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Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics
applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to
build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce
the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been
passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper
identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material
variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to
suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell
variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a
limited impact on the cells’ performance.

1. Introduction

Lithium ion batteries for consumer electronics applications
such as laptop computers and camcorders have been man-
ufactured in the millions every month [1]. A typical scrap
rate of a few percentages, while has been frowned upon, has
not been identified as a major impediment to the use of this
technology. The typical life expectation of these cells has been
three years and most applications use up to six cells in a
series/parallel configuration; the operating scenario for these
cells has also been mild to moderate—for example, most
laptop applications do not require the cells to discharge at a
rate higher than 1 C (i.e., most laptops can operate for one
hour or more when powered by their batteries only) and
usually operate at moderate temperatures. Consequently,
the quality requirements on batteries have been considerate,
compared to those on other electronic components. With
the advent of large format batteries for vehicle and smart-
grid applications, the requirements on cell standards have
grown exponentially (e.g., compare safety standards IEEE
1625 and Electric and Hybrid Vehicle Propulsion Battery
System Safety Standard, SAE J2929 [2]). The size of the

individual cells has increased at least three fold; the cost
to build the cells has increased with their capacities and
so has the need to reduce the rejection rates. Similarly,
the number of cells packaged to build modules and packs
for such large applications has increased as well, and the
need to ensure the longer life time (e.g., ten years for
battery packs used in vehicles) and to guarantee perfor-
mance under harsh operating conditions demands better
uniformity among the individual cells. Standard practices
in the automotive industry such as Advanced Product
Quality Planning (APQP) and Production Part Approval
Process (PPAP) are now typical of cell manufacturers—
right from raw material purchase until product testing and
acceptance of the component by the OEMs. The lithium-
ion chemistry has a stringent intolerance to impurities
and a high requirement for uniformity at the component
level. Nevertheless, the cell manufacturing process is subtly
different from the manufacturing of other electronics: for
example, the various functional components such as the
electrolyte and separator are usually manufactured at dif-
ferent locations, and these components themselves contain
multiple ingredients supplied by different vendors. Quality
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control has been emphasized at each stage—but rarely is
there a coordinated effort to quantify variations in prod-
uct specifications and how variations among the different
components interact. Despite efforts by various battery man-
ufacturers to develop in-house capabilities to produce all
components at one location, limited know-how on product
handling has often resulted in limited improvements. Over-
all, battery manufacturing has, at best, remained an art even
after two decades.

The most emphasis on enhancements to batteries for
transport applications today is on the cost. The missing link
between the requirements for the pack and the specifications
for the individual cells is currently addressed by over-sizing
the battery packs. A battery electric vehicle utilizes 30–50%
of the available capacity in its battery to allow for longevity
of the packs as well as to ensure safe operation of the
battery. Reducing the size of the battery packs has been
identified as a major stepping stone for long-term viability of
battery-powered vehicles. Immediate efforts in place include
rigorous characterization of the packs by the end-users
and the OEMs; requirements on battery performance and
durability have been arrived at based on voluminous drive-
cycle testing, for example. Such requirements translate to
tighter quality control measures all the way down to the raw-
material selection. While it is important to ensure quality
of the cells, it is common knowledge that variations in
some materials are naturally larger than in others, and
that some properties influence the performance of the cell
more than others. The allowable range of uncertainty in
material properties has by and large been determined on
an ad-hoc basis, sometimes demanding for higher standards
than necessary, resulting in added cost of manufacturing,
while in other cases, the variations in material property
have not been identified as critical until after extensive
design of experiment studies and/or costly field incidents.
Most component manufacturers collect variability in the
key properties and distribute this information to the cell
manufacturers. Similarly, most cell manufacturers share
information about the cell-to-cell variability limits with the
OEM’s. A systematic approach to relate uncertainty at the
material level to the cell-to-cell variations will greatly help
reduce the rejection rate of the cells and prevent undue
quality requirements at the component level—both leading
to significant enhancement in the performance and cost of
battery packs.

