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Analytical Expression for the Impedance Response of an
Insertion Electrode Cell
Godfrey Sikha* and Ralph E. White**,z

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

An analytical expression for the impedance response of an insertion cathode/separator/foil anode cell sandwich is presented. The
analytical expression includes the impedance contributions from interfacial kinetics, double-layer adsorption, and solution-phase
and solid-phase diffusion processes. The validity of the analytical solution is ascertained by comparison with the numerical
solution obtained for a LiCoO2/polypropylene/lithium metal cell. The flexibility of the analytical solution is utilized to analyze
various limiting conditions. An expression to estimate solid-phase diffusion coefficient of insertion species in a porous electrode
influenced by the solution-phase diffusion process is also derived.
© 2006 The Electrochemical Society. �DOI: 10.1149/1.2372695� All rights reserved.

Manuscript received March 17, 2006; revised manuscript received August 8, 2006. Available electronically November 30, 2006.

Electrochemical impedance spectroscopy �EIS� technique has
been extensively used in the analysis of lithium battery systems,
especially to determine kinetic and transport parameters,1-3 under-
stand reaction mechanisms,4 and to study degradation effects.5-7

However, the mathematical interpretation of the impedance response
of electrochemical systems is complicated by the processes occur-
ring in the system. This drives researchers to adopt lumped circuit
models8-10 or finite transmission line models11 to interpret imped-
ance data. However, these types of models provide little information
on the fundamental physical processes occurring in the cell. To gain
more understanding of the physical processes, macrohomogenous
models for porous electrodes have been used by some
researchers.12-18 These models primarily use porous electrode
theory19,20 to describe the porous nature of the electrode/separator
and concentration solution theory to treat the transport processes in
the electrolyte phase. The thermodynamics and kinetics of the reac-
tions at the electrode/electrolyte interface are also described in these
models in detail. Most of these models also account for the solid-
phase diffusion of the active species into the bulk. While such de-
tailed models throw light on the impedance behavior of systems
when complicated by transport and kinetic processes, the math-
ematical interpretation is not straightforward.

In the list of comprehensive models developed to simulate the
impedance behavior of lithium batteries, Doyle et al.13 simulated the
impedance response for a metal anode/separator/porous cathode sys-
tem with all the above-mentioned details. Guo et al.15 used a
similar model to estimate the diffusion coefficient of lithium in car-
bon. Later, Dees et al.18 included an electronically insulating oxide
layer at the electrode/electrolyte interface to model a
LiNi0.8Co0.15Al0.05O2 cathode. However, these models use a numeri-
cal scheme to solve for the variables to obtain the frequency domain
impedance spectrum. There are also some analytical models14,16,17

available in the literature, but they are not as comprehensive as the
numerical models. Meyers et al.14 presented an analytical solution to
the impedance response of a porous electrode in the absence of
solution-phase concentration gradients while Devan et al.16 pre-
sented an analytical expression for the impedance response of a
porous electrode limited to a symmetric cell, which included the
solution-phase concentration gradients but neglected diffusion in the
solid phase. In this work, we present an analytical expression for the
impedance response of a metal foil/separator/insertion electrode sys-
tem that includes the charge and mass balances in the solid and
solution phases, with interfacial kinetics and double-layer adsorp-
tion. The analytical solution for the impedance of the cell, presented
in this work is extremely useful for estimating transport and kinetic
parameters and for the analysis of different limiting conditions. The
analytical expression for the impedance response of the cell configu-

ration used in this work can also be directly translated to any lithium
metal rechargeable battery using insertion electrodes �LiSOCl2,
TiS2, AgV2O5, etc.� and to insertion electrode half-cell
systems.3,21,22

Mathematical Model and Solution Technique

The cell configuration considered in this work �see Fig. 1� con-
sists of a porous insertion electrode �cathode� and a metal foil �an-
ode� separated by an ion conducting, but electronically insulating,
separator. The porous electrode and the separator are flooded with
electrolyte to facilitate the transport of ions in the solution phase.
The model equations describing the porous electrode, separator, and
the foil are similar to those of Doyle et al.13 except that the active
materials particles in the insertion electrode are assumed to be sur-
rounded by an electronically insulating film. Hence, the interface
between the particle and the solution phase is modeled by including
internal interfacial impedance �electrode/film interface� and the im-
pedance of the film.14 The general electrochemical reaction at the
insertion electrode is represented as

xM+ + xe− + � �
deintercalation

intercalation

Mx − � �1�

where x is the number of electrons transferred and � is a vacant site
for intercalation. In the foil electrode, the electrochemical reaction
proceeds through a direct oxidation/reduction reaction at the
electrode/solution interface. Although this model can be used for
any insertion electrode systems, the model parameters and reactions
scheme used in this work, typically, resembles a lithium insertion
half-cell. The side reactions are ignored in this model.

The governing equations are treated with the standard procedures
�linearizing about the open-circuit conditions, converting to Laplace
domain, and finally, transforming to frequency space� employed in
the literature.16,23 The analytic expression for the impedance of the
cell is derived by first solving for the Laplace transformed variables
in the insertion electrode and then solving for the variables in the
separator and the anode. The analytical solution for the impedance
in the Laplace domain of the insertion electrode is coupled to the
anode/separator through unknown constants.

Equations in the insertion electrode.— The governing equations
�mass and charge balances in the solid and the solution phases� are
presented in detail elsewhere24 and the linearized equations �taking
advantage of the small input perturbations� are presented here.

The material balance on the salt in the electrolyte is given by

�c
��cc�

�t
=

�

�xc
�Dc

eff�cc

�xc
� +

acjn,c�1 − t+
0�

�̃ + �2�

The current densities in the solid and the electrolyte phases are
expressed in the linear form as
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i1,c = − �c
eff��1,c

�xc
�3�

i2,c = − �c
eff� ��2,c

�xc
−

2RT�1 − t+
0�

F
� 1

cB
0 +

f±,cB
0�

f±,cB
0
� �cc

�xc
� �4�

and the current transferred across the interface is related to the re-
action flux as

�i1,c

�xc
= − Facjn,c �5�

where jn,c is the flux transferred between the solution and the solid
phase. The total current density transferred between the solution and
the solid phase �in,c� is distributed between the film and the electro-
chemical interface through the possible current paths. The interface
current density �iint,c� is the sum of the contributions from the Fara-
daic current density �iF,c� and the electrochemical double-layer cur-
rent density �idl,c�, which are given in the linearized form as

iF,c = io,c
��a,c + �c,c�F

RT ��1,c − �1,f − �	 �Uc

�c�

	
c

�
0
�
c�
rc=Rp� �6�

idl,c = Cdl,c
�

�t
��1,c − �1,f� �7�

where �1,f is the potential in the film close to the solid phase and is
related to the solution phase potential �2,c by the relation

�1,f = �2,c + �idl,c + iF,c�Rfilm �8�

and 
��Uc/�c��
c
�
0 is the derivative of the open-circuit potential with

respect to the solid-phase concentration at the initial concentration.
The total current density �in,c� includes the contribution from the
capacitance of the film in addition to the interfacial current density
�iint,c�:

in,c = iF,c + idl,c + Cfilm,c
�

�t
��1,c − �2,c� �9�

The diffusion of the active species in the spherical particle is as-
sumed to obey Fick’s law and is mathematically given by

�c�,c

�t
=

D�,c

rc
2

�

�rc
�rc

2�c�,c

�rc
� �10�

The boundary conditions, for each of the variables to be solved
in the insertion electrode �cc,�1,c,�2,c�, are given by

xc = Lc + Ls: Dc
eff�cc

�xc
= 0; �c

eff��2,c

�xc
= 0; �c

eff��1,c

�xc
= − iapp

xc = Ls: Dc
eff�cc

�xc
= �*�t�;

