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Analytical Expression for the Impedance Response
for a Lithium-Ion Cell
Godfrey Sikha* and Ralph E. White**,z

Department of Chemical Engineering, University of South Carolina, Columbia,
South Carolina 29201, USA

An analytical expression to predict the impedance response of a dual insertion electrode cell �insertion electrodes separated by an
ionically conducting membrane� is presented. The expression accounts for the reaction kinetics and double-layer adsorption
processes at the electrode-electrolyte interface, transport of electroactive species in the electrolyte phase, and insertion of species
in the solid phase of the insertion electrodes. The accuracy of the analytical expression is validated by comparing the impedance
response predicted by the expression to the corresponding numerical solution. The analytical expression is used to predict the
impedance response of a lithium-ion cell consisting of a porous LiCoO2 cathode and mesocarbon microbead anode. A qualitative
graphical method to identify the co-existence of solid and solution phase transport limitations in the impedance spectra of insertion
electrodes is also discussed in the paper.
© 2008 The Electrochemical Society. �DOI: 10.1149/1.2976359� All rights reserved.

Manuscript submitted April 21, 2008; revised manuscript received August 6, 2008. Published October 6, 2008.

The electrochemical impedance spectroscopy �EIS� technique
has long been used as a standard tool to estimate fundamental physi-
cal properties, understand reaction mechanisms, and estimate state
of charge and state of health in battery systems.1-4 The interpretation
of the impedance spectrum is often based on equivalent circuit-type
models that are used to approximate the physiochemical processes
that occur in the cell. Although equivalent circuit-type models are
computationally efficient for data regression, their applicability is
limited by several factors, such as dependence on excessive data
sets, nonextendable to different system chemistries, high degree of
empiricism required to fit experimental data, and limited phenom-
enological insight. Physics-based models have a broader scope with
better confidence with parameter estimates, but are usually compu-
tationally intensive. Moreover, rigorous physics-based impedance
models employ numerical schemes to solve for the solution, and the
computational time involved in data regression would not be able to
meet the application requirements. To optimize model robustness
and computational efficiency, researchers have adopted various tech-
niques to reduce mathematical complexity without compromising
accuracy, either by using faster solvers adopting advanced solution
techniques or by considering only the dominant processes, thereby
reducing the variables to be solved. Alternatively, the analytical so-
lution, if available, is always preferred as a computationally efficient
solution.

In the list of physics-based impedance models for rechargeable
battery systems, most of the rigorous models adopt a numerical
scheme to solve the equations.5-7 Closed-form analytical or sym-
bolic solutions are also presented for such systems but under certain
limiting operational and design conditions. Meyers et al.8 presented
an analytical solution for the impedance response of a porous inter-
calation electrode in the absence of solution phase diffusion limita-
tions. Georen et al.9 used a similar analytical solution to illustrate
the effect of reference-electrode positioning for impedance measure-
ments in metal hydride and LiMn2O4 electrodes. Devan et al.10 pre-
sented an analytical solution for the impedance response to a sym-
metric cell consisting of noninsertion porous electrodes. Gomadam
et al.11 used an analytical impedance model for a noninsertion po-
rous electrode without solution phase diffusion limitations for dif-
ferent electrode configurations to estimate physical properties of
electrodes. Subramanian et al.12 presented a symbolic solution pro-
cedure to evaluate the impedance response due to the diffusion pro-
cess in a planar electrode. In our previous work, we presented a
methodology to develop a closed-form analytical solution for the
impedance response of a single-insertion porous electrode consider-

ing the reaction kinetics, double-layer charging, and charge and
mass transport processes in solid and solution phases.13 This work
presents a comprehensive analytical model for a cell sandwich con-
sisting of dual-insertion porous electrodes. The model accounts for
the reaction kinetics and double-layer adsorption at the interface,
potential distribution in the porous electrode and the solution phase,
and mass transport in the solution �electrolyte� phase and solid �in-
sertion electrodes� phase. The general form of the analytical expres-
sion developed in this work can be used to predict the impedance
response of various rechargeable battery systems employing porous
insertion electrodes. The expression can also be used to estimate
parameters from full-cell/half-cell experimental impedance data ob-
tained on insertion electrode systems.

Mathematical Method and Solution Technique

The schematic of the cell geometry �shown in Fig. 1� consists of
a porous anode and cathode separated by an ionically conducting
membrane. The pores in the electrodes and the separator are satu-
rated with electrolyte to facilitate ion transport between the elec-
trodes. The main assumptions involved in the mathematical treat-
ment of the cell are: �i� one-dimensional �x-coordinate� transport of
species in the solid matrix-pore continuum, �ii� the solid matrix in
the insertion electrodes are assumed to be made up of spherical
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Figure 1. �Color online� Schematic of a cell sandwich containing dual in-
sertion porous electrodes separated by an ionically conducting membrane.
The schematic of the magnified version of the single spherical insertion
particle and the electrode/electrolyte interface is shown below the cell sand-
wich.
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particles and insertion occurs via diffusion in the radial coordinate,
�iii� the electrochemical reaction of the insertion species is the pri-
mary reaction, and any other reactions are ignored, �iv� the electro-
chemical intercalation reaction is assumed to follow Butler Volmer
type kinetic reaction rate expression, �v� volume changes in the elec-
trode during insertion/de-insertion are ignored, and �vi� heat genera-
tion and energy balances are ignored. The general electrochemical
reaction occurring in either of the insertion electrode in the cell is
represented as

xM+ + xe− + � � Mx − �

where � represents the vacancy in the host insertion material and x
represents the stoichiometry of the reaction. The mathematical equa-
tions used to describe the processes that occur in the cell are derived
from the mass and charge balances in the solid and the electrolyte
phases and are presented in our earlier work13 and are not listed
here.