In this work, we demonstrate utilizing a mathematical
model in the impedance domain, the correlation between
the variations in material properties, and the performance
at the cell level, outlining a procedure to compare the
relative importance of uncertainties in the component
properties and to suggest a rational procedure to set quality
control specifications for the various components of a
cell. The methodology presented here can be utilized as a
screening test (customizable by the cell manufacturer) to
ascertain quality requirements for the various components
and typically involves measuring the standard a.c. impedance
response at a predetermined frequency(ies)—similar to the
cell internal resistance measurement used currently in the
industry.

2. Mathematical Model

The choice of impedance spectroscopy as the screening
tool provides the flexibility for use without introducing
significant perturbation to the cell, from the requisite
operating protocol and results in minimal changes to the
cell characteristics. So, this technique has been employed
extensively in the past to investigate response of electro-
chemical systems [3]. Several mathematical models for the
impedance response of lithium ion batteries exist in the
literature [4–11]. Whereas the most common approach
to interpreting impedance response is utilizing empirical
equivalent circuits [3]; for the purpose of identifying critical
material components and their relative impact on the cell
performance, a physics-based model is preferable. The model
developed by Darling and Newman [4] utilizes the porous
electrode theory to account for the effect of parameters
like porosity, particle size distribution, and thickness of
the electrode as well as properties of the electrolyte on
the cell impedance. This model also captures the surface
effects on the kinetics as well as the dependence of the
thermodynamics on the chosen chemistry. Dees et al. [6]
used a similar model to characterize surface modifications
on the cathode. Since then, Meyers et al. [5] and Methekar
et al. [11] have developed closed-form solutions under
limiting cases that allow one to interpret the physical
significance of the impedance measurements at various
frequencies. More recently, comprehensive models to sim-
ulate the performance of a lithium ion cell containing two
intercalation electrodes and a porous separator have been
developed by Sikha and White [8, 9] and Motupally et al.
[12].

In the present work, we utilize the results of Sikha
and White [8, 9] to simulate the impedance response of
the cell. The use of this model has a few advantages:
the contributions from the individual components to the
overall cell impedance are readily recognizable; the closed-
form transfer function for the lithium ion cell allows us
to use the conventional tools [13–23] in controls theory to
investigate effects of uncertainty in the parameters on the
cell performance. Further details on the model equations
can be found in [8, 9]. A list of base parameters used in
the present work is summarized in Table 1 [9]. As discussed
in subsequent sections, these parameters are perturbed to
reflect the variations during the manufacturing process and
their relevance to the cell performance. The cell model
incorporating the base-line parameters is referred to as the
“nominal” cell model in the discussion.

The cell impedance was evaluated between 1e-6 and 1e-
4 Hz, using the closed form solution presented by Sikha,
using Matlab ©. For an elaborate description of the versatility
of the model and its applicability under various limiting
conditions, the reader is referred to the original work; it
is worth mentioning that sufficient care must be taken to
ensure numerical precision as addressed in the earlier efforts
[5, 9]. The entire frequency range was evenly divided in
the log space into 1000 frequencies. The results shown are
for a cobalt oxide cathode, a polypropylene separator, and a
graphitic anode.
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Table 1: List of nominal parameters used in the impedance model.

