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An experimental investigation of guided wave propagation
in corrugated plates showing stop bands and pass bands

Tribikram Kundua� and Sourav Banerjeeb�

Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721

Kumar V. Jatac�

Air Force Research Laboratory, AFRL/MLL, Wright Patterson Air Force Base, Ohio 45433

�Received 4 January 2006; revised 11 June 2006; accepted 13 June 2006�

Nonplanar surfaces are often encountered in engineering structures. In aerospace structures,
periodically corrugated boundaries are formed by friction-stir-welding. In civil engineering
structures, rebars used in reinforced concrete beams and slabs have periodic surface. Periodic
structures are also being used to create desired acoustic band gaps. For health monitoring of these
structures, a good understanding of the elastic wave propagation through such periodic structures is
necessary. Although a number of research papers on the wave propagation in periodic structures are
available in the literature, no one experimentally investigated the guided wave propagation through
plates with periodic boundaries and compared the experimental results with theoretical predictions
as done in this paper. The experimental results clearly show that elastic waves can propagate
through the corrugated plate �waveguide� for certain frequencies called “pass bands,” and find it
difficult to propagate for some other frequencies called “stop bands.” Stop bands are found to
increase with the degree of corrugation. Experimental results are compared with the theoretical
predictions, and good matching is observed for plates with small degree of corrugation. Only two
parameters—the depth of corrugation and the wavelength of the periodicity—are sufficient for
modeling the elastic wave propagation in slightly corrugated plates. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2221534�

PACS number�s�: 43.20.Fn, 43.20.El, 43.20.Ye �LLT� Pages: 1217–1226

I. INTRODUCTION

The problem of elastic wave propagation in periodic
structures has been investigated for over five decades. Bril-
louin wrote the classical book on this subject �1946�. Dy-
namics of a wide variety of periodic structures has been pre-
sented in this book. Later, Mead and his co-workers �Mead,
1970, 1975, 1976, 1986; Mead and Markus, 1983; Mead and
Bardell, 1987; Mead and Yaman, 1991� made significant
contributions in this field of research. In these works, Mead
et al. solved the elastodynamic problems involving periodi-
cally supported beams �Mead, 1970; Mead and Markus,
1983�, periodic damped plates �Mead, 1976�, damped plates
with stiffeners �Mead, 1986; Mead and Yaman, 1991�, and
thin cylindrical shells with periodic circumferential stiffeners
�Mead and Bardell, 1987�. Like many other engineering
problems, periodic structure problems have been also solved
by the finite element method �Oris and Petyt, 1974�. Follow-
ing Brillouin’s classical approach, recently Ruzzene and Baz
�2000� analytically solved the one-dimensional problem—
composite rods with shape memory alloy inserts, periodi-
cally embedded in the base material of the rod. Interested
readers are referred to the article by Mester and Benaroya
�1995� for a comprehensive review of wave propagation
problems in periodic and near-periodic structures.

A common feature of the elastic wave propagation in
periodic structures is the existence of distinct frequency
bands—some of which allow wave propagation and others
do not. Those frequencies, for which the waves can propa-
gate through the structure, are called pass band frequencies,
and other frequencies for which the waves are attenuated in
the structure are called stop band frequencies or forbidden
frequency bands �Vasseur et al., 1998�.

In none of the articles referred to above has the elastic
wave propagation through free plates with periodic surface
boundaries been analyzed. In the above papers, the periodic-
ity inside the materials or in the support condition has been
considered. For example, Brillouin �1946� in his classical
book presented the solution of wave propagation problem
through one-, two-, and three-dimensional lattices of point
masses with various degrees of complexity, Vasseur et al.
�1998� studied the wave transmission through two-
dimensional binary solid/solid composite media composed of
arrays of Duralumin cylindrical inclusions embedded in an
epoxy resin matrix, Ruzzene and Baz �2000� solved the one-
dimensional problem of a composite rod with periodical in-
sertions.

