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Cubic Spline Regression for the Open-Circuit Potential Curves
of a Lithium-Ion Battery
Qingzhi Guo* and Ralph E. White** ,z

Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,
Columbia, South Carolina 29208, USA

A cubic spline regression model was used to fit the experimental open-circuit potential~OCP! curves of two intercalation
electrodes of a lithium-ion battery. All the details of an OCP curve were accurately predicted by the resulting model. The number
of regression intervals used to fit an OCP curve was determined in a way such that in each regression interval the OCP exhibits
a profile predictable by a third-order polynomial. The locations of the data points used to separate regression intervals were
optimized. Compared to a polynomial model with the same number of fitting parameters, the cubic spline regression model is
more accurate. The cubic spline regression model presented here can be used conveniently to fit complicated profiles such as the
OCP curves of lithium-ion battery electrodes.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1845336# All rights reserved.
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The dependence of the open-circuit potential~OCP!of an inter-
calation electrode in a lithium-ion battery on the lithium concentra-
tion of that electrode usually cannot be explained by a general
Nernst equation. Because of this, the equations used in the literature
to fit the experimental OCP curve~the dependence of the OCP on
the concentration of lithium in the solid phase! of an intercalation
electrode vary wildly. For instance, Doyleet al.1 used an equation
having two exponential terms and a constant term to fit the experi-
mental OCP curve of a petroleum coke carbon electrode, Ramadass
et al.2 used a rational expression to fit the experimental OCP curve
of the carbon electrode of a Sony 18650 cell, and Verbrugge and
Koch3 used a modified Nernst equation to fit the experimental OCP
curve of a single-fiber carbon electrode. Among those equations, the
first two are empirical in nature, and the last one is physically mean-
ingful but can only be used for a few intercalation electrodes having
a well-ordered material structure. If the experimental OCP curve of
an intercalation electrode exhibits some voltage plateaus corre-
sponding to different staging processes, which is the case for most
intercalation electrodes,1,4-10the equations found in the literature are
not as accurate as desired.

The Butler-Volmer equation~see Eq. 3 of Ref. 2!used to predict
the rate of the electrochemical reaction at an electrode in a lithium-
ion battery depends exponentially on the difference between the
working potential~the potential difference between the solid phase
and solution phase! and the OCP of the electrode. If one is interested
in estimating the rate constant of the Butler-Volmer equation from a
voltagevs. time discharge curve, any small inaccuracy in knowing
the electrode OCP may cause significant error in the estimated value
of the rate constant. Therefore, fitting accurately the OCP curve of
an intercalation electrode is important to us. On the experimental
OCP curve of a carbon electrode with a graphite structure, there are
some closely spaced voltage plateaus near 0.1 V~vs.Li metal!, and
each voltage plateau corresponds to a particular range of lithium
intercalation in that electrode.4-7 If the capacity fade of a carbon
electrode occurs continuously with cycling due to the branching of
charge current to the solvent reduction side reaction,11 one can ex-
pect that the carbon electrode will never reach a structure of LiC6
~fully charged carbon electrode! in its lifetime, and the voltage pla-
teau corresponding to that structure on a low rate discharge curve of
that electrode will become narrower and narrower with cycling. At-
tributing the capacity fade of a lithium-ion battery to the side reac-
tion on its carbon anode may be justified by such a change in the
voltage plateau.

Considering that, in general, the experimental OCP curve of an
intercalation electrode has a profile much more complicated than

that predicted by a general Nernst equation, an empirical equation is
desired to fit such curves. Unfortunately, most empirical equations
available in the open literature for that purpose are highly nonlinear
in nature with respect to their fitting parameters.1-2,10,11To predict all
the voltage plateaus on an OCP curve, an empirical equation may
have to include many nonlinear parameters.1-2,10-11Because of this,
providing reasonable initial guesses for all the parameters in such an
empirical equation is a challenging mission to guarantee the conver-
gence of nonlinear regression.

In this paper, a cubic spline regression model12,13was used to fit
the experimental OCP curves of two intercalation electrodes, a car-
bon electrode, and a cobalt oxide electrode. The advantage of using
the cubic spline regression model to fit a complicated profile is
demonstrated and compared to a polynomial fit.