Because the impedance technique is performed using a small
amplitude sinusoidal perturbation about a steady state, a linear out-
put response is assumed. Therefore, to obtain the mathematical so-
lution, the system of governing equations can be linearized at the
open-circuit conditions. The time-dependent linearized equations are
transformed to the Laplace domain �variables topped with a “�”�
and solved in the Laplace domain. The corresponding complex im-
pedance in the frequency domain �variable �� is evaluated by sub-
stituting s = j�.10 The assumption s = j� also eliminates the tran-
sient part of the response in the mathematical solution but includes
the sinusoidal steady-state output response.

Equations in the porous insertion electrodes.— The linearized
governing equations in the porous electrode, as presented in Eq. 2–5
in Ref. 13, are transformed using the dimensionless variables
� c̄i, �̄i, x̄i, t̄i� and converted to the Laplace domain to yield two or-
dinary differential equations �one for the dimensionless concentra-
tion c̃̄i and the other for the dimensionless overpotential �̃̄i� in each
insertion electrode i and are given as

d2c̃̄i

dx̄i
2 = s̄ic̃̄i − �1,i�̃̄i, i = a,c �1�

d2�̃̄i

dx̄i
2 = − s̄ic̃̄i + ��1,i + �2,i��̃̄i, i = a,c �2�

where a and c represent the anode and the cathode porous insertion
electrode, respectively. The dimensionless parameter �1,i gives the
ratio of the solution phase diffusion resistance to the interfacial re-
sistance, and the dimensionless parameter �2,i gives the ratio of the
ohmic resistance to the interfacial resistance. The dimensionless
Laplace transformed boundary conditions for Eq. 1 and 2 are given
by

x̄a = 0,
dc̃̄a

dxa
= 0,

d�̃̄a

dx̄a

= ĩapp

x̄a = 1,
dc̃̄a

dx̄a

= −
�1,a

�2,a

F�1 +
�a

�a
�

iapp�1 − t+
0�

���s̄a�,
d�̃̄a

dx̄a

= −
�a

�a
ĩapp −

dc̃̄a

dxa

x̄c = 0,
dc̃̄c

dx̄c

= −
�1,c

�2,c

F�1 +
�c

�c
�

iapp�1 − t+
0�

���s̄c�,
d�̃̄c

dx̄c

= −
�c

�c
ĩapp −

dc̃̄c

dxc

x̄c = 1,
dc̃̄c

dxc
= 0,

d�̃̄c

dx̄c

=
1

s̄c

�3�

where ��� s̄a� and ��� s̄c� are unknown functions in terms of the di-
mensionless Laplace variable s̄a and s̄c, respectively. The solution to

the coupled second-order linear differential equation �Eq. 1 and 2� is
given by

� c̃̄i

�̃̄i

� = 	 1 1

si − �1,i

�1,i

s̄i − �2,i

�1,i



	�C1,i cosh ��1,ixi + C2,i sinh ��1,ixi

C3,i cosh ��2,ixi + C4,i sinh ��2,ixi
�, i = a,c �4�

where �1,i and �2,i are the eigenvalues given as

�1,i =
1

2
�s̄i + �1,i + �2,i

+ �s̄i
2 + 2�1,is̄i − 2�2,is̄i + �1,i

2 + �1,i�2,i + �2,i
2 �, i = a,c

�2,i =
1

2
�si + �1,i + �2,i

− �s̄i
2 + 2�1,is̄i − 2�2,is̄i + �1,i

2 + �1,i�2,i + �2,i
2 �, i = a,c

�5�

It should be noted that this solution form holds true for the eigen-
value problem with distinct eigenvalues and linearly independent
eigenvectors. The solution obtained in Eq. 4 is substituted into the
boundary conditions in Eq. 3 to evaluate for the constants C1,i, C2,i,
C3,i, C4,i. Although the general solution for the variable in the cath-
ode and the anode porous insertion electrode are similar, the con-
stants evaluated are different because of the different types of
boundary conditions in each of the porous electrodes. The expres-
sions for the constants in the anode region are evaluated as

C1,a =
�1,aĩapp

��1,a��1,a − �2,a�sinh ��1,a
�cosh ��1,a +

�a

�a

−
�s̄a + �1,a − �2,a�
�a

La
2aa�1 − t+

0��a

���s̄a�

ĩapp
�

C2,a = −
�1,aĩapp

��1,a��1,a − �2,a�

C3,a = −
�1,aĩapp

��2,a��1,a − �2,a�sinh ��2,a
�cosh ��2,a +

�a

�a

−
�s̄a + �1,a − �1,a�
�a

La
2aa�1 − t+

0��a

���s̄a�

ĩapp
�

C4a =
�1,aĩapp

��2,a��1,a − �2,a�
�6�

The constants evaluated for the cathode region are similar to that
presented in Eq. �24� in Ref. 13 and are evaluated as

C1,c = −
�1,cĩapp

��1,c��1,c − �2,c�sinh���1,c�
−

C2,c

tanh ��1,c

C2,c =
�1,aĩapp

��1,c��1,c − �2,c�
��c

�c
−

�s̄c + �1,c − �2,c�
�

Lc
2ac�1 − tc

+��c

���s̄c�

ĩapp
�

C3,c =
�1,cĩapp

��2,c��1,c − �2,c�sinh���2,c�
−

C4,c

tanh ��2,c
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C4,c = −
�1,cĩapp