Parameter Cathode Separator Anode

Diffusion coefficient in the solid particles (m2/s) 1e-12 — 3.7125e-14

Solid phase conductivity (S/m) 10 100

Nominal porosity 0.3 0.45 0.4382

Filler fraction 0.15 0.0566

Transfer coefficient 0.5 0.5

Nominal particle size (µm) 8.5 12.5

Equilibrium exchange current density (A/m2) 10 10

Double layer capacitance for the electrode (F/m2) 0.2 0.2

Double layer capacitance for the surface film (F/m2) 0.02 0.02

Resistance for the surface film (Ohm-m2) 1e-4 5e-4

Tortuosity 2.3 1.5 4.1

Nominal electrode thickness (µm) 70 25 73.5

Stoichiometric window 0.99–0.52 0.7952–0.01

Initial concentration of the electrolyte (M) 1

Conductivity of the electrolyte (S/m) 10

Diffusivity in the electrolyte (m2/s) 2.58e-10

Transport number 0.435

Nominal room temperature 298 K
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Figure 1: Nyquist plot showing the contribution of the individual
cell components towards the overall impedance of the cell at a full
cell SOC value of 0.5, between 106 and 10−4 Hz.

3. Results and Discussion

Figure 1 presents the Nyquist response for the nominal cell—
the results presented are similar to the 50% state of charge
(SOC) case presented by Sikha and White [9]. The model
captures the low-frequency diffusion tail followed by the
solution phase transport features, charge transfer, and double
layer effects and finally the ohmic drop with increasing
range of frequencies. Also shown is the impedance of the

individual components—namely, the anode, cathode, and
the separator. For the nominal cell, the contributions from
the separator were found to be negligible; the anode and
cathode responses were similar in shape: each curve showing
the characteristic features described above.

3.1. Incorporating Distributed Parameters. Earlier efforts to
incorporate distribution in material properties, have consid-
ered model electrodes fabricated to include several charac-
teristic particle sizes. For example, Darling and Newman [4]
illustrated that the coloumbic capacity of the nonuniform
electrodes was consistently lower than the predictions made
from a model utilizing a single particle size, at a prescribed
galvanostatic discharge rate. The results were shown to pro-
gressively worsen at higher rates and with increasing parti-
cle nonuniformity. Hence, models which presume a constant
particle radius were inferred to show the poorest agreement
with experimental results at high discharge rates. Stephenson
et al. [7] extended these results to incorporate six character-
istic particle sizes. In a similar work, Nagarajan et al. [10]
demonstrate that an electrode comprised of particles of two
different sizes can have a significantly higher capacity than
an electrode consisting of single-size particles and that a
trade-off between packing density and liquid-phase diffu-
sion resistance can be achieved by adjusting the particle size,
volume fraction of large and small particles, and the size
ratio to optimize discharge capacity under different operat-
ing scenario. Wang and Srinivasan [24] introduced a direct
numerical simulation technique that can incorporate a con-
tinuous variation in particle size. More recently, Meyers et al.
[5] implemented an impedance model that represents the
particle radius using a characteristic length obtained by inte-
grating the particle size distribution. We presented a method-
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Figure 2: Interdependence of five battery material properties: the different colors indicate cells made from five different batches; the spread
in each box shows how different the codependence of each pair of properties can be from another. For example, moving across the last
column, the mechanical strength and porosity show a weaker correlation, compared to mechanical strength and thickness.

ology to incorporate distributed parameter values into sim-
ple battery models using the polynomial chaos approach
[14]. However, the limitations on the complexity of the bat-
tery model did not allow for extension of the technique to ap-
plications beyond system identification. Dubarry et al. [25]
analyzed the differences in cell capacity and the weight dis-
tribution in 100 cells using an equivalent circuit model
and related these issues to the intrinsic cell imbalance to
improve the fidelity of battery pack simulations when cell-
to-cell variations were taken into consideration. The authors
quantified the rate and SOC dependence of the polarization
resistance in the cells to understand the effect of cell-to-
cell variations on performance and at the pack level. While
presenting a significant improvement over the prior work,
the method presented in Dubarry’s work could not be used to
compare variations from one cell component versus another,
largely due to the choice of a simple battery model. Other
efforts include models that model nonuniformity in elec-
trodes using Latin hypercubes for sample spacing [26] and

Kinetic Monte Carlo Simulations [11]. Very few of these
models incorporate features to address the interaction of dif-
ferent parameters and are hence limited in their practical ap-
plicability to address cell quality.