Cubic Spline Regression Model

The concept of the spline originated from the drafting technique
of using a thin, flexible strip called a spline to draw smooth curves
through a set of points.14 First, consider spline interpolation.14 The
desire is to connectm experimental data points, (x1 , y1),
(x2 , y2),..., and (xm , ym), by a smooth curve. The curve is divided
by those points intom 2 1 intervals. Assume in each interval the
data points can be represented by a third-order polynomial

y 5 ai 1 bix 1 cix
2 1 dix

3 @1#

wherex is the independent variable,y is the dependent variable, and
ai , bi , ci , and di are parameters for theith interval. To define
m 2 1 intervals completely, 43 (m 2 1) parameters (ai , bi , ci ,
anddi) need to be determined. Therefore, 43 (m 2 1) equations
are required. One can specify 23 m equations by assuming that
Eq. 1 is valid for all the data points~each interior data point is used
twice!. One can specify another 23 (m 2 2) equation by assum-
ing that both the first and the second derivatives of the dependent
variable with respect to the independent variable are continuous at
each interior data point. One can specify the other two equations by
assuming that the second derivative of the dependent variable is zero
at two end points, (x1 , y1) and (xm , ym).14 Once all the
4 3 (m 2 1) parameters are determined, one can use Eq. 1 to in-
terpolate any point within an interval. The procedure described is the
so-called cubic spline interpolation.14 Whether one should use a
third-order polynomial~cubic spline interpolation! or a second-order
polynomial~quadratic spline interpolation! depends on the curvature
of the data point trajectory. However, using a higher order polyno-
mial is not commonly done.

Cubic spline interpolation is useful when the number of data
points is small. If the number is great and all the data points are
closely spaced, unfortunately, spline interpolation is inefficient.
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Cubic spline regression is similar to cubic spline interpolation. In
cubic spline regression, a third-order polynomial is also used for
each interval, and the dependent variable and its first and second
derivatives are also continuous at all the knots~i.e., the points cho-
sen to define regression intervals!.12,13The difference between cubic
spline regression and cubic spline interpolation is that only a small
number of knots is used in cubic spline regression based on the
curvature change of the data point trajectory. A graphic illustration
of using knots to define regression intervals is given later. In a cubic
spline regression model, Eq. 1 is replaced by the general
equation12,13

y 5 a 1 bx 1 cx2 1 dx3 1 (
i51

k

D iei~xi 2 xi!
3 @2#

wherea, b, c, d, andei are parameters,xi is the location of theith
knot, k is the number of knots~k knots definek 1 1 regression
intervals because end data points are not used as knots!, andD i is
the dummy~or indicator!variable defined to be one in a particular
range ofx and to be zero otherwise. Equation 2 is a general equation
whose exact form varies from one regression interval to another. The
model equation for the first interval usually takes the form

y 5 a 1 bx 1 cx2 1 dx3 @3#

when all theD i’s equal zero in the first interval. The model equation
for the second interval takes the form

y 5 a 1 bx 1 cx2 1 dx3 1 e1~x 2 x1!3 @4#

when D1 5 1 in the second interval. The model equation for the
third interval takes the form

y 5 a 1 bx 1 cx2 1 dx3 1 e1~x 2 x1!3 1 e2~x 2 x2!3

@5#

when bothD1 and D2 equal one. As observed from Eq. 3-5, the
model equations used for any two adjacent intervals differ only by
one term. The slight difference in model equations for two adjacent
intervals is created so that the continuity of the dependent variabley,
and the continuities of its first and second derivatives at the knot
separating those two intervals are all satisfied automatically (x1 is
the location of the knot separating the first and the second intervals,
andx2 is the location of the knot separating the second and the third
intervals!.12,13 Because of this, the curve predicted by the cubic
spline regression model is expected to be very smooth. Even though,
in general, the regression intervals can be numbered from the first to
the last in an increasing order of the independent variable,x, one
may elect to number them in a different way~i.e., the regression
intervals are numbered in a decreasing order ofx!. In any case, the
model equations for every two adjacent intervals must differ by only
one term.

Once the number of knots and their locations are known~knots
can be points other than the available experimental data points!, one
can use Eq. 2 and linear least-squares regression15 to obtain esti-
mates of parameters,a, b, c, d, andei . In most cases, the experi-
mental data points can be fitted with a desired accuracy when using
some knots picked by eye according to the curvature change of the
data point trajectory, even though the coordinates of knots used in
the regression may not be the ones giving rise to the best fit of the
data. The coordinates of knots can be optimized by treating them as
additional fitting parameters in a model. In this case, nonlinear least-
squares regression is required~Eq. 2 is nonlinear with respect toei

andxi) . If needed, the number of knots and the coordinates of these
knots can both be optimized. The number of knots can be optimized
by using several consecutive numbers of knots in the regression and
the number leading to the best fit is the optimal one.