��2,c��1,c − �2,c�
��c

�c
−

�s̄c + �1,c − �1,c�
�

Lc
2ac�1 − tc

+��c

���s̄c�

ĩapp
�

�7�

The term �i, which appears in the constants in Eq. 6 and 7 as �a
and �c, respectively, is related to the local impedance �Zloc,i�, which
is the combined impedance response of single particle �Zp,i� and the
film surrounding the particle. The single-particle impedance arises
from the diffusion of Li in the spherical particles of the solid matrix,
charge transfer, and double-layer adsorption at the particle film in-
terface and film impedance arises from the resistance and capaci-
tance of the film surrounding the spherical particle. The local im-
pedance is given as13

Zloc,i =
1

F�i
siCfilm,i +

1

Zp,i + Rfilm,i
, i = a,c �8�

Zp,i =
1

siCdl,i + �1/Rct,i + Rdif,i/Ys,i�
, i = a,c �9�

where Rct,i and Rdif,i are charge transfer resistance and solid phase
diffusion resistance, respectively. The expressions for the dimen-
sionless concentration and overpotential can now be explicitly ex-
pressed when the values of the constants �Eq. 6 and 7� are substi-
tuted into the general solution. These expressions will still retain the
unknown constants ��� s̄a� and ��� s̄c�, which will be evaluated by
solving for the dimensionless concentration and overpotential in the
separator region.

Equations in the separator region.— The dimensionless vari-
ables c̄i and �̄i are decoupled in the separator region because of the
absence of the reaction term in the electrolyte mass balance equa-
tion. The dimensionless governing equations in the Laplace domain
for the mass and charge balances are given in Eq. 10 and 11, respec-
tively

d2c̃̄i

dx̄i
2 = s̄ic̃̄i, i = s �10�

d�̃̄i

dx̄i

+
dc̃̄i

dx̄i

= ĩapp �11�

and the corresponding dimensionless Laplace transformed boundary
conditions are given as

x̄s = 0,
dc̃̄s

dx̄s

= �3���s̄a�

x̄s = 1,
dc̃̄s

dx̄s

= �3���s̄c� �12�

The general solution for Eq. 10 is given as

c̃̄s = C1,s cosh �s̄sx̄s + C2,s sinh �s̄s xs �13�

The value of the constants C1,s and C2,s are evaluated by substi-
tuting the general solution given in Eq. 13 in the boundary condi-
tions defined in Eq. 12 and solving for the resulting algebraic equa-
tions

C1,s =
�3

�ss sinh �ss

����s̄c� − ���s̄a�cosh �ss�

C2,s = �3
���s̄c�
�ss

�14�

The derivative of the dimensionless concentration is evaluated
from Eq. 13 and substituted back into Eq. 11 to evaluate for the

dimensionless overpotential �̃̄s in the separator region. Upon inte-
gration and substituting the reference condition ��̄s� x̄s = 1� = 0�,
Eq. 11 can be evaluated for �̃̄s as

�̃̄s = ĩappx̄s − 1 + �c̃̄�x̄s=1 − c̃̄s �15�

The value for c̃̄s and � c̃̄s�x̄s=1 can be evaluated from Eq. 13.

Evaluation of the constants ��� s̄a� and ��� s̄c�.— Knowing the ex-
pressions for the dimensionless concentration in the separator re-
gion, the constants ��� s̄a� and ��� s̄c� can be evaluated based on the
condition that �i� the concentration is continuous at the anode po-
rous electrode/separator interface and �ii� the concentration is also
continuous at the separator/porous cathode electrode interface, and
is mathematically given by, respectively

−
�2,aLa�1 − t+

0�
�1,a
FDa

eff�1 + �a
eff/�a

eff�
�c̃̄a�x̄a=1 =

Ls

�3Ds
eff �c̃̄s�x̄s=0 �16�

−
�2,cLciapp�1 − t+

0�
�1,c
FDc

eff�1 + �c
eff/�c

eff�
�c̃̄c�x̄c=0 =

Ls

�3Ds
eff �c̃̄s�x̄s=1 �17�

The expressions for � c̃̄a�x̄a=1 and � c̃̄c�x̄c=0 are evaluated from Eq.

4 while � c̃̄s�x̄s=0 and � c̃̄s�x̄s=0 are evaluated from Eq. 13. The resulting
algebraic equations �16 and 17� are simultaneously solved to obtain
explicit expressions for ��� s̄a� and ��� s̄c�. The explicit evaluation of
��� s̄a� and ��� s̄c� is lengthy and involves multiple algebraic manipu-
lations to get a concise form. The expressions for ��� s̄a� and ��� s̄c�
are given as

���s̄a� =

�1,a +
�1,c

�2,c
�3

�2,a −
1

�2,c
�3

2

�18�

���s̄c� =

�1,c +
�1,a

�2,a
�3

�2,c −
1

�2,a
�3

2

�19�

where the constants �1,i, �2,i, and �3 are given as

�1,i = −
Li

3aiĩapp�1 − t+
0��i

�i
eff
+Di

eff��1,i − �2,i�
�� 1

��2,i sinh ��2,i

−
1

��1,i sinh ��1,i
� +

�i
eff

�i
eff� 1

��2,i tanh ��2,i

−
1

��1,i tanh ��1,i
��, i = a,c

�2,i =
Li

Di
eff��1,i − �2,i�

 si − �2,i + �1,i

��1,i tanh ��1,i

−
si − �1,i + �1,i

��2,i tanh ��2,i
�

+ �3 cosh �s̄s, i = a,c

�3 =
Ls

�ssDs
eff sinh �ss

�20�

Evaluation of cell impedance.— The impedance of the cell
sandwich is the difference in the solid phase potential between the
current collector/insertion cathode interface and the current
collector/insertion anode interface and is given as
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Zcell = −
�̃1,c�x̄c=1 − �̃1,a�x̄a=0