The problem of wave propagation in structures made of
homogeneous materials, but having nonplanar boundaries
and interfaces, has been the topic of investigation in the last
three decades �Nayfeh et al., 1978; Boström, 1983, 1989;
Sandström, 1986; Fokkema, 1980; Glass et al., 1983; El-
Bahrawy, 1994a, 1994b; Banerjee and Kundu, 2004; De-
clercq et al., 2005�. Stop bands and pass bands of the
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Rayleigh-Lamb symmetric modes in sinusoidally corrugated
waveguides have been studied by El-Bahrawy �1994a�. Only
recently have generalized dispersion equations for periodi-
cally corrugated waveguides been studied, and solutions for
both symmetric and antisymmetric modes in a sinusoidally
corrugated waveguide been presented �Banerjee and Kundu,
2006�.

Although a number of theoretical papers have been pub-
lished on elastic wave propagation in periodic structures, as
mentioned above, very few experimental papers are available
on this topic. The work of Vasseur et al. �1998� is the only
two-dimensional experimental investigation available today.
To the best of our knowledge, no investigator has yet experi-
mentally measured the stop band and pass band frequencies
in corrugated plates and compared the experimental results
with the theoretical predictions as done in this paper.

II. EXPERIMENT

A. Transducer characterization

Two 1 in. diameter ultrasonic transducers were placed
face to face. One transducer was excited by a signal fre-
quency that continuously varied from 300 kHz to 800 kHz,
while the second transducer recorded the received signal.
The recorded signal is shown in Fig. 1. Note that the trans-
ducer resonance frequency is close to 540 kHz, although the
transducers were labeled as having 500 kHz resonance fre-
quency.

B. Specimens

Three aluminum plates were machined to produce three
specimens with three different degrees of corrugation. A typi-
cal specimen is shown in Fig. 2. Figure 2�a� shows the full
plate, Fig. 2�b� shows the side view of the corrugation, and
Fig. 2�c� shows the period of corrugation D, highest plate
thickness H1, and lowest plate thickness H2 in the corrugated
region. Note that the average plate thickness �2h� in the cor-
rugated region is equal to �H1+H2� /2, and the corrugation
depth �= �H1-H2� /4. These dimensions for the three speci-
mens are given in Table I.

C. Experimental setup

Two transducers are placed in the pitch-catch arrange-
ment over the aluminum plate as shown in Fig. 3. Transducer
T acts as the transmitter and the second transducer R acts as
the receiver. Two transducers are inclined at an angle �
�clockwise and counterclockwise� with respect to the vertical
axis as shown. The transducers are placed at a face to face
distance of “d” and a height “h” above the aluminum plate.
Transducers and the plate are immersed in water, which acts
as the coupling fluid between the transducers and the
plate—so that the ultrasonic energy can easily propagate
from the transmitter to the plate and from the plate to the
receiver. If the distance d is set such that the direct reflected
beam �shown by dashed line in Fig. 3� cannot reach the
receiver, then the ultrasonic energy must propagate through
the plate for a length g1 as the guided wave �shown by the
bold arrow in Fig. 3� before leaking back into the coupling
fluid and reaching the receiver R.

FIG. 1. �Color online� Received signal amplitude variation with frequency
for the transmitter-receiver placed face to face.

FIG. 2. Corrugated plate: �a� Top view, �b� side view, and �c� side view
showing different dimensions.
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D. Experimental results

Experiments are carried out for two different angles of
incidence, �=25° and 30°. These two angles are selected
because for these inclination angles relatively strong guided
waves could be generated in the corrugated plate in the fre-
quency range of our interest. Experimental results for these
two sets of incident angles are described in detail below.

1. Experimental results for 25° and 30° angles of
incidence

Two transducers T and R, of 1 in. �25.4 mm� diameter,
are placed above the smooth portion of the aluminum plate
which is 0.5 in. �12.7 mm� thick. First, the transducers are
positioned such that the directly reflected beam �shown by
dashed line in Fig. 3� can reach the receiver R. This is the
case when h=3 in. �76.2 mm� and d=2.8 in. �71.1 mm�. The
received signal strength as a function of the frequency for
this transducer-receiver arrangement is shown in Fig. 4. Note
that Figs. 1 and 4 are almost identical. Therefore, the receiv-
ing signal characteristics are not altered significantly when
the transmitter and receiver are placed in the pitch-catch
arrangement—with the receiver receiving the direct reflected
beam. The received signal is plotted after attenuating the
signal by a 37 dB attenuator. When h is reduced to 2.5 in.
�63.5 mm� and d is proportionately reduced to 2.3 in.
�58.4 mm�, then the reflected beam showed similar strength
variation with frequency.