Multiple Least-Squares Regression

Because in cubic spline regression the available experimental
data points are divided into a number of regression intervals using
knots and each resulting interval has a different form of the model
equation, using multiple least-squares regression to obtain parameter
estimates is required. That is, the sum of squared residuals,F, is to
be minimized15

F 5 (
i51

k11

(
j51

ni

~yij* 2 yij !
2 @6#

whereni is the number of available data points in theith interval,k
is the number of knots defining (k 1 1) intervals,yij* is the experi-
mental value of the dependent variable at thejth data point of theith
interval, andyij is the predicted value of the dependent variable at
the jth data point of theith interval.

In linear regression, minimization of Eq. 6 yields15

u* 5 F(
i51

k11

~Ji
TJi!G21

(
i51

k11

~Ji
TY i* ! @7#

whereu* is the vector of estimates of parameters~a, b, c, d, andei) ,
Y i* is the vector of the experimental values of the dependent vari-
able of theith interval, andJi

T is the transpose ofJi , the Jacobian
matrix of theith interval

~Ji!k1 5 ~]y/]u1!k @8#

where the subscriptl is used to represent thelth fitting parameter,
u1 , and the subscriptk is used to represent thekth data point in the
ith interval. In linear regression, the final estimates of all the param-
eters are obtained after evaluating Eq. 7 once.

In nonlinear regression, Eq. 7 is replaced by15

Du* 5 F(
i51

k11

~Ji
TJi!G21

@Ji
T~Y i* 2 Y i!# @9#

whereDu* is the vector of the incremental values of parameters,
andY i is the vector of the predicted values of the dependent variable
of the ith interval. In nonlinear regression, the final parameter esti-
mates are obtained via an iterative procedure using Eq. 9 until either
each element inDu* has a negligible value, orF ~calculated by Eq.
6! does not change appreciably from one iteration to another.15 At
the end of an iteration,Du* is added tou* to update the parameter
values inu* .

The 95% confidence interval15 for parameteru i can be con-
structed using

u i* 2 t120.05/2SEaii
1/2 < u i , u i* 1 t120.05/2SEaii

1/2 @10#

whereu i* is the point estimate of parameteru i , t120.05/2 is a value of
Student’st distribution with n-k-4 degrees of freedom~the total
numbers of data points and fitting parameters aren andk 1 4, re-
spectively!, aii is the ith element of the principal diagonal of
@( i51

k11(Ji
TJi)#21, andSE is the standard deviation calculated by

SE 5 A 1

n 2 k 2 4 (
i51

k11

(
j51

ni

~yij* 2 yij !
2 @11#

Equation 10 can be used to judge whether or not a parameter is
significant in a linear model. If zero is included in Eq. 10 for pa-
rameteru i , one can conclude that parameter is not significant and
can be removed from that model. Using Eq. 10 to judge the signifi-
cance of a parameter in a linear model is equivalent to performing
the so-calledt-test.15 One needs to be careful when using Eq. 10 to
judge the significance of a parameter in a nonlinear model. In con-
trast to a linear model, the confidence interval calculated using Eq.
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10 for a parameter in a nonlinear model is generally bigger than the
region where the true value of that parameter may lie. This is due to
the so-called correlations between parameters.15,16 If a value of zero
is not included in any confidence interval obtained using nonlinear
regression, it is safe for one to conclude that all the parameters are
statistically important. However, if a value of zero is included in a
confidence interval, one cannot simply conclude that parameter is
statistically insignificant in the nonlinear model.

