was impaired,
causing increased pH, which might inhibit the activity of the
insulin-processing enzymes. Furthermore, an increased proin-
sulin versus insulin ratio was detected, suggesting impairment
in insulin processing and maturation within secretory vesicles
from ATP6ap2 knockdown cells. To support this, we observed
reduced expression of ATP6ap2 in islets from type 2 diabetic
donors, whose GSIS was largely decreased. Our data provided a
link between ATP6ap2 and diabetes where loss of ATP6ap2
impaired insulin processing via increasing granule pH.

In summary, our study provided a novel insight into GLP1R
signaling and was the first to identify GLP1R interactors in pan-
creatic islets. Our data also suggested that these interacting
proteins of GLP1R could be involved in the regulation of insulin
secretion and GLP1R signaling in pancreatic beta cells. Because
GLPIR has been used as potent drug target in the treatment of
diabetes, our findings could contribute to the development of
novel effective therapeutic strategies for this disease.
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