− �c
eff� ��2,c

�xc
−

2RT�1 − t+
0�

F
� 1

cB
0 +

f±,cB
0�

f±,cB
0
� �cc

�xc
� = iapp;

�c
eff��1,c

�xc
= 0 �11�

and for the variable in the solid phase,c�,c is given by

rc = 0: D�,c
�c�,c

�rc
= 0

rc = Rp: − D�,c
�c�,c

�rc
= jF,c =

iF,c

nF
�12�

Equations 2-5 with the boundary conditions in Eq. 11, represent the
variables in the macroscale �along the thickness of the porous elec-
trode, xc� while Eq. 10 along with the boundary condition 12 repre-
sents the microscale solid-phase diffusion in a single spherical par-
ticle. The macroscale equations are coupled to the microscale Eq. 10
through the variable, 
c�
rc=Rp

�the solid-phase concentrations at the
surface� in Eq. 6. To determine the impedance response, the time
domain equations are converted to the Laplace domain, and in the
process the particle impedance �in the Laplace domain� can be
solved independently, without solving for the other variables in the
porous electrode. In this model the impedance of the particle can be
obtained by solving Eq. 10 with the boundary conditions in Eq. 12,
which allows us to relate the surface concentration to the faradaic
current as14


c̃�,c
rc=Rp
= − � Rp

D�,cYs
� j̃F,c �13�

where the tilde is used to represent the variables in the Laplace
domain. Furthermore, j̃F,c has the term �̃1,f, which is eliminated
using Eq. 8, and the total flux transferred between the solution and
the matrix phase � j̃n,c� in terms of the solid- and solution-phase
potential is obtained by combining Eq. 6-9 and 13 as

j̃n,c = 	��̃1,c − �̃2,c� �14�

where 1/	F is the impedance of a single particle with a film and 	
is given by

Figure 1. �Color online� Schematic of a
foil/separator/porous insertion electrode
cell sandwich. On the right: schematic of
the magnified version of the interface
showing the film at the electrode/
electrolyte interface.
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	 =
1

F�sCfilm +
1

1

sCdl +
1

Rct +
Rdif

Ys

+ Rfilm� �15�

Here Rdif and Rct represents the solid-phase diffusion and charge
transfer resistances, respectively. The transfer function Ys in Eq. 15
is given by14

Ys =

 sRp
2

D�,c
− tanh� sRp

2

D�,c
�

tanh� sRp
2

D�,c
� �16�

Expression 14 includes the impedance contributions from the par-
ticle, interface, and film and will be incorporated into Eq. 2-4 to
describe the impedance in the porous electrode.

To solve for the impedance in the porous electrode, Eq. 2-4 are
transformed using the dimensionless variables c̄c,
̄c, x̄c, t̄c where

c̄c = −
2RT�1 − t+

0�
Fiapp

� 1

cB
0 +

f±,cB
0�

f±,cB
0
��c

eff

Lc
�cc − cB

0� ,


̄c = −
�c

eff

Lc
��1,c − �2,c

iapp
�, x̄c =

xc − Ls

Lc
, t̄c = � Dc

eff

Lc
2�c

�t

�17�

and the resulting linear time-dependent partial differential equations
are converted to the Laplace domain yielding two ordinary differen-
tial equations �Eq. 18 and 19�, which describes the solution-phase
concentration and overpotential in the insertion electrode

d2c̃̄c

dx̄c
2 = s̄cc̃̄c − �1
̃̄c �18�

d2
̃̄c

dx̄c
2 = − s̄cc̃̄c + ��1 + �2�
̃̄c �19�

The corresponding boundary conditions for the concentration and
the potential at the insertion electrode/current collector interface and
the electrode/separator interface are obtained by transforming Eq. 11
to the dimensionless form using the variables defined in Eq. 17 and
converting to the Laplace domain

x̄c = 0:
dc̃̄c

dx̄c

= −
�1

�2

F�1 +
�c

eff

�c
eff�

iapp�1 − t+
0�

�*�s̄c�,
d
̃̄c

dx̄c

+
dc̃̄c

dx̄c

= − ��c
eff

�c
eff�

x̄c = 1:
dc̃̄c

dx̄c

= 0,
d
̃̄c

dx̄c

= 1 �20�

It is worth noting that the concentration flux at the insertion
electrode/separator interface �boundary condition at x̄c = 0� is
coupled to the concentration flux in the separator boundary. How-
ever, this is a function of time alone and is represented as �*�t� in
Eq. 11. This unknown time-dependent variable �*�t�, when con-
verted to the Laplace domain, yields an unknown function �*� s̄c� in
terms of the dimensionless Laplace variable s̄c. This simplifies the
process of determining the analytical solution in the insertion elec-
trode, because �*� s̄c� is assumed to be a constant �unknown�, which
later is calculated by solving for the concentration in the separator
region. ��*� s̄c� can be assumed to be a constant while evaluating the
impedance for a particular frequency because of the relation s
= j��.

The solution to the coupled second-order differential Eq. 18 and
19 is given by25

� c̃̄c


̃̄c

� = �V1,1

V2,1
��C1 cosh 1x̄c + C2 sinh 1x̄c

C1 cosh 1x̄c + C2 sinh 1x̄c
� + �V1,2

V2,2
�

��C3 cosh 2x̄c + C4 sinh 2x̄c

C3 cosh 2x̄c + C4 sinh 2x̄c
� �21�

where

�V1,1

V2,1
� and �V1,2

V2,2
�

are the eigenvectors corresponding to the eigenvalues 1 and 2,
respectively. The eigenvalues are given by

1 = 1
2 �s̄c + �1 + �2 + s̄c

2 + 2�1s̄c − 2�2s̄c + �1
2 + 2�1�2 + �2

2�

2 = 1
2 �s̄c + �1 + �2 − s̄c

2 + 2�1s̄c − 2�2s̄c + �1
2 + 2�1�2 + �2

2�

�22�
and the eigenvectors can be written in terms of eigenvalues as

�V1,1

V2,1
� = � 1

s̄c − 1

�1
�, �V1,2

V2,2
� = � 1

s̄c − 2

�1
� �23�

The constants C1, C2, C3, and C4 are evaluated using the boundary
conditions in Eq. 20.

C1 =
− �1

1�1 − 2�sinh 1

−
C2

tanh 1

C2 = −
�*�s̄c�
iapp

�c
eff�1�s̄c − 2 + �1�

1�1 − 2�Lc
2ac�1 − t+

0�	
+

�c
eff�1

�c
eff1�1 − 2�

C3 =
�1

2�1 − 2�sinh 2

−
C4

tanh 2

�24�

C4 =
�*�s̄c�
iapp

�c
eff�1�s̄c − 1 + �1�

2�1 − 2�Lc
2ac�1 − t+

0�	
−

�c
eff�1

�c
eff2�1 − 2�

Plugging in the expressions of the constants �C1, C2, C3, and C4�
into Eq. 21 yields the analytical expressions for the Laplace trans-
formed dimensionless concentration and potential in the insertion
electrode. However, the value of �*� s̄c� is still an unknown and is
evaluated by solving for the variables in the separator region.

