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ARTICLES

Semiclassical application of the Mo ” ller operators in reactive scattering
Sophya Garashchuk and John C. Light
James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 19 July 2000; accepted 25 October 2000!

Mo” ller operators in the formulation of reaction probabilities in terms of wave packet correlation
functions allow us to define the wave packets in the interaction region rather than in the asymptotic
region of the potential surface. We combine Mo” ller operators with the semiclassical propagator of
Herman and Kluk. This does not involve further approximations and can be used with any initial
value representation~IVR! semiclassical propagator. Time propagation in asymptotic regions of the
potential due to Mo” ller operators reduces the oscillations of the propagator integrand and improves
convergence of the results with respect to the number of trajectories. The effectiveness of Mo” ller
operators for semiclassical reaction probability calculation is demonstrated for the collinear
hydrogen exchange reaction. Full convergence is achieved and the number of classical trajectories
is reduced by a factor of 10 compared to the calculation without Mo” ller operators. ©2001
American Institute of Physics.@DOI: 10.1063/1.1333408#

I. INTRODUCTION

Currently great efforts go into the development of the
initial value semiclassical~IVR! propagation techniques with
applications ranging from the photodissociation and reactive
scattering to condensed phase problems and nonadiabatic dy-
namics. Most methods are based on the propagator of Her-
man and Kluk~HK!,1–3 related to the earlier ‘‘Frozen Gauss-
ian’’ technique of Heller4 and ‘‘resurrected’’ through
detailed theoretical studies by Kay.5–7 The first successful
applications to the calculation of the CO2 photodissociation
spectrum8 and to dynamics of collinear H3 system9–11 drew
attention to the great potential of the semiclassical propaga-
tion methods.

The semiclassical IVR methods for wavefunction time
evolution are based on the propagation of classical trajecto-
ries that sample the phase space of an initial wave function
without solving the initial/final value problem as in the Van
Vleck–Gutzwiller propagator.12 The classical propagation is
local, i.e., trajectories contribute to the final result~most of-
ten to a correlation function! independently of each other,
which leads to negligible storage requirements. The semi-
classical propagation can describe the quantum-mechanical
effects with acceptable accuracy for a variety of problems.
Now the HK propagator and its variations have been applied
to reactive scattering,13 complex molecular systems,14–16sur-
face scattering,17 condensed phase,18–22 and nonadiabatic
systems23–26 despite several undesirable features.

One of the drawbacks of the HK propagator is the de-
pendence of the results on the initial parameters of a wave
function and on the expansion parameter and the lack of ana
priori criterion for the reliability of semiclassical calcula-
tions. This problem is not getting attention it deserves. How-
ever, the fact that all studies with the HK propagator, with

the exception of Refs. 27 and 28, attempt to merely repro-
duce quantum-mechanical results is evidence that further
studies on the reliability of semiclassical methods are
needed. The HK propagator~as other IVR propagators! is a
phase space integral over initial conditions of classical tra-
jectories evolving in time, that have classical actions as
phases and functions of the stability matrix elements as am-
plitudes. These phases produce strong oscillations of the in-
tegrand and lead to slow convergence of the integral with
respect to the number of trajectories. The problem of regu-
larizing or ‘‘ smoothing’’ the integrand was addressed in the
number of works. The change of one component of the mo-
mentum for a time variable is used in Refs. 10, 29, and 30.
Methods with additional approximations, such as the
linearization,28,31 the stationary phase Monte Carlo
integration,32 and the forward–backward propagation14,19 al-
low a reduction in the number of trajectories and help to
obtain convergent results where straightforward application
of the HK propagator is problematic. The convergence of the
HK propagator was also discussed in Refs. 33–36.