Experimental

The experimental OCP curves of a cobalt oxide electrode were
measured at room temperature~25°C! using a Swagelok-type half-
cell setup consisting of a cobalt oxide electrode, a separator, and a
lithium foil electrode~see Fig. 1!. A Celgard 2400 polypropylene
membrane~Charlotte, NC!having a thickness of 25mm and a po-
rosity of 0.37 was used as the separator. The cobalt oxide electrode
used in this work was supplied by the Mine Safety Appliances Com-
pany~Sparks, MD!. This electrode, which was fabricated using 91%
C-022 LiCoO2 , 4% KS-6 graphite, 2% super-P conductive carbon,
and 3% polyvinylidene fluoride~PVDF! loaded on one side of a 20
mm thick aluminum foil, has an average thickness of 69.9mm and
an average material loading of 20.1 mg/cm2. A 0.38 mm thick
lithium metal foil purchased from Aldrich~St. Louis, MO!was used
as the counter electrode, which also serves as the reference elec-
trode. The cobalt oxide electrode used in the half-cell was a round
disk having a diameter of 1.27 cm, and a theoretical capacity of
3.173 1023 Ah ~a value of 0.137 Ah/g was used to calculate the
theoretical capacity of the cobalt oxide electrode!.11 The half-cell
was assembled in an argon-filled glove box. One piece of the cobalt
oxide electrode disk, two layers of the separator~each layer has a
thickness of 25mm and a size slightly bigger than an electrode
disk!, and one piece of the lithium foil disk were used to assemble
the half-cell. The LP 30 Selectipur electrolyte purchased from E.
Merck ~Hawthorne, NY!with a LiPF6 concentration of 1.0 M in a
1:1 v/v ethylene carbonate-dimethyl carbonate~EC-DMC! solvent
was used to fill the cell. After the separator and two electrodes were
sufficiently wetted by the electrolyte, the cell was sealed and re-
moved from the glove box. The cell was first cycled several times
before any OCP curve was measured. Each cycle consists of a 0.1 C
rate constant current charge process, a 4.2 V constant voltage charge
process~the cutoff current was 30mA!, and a 0.1 C rate constant
current discharge process~the cutoff voltage was 3.75 V!. Cycling
was performed on the cell in order to stabilize its charge/discharge
performance because the solvent reduction reaction is expected to be
active during the first few charge/discharge cycles. In this work, the
OCP curves of the cobalt oxide electrode were measured after the
cell was cycled three times to confirm that the charge and discharge
performance of the cell was reproducible. A 16-channel battery test
system purchased from Arbin~College Station, TX!was used to
cycle the cell and measure its OCP curves. The OCP curve of the
cobalt oxide electrode for a charge process was measured by charg-
ing the half-cell at a constant current of 30mA ~a rate lower than

1/100 C!to the cutoff voltage of 4.2 V from a fully discharged state
~the cell voltage was 3.75 V when discharged at 30mA!, and the
OCP curve of the cobalt oxide electrode for a discharge process was
measured by discharging at the same current to the cutoff voltage of
3.75 V from a fully charged state~the cell voltage was 4.2 V when
charged at 30mA!. Because the charge/discharge current was small
during the OCP measurements, the voltage drop across the separator
and the polarization voltage loss on both the cathode and the anode
were expected to be negligible. Therefore, the OCP of the cobalt
oxide electrode was approximated by the voltage of the cell in this
work.

The low-rate charge and discharge curves measured by the Mine
Safety Appliances Company using a coin cell setup consisting of a
carbon electrode, a separator, and a lithium foil electrode were used
in this work as the OCP curves of the carbon electrode. The carbon
electrode, which was fabricated using 91.5% mesocarbon microbead
~MCMB! 2528, 0.5% super P conductive carbon, and 8% PVDF
loaded on one side of a copper foil, has an average thickness of 76.2
mm and an average material loading of 9.7 mg/cm2. Both the carbon
electrode and the lithium foil electrode used in the coin cell were
round disks having a diameter of 1.587 cm. The theoretical capacity
of the carbon electrode disk was 6.323 1023 Ah ~a value of 0.372
Ah/g was used to calculate the theoretical capacity of the carbon
electrode!. To make the coin cell, one piece of the carbon electrode
disk, one layer of 25mm thick Celgard 2300 polypropylene-
polyethylene-polypropylene separator~slightly bigger in size than
an electrode disk!, and one piece of the lithium foil disk were used.
The proprietary electrolyte of the Mine Safety Appliances Company
with a LiPF6 concentration of 1.0 M in a 30:5:35:30 v/v EC-PC-
EMC-DEC solvent was used to fill the cell. The coin cell was cycled
three times using a 500mA constant current charge process, a 20
mV constant voltage charge process~the cutoff current was 50mA!,
and a 500mA constant current discharge process~the cutoff voltage
was 2.0 V!. The charge and discharge curves measured in the third
cycle were used as the OCP curves of the carbon electrode for a
charge process and for a discharge process, respectively.