Equations in the separator.— The governing equations for the
solution-phase concentration and potential in the separator region
are given by �in linearized form�

���scs�
�t

=
�

�xs
�Ds

eff�cs

�xs
� �25�

iapp = − �s
eff� ��2,s

�xs
−

2RT�1 − t+
0�

F
� 1

cB
0 +

f±,cB
0�

f±,cB
0
� �cs

�xs
� �26�

and the boundary conditions for each of the variables are

xs = 0: Ds
eff�cs

�xs
=

− iapp�1 − t+
0�

F
, xs = Ls: Ds

eff�cs

�xs
= �*�t�

xs = Ls: �2,s = 0, reference point �27�
The absence of reaction in the separator region provides a way to

solve for the solution-phase concentration profile independently of
the potential, as seen from Eq. 25 and 26. Introducing the dimen-
sionless variables
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c̄s =
cs − cB

0

cB
0 , x̄s =

xs

Ls
, t̄ = � Ds

eff

Ls
2�s

�t �28�

and converting Eq. 25-27 to the Laplace domain yields

��̃2,s

�x̄s

= − Ls
iapp

�s
eff + �3

�c̃̄s

�x̄s

�30�

x̄s = 1, �̃2,s = 0 �31�
The solution for Eq. 29 with the corresponding boundary conditions
in Eq. 31 yields

c̃̄s = C5 cosh s̄sx̄s + C6 sinh s̄sx̄s �32�
where

C5 =
Ls

Ds
effcB

0s̄s
� �*�s̄s�

sinh s̄s

+
iapp�1 − t+

0�

F tanh s̄s
�, C6 = −

iapp�1 − t+
0�Ls

Ds
effFcB

0s̄s

�33�
Since the concentrations are continuous across the separator/
insertion electrode boundary, expressions 32 and 21 can be used to
evaluate �*

�cB
0�
c̃̄s
x̄s=1 = �−

�2

�1

Lciapp�1 − t+
0�

Dc
eff�̃+F�1 +

�c
eff

�c
eff� �*�s̄c��
c̃̄c
x̄c=0 �34�

which yields

�cB
0��C5 cosh s̄s + C6 sinh s̄s�

= �−
�2

�1

Lciapp�1 − t+
0�

Dc
eff�̃+F�1 +

�c
eff

�c
eff� �*�s̄c���C1 + C3� �35�

Equation 35 can be turned around to solve explicitly for �*

�* =

iapp�1 − t+�� Ls

s̄sDs
effF sinh s̄c

+
Lc

3ac	

�c
effDc

eff�1 − 2���
1

2 sinh 2

−
1

1 sinh 1
� −

�c
eff

�c
eff

� 1
1 tanh 1

−
1

2 tanh 2
� ��

Lc

Dc
eff�1 − 2�� s̄c − 1 + �1

2 tanh 2

−
s̄c − 2 + �1

1 tanh 1
� −

Ls

s̄cDs
eff tanh s̄c

�36�

To solve for the potential in the separator region Eq. 30 is integrated,

and the reference point, �̃2,s = 0 at x̄s = 1 is used to eliminate the
integration constant, which yields

�̃2,s = Ls
iapp

�s
eff�1 − x̄s� + �3�c̃̄s − 
c̃̄s
x̄s=1� �37�

Equations in the foil.— The current density crossing the solution
phase/foil interface is either due to the Faradaic reaction �which
follows Butler–Volmer kinetics� or due to the charging/discharging
of the electrochemical double layer. The linearized expression for
the current density transferred across the interface due to the Fara-
daic and double-layer processes in the Laplace domain is given by

iapp = �io,aF��a,a + �c,a

RT
� + s̄aCdl,a��
�̃1,a
x̄s=0 − 
�̃2,s
x̄s=0�

�38�

The solution-phase potential �2,s at x̄s = 0 is obtained from expres-
sion 37 to be


�̃2,s
x̄s=0 = Ls
iapp

�s
eff + �3�
c̃̄s
x̄s=0 − 
c̃̄s
x̄s=1� �39�

The value for �
 c̃̄s
x̄s=0 − 
 c̃̄s
x̄s=1� can be obtained from Eq. 32 and 39
becomes


�̃2,s
x̄s=0 = Ls
iapp

�s
eff + �3�C5�1 − cosh s̄s� − C6 sinh s̄s�

�40�

which can be simplified to


�̃2,s
x̄s=0 = Ls
iapp

�s
eff +

�3Ls

Ds
effcB

0s̄s

��*�s̄s� −
iapp�1 − t+

0�
F

�� 1

sinh s̄s

−
1

tanh s̄s
� �41�

Equation 41 can be plugged into Eq. 38 which can be solved for the
potential at the foil to yield


�̃1,a
x̄s=0 = Ls
iapp

�s
eff +

�3Ls

Ds
effcB

0s̄s

��*�s̄s� −
iapp�1 − t+

0�
F

�� 1

sinh s̄s

−
1

tanh s̄s
� +

iapp

io,aF��a,a + �c,a

RT
� + s̄aCdl,a

�42�

Impedance of the insertion electrode.— The impedance of the
insertion electrode is given by

Zc = −

�̃1,c
x̄c=1 − 
�̃2,s
x̄s=1

iapp
�43�

We have defined 
�̃2,s
x̄s=1 = 0 �see Eq. 31� and 
�̃1,c
x̄c=1 is ob-
tained by integrating the solution for the over potential �Eq. 21�.
Combining Eq. 3 with 5, and writing jn,c in terms of the overpoten-
tial through Eq. 14 followed by nondimensionalizing through Eq.
17, we obtain

d2�̃1,c

dx̄c
2 = �−

Lc
3acF	iapp

�c
eff2 �
̃̄c �44�

which on integration yields
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�̃1,c = �−
Lc

3acF	iapp

�c
eff2 � � � 
̃̄cdx̄cdx̄c + C7x̄c + C8 �45�

where C7 and C8 are eliminated using the conditions

x̄c = 0, �̃1,c = −
Lciapp

�c
eff 

̃̄c
x̄c=0, x̄c = 1,

d�̃1,c

dx̄c

= −
Lciapp

�c
eff

�46�

and the constants C7 and C8 are evaluated to be

C7 = −
Lciapp

�c
eff �1 −

Lc
2acF	s̄c

�c
eff12

�
C8 = −

Lciapp

�c
eff � s̄c − 1

�1
C1�1 −

Lc
2acF	

�c
eff1

�
+

s̄c − 2

�1
C3�1 −

Lc
2acF	

�c
eff2

�� �47�

Substituting the values of the constants in Eq. 45 the impedance of
the cathode is obtained as

Zc =
Lc

�c
eff + �c

eff +
Lc

3acF	

�c
eff2

�1
� s̄c − 1

1
� − �1

1�1 − 2�tanh 1

−
C2

sinh 1
� +

s̄c − 2

2
� �1

2�1 − 2�tanh 2

−
C4

sinh 2
�

+
s̄c − 1

1
C1� �c

eff1

Lc
2acF	

− 1� +
s̄c − 2

2
C3� �c

eff2

Lc
2acF	

− 1��
�48�

Impedance of the full cell.— The impedance of the full cell is
given by

Zcell = −

�̃1,c
x̄c=1 − 
�̃1,a
x̄s=0

iapp
�49�

which includes the impedance contributions from the separator and
the foil anode along with the insertion electrode. Substituting in the
expressions for 
�̃1,c
x̄c=1 and 
�̃1,a
x̄s=0 from Eq. 48 and 42, respec-
tively, in Eq. 49