Keeping h fixed at 2.5 in. �63.5 mm� when the trans-
ducer spacing is increased to 4.25 in. �108 mm�, the received
signal voltage versus frequency plot is changed
significantly—as shown in Fig. 5. We will refer to the re-
ceived signal voltage versus frequency plots as V�f� curves.
The V�f� curve of Fig. 5 is plotted after attenuating the re-
ceived signal by a 28 dB attenuator. Note that the peak near
540 kHz, observed in Figs. 1 and 4, is no longer present in
Fig. 5. Also, two peaks of Fig. 5, near 430 kHz and 645 kHz,
are absent in Figs. 1 and 4. It will be shown later that these
two peaks correspond to two Lamb wave modes in the plate.
A simple calculation with transducer diameter D=1 in.
�25.4 mm�, transducer spacing d=4.25 in. �108 mm�, height
h=2.5 in. �63.5 mm�, and transducer inclination angle �
=25° gives g �see Fig. 3� =1.918 in. �48.72 mm� and g1 �see
Fig. 3� =0.815 in. �20.7 mm�. Since g1 is nonzero, the direct
reflected beam cannot reach the receiver. Therefore, the ul-
trasonic energy must propagate through the plate as guided
waves—for a certain distance greater than g1 before leaking
into the coupling fluid and being received by the receiver. It
will be shown later that two frequencies, 430 kHz and
645 kHz, generate two guided wave modes for transducer
inclination angle �=25°.

When the smooth plate is replaced by an aluminum plate
with small corrugation �� /D=0.049, Specimen 1 in Table I�,

TABLE I. Dimensions of three corrugated plate specimens. All dimensions are given in in. and mm; mm values
are given in parentheses.

Specimen
No.

H1

�2h+2��
H2

�2h−2�� D
2h

�H1+H2� /2
�

�H1−H2� /4 2h /D � /D

1 0.5
�12.7�

0.416
�10.57�

0.425
�10.8�

0.458
�11.63�

0.021
�0.53�

1.078 0.049

2 0.5
�12.7�

0.3
�7.62�

0.37
�9.40�

0.4
�10.16�

0.05
�1.27�

1.081 0.135

3 0.5
�12.7�

0.187
�4.75�

0.38
�9.65�

0.344
�8.74�

0.078
�1.98�

0.905 0.205

FIG. 3. Schematic of the transmitter �T�, receiver �R� and the plate speci-
men arrangement. The direct reflected beam is shown by dashed lines. The
receiver is placed beyond the direct reflection zone to detect the leaky
guided waves.

FIG. 4. Received signal voltage amplitude versus signal frequency curve, or
V�f� curve, for a smooth plate specimen when the receiver is placed in the
direct reflection zone marked by dashed lines in Fig. 3. Note the similarities
between Figs. 1�b� and 4. �For this figure, �=25°, h=3 in. �76.2 mm�, d
=2.8 in. �71.1 mm�, and the signal attenuation is 37 dB. A similar plot is
obtained for h=2.5 in. �63.5 mm� and d=2.3 in. �58.4 mm��.
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the V�f� curve obtained for the setting h=3 in. �76.2 mm�
and d=7 in. �177.8 mm� is shown in Fig. 6�a�. For the trans-
ducer spacing d=7 in., the distance traveled by the guided
wave in the corrugated plate is significantly greater than that
for Fig. 5. Naturally, the received signal in Fig. 6�a� is much
weaker than that in Fig. 5. Only an attenuation of strength
16 dB is applied to the received signal before plotting it in
Fig. 6�a�; while for Fig. 5, it was 28 dB.

A comparison between Figs. 6�a� and 4 shows some
similarities between these two V�f� curves—both have peaks
between 500 and 550 kHz and the signal strength gradually
decays to a very small value at low ��300 kHz� and high
��800 kHz� frequencies. However, a closer inspection also
reveals some clear distinctions that will be discussed later.