ĩapp

�21�

The expressions for ̃1,a and ̃1,c are evaluated from the overpo-
tentials in the anode �̃̄a and cathode �̃̄c, respectively. The relation
between ̃1,i and �̃̄i is given in Eq. 44 in Ref. 13 and the expression
for ̃1,i can be written as

d2̃1,i

dx̄i
2 = −

Li
3aiF�

�c
eff2 �̃̄i, i = a,c �22�

Upon integrating Eq. 22 twice, ̃1,i is evaluated as

̃1,i = −
Li

3aiF�i

�i
eff2 /

�̃̄idx̄idx̄i + C7,ix̄i + C8,i, i = a,c �23�

To evaluate the constants C7,i, and C8,i in the cathode region, the
following boundary conditions are used

x̄c = 0, ̃1,c = −
Lc

�c
eff ��̃̄c�x̄c=0, �reference point �̃2,c�x̄c=0 = 0�

x̄c = 1,
d̃1,c

dx̄c

= −
Lcĩapp

�c
eff , ��d̃2,c

dx̄c

�
x̄c=1

= 0� �24�

The value of � �̃̄c�x̄c=0 in the above expression is evaluated by sub-

stituting x̄i = 0 for �̃̄i in Eq. 4 for i = c. The constants C7,c and C8,c

are evaluated by substituting the expression for �̃̄i from Eq. 4 in Eq.
23 and applying the boundary conditions given in Eq. 24

C7,c = −
Lcĩapp

�c
eff �1 −

s̄cLc
2acF�c

�c
eff�1,c�2,c

�
C8,c = −

Lc

�c
eff� s̄c − �1,c

�1,c
C1,c�1 −

Lc
2acF�c

�c
eff�1,c

� +
s̄c − �2,c

�1,c
C3,c

	�1 −
Lc

2acF�c

�c
eff�2,c

�� �25�

Similarly, to evaluate the constants C7,i and C8,i in the anode
region, the following boundary conditions are used

x̄a = 0,
d̃1,a

dx̄a

= −
Lciapp

�a
eff , ��d̃2,a

dx̄a

�
x̄a=0

= 0�
x̄a = 1, ̃1,a = �̃2,a�x̄a=1 −

La

�a
eff ��̃̄a�x̄a=1 �26�

The value of �̃2,a�x̄a=1 is evaluated using the fact that

�̃2,a�x̄a=1 = �̃2,s�x̄s=0. Also we know �̃2,s�x̄s=0 = −Ls� �̃̄s�x̄s=0/�s. The

value for � �̃̄s�x̄s=0 is evaluated using Eq. 15 as

��̃̄s�x̄s=0 = − ĩapp + �c̃̄s�x̄s=1 − �c̃̄s�x̄s=0 �27�

Subsequently, �̃2,a�x̄a=1 can be evaluated. Substituting the ex-

pression for �̃̄i from Eq. 4 in Eq. 23 and using the boundary condi-
tions in Eq. 26, C7,a and C8,a are evaluated to be

C7,a = −
Laĩapp

�a
eff �1 −

La
2aaF�a

ĩapp�a
eff
� s̄a − �1,a

�1,a
��1,a

C2,a +
s̄a − �2,a

�1,a
��2,a

C4,a��

C8,a = −
La

�a
eff� s̄a − �1,a

�1,a
��1

�1 −
La

2aaF�a

�a
eff�1,a

� +
s̄a − �2,a

�1,a
��2

	�1 −
La

2aaF�a

�a
eff�2,a

�� +
Lsiapp

�s
�1 +

�c̃̄s�x̄s=0 − �c̃̄s�x̄s=1

ĩapp

� − C7,a

�28�

where ��1
and ��2

are given as

��1
= C1,a cosh ��1,a + C2,a sinh ��1,a

��2
= C3,a cosh ��2,a + C4,a sinh ��2,a �29�

Substituting the values for C7,a,C8,a in the integrated form of Eq.
23 for the anode �i = a� and evaluating the same expression at x̄a

= 0 yields an expression for �̃1,a�x̄a=0. Similarly, substituting the
values of C7,c,C8,c in the integrated form of Eq. 23 for the cathode
�i = c� and evaluating the expression at x̄c = 1 yields an expression

for �̃1,c�x̄c=1. The evaluated expressions for �̃1,a�x̄a=0 and �̃1,c�x̄c=1

after algebraic simplification are given as follows

�̃1,a�x̄a=0 = −
La

3aaF�a

�a
eff2 � s̄a − �1,a

�1,a�1,a
C1,a +

s̄a − �2,a

�1,a�2,a
C3,a� + C8,a

�30�

�̃1,c�x̄c=1 =
Lc

3acF�c

�c
eff2 � s̄c − �1,c

�1,c�1,c
�C1,c cosh ��1,c + C2,c sinh ��1,c�

+
s̄c − �2,c

�1,c�2,c
�C3,c cosh ��2,c + C4,c sinh ��2,c�� + C7,c

+ C8,c �31�

The overall impedance of the cell sandwich, Zcell is evaluated by
substituting the values for �̃1,a�x̄a=0 from Eq. 30 and �̃1,c�x̄c=1 from
Eq. 31 in the cell impedance expression given in Eq. 21. Equations
21, 30, and 31 together should be used to evaluate the impedance
response of a dual insertion porous electrode cell.