In this paper we show that Mo” ller operators can be con-
veniently combined with the HK propagator within the sta-
tionary phase approximation, which is inherent to the HK
propagator. Mo” ller operators contain backward~forward!
propagation in time under the asymptotic Hamiltonian and
forward ~backward! propagation under the full Hamiltonian,
which yields substantial phase cancellation and reduction of
the amplitude, as shown in Sec. II. This significantly im-
proves the convergence properties of the HK propagator. In
the numerical example~Sec. III! of the state-to-state reactive
scattering for the collinear hydrogen exchange reaction, the
number of trajectories is reduced by a factor of 10 compared
to the calculation without Mo” ller operators. Section IV con-
cludes.
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II. MØLLER OPERATORS FOR SEMICLASSICAL
REACTION PROBABILITY CALCULATIONS

The HK propagator is an initial-value representation
propagator that has the same semiclassical limit~i.e., the
stationary phase approximation for\→0) as the Schro¨-
dinger equation—the Van Vleck–Gutzwiller propagator.5,12

It is based on the expansion of a wavefunction in terms of
Gaussians of a fixed width, whose centers move classically
and whose phases are defined by the corresponding classical
actions. The propagator is unitary in the stationary phase
approximation, and it is time reversible.3 The HK propagator
in N dimensions, generalized to include the width parameters
as a matrix, is

Ksc~x8,t;x,0!5
1

~2p!NE E dp0dq0Rpqte
ıSpqt

3gg~qt ,pt ,x8!gg* ~q0 ,p0 ,x!. ~1!

The function

gg~qt ,pt ,x!5S det~G!

pN D 1/4

3exp~2 1
2 ~x2qt!G~x2qt!1ıpt•~x2qt!! ,

~2!

is a complex Gaussian with the diagonal width matrixG
5$g i%. All g i are positive real parameters. In theory, the
propagator does not depend on the parameters$g i%. Vectors
q05(q0

1 , . . . ,q0
N) and p05(p0

1 , . . . ,p0
N) are initial condi-

tions of a classical trajectory at time zero and vectorsqt

5(qt
1 , . . . ,qt

N) andpt5(pt
1 , . . . ,pt

N) are its coordinates and
momenta at timet. Spqt is the classical action

Spqt5E
0

t

@pt8•q̇t82H~pt8 ,qt8 ,t8!#dt8. ~3!

The prefactor involving the stability~or monodromy! matrix
elements is

Rpqt5Adet~B!, ~4!

with the matrix elementsB5$bi j % being

bi j 5
1

2 SAg i

g j

]pt
i

]p0
j

1Ag j

g i

]qt
i

]q0
j

2ıAg ig j

]qt
i

]p0
j

1
ı

Ag ig j

]pt
i

]q0
j D . ~5!

The square root in Eq.~4! is chosen to makeRpqt a continu-
ous function of time.5 The oscillations of the integrand in Eq.
~1!, due to the classical action term and due to the complex
prefactorRpqt whose amplitude grows with time, result in a
large number of trajectories being needed to obtain conver-
gence.

The wave packet correlation function approach37 with
the IVR propagator, given by Eq.~1!, is convenient and ad-
vantageous for the semiclassical calculation of reaction prob-
abilities. Localized wave packets effectively make the limits

of integration overp0 in Eq. ~1! finite. The scattering matrix
elements as a function of energyE, Sba(E), can be obtained
from the Fourier transform of the reactant/product wave
packet correlation functions,

Cab~ t !5^Fb
2ue2ıHtuFa

1&, ~6!

as

Sba~E!5
~2p!21

zb* ~E!ha~E!
E

2`

`

Cab~ t !eıEtdt. ~7!

The reactant wave packetuFa
1& is chosen so, that it

evolves into a product of anincomingpacket in the transla-
tional degree of freedom and ana eigenstate of the
asymptotic internal Hamiltonian of reactants, when propa-
gated into the infinite past,t→2`.37 Similarly, the product
wave packetuFb

2& has to be separable into a product of an
outgoing translational wave packet and a single internal
eigenstateb of the asymptotic internal Hamiltonian of prod-
ucts, when evolving into the infinite future,t→`. Wave
packetsuFa

1& and uFb
2& are constructed via Mo” ller opera-

tors,

Va
15 lim

t→`

e2ıHteıHa
0 t and Vb

25 lim
t→`

eıHte2ıHb
0 t, ~8!

as

uFa
1&5Va

1ug1~R!3xa~r !&

and ~9!

uFb
2&5Vb

2ug2~R8!3xb~r 8!&.