Figure 2 shows the distribution of five different param-
eters and their codependence on each other. For example,
these parameters, A through E, may indicate the porosity,
thickness, the mean particle-size, swelling, and mechanical
strength of the electrode respectively. The different colors
indicate different batches of the product. Two observations
are apparent from the data: (i) the parameters specified by
the manufacturer to characterize a component are interde-
pendent on each other and (ii) the dependence of a given pa-
rameter (e.g., Mechanical Strength) upon one property
(e.g., Mean Particle Size) is drastically different from that
on another (e.g., Thickness). Failure to comprehend these
results often leads to design of experiments focused on opti-
mizing parameters one at a time and does not lead to frui-
tion. In the next few sections, we present a methodology to
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Figure 3: Effect of contact resistance on the impedance response
of the cathode: the incorporation of an ohmic drop across the ter-
minals shifts the real axis of the nominal response to more positive
values.

incorporate such statistical information obtained in the in-
dustry to analyze the relative impact of the different parame-
ters on the cell performance.

3.2. Sensitivity Analysis. As mentioned earlier, the advantage
of frequency domain analysis is the ability to capture the sig-
nature of phenomena exhibiting different time constants us-
ing small perturbations about the equilibrium state. Accord-
ing to the difference in the response time, ohmic drop and
kinetic processes are often found to alter the high frequency
response, while the effect of slower transport processes is
observed at the lower frequencies, around the diffusion tail.
It is a standard practice to carry out sensitivity analyses to
understand the effect of the different parameters. Figure 3
shows the effect of the contact resistance on the impedance
response of the cathode, for example, the incorporation of
an ohmic drop across the terminals merely shifts the real axis
of the nominal response to more positive values. This is a
relatively simple result to interpret, both since the resistive
component does not have an imaginary component part
and because the time constant for a resistor is significantly
different from the other processes taking place within the cell.

Figure 4 presents the interaction of the distribution
in different parameter values. Four different parameters
are chosen for analysis: the cathode thickness, porosity,
tortuosity, and the mean particle radius for the cathode.
Note that the particle size is represented by a single value
in the model by Sikha and White [8]; however, extension
to the equivalent characteristic length approach presented
by Meyers et al. [5] to include particle size distributions, is
straight forward. In each case, the parameter of interest is
perturbed from the nominal value shown in Table 1 by the
range indicated in the corresponding Figures Figure 4(a)
through 4(d) while retaining the other parameters at their

nominal values. Note that the range across which the
properties are altered is within the range of experimental
variations. Some of these parameters have a greater influence
on the impedance response, compared to the others; this
trend reflects the choice of nominal values for the parameters
chosen and should not be interpreted as the norm. Also,
whereas some of the parameters are readily controlled
during the manufacturing process, others are usual-
ly measured at a later stage to ensure quality requirements—
for example, the tortuosity is not preset to a specific value;
it is measured after the electrode is fabricated to account for
a certain loading, particle size, and thickness. Nevertheless,
the effect of tortuosity is independent of that of the other
parameters and is significant under the conditions shown in
Figure 4. Typically in such cases, the parameter of interest
(here, the tortuosity) has a broader distribution than those
that can be preset.