In this work, the OCP was first recordedvs. Qc , the charge
capacity in Ah, orvs. Qd , the discharge capacity in Ah. ThenQc or
Qd was converted tox, a dimensionless state of charge, by

x 5
Qc

Qtheoretical
or x 5

Qd,total 2 Qd

Qtheoretical
@12#

for the carbon electrode assumed to have a structure of LixC6 or by

x 5 1 2
Qc

2Qtheoretical
or x 5 1 2

Qd,total 2 Qd

2Qtheoretical
@13#

for the cobalt oxide electrode assumed to have a structure of
Li xCoO2 . In Eq. 12 and 13,Qtheoretical stands for the theoretical
capacity of the intercalation electrode in ampere-hours, andQc,total

and Qd,total stands for the total charge and discharge capacities in
ampere-hours, respectively. To obtain Eq. 12 and 13, we assume that
the fully discharged cobalt oxide electrode has a dimensionless con-
centration of 1 and a structure of LiCoO2 , and the fully discharged
carbon electrode has a dimensionless concentration of 0 and a struc-
ture of C6 .1,5,7 When Qc,total 5 Qd,total 5 Qtheoretical, the fully
charged carbon electrode has a dimensionless concentration of 1 and
a structure of LiC6 , and the fully charged cobalt oxide electrode has
a dimensionless concentration of 1 and a structure of Li0.5CoO2 ~in
Eq. 13, the value ofx ranges from 0.5 to 1!.1,5,7

Results and Discussion

In this work, all the experimental OCP curves were fitted by the
cubic spline regression model along with the optimization of the
coordinates of knotsxi . It is important to note that includingxj in
cubic spline regression makes Eq. 2 become nonlinear with respect
to its fitting parameters. Therefore, providing reasonable initial

Figure 1. Schematic illustration of a Swagelok-type half-cell used to mea-
sure the OCP curves of the cobalt oxide electrode.
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guesses for fitting parameters is important to guarantee the conver-
gence of regression. To fit an experimental curve in this work, two
or three consecutive numbers were first tried fork and the assumed
values~by eye!were used forxi values in linear regressions~to start
with, xi values were excluded from the fitting parameter list!. To
obtain the final estimates ofa, b, c, d, ei , andxi , the number fork
leading to a desired accuracy in linear regression and the resulting
values ofa, b, c, d, ei , andxi were then used as initial guesses in
nonlinear regression (xi was added to the fitting parameter list!.

The experimental OCP curves of the cobalt oxide electrode ob-
tained from both a discharge process and a charge process are pre-
sented in Fig. 2. As observed in Fig. 2, these OCP curves exhibit a
hysteresis behavior. That is, the OCP curve measured in a low rate
charge process does not agree with that measured in a low rate
discharge process. Similar phenomena have already been reported in
the literature.17-19 The charge/discharge current of 30mA used in
this work to measure an OCP curve of the cobalt oxide electrode
was small~lower than 1/100 C rate! and was not expected to cause
any significant loss in the half-cell voltage. Such a low rate current
has also been used in the literature to measure the OCP curve of an
intercalation electrode.20 In this work, the OCP curve of the cobalt
oxide electrode measured in a charge process was fitted separately
from that measured in a discharge process. For the experimental
OCP curve obtained in a discharge process, five knots were used in
the regression, and for the experimental OCP curve obtained in a
charge process, four knots were used. Using knots to define regres-
sion intervals for the experimental OCP curve obtained in a dis-
charge process are presented in Fig. 2. As observed, six regression
intervals are defined by five knots, and each resulting regression
interval exhibits a profile predictable by a third-order polynomial.
The coordinates of all the knots presented in Fig. 2 are initial
guesses used in nonlinear regression.