�50�

Results and Discussion

The impedance response was simulated for a LiCoO2 insertion
cathode with a Li foil anode and a polypropylene separator. The
impedance solution predicted using the analytical expression was
verified by comparing with the numerical solution obtained for the
same model using Comsol MultiPhysics®. Figure 2 shows the com-
parison of the analytical solution for the impedance of the cell from
Eq. 50 and the corresponding numerical solution for different states
of charge using the parameter values shown in Table I. The results
obtained through the analytical solution agree well with the numeri-
cal solution over the complete range of simulated frequencies. The
impedance spectrum shown in Fig. 2 is the cumulative response
from the anode, cathode, and the separator and reveals a high-
frequency arc, which is caused by the resistance and the capacitance
of the film and a midfrequency arc, which is the contribution from
the charge-transfer/double-layer process at the electrochemical inter-
face. At low frequencies, the impedance spectrum consists of the
effects due to solid-phase diffusion, usually characterized by a 45°
asymptote originating from the real axis, which is also referred to as
the Warburg impedance. However, in this case the Warburg region
of the impedance spectrum is complicated by the solution-phase
diffusion processes, and affects the 45° asymptote originating from
the real axis, as seen in Fig. 2 and in the phase plots in Fig. 3. At
very low frequencies, the impedance is due to the emptying/filling
of the active species in the solid particle without concentration gra-
dients within the particle. Thus, a capacitor-type impedance re-
sponse can be seen at such low frequencies. The magnitude of the
imaginary part of the low-frequency impedance depends on the
change in the value of the open-circuit potential of the insertion
electrode with respect to the concentration of active species
��Uc/�c�� in the insertion electrode. The low-frequency tail is not
observed when �Uc/�c� = 0. The change in the impedance spectrum
with state of charge can be characterized by the change in the low-
frequency behavior, especially in the semi-infinite and finite-
diffusion regions. While the magnitude of the high- and midfre-
quency part of the spectrum does not change with state of charge,
the low-frequency impedance significantly increases with decrease
in state of charge. This is because of the increase in value of
−�Uc/�c� at lower states of charge �as marked�, which increases the
diffusional resistance, Rdif.

From the analytical expression, the total impedance of the cell
can be split into four major parts: term �I�, marked in Eq. 50, cor-
responds to the Ohmic resistances from the separator and the inser-
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tion electrode. The resistance of the film is not separated out because
the film capacitance is in parallel with the film resistance. Term �II�
includes the contribution from the impedance of the electrochemical
interface, film, and solution-phase and solid-phase diffusion in the
insertion electrode, all added together. Term �III� is the contribution
from diffusional impedance in the separator region and term �IV�
corresponds to the interfacial impedance in the anode. Using the
analytical solution, the impedance of the foil, separator, and the
insertion electrode can also be separated out from the full cell. The
isolation of the individual impedance from the analytical expression
is very useful, especially when experimental data are obtained from
different cell configurations. For instance, when a three-electrode
setup is used to measure the impedance of the insertion cathode with

respect to the reference electrode placed close to the insertion
electrode/separator boundary, the impedance expression for the in-
sertion electrode alone �Eq. 48� can be used for model/data compari-
son, and if the impedance data is taken on a two-electrode system
the impedance expression for the full cell �Eq. 50� could be used.
Figure 4 shows the impedance contribution of the individual com-
ponents towards the overall cell impedance. It can be seen that for
the parameter values used for this system, a significant part of the
impedance spectrum of the cell arises from the impedance of the
insertion electrode �Eq. 48�. The impedance of the insertion elec-
trode alone closely resembles the overall cell impedance and has
contributions from the impedance of the film, charge-transfer/
double-layer impedance of the electrochemical interface, and solid-
and solution-phase diffusion impedances in the insertion electrode.
The anode impedance shows a single arc in the high-frequency re-

Table I. Parameter values used in the model for LiCoO2 cathode.

Parameters Values

D�,c �m2/s� 1 � 10−14a

�c �S/m� 1 � 102a

cT �mol/m3� 5.1555 � 104b

i0,a �A/m2� 1 � 102a

i0,c �A/m2� 2a

�a,c 0.5a

�c,c 0.5a

Rp �m� 10 � 10−6a

�c 0.3b

�c
f 0.18b

f±,cB
0 1.2819 �Ref. 35�

f
±,cB

0� �m3/mol� 1.47 � 10−3�Ref. 35�

Dc �m2/s� 3.208 � 10−10a

Lc �m� 81 � 10−6b

Cfilm �F/m2� 1 � 10−2a

Rfilm ��m2� 2 � 10−3a

Cdl,a �F/m2� 0.2a

Ls �m� 25 � 10−6b

�s 0.7a

� �S/m� 10.0a

T �K� 298
cB

0 �mol/m3� 1 � 103b

a Assumed values.
b Measured values.

Figure 2. �Color online� Complex plane impedance plot showing the com-
parison of the cell impedance, Zcell obtained from the analytical solution and
numerical solution for different states of charge, �c. The analytical values are
represented by lines while the numerical values are represented by symbols.
The terms Zcell� and Zcell� denote the real and the imaginary part of the imped-
ance respectively. The impedance values were obtained at 100 evenly spaced
logarithmic frequency points between 105 Hz and 5 � 10−4 Hz.

Figure 3. �Color online� Bode plots showing the phase difference and the
magnitude of the impedance of the cell, 
Zcell
 against frequency, � = �/2�
obtained from the analytical solution and numerical solution for different
states of charge, �c. The analytical values are represented by lines while the
numerical values are represented by symbols. The values of the phase dif-
ference and magnitude were obtained at 100 evenly spaced logarithmic fre-
quency points between 105 Hz and 5 � 10−4 Hz.

Figure 4. �Color online� Complex plane impedance plot showing the con-
tribution of foil, separator and the insertion electrode towards the overall
impedance of the cell, Zcell. The terms Z� and Z� denote the real and the
imaginary part of the impedance respectively. Analytical expressions for
each of these impedances are obtained from Eq. 47. The impedance values
were obtained at 100 evenly spaced logarithmic frequency points between
105 Hz and 5 � 10−4 Hz at a state of charge, �c = 0.8. Inset shows the
zoomed version of the same plot to reveal the relatively small contribution of
the foil anode and the separator towards the overall cell impedance.
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gion corresponding to the charge-transfer resistance in parallel with
the double-layer capacitance at the foil/electrolyte interface. The
characteristic solid-phase diffusion limitations and the low-
frequency capacitive behavior in the insertion electrode is absent in
the anode because of the absence of insertion processes in the metal
foil. The impedance contribution from the separator is the smallest
of all these impedances and it shows two depressed semicircles par-
tially overlapping each other �the spectrum lies very close to the
origin and is seen better in the magnified inset in Fig. 4�. Although
we might expect a single time constant corresponding to the
solution-phase diffusion in the separator region, the boundary con-
ditions in the separator could have made the profiles complex. The
impedance of the electrolyte filled porous separator should be simi-
lar to the diffusion impedance for a Nernstian or an impermeable
boundary in a planar geometry,26 however, it is complicated by the
transient boundary at the separator/insertion electrode boundary.

Model versatility.— The versatility of the model is presented in
Fig. 5, wherein the impedance spectrum of the insertion electrode is
plotted for different limiting conditions that are often experimentally
sustained. For illustration of the model versatility, the impedance
spectrum of the insertion electrode alone was chosen. The solid line
in Fig. 5 corresponds to the impedance response of the insertion
electrode obtained using Eq. 48, which includes the impedance con-
tribution from all the transport and kinetic processes. The dotted line
corresponds to the case, when the solution-phase diffusion limita-
tions are completely absent and are plotted using Eq. 51. For this
condition, Eq. 48 can be reduced �based on the assumption 1
� s̄c and 2 � �2� to the form �see Appendix A for derivation�

Zc =
Lc

�c
eff + �c

eff�1 +
1

�2 tanh �2
��c

eff

�c
eff +

�c
eff

�c
eff�

+
2

�2 sinh �2
� �51�

This expression is similar �with the exclusion of particle size distri-
bution� to that presented by Meyers et al.14 for a porous electrode
without concentration gradients in the solution phase. A striking
difference in the impedance spectrum �at the start of the Warburg
region� when the solution-phase diffusion limitations were ignored
is the suppression of the hump at the start of the Warburg region and
a pure solid-phase diffusion behavior is observed. However, for the

case when the solution-phase diffusion processes were included,
there is a mixed control of the solution and solid-phase diffusion
processes at the start of the Warburg region, which causes the hump.
The extension of the impedance of the single particle to a porous
electrode without solution-phase concentration gradients �with the
Ohmic resistances added�, given by Zc,part, is also plotted in Fig. 5
for comparison