Figure 5 compares the effect of variations in similar pa-
rameters (thickness, porosity, and tortuosity) between the
separator and the cathode. Since changes in these properties
both in the cathode as well as in the separator alter transport
in the electrolyte, the low medium frequency (e.g., ∼1 mHz)
response reflects these perturbations for all cases. It is under
situations like these, when there is an overlap in the response,
that a physics-based model is valuable to directly correlate
the changes in the design parameters within a meaningful
range to the variations in the cell performance. As the results
indicate, variations in the cathode, in general, have a greater
impact than the corresponding changes in the separator,
again, for the set of nominal parameters shown in Table 1.
However, most of these values are close to actual properties
measured from a working cell, and hence, the trend shown in
Figures 4 and 5 is in good qualitative agreement with actual
measurements, even if not rigorously quantitative. In prac-
tice, tuning the properties of one component may not be as
flexible as another—for example, it is easier to fabricate thin
(10 µm) copper foils of uniform thickness since the process-
ing limitations on metallic rolls have been overcome to a
greater extent, than when fabricating composite electrodes or
polymer membranes of similar thickness. In such cases, im-
posing the same tolerance limits for the various components
results in additional cost due to increase in rejection rate
as well as sophistication in material handling. However, as
noted from Figure 5, such variations may not be the limiting
factors that impact on the performance of the given cell
design. In such instances, the overspecification of component
requirements only leads to additional cost, without any no-
ticeable impact on quality.

Despite similar results illustrated in the literature, such
practices continue in the industry, primarily because of
the influence of one parameter on the other, as previously
discussed in Figure 2. For example, whereas the separator
porosity may not be critical for a given choice of cathodes
(e.g., a high energy cell), the use of a similar product for a
high rate application, or even in the same cell when operated
at a different temperature, may alter the sensitivity plots
shown in Figures 4 and 5. In the next section, we present
a methodology to compare the relative significance of the
variations introduced due to the uncertainty in the different
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Figure 4: Sensitivity analysis on the cathode: plotted are the Nyquist responses when the design parameters at the cathode are swept about
their corresponding nominal values, within the range of manufacturing variability.

parameters to quantify the net impact on the cell as well as
to identify the best design solution available to minimize the
variations in cell performance.

3.3. Parameter Uncertainty and Process Variability. Most of
the discussion presented in this section draws from the litera-
ture on robust design under model uncertainties [13–23].
Extensive studies to minimize the effect of uncertainty in the
input parameters on the robustness of plant performance
have been carried out over several decades [13]. Box
converted the correlation matrix into a diagonal form
and used the eigenvalues and eigenvectors to define a
hyperdimensional ellipse that represents the joint confidence
intervals. Routh and Nyquist stability criteria are outlined
in standard controls textbooks [15, 23]. Skogestad and
Morari [16] provide a detailed mathematical framework for

handling uncertainty, and robust stability in multiple, input
multiple, output (MIMO) systems introduced a formulation
for design under uncertainty in input parameters, which
utilizes a smooth nonlinear program that approximates
the feasibility problem. Androulakis et al. [19] investigated
the effect of uncertainty in the microscopic reaction rate
constants on macroscopic observables such as autoignition
delay. Samsatli [20] introduced a robustness metric for
optimization under parametric uncertainty. Using a similar
example, Skogestad and Morari [16] compare the differences
between the use of SSV’s for SISO and MIMO systems and
present an extension of the Nyquist stability criterion for
MIMO systems. This approach will be used in the rest of the
current work. In essence, this approach utilizes the Nyquist
plots shown in Figures 4 and 5 to capture the impact of
parametric uncertainty on the performance of the system.
Figure 6(a) focuses on the response at 1 mHz when several
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Figure 5: Comparison of the sensitivity of the cell impedance to the corresponding design parameters within the cathode versus the
separator; for the choice of nominal parameters shown in Table 1, the variations on the separator do not impact the cell performance as
much as those of the cathode.