Results and Discussion

The impedance response predicted using the analytical solution
was compared to the predictions from the numerical solution for the
same set of equations and is presented in Fig. 2 and 3. The numeri-
cal solution was obtained by solving Eq. 1 and 2 along with the
boundary conditions defined in Eq. 3 using Comsol Multiphysics.
For solving the one-dimensional numerical problem in Comsol Mul-
tiphysics, each of the anode, cathode, and the separator domain were
discretized to 100 node points. The complex impedance spectrum
were evaluated for a range of frequencies using the in-built paramet-
ric solver tool in Comsol Multiphysics. The parameters used for the
simulation correspond to the material and design properties of the
lithium-ion pouch cell from Mine Safety Appliances, which con-
sisted of LiCoO2 cathode and mesocarbon microbead 2528 anode,
separated by a Celgard 2320 porous membrane. The electrolyte used
in the cell was a solution of 1 M LiPF6 salt dissolved in a mixture of
ethylene carbonate/propylene carbonate/ethyl methyl carbonate/
diethyl carbonate solvent. The values for the parameters used in the
model are presented in Table I.

Figure 2 shows the complex plane impedance �Nyquist� predic-
tions from the analytical solution for a range of frequencies
�105–10−4 Hz�, while Fig. 3 shows the corresponding phase and
magnitude of the impedance as a function of frequency in a semilog
plot �Bode�. Both these graphical representations revealed excellent
agreement between the numerical and analytical solutions for vari-
ous values of states of charge of the full cell used in the simulations
�see Fig. 4�. The state of charge �SOC� of the full cell is used to
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estimate the values for the initial stoichiometries of the anode za
ini

and the cathode zc
ini in the model. If we assume a perfectly balanced

cell, the full-cell SOC is related to za
ini and zc

ini as

SOC =
zc

max − zc
ini

zc
max − zc

min =
za

ini − za
min

za
max − za

min �32�

where zi
min and zi

max correspond to the minimum and maximum sto-
ichiometries for the individual electrode. The analytical solution was
evaluated at 100 equal logarithmically spaced frequencies between
105 and 10−4 Hz using Matlab, and the numerical solution was
evaluated the same way using Comsol Multiphysics. The computa-
tional time for the analytical solution at 50% SOC was �0.142 s,
while the corresponding time for the numerical solution was 27.24 s
in a 2.8 GHz, Xeon processor, indicating an improvement in run
time by at least two orders of magnitude for the analytical solution.
Figure 4 plots the error between the predictions from the numerical
and analytical solutions. The errors in the real and the imaginary
parts of the cell impedance �given by �� and ��, respectively� are
plotted as a function of frequency in Fig. 4 and are calculated using

�� = �Zcell� �analytic − �Zcell� �numeric

�� = �Zcell� �analytic − �Zcell� �analytic �33�

where Zcell� and Zcell� represent the real and imaginary part of the
impedance spectrum of the cell, respectively. The error between the
analytical and numerical solutions is on the order of 10−7 and at
least six orders of magnitude smaller than the point values, indicat-
ing an excellent quantitative agreement between the numerical and
the analytical solution.

Figure 5 shows the individual contribution from the anode, cath-
ode, and the separator toward the full-cell impedance spectrum. The
impedance spectrum shown in Fig. 5 was simulated at 50% SOC of
the full cell. For the parameter values used in this simulation, the
impedance contribution from the separator is observed to be negli-
gible as compared to the contribution from the anode or cathode.
The complex plane impedance spectrum for the anode and cathode
display a similar trend; two arcs in the high mid-frequency regime
�106–10 Hz�, a Warburg-type response due to the diffusion pro-

Figure 2. �Color online� Complex plane
impedance plot �Nyquist� showing the cell
impedance �Zcell� predictions obtained
from the analytical solution for different
states of charge of the full cell. The im-
pedance values were simulated at 100
evenly spaced logarithmic frequency
points between 106 and 10−4 Hz.

Figure 3. �Color online� Bode plot show-
ing the magnitude �top� and phase angle
�bottom� of the cell impedance obtained
from the analytical solution for different
states of charge of the full cell. The mag-
nitude and phase angle values were simu-
lated at 100 evenly spaced logarithmic fre-
quency points between 106 and 10−4 Hz.
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cesses in the solid and solution phases at lower frequencies
�10–10−3 Hz�, and a capacitive-type response at very low frequen-
cies ��10−3 Hz� due to intercalation/deintercalation with negligible
concentration gradients within the particle. The Bode magnitude
�top� and phase angle plot �bottom� presented in Fig. 6 reveals fur-
ther insight into the impedance spectra of individual cell compo-
nents. The Bode magnitude plot clearly shows the domination of the
anode impedance over the cathode impedance and the negligible
contribution from the separator. In the Bode phase plot, the peaks
occurring at close to 105 and 103 Hz in both the cathode and anode
correspond to the surface film and charge transfer resistance, respec-

tively. The Bode phase plot also shows a short plateau region for
both the anode and cathode between the frequency limits of 10−2

and 10−3 Hz, corresponding to the semi-infinite diffusion region. At
further lower frequencies ��10−3 Hz�, the phase angle approaches
90° indicating a capacitive-type response typical of insertion
electrodes.8,5,13 The impedance response of the separator is purely
resistive above 10 Hz and also approaches a resistive behavior at
very low frequencies ��10−4 Hz�. Between these frequency ranges,
the impedance of the separator reveals two closely overlapping time
constants due to the electrolyte transport processes in the separator
region. In addition, the Bode phase plot for the anode also shows a
distinct third peak at around �2 	 10−3 Hz, before the transition to
the low-frequency capacitive behavior. In the cathode, a similar but
subtle peak at �9 	 10−3 Hz is observed, although the phase angle
varies monotonically with frequency. The appearance of this third
peak is due to the domination of the impedance from solution phase
transport processes over the solid phase diffusion processes in that
frequency range. Apparently, this domination is severe and extends
to lower frequencies in the anode than the cathode. The solution
phase diffusion limitations are less dominant in the cathode com-
pared to the anode because of the larger value of Di

0�i
brug in the

cathode region �discussed in the next section�. Larger values of solid
phase diffusion resistance, Rdif shifts the low-frequency capacitive-
type behavior observed in intercalation electrodes to lower fre-
quency range. For the parameters used in the model, at 50% SOC,
the value of Rdif for the anode and cathode was calculated to be
299.09 and 4.152 � cm2, respectively.