The OCP curves of the cobalt oxide electrode predicted by the
cubic spline regression model are compared with the experimental
curves in Fig. 3. As observed, two experimental OCP curves were
fitted very well. The goodness of fit is also demonstrated in Fig. 4
from the plot ofyij* 2 yij vs. x, the dimensionless state of charge of
the cobalt oxide electrode. As observed in Fig. 4, except for a few
scatters,yij , the predicted OCP deviates fromyij* , the experimental

OCP, only by a small value~<0.003 V! at each data point. More-
over, yij* 2 yij is randomly distributed around a mean of zero. The
dummy variablesD i defined in cubic spline regression are presented
in Table I. The exact forms of model equations used in fitting the
experimental OCP curve obtained in a discharge process are dem-
onstrated in the Appendix. Table I also presents the 95% confidence
intervals for all the fitting parameters. As observed in Table I, a
value of zero is not included in any confidence interval. Therefore,
all the parameters are statistically significant for the cobalt oxide
electrode. The first regression interval was chosen here to be located

Figure 2. The experimental OCP curves of the cobalt oxide electrode ob-
tained in both a charge process and a discharge process.

Figure 3. Comparison of the experimental OCP curves of the cobalt oxide
electrode and the curves predicted by cubic spline regression. 12-digit nu-
merical precision was used in the regression.

Figure 4. Distribution of the regression error in fitting the experimental
OCP curves of the cobalt oxide electrode using cubic spline regression.
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in the middle region of the data point range rather than at one end.
Choosing a middle region as the first regression interval was to
avoid round-off error. One may observe from Fig. 2 or 3 that not
only is there a steep OCP profile on the rightmost side, but also a
fast change in OCP on the leftmost side. If the first regression inter-
val is chosen to be at one end instead, a very negative value ofd in
Eq. 2 is obtained in order to reflect the fast OCP decay in the first
interval. As observed in Fig. 2 or 3, the OCP changes mildly with
the dimensionless state of chargex in its middle region. To predict a
mild OCP change in an interval, the fast OCP decay predicted by
termdx3 has to be neutralized (dx3 exists in the model equation for
each interval!, and very positive values are obtained for manyei .
When low numerical precision is used in the regression, round-off
error is significant, because the relatively small but nontrivial differ-
ence between two almost equally large terms having different signs
is likely rounded off. In contrast, when the first interval is chosen to
be in the middle region ofx, round-off error can be avoided~neu-
tralizing a large term is not needed! and 12-digit precision is suffi-
cient to guarantee the accuracy of regression.

Recently, Stampset al.21 used a 9th-order polynomial to fit the
OCP curve of a Sony 18650 lithium-ion battery. A polynomial equa-
tion may be more convenient to use than a general spline equation
such as Eq. 2, because the exact form of the polynomial does not
vary with data points, and there is no need to define knots and
intervals in polynomial regression. In this work, the appropriateness
of using a polynomial equation to fit an OCP curve of the cobalt
oxide electrode was evaluated. The polynomial equation has a form

y 5 (
i50

m

aix
i @14#

wherem is the order of the polynomial, andai is a parameter. Two
different values were used form in Eq. 14, and the OCP curves of
the cobalt oxide electrode predicted by polynomial regression for a
discharge process are compared with the experimental curve in Fig.
5. As observed in Fig. 5, the 15th-order polynomial can be used to fit
the experimental data with a desired accuracy. Unfortunately, the

goodness in fitting the experimental OCP curve by the 15th-order
polynomial was achieved at the cost of using 32-digit numerical
precision. An attempt to lower the precision to a smaller number,
i.e., 16 digits, caused significant error in the regression. We observed
that all ai’s estimated using the 32-digit precision had a magnitude
in the order of 107-1012, and among all theai’s, the number of
positive signs was almost equal to the number of negative signs.

Figure 5. Comparison of the experimental OCP curve of the cobalt oxide
electrode for a discharge process and the curves predicted by polynomial
regression. Two different orders,m 5 10 and 15, were used in Eq. 14, and
32-digit precision was used in polynomial regression.

Table I. The 95% confidence intervals for all the parameters used in Eq. 2 to fit the OCP curves of the cobalt oxide electrode.

k, the number of
knots

Discharge process
5

Charge process
4

x1 5 0.959126 0.00124 x1 5 0.981676 0.00060
x2 5 0.988296 0.00060 x2 5 0.631936 0.00221

xi , the knot coordinate x3 5 0.747876 0.00318 x3 5 0.563306 0.00115
x4 5 0.544386 0.00177 x4 5 0.516726 0.00117
x5 5 0.521706 0.00233