Keeping all parameters �h ,d ,�� unchanged, Specimen 1
is then replaced by Specimen 2 and finally by Specimen 3.
The V�f� curve for Specimen 2 �medium corrugation, � /D
=0.135� is shown in Fig. 6�b�, and for Specimen 3 �large
corrugation, � /D=0.205� is shown in Fig. 6�c�. To maintain
the numerical value of the V�f� peaks close to 0.3 in all plots,
a 14 dB attenuator is used for Fig. 6�b�, and an 18 dB attenu-
ator is used for Fig. 6�c�. Comparison of these two figures
with Fig. 4 shows some distinctive features that are dis-
cussed later.

Similar experiments with the same three corrugated
plate specimens are carried out again for the 30° angle of
incidence and V�f� curves for the three plates are recorded.
Three V�f� curves for the three corrugated plates for 30°
angle of incidence are shown in Figs. 7�a�–7�c�.

2. Distinctive features of V„f… curves of corrugated
plates

A comparison of Figs. 4 and 7�a� reveals that, in Fig. 4,
the signal strength is the maximum near 540 kHz and it de-
cays almost monotonically for both higher and lower fre-
quencies with a couple of local minima observed near 380
and 480 kHz, while that is not the case in Fig. 7�a�. Although

the V�f� amplitude envelope has a decaying trend for both
higher and lower frequencies, this trend is not as monotonic
as in Fig. 4. Clearly, in Fig. 7�a�, the amplitude envelope has
two noticeable dips �almost global minima� near 380 and
480 kHz, as shown by dashed curved line in Fig. 7�a�. A few
other smaller dips may be noticed in the amplitude envelope,
but the two strongest dips are near 380 and 480 kHz. Note

FIG. 5. �Color online� V�f� curve for a smooth plate specimen when the
receiver is placed beyond the direct reflection zone as shown in Fig. 3. Note
the changes in the V�f� curves of Figs. 4 and 5 in spite of the fact that the
plate specimens for both figures are the same; the only difference is the
horizontal distance �d� between the two transducers. For Fig. 5, the distance
d is greater. �For this figure, �=25°, h=2.5 in. �63.5 mm�, d=4.25 in.
�108 mm�, and the signal attenuation is 28 dB�.

FIG. 6. �Color online� V�f� curves for three corrugated plate specimens
when the transducer inclination angle is �=25° and the receiver is placed
beyond the direct reflection zone as shown in Fig. 3. �a� V�f� curve for
Specimen No. 1 �low corrugation, see Table I� when h=3 in. �76.2 mm�,
d=7 in. �177.8 mm�, and the signal attenuation is 16 dB. �b� V�f� curve for
Specimen No. 2 �medium corrugation, see Table I� when h=3 in.
�76.2 mm�, d=7 in. �177.8 mm�, and the signal attenuation is 14 dB. �c�
V�f� curve for Specimen No. 3 �large corrugation, see Table I� when h
=3 in. �76.2 mm�, d=7 in. �177.8 mm�, and the signal attenuation is 18 dB.
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that the propagating signal amplitude is very small in the
frequency ranges of 370–390 kHz and 470–490 kHz.
Clearly, the ultrasonic signal finds it difficult to propagate in
these two frequency ranges. The frequency bandwidths that
block the ultrasonic wave propagation through the plate are
called “stop bands” and the frequency bandwidths that do not
cause such an obstruction to the wave propagation are called
“pass bands.” Therefore, for Specimen 1, for a 30° angle of

incidence, the stop bands are 370–390 kHz and
470–490 kHz, while the frequency bandwidths of
300–370 kHz, 390–470 kHz, and 490–650 kHz constitute
the pass bands. Near the bottom of Fig. 7�a�, continuous and
dashed horizontal lines are used to mark the pass band and
stop band regions, respectively. Similarly, in Figs. 7�b�, 7�c�,
and 6�a�–6�c� pass bands and stop bands are marked by con-
tinuous and dashed lines, respectively. In some figures, clear
distinctions exist between the signals in pass band and stop
band regions. For example, in Fig. 6�c�, signals in the pass
band zones are significantly stronger than those in the stop
band zones. However, in some other figures, such as in Fig.
7�a�, the signal strength variations in these two regions are
not that distinct. In some cases, logical judgments have been
used to decide pass band and stop band regions. For ex-
ample, in Fig. 7�c�, one can see that the signal strength is
weak in the region from 300 to 490 kHz, and strong between
490 and 580 kHz. However, we denoted the stop band from
300 to 450 kHz instead of 490 kHz because the signal
strength starts to increase after 450 kHz in Fig. 7�c�; while in
Fig. 4 �the flat plate case�, the signal strength decreases from
450 to 480 kHz. Therefore, the corrugated surface is prob-
ably not creating a stop band between 450 and 490 kHz. It
should be mentioned here that such subjective judgments and
ambiguities may be overcome by employing sophisticated
signal processing techniques, which can compare the
strength of the received signals in different frequency ranges
for the corrugated plates with those for the smooth plates and
face to face orientations of the transducers.