Effects of solid and solution phase diffusion limitations in inser-
tion electrodes.— The effect of various parameters in the model,
such as exchange current density, double-layer capacitance, and
solid and solution phase diffusion coefficients, are discussed for
similar systems by Doyle et al.5 and Dees et al.7 and will not be
reiterated here. However, previous works have paid minimal atten-
tion to identifying the relative contribution of solution and solid
phase processes toward the overall impedance spectrum. In the im-
pedance spectra of insertion electrode systems, the effect of solution
and solid phase transport processes are often closely overlapped in
the low-frequency region and difficult to isolate. This situation also
complicates the accurate estimation of solid and solution phase dif-
fusion coefficients using traditional techniques.13 Most of the EIS
experimental impedance data were analyzed using the complex
plane impedance plot �Nyquist�, which has good sensitivity to vari-
ous processes that occur at different frequency ranges based on the

Table I. List of parameter values used in the model.

Parameters LiCoO2 Carbon Separator

De,i �m2/s� 1 	 10−12a 3.7125 	 10−14a —
�i �S/m� 10a 100a —
�i 0.3a 0.4382a 0.45a

�i
f 0.15a 0.0566a —

�i 0.5a 0.5a —
Ri ��m� 8.5a 12.5a —
ii
0 �A/m2� 10 �assumed� 10 �assumed� —

Cdl,i �Fm2� 0.2 �assumed� 0.2 �assumed� —
Cfilm,i �F/m2� 0.02 �assumed� 0.02 �assumed� —
Rfilm,i �� m2� 1 	 10−4 �assumed� 5 	 10−4 �assumed� —
brugi 2.3a 4.1a 1.5a

Li ��m� 70a 73.5a 25a

xi
max 0.99 �measured� 0.7952 �measured� —

xi
min 0.52 �measured� 0.01 �measured� —

Electrolyte parameters

cB
0 �mol/m3� 1000a

�i �S/m� 10 �assumed�
Di �m2/s� 2.58 	 10−10b

f
�cB

0� 1.47 	 10−3b

f
�cB

0� 1.2819b

t+
0 0.435b

F�C� 96,487
R �J/mol/K� 8.314
T �K� 298

a Ref. 14.
b Ref. 15.

Figure 4. �Color online� Plot showing the
error difference between the analytical and
the numerical solution of: the real value of
the complex impedance given by ��, and
the imaginary value of the complex im-
pedance given by �� for different states of
charge of the full cell. The open circle de-
notes the error difference in the real values
of the complex impedance, while the
closed circles denote the error difference
in the imaginary values of the complex
impedance.
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time constants of each process. However, when the time constants
for the solution and solid phase transport processes are in close
proximity, the Nyquist plots offers poor sensitivity to these pro-
cesses. For such situations, analysis using the Bode phase plot was
found to be very useful. Figure 7 shows the Bode magnitude and
phase plot for the porous anode part of the full cell. The Bode plots
for the porous anode is presented here to clearly illustrate the over-
lap of the impedance spectrum of solution and solid phase transport
processes over a particular frequency range. The simulated Bode
�magnitude and phase� plot for the porous anode is presented for
different values of diffusion coefficient of salt in the electrolyte. The
value for the solid phase diffusion coefficients of Li into the inser-
tion anode electrode was held constant at a value of D�,a
= 3.7125 	 10−14 m2/s in all these simulations. The Bode magni-
tude plot �top� shows an increased value for the impedance in the
low-frequency region for lower values of salt diffusion coefficient;
however, it does not display sensitivity toward the various processes
in the cell. In the Bode phase plot �bottom�, a peak in the low-
frequency region ��1 Hz� is seen for cases b–e. The presence of the
peak indicates the dominance of the impedance contribution from

solution phase transport process over the solid phase diffusion pro-
cess in that frequency range. This low-frequency peak vanishes
when the impedance contribution from solution phase transport pro-
cesses is negligible relative to the solid phase diffusion process as
seen in case a, where a high value for solution phase diffusion co-
efficient is used. The Bode phase plot analysis is also useful to
identify the extent of the influence of solution phase diffusion pro-
cess in the overall impedance spectrum. An increase in the sharpness
of the peaks �large phase angle values� and a shift in the peak posi-
tion toward lower frequencies indicates an increased effect of solu-
tion phase transport process toward the overall impedance spectrum.
The Nyquist plot generally does not offer clear distinction between
the solution phase and solid phase diffusion processes in the War-
burg slope region. Thus, the Bode phase plots offer a better graphi-
cal resolution to distinguish the impedance contribution from solu-
tion and solid phase transport processes.