Zc,part =
Lc

�c
eff + �c

eff +
1

FLcac	
�52�

Equation 52 does not capture the nonuniformity of the current dis-
tribution in the porous electrode as compared to Eq. 51, however,
the impedance spectrum obtained through either equations �51 or
52� are very similar for this system because of the small value of the
parameter �2, which controls the nonuniformity of the reaction dis-
tribution inside the porous electrode.19 The depressed nature of the
semicircle and the 45° asymptote at the high frequency, which are
characteristic of porous electrodes,27 are not obvious in the plot of
Eq. 50 or 51 because of the high value of the charge transfer resis-
tance. The 45° asymptote starts at very high frequencies and imme-
diately merges into the part of the semicircle corresponding to
charge transfer.

For the case when the system is unaffected by the solid-phase
diffusion process, for instance, at very high values of solid-phase
diffusion coefficient the transfer function in expression 16 reduces
to26

1

Ys
=

1

5
+ 3

D�,c

sRp
2 �53�

In this case the impedance expression is given by Eq. 48 with the
transfer function described in Eq. 53. It can be seen from Fig. 5 that
the impedance for such a case is dominated by finite capacity effects
in the low-frequency region and the Warburg-like solid-phase diffu-
sion impedance is absent. At high and medium frequencies the im-
pedance spectrum is dominated by Ohmic, charge transfer, and
solution-phase diffusion resistances. It should be noted that the
value chosen for the solution-phase diffusion coefficient is high so
that the Warburg-like tail in the high-frequency region due to
solution-phase diffusion process does not significantly extend into
the lower frequencies and is suppressed by finite capacity effects.
For the case when the solid-phase insertion is completely absent,
then the diffusion inside the spherical particle does not exist, and
hence, the expression for 	 in Eq. 15 reduces to

	 =
1

F�sCfilm +

sCdl +
1

Rct

1 + �sCdl +
1

Rct
�Rfilm

� �54�

and the corresponding impedance response �Eq. 48 with the value of
	 from Eq. 54� is also shown in Fig. 5. The prominent features of
this limiting condition are the absence of the diffusion tail and the
finite capacity effects. This result is similar to the impedance spec-
trum obtained for a symmetric electrode configuration with the in-
clusion of solution-phase diffusion effects but without solid-phase
diffusion limitations.16 Finally, when the solution-phase and solid-
phase diffusion limitations are dominated by the reaction kinetics,
the impedance expression is obtained by using the expressions for 	
described in Eq. 54 along with Eq. 51 This reduces to the form
described for the impedance of a resistor capacitor network.28 The
impedance spectrum is characterized by a very high- frequency arc
corresponding to the film and another arc in the mid- and low-
frequency range, corresponding to the charge-transfer/double-layer
resistance.

Limiting cases.— Based on the analytical expression obtained
for the impedance of the cell, useful expressions can be evaluated
for different limiting cases. For the analyses of limiting conditions,
the impedance response of the insertion electrode �described in Eq.

Figure 5. �Color online� Complex plane impedance plot showing the imped-
ance spectrum of the insertion electrode, Zc under different limiting condi-
tions. The analytical solution for the impedance of the insertion electrode
reduces to simpler expressions for different limiting conditions �as marked in
the legends�. The terms Z� and Z� denote the real and the imaginary part of
the impedance respectively. The impedance values were obtained at 100
evenly spaced logarithmic frequency points between 105 Hz and 5
� 10−4 Hz at a state of charge, �c = 0.8.
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48� alone was considered. At high frequencies, the eigenvalues 1
and 2 reduce to 1 � s̄c and 2 � �2 from expressions in Eq. 22.
This is based on the same argument as for the case of the absence of
solution-phase diffusion limitations �see Appendix A�. Here, we as-
sume that at significantly high frequencies the solution-phase diffu-
sion processes have not yet started, and hence, Eq. 51 can accurately
represent impedance behavior at high frequencies. In addition, the
diffusion in the solid-phase can also be neglected at high frequen-
cies, and hence, 	 �which occurs in �2� can be reduced to the form
in Eq. 54, which yields the impedance at high frequency �HF� as

Zc
HF =

Lc

�c
eff + �c

eff�1 +
1

�2
HF tanh �2

HF��c
eff

�c
eff +

�c
eff

�c
eff�

+
2

�2
HF sinh �2

HF� �55�

where �2 can be written as

�2
HF = Lc

2ac� 1

�c
eff +

1

�c
eff��sCfilm +

sCdl +
1

Rct

1 + �sCdl +
1

Rct
�Rfilm

�
�56�

The validity of this expression in the high-frequency region depends
on the time constants of the solution-phase/solid-phase diffusion
process.

In the low-frequency region, simplified expressions for the im-
pedance of the cell would be very useful for estimating parameters
such as solid-phase diffusion coefficient and solution-phase diffu-
sion coefficient. Different analytical expressions to evaluate the
solid-phase diffusion coefficient based on the slopes in the semi-
infinite and transition region or the real part of the impedance ex-
trapolated at zero frequencies in the finite diffusion region �low-
frequency intercept technique� are available in the present literature.
In most insertion electrode cells, the semi-infinite and the transition
region are completely controlled by solid-phase diffusion process,
and hence, the slope of these regions are widely used to determine
solid-phase diffusion coefficients.3,23,30 However, when the solution-
phase processes overlap with the solid-phase processes in the semi-
infinite/transition region a reliable estimate of the solid-phase diffu-
sion coefficient �using standard formula29� is not guaranteed.13 In
the low-frequency intercept technique, the real part of the imped-
ance extrapolated at zero frequencies is used to obtain the solid-
phase diffusion coefficients26,29 �extraction of diffusion coefficient
from the finite-diffusion region of the impedance spectrum�; al-
though its applicability is limited by the fact that it requires longer
times to obtain data at such low frequencies.13,18 This method also
cannot predict diffusion coefficient accurately using traditional ex-
pression when interference from solution-phase processes and the
effects of porous electrode nature are prominent. In the work by
Doyle et al.13 the authors have concluded that the real part of the
impedance extrapolated at zero frequencies from experimental data
cannot be reliably used to measure diffusion coefficients in lithium
rechargeable battery systems, because of the porous nature of the
electrode and the interference of solution phase-diffusion processes
with the solid-phase diffusion in the low-frequency regions; these
are not captured by the analytic expressions in the literature �e.g, see
Eq. 58�. The analytical solution developed in this work �described in
Eq. 48� includes the effect of solution-phase diffusion processes
along with the solid-phase diffusion and finite capacity effects and is
based on porous electrodes. Thus, the simplification of the imped-
ance expression in Eq. 48 for low frequencies should yield a reliable
analytic expression for the estimation of diffusion coefficient from
the low-frequency intercept of the impedance spectrum. However,
the direct simplification of Eq. 48 at low frequencies is cumbersome,
and hence, the governing equations were solved by replacing the

transient solution-phase diffusion equation with the steady-state dif-
fusion equation to yield the low-frequency �LF� impedance expres-
sion as

Zc
LF =

Lc

�c
eff��1 +

�2

�1 + �2 tanh �1 + �2

+
�3

�1 + �2 sinh �1 + �2
� �57�

where �1, �2, and �3 are constants �real� and are not functions of
frequencies �the values of �1, �2, and �3 are given in Appendix B�.
The above expression is derived based on the fact that the concen-
tration in the solution-phase has reached a steady state at very low
frequencies and the impedance is dominated by the insertion of the
Li+ in the active material particle �see Appendix B�. Therefore Zc