First interval x3 , x , x1 x2 , x < x1

D i , the dummy
variable

D1 5 1 at x . x1, D1 5 0 at x < x1 D1 5 1 at x . x1, D1 5 0 at x < x1

D2 5 1 at x . x2, D2 5 0 at x < x2 D2 5 1 at x < x2, D2 5 0 at x . x2

D3 5 1 at x < x3, D3 5 0 at x . x3 D3 5 1 at x < x3, D3 5 0 at x . x3

D4 5 1 at x < x4, D4 5 0 at x . x4 D4 5 1 at x < x4, D4 5 0 at x . x4

D5 5 1 at x < x5, D5 5 0 at x . x5

a ~V! (1.01886 0.0165)3 101 6.46536 0.0187
b ~V! (22.19936 0.0593)3 101 28.05906 0.0714
c ~V! (2.57726 0.0709)3 101 8.59526 0.0900
d ~V! (21.00746 0.0282)3 101 23.06146 0.0374
e1 ~V! (21.17156 0.1420)3 103 (24.26306 0.4756)3 103

e2 ~V! (23.86526 0.4799)3 104 (4.32456 0.3423)3 101

e3 ~V! (1.60736 0.0284)3 101 (24.62286 0.1896)3 102

e4 ~V! (21.23836 0.2594)3 103 (4.29446 0.7597)3 103

e5 ~V! (4.54166 0.7165)3 103

SE , the standard
deviation~V!

9.77723 1024 4.95443 1024
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One can imagine that round-off error is significant if lower digit
precision is used in the regression, because a finite value in the OCP
of the cobalt oxide electrode is determined by the relatively small
difference between two groups of terms having a large magnitude.
In contrast, only 12-digit precision is required in cubic spline regres-

sion to guarantee the accuracy. Therefore, the cubic spline regres-
sion method is numerically more tolerant than the polynomial
model.

Figure 6 presents the comparison of the experimental curves of
the carbon electrode and its predicted OCP curves by cubic spline
regression. As observed in Fig. 6, similar to the cobalt oxide elec-
trode, the experimental OCP curve of the carbon electrode obtained

Figure 6. Comparison of the experimental OCP curves of the carbon elec-
trode and the curves predicted by cubic spline regression. 12-digit precision
was used in the regression.

Figure 7. Distribution of the regression error in fitting the experimental
OCP curves of the carbon electrode using cubic spline regression.

Table II. The 95% confidence intervals for all the parameters used in Eq. 2 to fit the OCP curve of the carbon electrode. 12-digit precision was
used in the regression.

k, the number of
knots

Discharge process Charge process

5

x1 5 (4.74236 0.3329)3 1021 a x1 5 5.00003 1021 ~fixed!
x2 5 (1.68336 0.4582)3 1021 x2 5 (4.35106 0.1545)3 1021

xi , the knot coordinate x3 5 (7.82186 0.2513)3 1022 x3 5 (1.48046 0.1857)3 1021

x4 5 (1.53976 0.0512)3 1022 x4 5 (9.10376 0.4839)3 1022

x5 5 (5.96976 0.1060)3 1023 x5 5 (1.34326 0.0749)3 1022

First interval x . x1

D i , the dummy variable D i 5 1 at x < xi , D i 5 0 at x . xi

( i 5 1-5)
a ~V! b (26.39496 9.6734)3 1022 1.33136 0.1603
b ~V! 1.26236 0.4862 25.84376 0.7818
c ~V! 22.32616 0.7979 8.81966 1.2502
d ~V! 1.28536 0.4282 24.44936 0.6561
e1 ~V! 23.72766 0.4261 (2.95456 0.7915)3 101

e2 ~V! b (1.41026 1.5662)3 101 (23.31246 0.6804)3 101

e3 ~V! ( 2 1.10946 0.0668)3 103 (9.91386 7.0447)3 101

e4 ~V! (21.04756 0.1351)3 105 (28.28756 0.5537)3 102

e5 ~V! (29.46976 1.3514)3 106 (27.31166 1.3316)3 104

SE , the standard deviation
~V!