In Fig. 8, the Bode �magnitude and phase� plots show the effect
of solid phase diffusion coefficients of Li into the insertion anode
electrode, which has solution phase transport limitations. The value
for the diffusion coefficient of the salt in electrolyte was fixed at

Figure 5. �Color online� Complex plane
impedance plot showing the contribution
of the individual porous insertion elec-
trodes and the separator toward the overall
impedance of the cell, Zcell. The imped-
ance spectrum shown for each component
is estimated at a full cell SOC value of
0.5. The impedance values are simulated
using the analytical solution at 100 evenly
spaced logarithmic frequency points be-
tween 106 and 10−4 Hz.

Figure 6. �Color online� Bode plot show-
ing the magnitude �top� and phase angle
�bottom� of the impedance of the indi-
vidual porous insertion electrodes and
separator for different states of charge of
the full cell. The magnitude and phase val-
ues are simulated using the analytical so-
lution at 100 evenly spaced logarithmic
frequency points between 106 and
10−4 Hz.
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Di = 2.58 	 10−10 m2/s for all the simulations in the plot. As seen
in the Bode phase plot �bottom�, for all cases �i.e., a–e�, the effect of
solution phase diffusion is significant, as identified by the peak in
the low-frequency region. When the value of the solid phase diffu-
sion coefficient in the anode is decreased, as shown from cases a–e,
the sharpness of the peak gets subdued; however, the low-frequency
peak �corresponding to the solution phase diffusion process� does
not shift and occurs at the same frequency. As discussed in the
earlier section, the sharpness of the peak indicates the domination of
the solution phase diffusion limitations and in Fig. 8 where the
peaks get subdued �i.e., at low values of solid phase diffusion coef-
ficient�, the solution phase diffusion processes no longer dominate
and the solid phase diffusion processes control the cell impedance.
The significance of the solid phase diffusion process is identified by
the slope of the curve in the Bode phase plot in the frequency range
lower to where the peak is observed. A flat plateau in this region
corresponds to the domination of a semi-infinite type of diffusion in
the solid phase for the frequency range under consideration �very
low values of D�,a�, while sloping profiles indicate the transition-
frequency behavior �moderately low values of D�,a� and the culmi-
nation to 90° at low frequencies indicate the domination of the low-

frequency capacitive behavior due to intercalation/deintercalation in
the absence of concentration gradients �at high values of D�,a�. It
should also be realized that at certain states of charge when the slope
of the open-circuit potential �OCP� with respect to the concentration
is zero �as in two phase coexistence regions�, the impedance re-
sponse reaches a stationary state at low frequencies and the Bode
representation will correspond to a resistive behavior at very low
frequencies. These graphical identification scenarios will be very
useful in qualitatively understanding the various processes that con-
trol the cell impedance behavior from the EIS data.

The advantage of impedance spectrum analysis over the conven-
tional dc resistance technique, such as the current interruption
method, is the possibility to understand the impedance contribution
from various processes in the cells with better resolution. In addi-
tion, this technique in combination with rigorous mathematical
analysis allows the possibility to clearly identify the impedances
from different cell constituents �i.e., electrodes and separators�. The
breakdown of impedance contribution from various cell components
is of critical importance because most experimental EIS measure-
ments are taken on full cells and the contribution from individual
cell constituents cannot be directly determined. Specially, in the case

Figure 7. �Color online� Bode magnitude
�top� and phase �bottom� plots showing
the effect of solution phase diffusion coef-
ficient on the impedance of the anode. The
simulations shown are evaluated at the full
cell SOC value of 0.5 and the value of the
solid phase diffusion coefficient in the an-
ode D�,a was fixed at 3.7125
	 10−14 m2/s. The magnitude and phase
values are simulated using the analytical
solution at 100 evenly spaced logarithmic
frequency points between 106 and
10−4 Hz.

Figure 8. �Color online� Bode magnitude
�top� and phase �bottom� plots showing
the effect of solid phase diffusion coeffi-
cient of Li on the impedance of the anode.
The simulations shows are evaluated at
the full cell SOC value of 0.5, and the
value for the solution phase diffusion co-
efficient, Di = 2.58 	 10−10 m2/s was
held constant for all the cases. The mag-
nitude and phase values are simulated us-
ing the analytical solution at 100 evenly
spaced logarithmic frequency points be-
tween 106 and 10−4 Hz.
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of cycling and aging of lithium-ion cells, the overall increase in
magnitude of the impedance spectrum with cycling/aging will
clearly depict the deterioration process; however, the individual
electrode contribution cannot be identified with ease. The analytical
solution developed here can be used in conjunction with the EIS
data to build an analytical tool that can probe different degradation
processes and also identify the contribution from the individual cell
constituents toward these processes at various time scales. Such a
tool will be very useful for life predictions in modern batteries and
design of better electrodes. Our future work will present a detailed
analysis of the evaluation of the individual electrode spectrum from
full cell electrochemical impedance spectra data.

Conclusions

An analytical solution for the impedance response of a dual-
insertion electrode is presented in this work. The results from the
analytical solution are validated with the numerical solution evalu-
ated for a lithium-ion system consisting of a LiCoO2 cathode and
carbon anode. The analytical expression can be directly used to es-
timate transport, kinetic, and thermodynamic parameters by compar-
ing to experimental impedance data obtained on full cells with in-
sertion electrodes. The analytical expression is also computationally
highly efficient compared to the corresponding numerical solution.
The use of Bode phase representation to identify solid and solution
phase transport limitations in closely overlapped frequencies is also
discussed.
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Appendix
Thermodynamic Data for the OCP for the Insertion Electrodes

LiCoO2 insertion electrode.— The OCP of the LiCoO2 insertion electrode was ex-
perimentally measured against Li foil in a coin cell using a very low rate �150 h� and fit
to the function

Uc =

ac,0 + �k=1
N=5ac,k� c�,c

cT,c
�k

bc,0 + �k=1
N=5bc,k� c�,c

cT,c
�k

where the constants are given as ac,0 = 4.0396, ac,1 = −32.5724, ac,2 = 104.8654, ac,3
= −168.3891, and ac,4 = 134.6638, ac,5 = −42.6072, and bc,0 = 1, bc,1 = −8.0912,
bc,2 = 26.1404, bc,3 = −42.1196, bc,4 = 33.7932, and bc,5 = −10.7226.