Ha
0/Hb

0 are the asymptotic Hamiltonians for reactants/
products. Functionsg1(R)/g2(R8) are incoming/outgoing
localized wave packets in the translational coordinates in the
appropriate asymptotic regions, andxa(r )/xb(r 8) are the
eigenstates of the asymptotic internal Hamiltonians of
reactants/products. The energy expansion coefficientsha(E)
and zb(E) in Eq. ~7! can be found analytically or
numerically.37,38

To avoid confusion we take all timest.0 and use the
appropriate sign in the propagators to determine ‘‘forward’’
and ‘‘backward.’’ The operatorsVa

1/Vb
2 propagate a wave-

function backward/forward in time under the asymptotic
HamiltoniansHa

0/Hb
0 and then forward/backward in time un-

der the full HamiltonianH. This reduces the effect of the
asymptotic channel propagation on the wave packets, i.e., the
spreading and the phase accumulation.

In all prior applications, except Refs. 39 and 40, func-
tionsg1(R)/g2(R8) were originally chosen to have nonzero
amplitude only in the reactant/product asymptotic regions of
H,

uFa
1&as5ug1~R!3xa~r !&

and

uFb
2&as5ug2~R8!3xb~r 8!&,

so that Mo” ller operators had no effect. In general, if the
original g1(R)/g2(R8) are localized whereH is different
from the asymptotic Hamiltonians, the Mo” ller operators will
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generate non-separableuFa
1& and uFb

2& located in the inter-
action region of fullH. The evolution operators in Eq.~6!
with uFa

1& and uFb
2&, given by Eq.~9!, can be arranged as

follows. Va
1 propagatesug13xa& with Ha

0 back in time
from time zero tot2, and then forward in time with the full
H until time zero.Vb

2 propagatesug23xb& forward in time
underHb

0 from time zero tot1, and then back in time under
full H until time zero. The timest2 and t1 have to be suf-
ficiently long, so, that with the purely incoming/outgoing

g1(R)/g2(R8), the wavepackets ueıHa
0 t1

g13xa& and

ue2ıHb
0 t2

g23xb& are located entirely in the respective
asymptotic regions. The propagation under fullH of Va

1 and
Vb

2 can be combined with the time propagation in Eq.~6! to
give

Cab~ t !5^g23xbueıHb
0 t2

e2ıH(t21t1t1)eıHa
0 t1

ug13xa&.
~10!

Equation~10! can be readily and efficiently combined with
approximate propagators, based on classical trajectories,
such as the IVR propagator of Herman and Kluk. The HK
propagator, given by Eq.~1!, is unitary within the stationary
phase approximation,3

Ksc~ t2 ,t0!'Ksc~ t2 ,t1!Ksc~ t1 ,t0!.

Within this approximation, we can use a single set of classi-
cal trajectories for the total propagation in Eq.~10!, includ-
ing the propagation underHa

0 and Hb
0 , because the transi-

tions from Ha
0 to H and fromH to Hb

0 take place while all
~reactive! trajectories are in the asymptotic regions, whereH
is equivalent toHa

0 or to Hb
0 . So, the classical trajectory,

samplingug13xa&, undergoes the following:

~1! It is propagated back in time underHa
0 until it reaches

the asymptotic region of the reactants for timet1;
~2! it is propagated forward under the fullH for time T until

it reaches the asymptotic region of products or reactants
@hereT is the combined propagation timet21t1t1 of
Eq. ~10!#;

~3! if the trajectory is reactive, it is propagated back in time
underHb

0 for time t2 until the trajectory stops contrib-
uting to the overlap witĥ g23xbu, as illustrated in
Fig. 1.

The propagation timest1, T, and t2 are specific for a
trajectory, which contributes to the correlation function at
time t5T2t12t2. The procedure, though requiring longer
total propagation per trajectory, will remove the effect of the
asymptotic channel propagation on the trajectory contribu-
tion, thus, reducing the phase oscillations and decreasing the
amplitude ofRpqt which is dependent on the stability matrix
elements. Smoothing the oscillations of the integrand by ap-
plying Mo” ller operators improves the convergence of the re-
sults for semiclassical reactive scattering calculations.