Stop band and pass band frequencies for the three plates,
obtained for 30° and 25° angles of incidence, are shown by
continuous and dashed lines in Figs. 6 and 7, and their values
are listed in Table II.

E. Dispersion curves for smooth plates

Before analyzing and understanding the experimental
data for the corrugated plates, given in Figs. 6 and 7 and
summarized in Table II, it is necessary to investigate first if
the V�f� curve for the smooth plate �Fig. 5� is reliable; in
other words, whether the peaks of the V�f� curve for the
smooth plate—for which the guided wave propagation
theory is well developed—appear at the right places. Figure
5 shows its two peaks near 430 kHz and 645 kHz; these
peaks are not present in Fig. 4. Do these peaks correspond to
the Lamb wave modes generated in the plate? To investigate
this, the dispersion curves for the aluminum plate are theo-
retically computed. The P-wave speed �cP� in aluminum is
6.2 km/s, its S-wave speed �cS� is 3 km/s, and density ��� is
2.7 gm/cc. The plate thickness is 12.7 mm.

Lamb wave dispersion curves for a homogeneous isotro-
pic elastic plate are obtained from the well-known dispersion
equations �Kundu, 2004�:

FIG. 7. V�f� curves for three corrugated plate specimens when the trans-
ducer inclination angle �=30° and the receiver is placed beyond the direct
reflection zone as shown in Fig. 3. �a� V�f� curve for Specimen No. 1 �low
corrugation, see Table I� when h=2.25 in. �57.2 mm�, d=7.5 in.
�190.5 mm�, and the signal attenuation is 14 dB. �b� V�f� curve for Speci-
men No. 2 �medium corrugation, see Table I� when h=2.25 in. �57.2 mm�,
d=7.5 in. �190.5 mm�, and the signal attenuation is 10 dB. �c� V�f� curve
for Specimen No. 3 �large corrugation, see Table I� when h=2.25 in.
�57.2 mm�, d=7.5 in. �190.5 mm�, and the signal attenuation is 15 dB.
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where � is the angular frequency ��=2�f� of the propagat-
ing wave; the signal frequency f is in MHz, and � is in
rad/�s. h is one-half of the plate thickness in mm, cP and cS

are the P-wave speed and S-wave speed in the plate material,
respectively, and cL is the phase velocity of the propagating
Lamb wave modes. All velocities are in km/s. Equations �1a�
and �1b� correspond to the symmetric and antisymmetric
Lamb modes, respectively. Dispersion curves generated by
Eq. �1� are shown in Fig. 8.

The incident angle for the V�f� curves of Fig. 5 is 25°.
Therefore, the corresponding phase velocity from Snell’s law
is

cL =
cf

sin �
=

1.49

sin�25�
= 3.526 km/s, �2�

where cf is the acoustic wave speed in water �=1.49 km/s�
and � is the incident angle �=25° �. Therefore, two peaks
of Fig. 5 correspond to two points in the frequency-phase
velocity plot of Fig. 8. The horizontal and vertical coor-
dinates of these points are �430 kHz, 3.526 km/s� and
�645 kHz, 3.526 km/s�. These points are plotted in Fig. 8
by solid circles. Note that they coincide with the A1 �first
antisymmetric� and S1 �first symmetric� modes. Thus, the
reliability of the experimental V�f� plots is established.