parameters like the cathode porosity, particle size, and
thickness are perturbed; these are results super-imposed
from Figure 4. The method proposed by Skogestad then
approximates the uncertainty in the response by a disc whose
radius spans the uncertainty in the input space. Correspond-
ing to each of the parameters shown in the figure, there exists
a separate disc-approximation, as shown in Figure 6(b). In
practice, the discs may not be circles for all cases; however,
identifying the shape of the actual uncertain region in the
response space can be a cumbersome task for the case with
multiple parameters, and the methodology shown in the
figure is a good approximation. The use of the individual
disc-approximation corresponds to the design of experi-
ments optimizing one parameter at a time as described in the
previous sections. In the case shown in Figure 6, for example,
the use of individual circles to optimize performance repre-
sents adjusting the porosity distribution, particle sizes, and
variations in electrode thickness, one at a time. In practice,
these parameters can be tuned individually to accomplish
different goals, changing one of these parameters often leads
to a change in the others—making the tuning process more
complicated than that for an SISO system. The worst case
scenario is represented by the circumcircle of the individual
confidence regions. The best possible scenario for a given
set of parameters connects the centers of the confidence
discs; for this case, there is no uncertainty in the value of

any parameter; that is, each parameter is held at its nominal
value and the impedance response collapses to a point value
as well.

The representation of the uncertainty from the various
parameters simultaneously, as shown in Figure 6, has several
advantages. To begin with, one can readily see that the sensi-
tivity of the circumcircle to the various parameters is a func-
tion of the nominal values for the parameters as well as the
frequency of choice. In other words, the individual sensitivi-
ties shown in Figures 4 and 5 can now be compared against
one another, by choosing an appropriate frequency. In the
example shown in Figure 6, the particle size has the largest
impact (i.e., the disc corresponding to that parameter has the
largest diameter) on the fluctuations in the impedance, and
variations in the thickness of the electrode may be masked
by those in the particle size distribution within the scope of
the electrochemical model used in this study. Subsequently,
any effort to improve the thickness of the electrode will not
lead to fruition, until the variations in the particle size are
addressed for the nominal values of parameters used here.
Secondly, comparison of the effect of variations in the in-
dividual parameters provides an easy-to-use metric as op-
posed to the variations themselves; it reduces the need for ar-
bitrary specifications on the individual parameters or that
for an extensive design of experiments, since one measure
(here the cell impedance at a preset frequency) is used to
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Figure 6: (a) Superimposing sensitivity data from Figures 4 and 5. (b) Construction of the norm-bounded uncertainties for the individual
parameters: the smallest disc corresponds to the uncertainty in the cathode thickness, the medium-sized disc to that of the cathode porosity,
and the largest to the particle size within the cathode. (c) Determining the overall uncertainty in the impedance response at 1 mHz: the
dashed circumcircle shows the uncertainty region covering the influence of the variations in the individual parameters. (d) Setting the
nominal value for the cathode thickness at 75 µm instead of 70 µm moves the individual uncertainty disc from the solid circle shown in (c)
to the dotted circle, and the overall uncertainty from the dashed circumcircle to coincide with the individual disc corresponding to that of
the porosity variations.

assess the impact of variations in each parameter. All efforts
to minimize the cell-to-cell variations are in essence attempts
to minimize the radius of the circumcircle shown in Figure 6.
The obvious path forward, is to minimize the variations in
the individual parameters; however, it is not always economi-
cal to tune each parameter to the desired level of uniformity.
One typical example is the thickness of the current collectors
versus that of the active material or the separator described
in the previous section. In this case, an alternate choice
of the nominal values for the different parameters may
help in reducing the impact of variations in the parameter
that is more difficult to tune. For instance, adjusting the
nominal value for the separator thickness such that any
variation on this parameter falls within the observable range
of impedance variations due to the other parameters will
greatly reduce the efforts that may otherwise go towards
unachievable thickness uniformity improvements on a 25 µm
thin polymer film, to bring it at par with a 25 µm aluminum
foil. Figure 6(d) shows another example of this approach,
where two parameters (the thickness and porosity of the
cathode) are considered; for the nominal values used, the two

small discs shown in Figure 6(a) represent the variability in
the cell impedance. However, shifting the nominal thickness
of the cathode by 5 µm effectively moves the uncertainty due
to the thickness into the range corresponding to that from
the porosity.