III. APPLICATION TO H 2¿H AND DISCUSSION

We applied the Mo” ller operators to a collinear hydrogen
exchange reaction. The details of the calculation are the same
as in Ref. 10 except that the initial and final wave packets are

FIG. 1. Semiclassical application of Mo” ller operators:~a! Classical trajec-
tory propagated back in time with the asymptotic Hamiltonian for reactants,
forward in time with the full Hamiltonian and back in time with the
asymptotic Hamiltonian of products;~b! its classical action as a function of
time; ~c! the real and imaginary parts of itsRpqt@Rpqt5(1,0) atI 150] .
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centered atRA(B)51(2)3.0 bohr in the translational degree
of freedom, the width isg/256 bohr22 and the initial~final!
momentum in translation ispA(B)52(1)7.0. S00 only is
presented here. Figure 1 shows a representative reactive tra-
jectory and its phaseSpqt and the prefactorRpqt . With the
Mo” ller operators we obtained converged results with 5
3104 classical trajectories which is 10 times fewer trajecto-
ries than was required with the initial and final wave packets
defined in the asymptotic regions of a potential surface in
Ref. 10. Figure 2 shows the real parts of the correlation func-
tions for the 0→0 transition obtained with 253103, 50
3103, and 1003103 trajectories. Results for two larger cal-
culations are hardly distinguishable on the plot. Figure 3
shows quantum-mechanical semiclassical probabilities of the
0→0 reactive transition.

We also note that though our semiclassical results are
fully converged with respect to the number of trajectories,
the semiclassical reaction probabilities do depend on the pa-
rameters of the initial and final wave packets defined with or
without Mo” ller operators. The criterion for choosing the
wave packet parameters is the best cancellation of the phases
in the propagator: the wave packets are defined in the inter-
action region of the fullH, but not far into the region where
actual bond-breaking occurs. The wave packet has to be
compact in translation to cover a wide range of energies and
not to go far into the interaction and asymptotic regions. The
initial translational momentum is chosen so that the wave
packet is incoming and covers the desirable range of ener-
gies. Figure 4 illustrates the dependence of the transition
probability on the wave packet parameters.

The outlined strategy of using Mo” ller operators can be
readily extended to the calculation of the cumulative reaction
probability in terms of the Fourier transforms of the wave
packet correlation functions38 and to other IVR propagators.
It is expected to be particularly useful for systems with long
range interactions.

IV. SUMMARY

In this work we suggest and use the Mo” ller operators in
conjunction with the semiclassical HK propagator without
making further approximations, beyond the ones inherent to
the semiclassical propagator, which improves the conver-
gence properties of the semiclassical method. Mo” ller opera-
tors, where applicable, reduce oscillations and the amplitude
of the phase space integrals in IVR propagators. Thus, the
number of classical trajectories was decreased tenfold com-
pared to the calculation without Mo” ller operators in the test
calculation of the state-to-state reaction probabilities for the
collinear H3 system. Convergence with respect to the number
of trajectories was achieved. However, semiclassical prob-
abilities show some dependence on the parameters of calcu-

FIG. 2. Convergence of the correlation function with the number of trajec-
tories: the real parts of the wave packet correlation functions obtained with
N52.53104, 53104, and 105 trajectories.

FIG. 3. Reaction probability for the 0→0 transition for the collinear hydro-
gen exchange reaction obtained from the quantum-mechanical~QM! corre-
lation function and semiclassical~HK! correlation function with Mo” ller op-
erators.

FIG. 4. Dependence of the semiclassical probability for the 0→0 transition
on the parameters of the initial wave packet. On the legendx is the position,
p is the momentum, anda is the width parameter of the initial translational
wave packet.
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lation, such as the particular form of the initial and final
wave packets. This question needs further studies if semi-
classical methods are to become a reliable computational
tool for detailed quantum properties, such as state-to-state
reaction probabilities, in the future.
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