F. Dispersion curves for corrugated plates

Banerjee and Kundu �2006� presented a theoretical so-
lution of elastic wave propagation in sinusoidal corrugated
plates as shown in Fig. 9. Their approach is not based on the
perturbation theory and can be applied equally well to both
small and large corrugations. They obtained the dispersion
equation by applying the traction-free boundary conditions.
Solution of the dispersion equation gives both symmetric and
antisymmetric modes. In a periodically corrugated wave-
guide, all possible spectral orders of wave numbers were
considered for the analytical solution. It was observed that
the truncation of the spectral order influenced the results. The

TABLE II. Stop band and pass band frequencies in kHz for two striking angles and three corrugated plate
specimens whose dimensions are given in Table I.

Striking
angle

Specimen No. 1 Specimen No. 2 Specimen No. 3

Stop band Pass band Stop band Pass band Stop band Pass band

370–390 300–370 300–380 380–620 300–450 450–580
30° 470–490 390–470 620–645 645–680 580–600

490–650

300–350 350–375 440–460 340–440 300–390 390–470
25° 375–410 410–465 600–640 460–580 470–530 530–590

465–510 510–580 590–650
580–610

FIG. 8. Dispersion curves of 0.5 in. �12.7 mm� thick aluminum plate �cP

=6.2 km/s, cS=3 km/s, and �=2.7 gm/cc�. Two black circles are the ex-
perimental data points corresponding to the two peaks at 430 kHz and
645 kHz in the V�f� curve of Fig. 5, corresponding phase velocity Vph

=3.526 km/s for 25° angle of incidence is obtained from Snell’s law �Eq.
�2��. Antisymmetric and symmetric modes of order m are denoted by Am and
Sm, respectively.

FIG. 9. Corrugated plate geometry with sinusoidal boundaries considered
for the theoretical analysis. D=corrugation period, �=corrugation depth,
and 2h=average plate thickness.
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truncation number depends on the degree of corrugation and
the frequency of the wave. Usually, increasing frequency re-
quires increasing the number of terms in the series solution,
or in other words, a higher truncation number. The dispersion
equation for such plates with periodic boundary geometry
can be written as

Det�T� = 0. �3�

The dimension of the matrix T is �2mod�n�+1�� �2mod�n�
+1�, where n is the number of wave numbers developed
for each frequency in the sinusoidally corrugated plate. If
n varies from −1 to +1, the elements of the T matrix can
be written as �Banerjee and Kundu, 2006�

BC1np
+ = − 2��kn�n��Deih�n�J0���n� + iH0���n��� ,

BC1np
− = − 2��− kn�n��De−ih�n�J0���n� − iH0���n��� ,

BC1ns
+ = ��kn

2 − 	n
2��Deih	n�J0��	n� + iH0��	n��� ,

BC1ns
− = ��kn

2 − 	n
2��De−ih	n�J0��	n� − iH0��	n��� ,

BC2np
+ = �
�− kn

2 − �n
2� + 2��− �n

2���Deih�n�J0���n�

+ iH0���n��� ,

BC2np
− = �
�− kn

2 − �n
2� + 2��− �n

2���De−ih�n�J0���n�

− iH0���n��� ,

BC2ns
+ = 2��kn	n��Deih	n�J0��	n� + iH0��	n��� ,

BC2ns
− = − 2��kn	n��De−ih	n�J0��	n� − iH0��	n��� ,

BC3np
+ = 2��kn�n��De−ih�n�J0���n� − iH0���n��� ,

BC3np
− = − 2��kn�n��Deih�n�J0���n� + iH0���n��� ,

BC3ns
+ = − ��kn

2 − 	n
2��De−ih	n�J0��	n� − iH0��	n��� ,

BC3ns
− = − ��kn

2 − 	n
2��Deih	n�J0��	n� + iH0��	n��� ,

BC4np
+ = �
�kn

2 + �n
2� + 2���n

2���De−ih�n�J0���n�

− iH0���n��� ,

BC4np
− = �
�kn

2 + �n
2� + 2���n

2���Deih�n�J0���n�

+ iH0���n��� ,

BC4ns
+ = − 2��kn	n��De−ih	n�J0��	n� − iH0��	n��� ,

BC4ns
− = 2��kn	n��Deih	n�J0��	n� + iH0��	n��� , �4�

where the Struve function Hn�z� appears in the solution of
the inhomogeneous Bessel equation which for integer n has
the form

z2d2y

dz2 + z
dy

dz
+ �z2 − n2�y =

2

�

zn+1

�2n − 1�!!
, �5�

the general solution of this equation consists of a linear com-
bination of the Bessel functions Jn�z� and the Struve func-
tions Hn�z�.