In essence, we propose the following steps to translate
requirements on cell-to-cell uniformity to tolerance speci-
fications for the component manufacturers: (i) obtain the
acceptable range of impedance values for the cells from dif-
ferent lots based on the end-user requirements, operating
conditions, and so forth, (ii) use this range as the diameter
for the circumcircle described in Figure 6, (iii) obtain the ex-
perimentally measured distributions in the values of the
properties of interest in the different components (anode,
foil, separator, electrolyte, etc.) to construct the individual
confidence intervals, and (iv) match the variations in the
components to accommodate all the subcircles within the ac-
ceptable range of impedance values as given by the
circumcircle.

The choice of frequency domain for such analysis is based
on the ease of detecting the sensitivity of the response to
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Figure 7: Effect of temperature on the sensitivity of the impedance
response to cathode thickness and porosity: the dotted circles
correspond to the uncertainties at room temperature (298 K) and
the solid circles correspond to equivalent values at low temperature
(263 K).

changes in the different parameters. A similar procedure
using time-domain data (e.g., discharge curves) can be devel-
oped; however, it is usually difficult to distinguish experi-
mental noise from subtle changes due to variations in the pa-
rameters. Hence, the time domain data do not reveal such
trends until after prolonged use of the battery. A second
advantage is the possibility of identifying a range of freq-
uencies depending on the time constants, for the choice of
parameters investigated. Also, the conventional tools used in
stability analyses and robust design [13–23] can be readily
extended to battery design, by posing the deviations out
of the prespecified tolerance limit as being thrust into an
unstable region.

3.4. Parameter Tuning Based on Operating Conditions. The
previous subsections illustrate how the different parameters
influence the variations within the cell to different extents.
A lot of these variations also depend on the operating
conditions the battery is subjected to. Figure 7 illustrates the
effect of variations in the same set of parameters shown
in Figure 6 at a lower temperature. As reported in the
literature, the transport properties of the electrolyte are
very different from those at room temperature. As a result,
the sensitivity of the cell impedance to parameters like the
porosity and tortuosity of the electrode is increased, and the
uncertainty in the cell impedance is magnified. As seen in
Figure 7, the effect of the cathode porosity is comparable
with the particle-size effects when the battery is operated
at low temperatures. Hence if the battery operates for a
majority of the time at lower temperatures, tailoring the
design to accommodate this finding will lead to addressing
low temperature limitations better.

4. Summary

Cell-to-cell variations are often attributed to uncertainties
in the design parameters for the different cell components.
Knowing the sensitivity of the cell performance to the param-
eters of interest helps battery manufacturers to focus on the
right set of steps, instead of enforcing ad-hoc criteria on the
tolerances for different properties at quality check. A meth-
odology was presented to facilitate studying the relative ef-
fects of multiple parameters simultaneously and to prioritize
testing procedure during design of experiment studies. The
process outlined above may be used to check if the indiv-
idual cells from different lots conform to a prespecified toler-
ance limit for the battery, by measuring the scatter in the a.c.
impedance of the cells at a suitable frequency. Finally, the
simulation results for the different operating conditions will
help tailor the design parameters according to the targeted
end use. A few open questions remain: the results pre-
sented here depend entirely on the model of choice; no allow-
ance has been provided in this work to accommodate for un-
modeled dynamics. There are accounts of representing such
instances as uncertainties as well; however, in most practical
instances, it is hard to distinguish between variations in
the parameters and those from under represented physical
phenomena. A rigorous procedure to determine the “opti-
mal” frequency at which the sensitivity analysis should be
carried out has not been developed yet, for the case with
uncertain parameters. The approximation of the uncertain
region by discs as discussed earlier has been questioned by
Bequette [2], since this approach amplifies the actual margin
of discrepancy and introduces purely hypothetical scenarios
in some cases. Physics-based definition of uncertainties has
been recommended instead; however, the implementation
requires a rigorous formulation, hence, we did not adopt this
approach here. However, this idea warrants further explora-
tion in subsequent analyses.
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