LF

described in Eq. 57 will be valid in the frequency range after which
the solution-phase diffusion has reached a pseudo-steady state and
the impedance spectrum is dominated by solid-phase diffusion pro-
cesses. Figure 6 shows the complex plane impedance plot compar-
ing the low-frequency expression Zc

LF with the rigorous analytical
solution from Eq. 48. It is observed that at low frequencies Zc

LF

agrees well with the rigorous analytical solution. For comparison,
the impedance spectrum obtained for a porous electrode in the ab-
sence of solution-phase diffusion �as given in Eq. 51�, which is also
valid in the high-frequency region, is plotted in Fig. 6. It can be seen
that the impedance spectrum predicted by Eq. 51 agrees well with
the rigorous solution at high frequencies but deviates at low frequen-
cies. This is more clearly seen in the Bode plots �see Fig. 7� where
the magnitude of the impedance predicted with Eq. 51 agrees with
the rigorous solution at high frequencies and slowly deviates at
�0.1 Hz and at lower frequencies, the low-frequency expression,
Zc

LF matches the rigorous solution. An important point worth noting
here is that the expression Zc

LF cannot capture the hump in the high-
frequency Warburg region �Fig. 6� because Zc

LF was evaluated by
solving for the steady state diffusion equation. The hump occurs due
to the transience in the solution-phase diffusion process and this
transience is clearly observed in the Bode-phase angle plot for the
rigorous solution, as shown in Fig. 7. Although Zc

LF cannot capture
the hump due to transience, it includes the effect of the solution-
phase diffusion process within it. This can be illustrated using Fig.
6. For the impedance spectrum predicted using Zc

LF in Fig. 6, the
midfrequency arc extends until the solution-phase process has

Figure 6. �Color online� Complex plane impedance plot showing the com-
parison of impedance of the insertion electrode, Zc using the low frequency
expression �Eq. 58� and high frequency expression �Eq. 57� against the rig-
orous analytical solution �Eq. 47�. The terms Z� and Z� denote the real and
the imaginary part of the impedance respectively. The impedance values
were obtained at 100 evenly spaced logarithmic frequency points between
105 Hz and 5 � 10−4 Hz at a state of charge, �c = 0.8.
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reached the steady state before the Warburg tail due to solid-phase
diffusion starts. Thus, the expression for Zc

LF can be used to estimate
the diffusion coefficient in the insertion electrode more reliably than
the traditional analytical expressions.

Determination of solid phase diffusion coefficient.— To evalu-
ate the solid-phase diffusion coefficient by using the low-frequency
intercept technique, the real part of the impedance expression ex-
trapolated at zero frequencies should be evaluated and fit to experi-
mentally measured low frequency resistance. Although the low-
frequency expression Zc

LF given by Eq. 57 is compact, analytical
separation of real and imaginary parts is not straightforward. Thus,
the expression is further simplified by assuming that at low frequen-
cies, the charge-transfer resistance and the film resistance shorts the
double-layer capacitance and the film capacitance, respectively, and
	 can be represented as

	 1

F	
	

�→0
= �Rct + Rfilm +

1

5
Rdif − j

3

�RsF
�−

dU

dcs
�� �58�

and as a result expression 57 reduces to �see Appendix C for deri-
vation�

Zc,�→0
LF =

Lc

�c
eff��1 +

�2

3
−

�3

6
+

�2 + �3

�4F	
� �59�

from which the real and imaginary components of the impedance are
obtained as

Re�Zc,�→0
LF � =

Lc

�c
eff��1 +

�2

3
−

�3

6
+

�2 + �3

�4
�Rct + Rfilm +

1

5
Rdif��

Im�Zc,�→0
LF � =

Lc

�c
eff��2 + �3

�4
�− j

3

�RsF
�−

dU

dcs
��� �60�

Here, �1, �2, �3, and �4 are real constants and are not dependent on
the value of the solid-phase diffusion coefficient, but include the
effects due to solution-phase diffusion limitations. Hence, for the
estimation of solid-phase diffusion coefficient, the real part of ex-
pression 59 as given in Eq. 60 should be used. When Re�Zc,�→0

LF � in
Eq. 60 is turned around, the expression for the diffusion coefficient
is obtained as

D�,c =

−
1

5

Rp

F

�U

�c�,c

�2 + �3

�4

�c
eff

Lc
Re�Zc,�→0

LF � − �1 −
�2

3
+

�3

6
−

�2 + �3

�4
�Rct + Rfilm�

�61�
This expression can be used to estimate the solid-phase diffusion

coefficient of the active species by fitting the experimental data ob-
tained on porous electrodes even in the presence of solution-phase
diffusion limitations, provided the constant real part in the low-
frequency impedance spectrum, Re�Zc,�→0

LF � is known. The expres-
sion captures the effect of the porous nature of the electrodes as well
as the effect of solution-phase diffusion limitations in addition to the
kinetic and solid-phase resistances. Figure 8 shows the comparison
of solid-phase diffusion coefficient extracted from expression 61 and
the traditional low frequency intercept given by13,26

Figure 7. �Color online� Bode plots showing the phase difference and the
magnitude of the impedance of the insertion electrode, Zc using the low
frequency expression �Eq. 58� and high frequency expression �Eq. 57�
against the rigorous analytical solution �Eq. 47�. The impedance values were
obtained at 100 evenly spaced logarithmic frequency points between 105 Hz
and 5 � 10−4 Hz at a state of charge, �c = 0.8.

Figure 8. �Color online� Comparison of
the estimation of solid phase diffusion co-
efficient from the low frequency intercept
on the real axis using the standard formula
�Eq. 61� represented by dashed lines and
the new expression �Eq. 60� represented
by solid lines. The low frequency resis-
tance used for Re�Zc,�→0

LF � in either expres-
sion, is obtained by calculating the real
part of the impedance at 10−6 Hz using
Eq. 47. All values were calculated at a
state of charge, �c = 0.8. The values of the
solution phase diffusion coefficient used
for these calculations are marked against
each curve.
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D�,c =
Rp

5FacLc Re�Zc,�→0
LF �

�−
�U

�c�,c
� �62�

Equation 62 is obtained by solving for the diffusion equation in a
single spherical particle and scaling it to the total volumetric area of
the electrode. The values for all the other parameters are the same
and are listed in Table I. The value for −�Uc/�c� = −2.54
� 10−6 �Vm3/mol� is evaluated for the state of charge, �c = 0.8.
The true values of the diffusion coefficient �in the abscissa� are the
values used to generate the synthetic impedance data from Eq. 48.
The value for Zc,�→0

LF to be used to evaluate the diffusion coefficient
using Eq. 61 and 62 is obtained from the low-frequency resistance
calculated from the synthetic impedance data. It can be inferred
from Fig. 8 that, the traditional expression 62 fails to predict the true
value of the solid-phase diffusion coefficient, when the value of the
solution-phase diffusion coefficient is low and/or when the value of
the solution-phase diffusion coefficient is not well separated �by at
least five or six orders of magnitude� from the solid-phase diffusion
coefficient. For instance, when the value of solution-phase diffusion
coefficient Dc is 3.208 � 10−10 m2/s and the true value of the solid-
phase diffusion coefficient is D�,c = 5 � 10−13 m2/s, the value of
the solid-phase diffusion coefficient estimated using expression 62 is
D�,c = 1.7362 � 10−14 m2/s, while the value estimated using ex-
pression 61 is D�,c = 5.00293 � 10−13 m2/s. Expression 62 under-
estimates the value of solid-phase diffusion coefficient for the above
case by more than an order of magnitude. This is evident as expres-
sion 62 does not account for the solution-phase diffusion process,
which is significant when the value of Dc gets closer to D�,c. It
should be noted that while estimating the diffusion coefficient using
Eq. 62, a constant value of 11.85 � cm2 �intercept of the impedance
spectrum on the real axis in Fig. 2 for �c = 0.8 in the midfrequency
region� is subtracted from the true value of Re�Zc,�→0

LF � to account
for the charge transfer and the Ohmic resistance contribution, which
is ignored in expression 62.