Although the plate boundaries considered in the experi-
ment are not pure sinusoidal, the geometry, shown in Fig. 9,

FIG. 10. Symmetric �circles� and antisymmetric �triangles� modes computed
theoretically from Eq. for three plate specimens ��a�—small corrugation,
Specimen No. 1; �b�—medium corrugation, Specimen No. 2; and �c�—large
corrugation, Specimen No. 3�. See Table I for specimen dimensions. Experi-
mentally obtained stop bands �dashed lines� and pass bands �continuous
lines� for two normalized phase velocities �0.993 corresponds to 30° striking
angle and 1.175 for 25° striking angle� are shown in each plot. In �a�, pass
bands match very well with the theoretical values. However, the matching
between the theoretical and experimental values is not as good in �b� and
�c�.
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is the closest geometry to our problem for which theoretical
solutions are available today. A comparison between Figs.
2�c� �true plate geometry� and 9 �plate geometry that has
analytical solution� shows some common features between
these two geometries, such as both plates have a periodicity
with wavelength D, both have a maximum plate thickness
H1, and a minimum plate thickness H2. Then, the average
plate thickness 2h is �H1+H2� /2 and the corrugation depth
2�= �H1−H2� /2.

Analytically computed dispersion curves for the funda-
mental symmetric and antisymmetric modes for the three
plate geometries with 2h /D ratio equal to 1.078, 1.081,
0.905, and the corresponding � /D ratio equal to 0.049,
0.135, and 0.205, respectively, are shown in Fig. 10. It
should be noted here that although the geometry �Fig. 9� for
the analytical solution is different from the specimen geom-
etries �Fig. 2�, two important parameters �2h /D and � /D� are
the same for the analytical solution and the experimental
investigation �listed in the right two columns of Table I�.
Three plate geometries for the analytical solution are denoted
as Specimens 1, 2, and 3; similar to the three-plate speci-
mens described in Table I. Figure 10 shows the analytically
computed dispersion curves for the three corrugated plates.

In Fig. 10, the phase velocity is normalized with respect to
the shear wave speed �3 km/s� in the plate material. The
nondimensional frequency ��� plotted along the horizontal
axis is defined as

� =
�h

cS
, �6�

where �, h, and cS are identical to those in Eq. �1�.
In the dispersion curves of Fig. 10, one can observe

several discontinuities that are not observed in the dispersion
curves for a smooth plate �see Fig. 8�. The gaps in the dis-
persion curves are called the stop bands. It is interesting to
note that as the corrugation depth increases, the extent of the
stop bands also increases. Experimentally, it is also observed
that the stop band zones increase with the corrugation depth,
see Figs. 6 and 7—it gives a qualitative agreement between
the experimental observations and theoretical predictions.
For a quantitative comparison between the experimental and
theoretical results, the nondimensional frequency ��� and
the normalized phase velocity cL /cS corresponding to the
stop bands and pass bands shown in Table II, are calculated
and listed in Table III.

TABLE III. Nondimensional frequencies ��� for stop and pass bands for two striking angles and three corrugated plate specimens, whose dimensions are
given in Table I.

Striking angle ��� 30° 30° 25° 25°

cL

cS
=

�1.49/sin ��

3

0.993 0.993 1.175 1.175

Specimen No. 1 Stop band
frequency

�MHz�

Pass band
frequency

�MHz�

Stop band
frequency

�MHz�

Pass band
frequency

�MHz�
Frequency �f� range
�in MHz�

0.370–0.390 0.300–0.370 0.300–0.350 0.350–0.375
0.470–0.490 0.390–0.470 0.375–0.410 0.410–0.465