Carbon insertion electrode.— The OCP of the carbon insertion electrode was ex-
perimentally measured against Li foil in a coin cell using a very low rate �150 h� and fit
to the function

Ua = aa,0 + �
k=1

N=10

aa,k� c�,a

cT,a
�k

where the constants are given as aa,0 = 0.7618, aa,1 = −22.9218, aa,2 = 391.6785, aa,3
= −3667.79902, aa,4 = 20344.57584, aa,5 = −70461.1728, aa,6 = 156433.6149,
aa,7 = −222631.7640, aa,8 = 196431.2859, aa,9 = −97849.0694, and aa,10
= 21038.08558.

Effective values of conductivity and diffusion coefficient of Li+ in
the electrolyte

The effective diffusion coefficient of the salt in the electrolyte is given by the
Bruggeman’s relation as

Di
eff = Di

0�i
brugi

Similarly the effective conductivities of Li+ in the solution and the solid phase are
also related through the Bruggeman relation as

�i
eff = �i�1 − �i − � f�brugi

�i
eff = �e�i

brugi

List of Symbols

a specific surface area of the porous active material, m2/m3

c solution phase concentration, mol/m3

c̄i dimensionless concentration in the porous electrode i = a,c de-
fined as −�2RT�1 − t+

0��/Fiiapp�1/cB
0 + f�,cB

0 /f
�,cB

0� ��i
eff/Li�ci − cB

0 �
c� solid phase concentration, mol/m3

cB
0 initial bulk electrolyte concentration, mol/m3

Cdl double-layer capacitance of the electrode, F/m2

Cfilm capacitance of the film, F/m2

Di diffusion coefficient of the salt in the electrolyte phase, m2/s
D� diffusion coefficient of Li+ in the solid phase, m2/s
f� activity coefficient of Li+ in the electrolyte
f�� derivative of f� with respect to c, m3/mol
F Faraday’s constant, 96,487 C/equation
i0 exchange current density, A/m2

i1 local current density in the solid phase, A/m2

i2 local current density in the solution phase, A/m2

ĩapp perturbed current density, A/m2

iF faradaic current density, A/m2

idl double layer current density, A/m2

in total outward normal current density, A/m2

L thickness of the electrode/separator, m
jn reaction rate at the pore wall interface, mol/m2/s
r radial coordinate in an active material particle, m
R ideal gas constant, J/mol/K

Rct,i charge transfer resistance in the electrode i = a,c defined as RT/
i0,i��a,i + �c,i�F, �m2

Rdif,i solid phase diffusional resistance in electrode i = a,c defined as
−�Rp,i/D�,iF��dUi/dc�,i�,�m2

Rfilm resistance of the surface film, � m2

Rp radius of the spherical particle, m
s Laplace variable, s−1

s̄i dimensionless Laplace variable in the region i given by �iLi
2s/Di

eff

t+
0 transference number of Li+ in the electrolyte
t time, s
t̄i dimensionless time in region i, Dit/�iLi

2

T temperature, K
U open circuit potential, V
x spatial dimension �distance from the anode�, m
x̄i dimensionless thickness of region i, given by x̄a = x/La, x̄s = x

− La/Ls, x̄c = �x − �La + Lc��/Lc
Ys,i transfer function for the solid phase diffusion in a single particle

defined as �siRp,i
2 /D�,i − tanh��siRp,i

2 /D�,i�/tanh��siRp,i
2 /D�,i�

zi stoichiometric coefficient for the electrode i = a,c
Zcell total impedance of the electrochemical cell, � m2

Greek

� transfer coefficient
� porosity of the composite electrode/separator

�̄i dimensionless electrochemical reaction over potential in the elec-
trode i = a,c given by −��i/Li� �1,i − 2,i�

�̄s value of �̄i in the separator region given by −�s2,s/Lsiapp
� conductivity of Li+ in the solution phase, S/m
� solid phase electronic conductivity in the electrode i = a,c, S/m

1 solid phase potential, V
2 solution phase potential, V

�1,i dimensionless parameter describing the ratio of the solution
phase resistance to the interfacial resistance in electrode i = a,c de-
fined as �2RT�1 − t+

0�2Li�/�vF2Di
eff���1/cB

0 � + � f
�,cB

0� /f�,cB
0 ��/

1/LiaiF�i

�2,i dimensionless parameter describing the ratio of the ohmic resis-
tance to the interfacial resistance in electrode i = a,c defined as,
Li�1/�i

eff + 1/�i
eff�/1/LiaiF�i

�3 dimensionless parameter defined as �2�RT�1 − t+
0��/

Di
effF��1/cB

0 � + � f�,cB
0 /f

�,cB
0� ��

�1,�2 eigenvalues as defined in Eq. 5

+ number of cations into which a mole of electrolyte dissociates
v frequency, Hz
� angular frequency, s−1

� as defined in Eq. 29

Subscripts

a anode insertion electrode
c cathode insertion electrode
i anode, cathode, or separator region
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s separator
� solid phase of the insertion electrode

Superscripts
dimensionless variable

� variable in the Laplace domain
eff effective values

f fill
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