Although the expression for the low-frequency region given by
Zc

LF can be used in the transition region, it would not be always valid
in the semi-infinite region of the Warburg region, because of the
omission of the solution-phase diffusion transience in the expres-
sion, which could be significant when the values of solid- and
solution-phase diffusion coefficients are comparable. This is also
clearly seen in Fig. 6, where the low-frequency expression does not
agree with the rigorous solution at the start of the Warburg region.
Thus, the estimation of diffusion coefficient using the low-frequency
expression Zc

LF should be more accurate from the transition region
and the low-frequency resistance, Zc,�→0

LF , rather from the semi-
infinite region. In the semi-infinite region of the Warburg imped-
ance, the transience in the solution-phase diffusion process is pre-
dominant, and hence, expression 57 would not be appropriate,
instead the rigorous analytical solution �Eq. 48� should be used to
evaluate the diffusion coefficient.

Conclusions

An analytical expression for the impedance response of an inser-
tion electrode in a cell is presented in this work. The analytical
expression can be used to predict the impedance response of systems
influenced by Ohmic, capacitive, and solid- and solution-phase dif-
fusion limitations. An accurate expression to calculate the solid-
phase diffusion coefficient in porous electrodes from the low-
frequency resistance is also presented �Eq. 61�. The analytical
solution for the impedance response of a cell with an insertion elec-
trode, separator, and a foil is also presented and can be used to
simulate the impedance response for half cells and primary batteries.
The analytical solution technique can also be extended to cells with
dual insertion electrodes.

Acknowledgments

Financial support provided by National Reconnaissance Office
�NRO� under contract no. NRO-000-03-C-0122 is gratefully ac-
knowledged.

The University of South Carolina assisted in meeting the publication
costs of this article.

Appendix A
Expression for the Impedance of the Insertion Electrode in the Absence of Solution-

Phase Diffusion Limitations
In the absence of solution-phase diffusion limitations, the dimensionless parameter

�1 � 1, and since the diffusional resistance is also negligible compared to Ohmic
resistance, �1 � �2. As a result the eigenvalues, 1 and 2 reduce to

1 =
1

2
�s̄c + �1 + �2 + s̄c

2 + 2s̄c��1 − �2� + ��1 + �2�2� � s̄c

2 =
1

2
�s̄c + �1 + �2 − s̄c

2 + 2s̄c��1 − �2� + ��1 + �2�2� � �2 �A-1�

Consequently, the expression for the impedance of cathode given by Eq. 48 reduces
to

Zc =
Lc

�c
eff + �c

eff +
Lc

3acF	

�c
eff2

�1
� s̄c − �2

�2
� �1

�2�s̄c − �2�tanh �2

−
C4

sinh �2
�

+
s̄c − �2

�2
C3� �c

eff�2

Lc
2acF	

− 1�� �A-2�

The value of the constants C3 and C4 from the expression 24 reduce to

C3 =
�1

�2�s̄c − �2�sinh �2

−
C4

tanh �2

, C4 = −
�c

eff�1

�c
eff�2�s̄c − �2�

�A-3�

Plugging in the values of the constants in Eq. A-3 into the impedance expression A-2
yields

Zc =
Lc

�c
eff + �c

eff +
Lc

3acF	

�c
eff2

�1

s̄c − �2

�2

�1

�2�s̄c − �2�
�� 1

tanh �2

+
�c

eff

�c
eff

1

sinh �2
�

+ � 1

sinh �2

+
�c

eff

�c
eff

1

tanh �2
�� �c

eff�2

Lc
2acF	

− 1�� �A-4�

Using �2 = Lc
2acF	/�c

eff�1 + �c
eff/�c

eff�, the above expression can be further simplified
to

Zc =
Lc

�c
eff + �c

eff +
Lc

�c
eff + �c

eff

�c
eff

�c
eff

1

�2
�� 1

tanh �2

+
�c

eff

�c
eff

1

sinh �2
�

+ ��c
eff

�c
eff

1

sinh �2

+ ��c
eff

�c
eff�2 1

tanh �2
�� �A-5�

which can be grouped as

Zc =
Lc

�c
eff + �c

eff�1 +
1

�2
���c

eff

�c
eff +

�c
eff

�c
eff� 1

tanh �2

+
2

sinh �2
�� �A-6�

This expression is similar to the solution for a porous electrode with linear kinetics as
discussed by Newman.31 It is worth nothing that the term �2 has the variable 	, which
is a lumped parameter controlling the interfacial impedance as described by Eq. 15. The
impedance of a porous electrode when 	 is purely Faradaic is discussed by Ong et al.28

and a more complicated 	 for an interfacial model including particle size distribution is
discussed by Meyers et al.14 Analytical solutions are also available in the literature for
the impedance of a porous electrode when 	 is purely capacitive32,33 and
pseudocapacitive.34

Appendix B
Expression for the Impedance of the Insertion Electrode in the Low-Frequency

Region
In the low-frequency region a simplified expression for the impedance can be ob-

tained by replacing Eq. 2 and 25 with the steady-state governing equations. This is
justified by the fact that at very low frequencies when the impedance is dominated by
insertion processes, the concentration in the solution phase reaches a steady state and
neglecting for concentration variations will yield much simpler expression at low-
frequency regions without compromising accuracy. Thus, at steady-state, Eq. 18 and 19
can be written as

d2c̃̄c

dx̄c
2 = − �1
̃̄c �B-1�
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d2
̃̄c

dx̄c
2 = ��1 + �2�
̃̄c �B-2�

with the boundary conditions being the same as given in Eq. 20. In this case, Eq. B-1
and B-2 are not coupled and to evaluate the impedance it would be sufficient to solve
for equation B-2 alone, with the boundary conditions

x̄c = 0:
d
̃̄c

dx̄c

−
�1

�2

F�1 +
�c

eff

�c
eff�

iapp�1 − t+
0�

�*�s̄c� = − ��c
eff

�c
eff�

x̄c = 1:
d
̃̄c

dx̄c

= 1 �B-3�

Here, too, �*� s̄c� is an unknown constant that has to be determined by solving for the
equations in the separator with the anode boundary. However, in this case �*� s̄c� reduces
to a simple expression while solving for the concentration profiles in the separator. In
the separator region Eq. 29 changes to

d2c̃̄s

dx̄s
2 = 0 �B-4�

with the boundary conditions from Eq. 31 written as

x̄s = 0,
dc̃̄s

dx̄s

= −
Lsiapp

cB
0FDs

eff�1 − t+
0�, x̄s = 1,

dc̃̄s

dx̄s

=
Ls

cB
0Ds

eff�
*�s̄s� �B-5�

The solution for Eq. B-4 yields dc̃̄s/dx̄s to be a constant, and hence,

	 dc̃̄s

dx̄s

	
x̄s=0

= 	 dc̃̄s

dx̄s

	
x̄s=1

�B-6�

which yields

�*�s̄s� = −
iapp

F
�1 − t+

0� �B-7�

Thus, solving Eq. B-2 with the boundary conditions as in Eq. B-3, we obtain


̃̄c =

cosh��1 + �2x̄c� + ��1

�2
+

�c
eff

�c
eff�1 +

�1

�2
��cosh��1 + �2�x̄c − 1��

�1 + �2 sinh��1 + �2�

�B-8�

The evaluation of the impedance of the cell from 
̃̄c is done using the same procedure
as in the text using Eq. 45 with the boundary conditions in Eq. 46. The resulting

expression for �̃1,c is plugged into the expression for the cathode impedance �Eq. 43� to
yield the impedance of the insertion electrode. The expression obtained after simplifi-
cation can be written as