0.490–0.650 0.465–0.510 0.510–0.580
0.580–0.610

Nondimensional frequency
���

4.51–4.75 3.65–4.51 3.65–4.26 4.26–4.57

��=
2�fh

cS
=

11.63�f

3
=12.18f� 4.75–5.72 4.57–4.99 4.99–5.66

5.72–5.97 5.97–7.92 5.66–6.21 6.21–7.06
7.06–7.43

Specimen No. 2 Stop band
frequency

�MHz�

Pass band
frequency

�MHz�

Stop band
frequency

�MHz�

Pass band
frequency

�MHz�
Frequency �f� range
�in MHz�

0.300–0.380 0.380–0.620 0.440–0.460 0.340–0.440
0.620–0.645 0.645–0.680 0.600–0.640 0.460–0.580

Nondimensional frequency
���

3.19–4.04 4.04–6.56 4.68–4.89 3.61–4.68

��=
2�fh

cS
=

10.16�f

3
=10.64f� 6.56–6.86 6.86–7.24 6.38–6.81 4.89–6.17

Specimen No. 3 Stop band
frequency

�MHz�

Pass band
frequency

�MHz�

Stop band
frequency

�MHz�

Pass band
frequency

�MHz�
Frequency �f� range
�in MHz�

0.300–0.450 0.450–0.580 0.300–0.390 0.390–0.470
0.580–0.600 0.470–0.530 0.530–0.590

0.590–0.650
Nondimensional stop band
frequency ���

2.75–4.12 2.75–3.57 3.57–4.30

��=
2�fh

cS
=

8.74�f

3
=9.15f� 4.12–5.31 4.35–4.85 4.85–5.40

5.35–5.49 5.40–5.95
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As shown in Table III, cL /cS is 0.993 and 1.175 for the
30° and 25° angles of incidence, respectively. When the pass
band and stop band frequencies are transformed from kHz
�or MHz� to a nondimensional frequency ��� using Eq. �6�,
then the stop band of 370–390 kHz for Specimen No. 1 is
changed to 4.51–4.75, as shown in Table III. When these
stop bands �dashed lines� and pass bands �continuous lines�
are plotted on the dispersion curves of Fig. 10, then some-
times good matching and discrepancies between the theoret-
ical curves and experimental stop and pass bands are ob-
served. Since experiments are carried out for two different
incident angles that correspond to two different cL /cS values
�0.993 and 1.175�, we get two horizontal lines corresponding
to these two normalized velocities, as shown in each plot of
Fig. 10.

In Fig. 10�a�, experimental stop bands �dashed lines� and
pass bands �continuous lines� match very well with the the-
oretical dispersion curves. Note that the continuous lines ei-
ther coincide or are located very close to the triangles �anti-
symmetric modes� or circles �symmetric modes�, while the
dashed lines are seen in the regions where neither circles nor
triangles are present. However, the matching between the
experimental data �horizontal continuous lines at cL /cS

=0.993 and 1.175� and the theoretical values �triangles and
circles� are not as good in Figs. 10�b� and 10�c�. The only
matching that can be highlighted here is that, in Fig. 10�c� in
the nondimensional frequency range from 2.5 to 3.5, both
theoretical and experimental values show stop bands.

From Fig. 10 it can be concluded that for small corru-
gation depth �when the � /D ratio is less than or equal to
0.05� the assumption of sinusoidal corrugation geometry is
acceptable even when the actual geometry is not sinusoidal
but periodic; however, for large corrugation depth �� /D
�0.1� the sinusoidal corrugation assumption does not work
very well when the actual corrugation geometry is not sinu-
soidal.

III. CONCLUSION

The elastic wave propagation in homogeneous plates
with periodic corrugated boundaries is experimentally inves-
tigated in this paper. Guided waves in three plates with three
different degrees of corrugation are studied. Different stop
bands and pass bands are observed for the three plates. The
extent of stop bands is found to increase with the depth of
corrugation. Experimental data generated by nonsinusoidal
corrugated plates are compared with the theoretical predic-
tions for sinusoidal corrugated plates. For a small corruga-
tion depth, the theoretical and experimental data match rea-
sonably well. However, for a large corrugation depth, the
matching is not as good—indicating that, for large degree of
corrugation, the exact geometry of the plate boundary needs
to be incorporated in the model. Only two parameters—the
wavelength of periodicity and the depth of corrugation—are
enough for correctly predicting the pass band and stop band
regions in plates with a small degree of corrugation, but
these two parameters are not enough for modeling wave
propagation in plates with a large degree of corrugation.
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