Zc
LF =

Lc

�c
eff��1 +

�2

�1 + �2 tanh �1 + �2

+
�3

�1 + �2 sinh �1 + �2
�

�B-9�

where �1, �2, and �3 are constants �real� and are not functions of frequencies. The
values for these constants are given as

�1 = 1 −
�2

�1 + �2
� �c

eff

�c
eff + �c

eff�

�2 =
�c

eff

�c
eff + �1 +

�c
eff

�c
eff��1

�2
−

�1

�1 + �2
−

�2

�1 + �2
��c

eff − �c
eff

�c
eff + �c

eff�
�3 = 1 +

�1

�1 + �2
+

�2

�1 + �2
��c

eff − �c
eff

�c
eff + �c

eff� �B-10�

Appendix C
Series Approximation for the Impedance of the Insertion Electrode at Very Low

Frequencies
At low frequencies the impedance expression can be written as �Eq. 57�

Zc
LF =

Lc

�c
eff��1 +

�2

�1 + �2 tanh �1 + �2

+
�3

�1 + �2 sinh �1 + �2
�

�C-1�

From the expressions of �1 and �2, we can write

�1 + �2

F	
=

2RT�1 − t+
0�2acLc

2

�̃+F2Dc
eff � 1

cB
0 +

f±,cB
0�

f±,cB
0
� + Lc

2ac� 1

�c
eff +

1

�c
eff� = �4 �C-2�

where �4 is a real quantity. Plugging Eq. C-2 into Eq. C-1

Zc
LF =

Lc

�c
eff��1 +

�2

�4F	 tanh �4F	
+

�3

�4F	 sinh �4F	
� �C-3�

At very low frequencies when � → 0, from Eq. 58


�F	�
�→0 =
1

Rct + Rfilm +
1

5
Rdif − j

3

�RsF
�−

dU

dcs
� � 0 �C-4�

For very small values of 	, taking the first two terms of the series expansion,

�2

�4F	 tanh �4F	
=

�2

�4F	
+

�2

3
�C-5�

�3

�4F	 sinh �4F	
=

�3

�4F	
−

�3

6
�C-6�

Thereby Eq. C-3 reduces to

Zc,�→0
LF =

Lc

�c
eff��1 +

�2 + �3

�4F	
+

�2

3
−

�3

6 � �C-7�

Appendix D
Expressions Used in LiCo O2 Insertion Electrode

The active particles in the insertion electrode are assumed to be spherical and hence
the active surface area to volume ratio is given by the relation

ac = 3�1 − �c − �c
f

Rc
� �D-1�

The effective diffusion coefficient of Li+ in the solution phase is given by the
Bruggeman relation

Dc
eff = Dc�c

brugc �D-2�

Similarly, the effective conductivities of Li+ in the solid phase and the solution phase
are also related by the Bruggeman coefficient:

�c
eff = �c�1 − �c − �c

f�brugc �D-3�

�c
eff = �c�c

brugc �D-4�

The activity coefficient as a function of salt concentration is given by35

ln f± =
1

1 − t+
0 �− 0.48cc + 0.67cc

3/2�2.4679 − 0.0051T�� �D-5�

evaluated at 298 K and the concentration cc is expressed in mol/dm3

Electrode thermodynamic data for the open-circuit potential of LiCoO2 elec-
trode.— The open-circuit potential of the positive intercalation electrode �LiCoO2� ob-
tained from the Mine Safety Appliances Company �Sparks, MD� was fit to the function

Uc = � 4.0396 − 32.5724� cs

cT
� + 104.8654� cs

cT
�2

− 168.3891� cs

cT
�3

+ 134.6638� cs

cT
�4

− 42.6072� cs

cT
�5

1 − 8.0912� cs

cT
� + 26.1404� cs

cT
�2

− 42.1196� cs

cT
�3

+ 33.7932� cs

cT
�4

− 10.7226� cs

cT
�5 � �D-6�

List of Symbols

a specific surface area of the porous material, m2/m3

c solution phase concentration, mol/m3

c� solid phase concentration, mol/m3

cB
o initial bulk concentration in the solution phase, mol/m3

Cdl double layer capacitance, F/m2

Cfilm capacitance of the film, F/m2

D� diffusion coefficient of Li+ in the solid phase, m2/s
D diffusion coefficient of the salt in the electrolyte, m2/s
f± activity coefficient of Li+ in the electrolyte
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f±� derivative of f± w r to c, m3/mol
F Faraday’s constant, 96487 C/eq.
i0 exchange current density, A/m2

i1 solid phase current density, A/m2

i2 solution phase current density, A/m2

iapp applied current density, A
iF Faradaic current density, A/m2

idl double layer current density, A/m2

in total outward normal current density, A/m2

Lc thickness of the cathode, m
Ls thickness of the separator, m
n number of electrons transferred in the intercalation reaction, n

= 1
jn reaction rate at the pore wall interface, mol/m2/s
r radial coordinate within an active material particle, m
R ideal gas constant, 8.3143 J/mol/K

Rct charge transfer resistance defined as RT/i0,c��a,c + �c,c�F, � m2

Rdif solid phase diffusional impedance, −�Rp/D�,cF���U/�c�,c�, � m2

Rfilm resistance of the surface film, � m2

Rp radius of solid spherical particles, m
s Laplace variable, j�

s̄c dimensionless Laplace variable in the intercalation electrode
��cLc

2s/Dc
eff�, s−1

s̄s dimensionless Laplace variable in the separator region given by
��sLs

2s/Ds
eff�, s−1

s̄a dimensionless Laplace variable in the anode region given by s,
s−1

t+
0 transference number of Li+ in the electrolyte
t time, s

T temperature, K
U open circuit potential, V
V Eigen Vector, defined in Eq. 23
x spatial dimension �distance from the anode surface�, m

Ys transfer function as defined in Eq. 16
Zcell total impedance of the electrochemical cell, � m2

Greek

� transfer coefficient
� porosity of composite electrode

 electrochemical reaction over potential ��1 − �2�, V
� solution phase conductivity, S/m
� solid phase conductivity, S/m

�1 solid phase potential, V
�2 solution phase potential, V

�̃1 perturbed solid phase potential, V

�̃2 perturbed solution phase potential, V
�1 dimensionless parameter,

2RT�1 − t+
0�2acLc

2

�̃+F2Dc
eff � 1

cB
0 +

f±,cB
0�

f±,cB
0
�� 1

F	

�2 dimensionless parameter,

Lc
2ac� 1

�c
eff +

1

�c
eff�� 1

F	

�3 dimensionless parameter,

2RT�1 − t+
0�cB

0

F
� 1

cB
0 +

f±,cB
0�

f±,cB
0
�

1,2 eigenvalues as defined in Eq. 22
� frequency, Hz
� frequency, 2��, s−1

�̃+ number of cations into which a mole of electrolyte dissociates

�1,�2,�3 constants defined in Eq. B-10
�4 ��1 + �2�/F	

Subscripts

c intercalation electrode, cathode
s separator
a foil anode
� solid phase of the intercalation electrode

Superscripts

overbar dimensionless variables
� variables in the Laplace domain

eff effective values
f filler
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