1.69353 1023 1.96373 1023

a x1 was fixed to a value in this work due to the difficulty in convergence.
b If x i values are fixed to the point estimates presented, the confidence intervals fora ande2 are (26.39496 3.2232)3 1022 and (1.41026 0.2151)

3 101, respectively. The confidence intervals for the other parameters are also made smaller than those presented.
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in a charge process differs from that obtained in a discharge process.
These two OCP curves were also fitted separately in this work. One
can also observe from Fig. 6 that each experimental curve exhibits
three voltage plateaus and a spike. This agrees with the results re-
ported in the literature for a MCMB carbon electrode.4-7 To predict
all the details of a curve accurately, five knots were used and six
regression intervals were defined in this work. As demonstrated in
Fig. 6, all the voltage plateaus are effectively and accurately pre-
dicted. The goodness of fit can also be appreciated from the plot of
yij* 2 yij vs. x, the dimensionless state of charge of the carbon elec-
trode, presented in Fig. 7. To fit an experimental OCP curve of the
carbon electrode, the regression intervals were numbered from the
first to the last in a decreasing order ofx. The dummy variablesD i
used in the regression are presented in Table II. The 95% confidence
intervals for all the fitting parameters are presented in Table II as
well. One may observe that a value of zero is included in the con-
fidence intervals fora and e2 when fitting the experimental OCP
curve obtained in a discharge process. This indicates uncertainty in
determining the values of these two parameters. However, as men-
tioned before, we cannot simply conclude that these two parameters
are statistically insignificant. In some cases, the uncertainty of a
parameter in a nonlinear model can be explained by parameter
correlations.15-16 To confirm this explanation is also valid here, we
fixed the values ofxi and calculated the 95% confidence intervals
for the remaining parameters,a, b, c, d, andei ~if xi’s are not in-
cluded as fitting parameters, the cubic spline regression model be-
comes linear and parameter correlations are removed!. The newly
obtained confidence intervals fora and e2 are also presented in
Table II. As observed, neither new confidence includes a value of
zero. This indicates that all the parameters presented in Table II are
significant.

In this work, the appropriateness of using a polynomial equation
to fit an OCP curve of the carbon electrode was evaluated by using
three different numbers form in Eq. 14. The OCP curves of the
carbon electrode predicted by polynomial regression for a charge
process are compared with the experimental curve in Fig. 8. One can
see from Fig. 8 that the 20th-order polynomial can be used to fit the
experimental data with a desired accuracy. Unfortunately, similar to

fitting the experimental OCP curve of the cobalt oxide electrode, the
goodness in fitting the OCP curve by the 20th-order polynomial was
achieved at the cost of using 32-digit numerical precision, and an
attempt to lower the precision to a smaller number,i.e., 16 digits,
caused significant error in the regression.

Conclusions

The cubic spline regression model presented here is useful for
fitting complicated profiles such as the experimental OCP curves of
intercalation electrodes. Even though a few intervals need to be
defined and the model equation has a form varying from one interval
to another, the model predictions are smooth within the entire range
of the experimental data points because the dependent variable, and
its first and second derivatives, are all continuous within that range.
Round-off error can be avoided in cubic spline regression by choos-
ing the first regression interval away from a steep portion of an OCP
curve.

In general, using a high-order polynomial equation to fit an OCP
curve of an intercalation electrode is not recommended because such
a fit does not provide the accuracy needed.
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Appendix

The Discharge Process of the Cobalt Oxide Electrodea

The exact form of Eq. 2 for the first regression interval,x3 , x , x1 , is

y 5 a 1 bx 1 cx2 1 dx3 @A-1#

The exact form of Eq. 2 for the second regression interval,x1 , x , x2 , is

y 5 a 1 bx 1 cx2 1 dx3 1 e1~x 2 x1!3 @A-2#

The exact form of Eq. 2 for the third regression interval,x . x2 , is

y 5 a 1 bx 1 cx2 1 dx3 1 e1~x 2 x1!3 1 e2~x 2 x2!3 @A-3#

The exact form of Eq. 2 for the fourth regression interval,x4 , x , x3 , is

y 5 a 1 bx 1 cx2 1 dx3 1 e3~x 2 x3!3 @A-4#

The exact form of Eq. 2 for the fifth regression interval,x5 , x , x4 , is

y 5 a 1 bx 1 cx2 1 dx3 1 e3~x 2 x3!3 1 e4~x 2 x4!3 @A-5#

The exact form of Eq. 2 for the sixth regression interval,x < x5 , is

y 5 a 1 bx 1 cx2 1 dx3 1 e3~x 2 x3!3 1 e4~x 2 x4!3 1 e5~x 2 x5!3

@A-6#

List of Symbols

a fitting parameter~see Eq. 2-5, and A-1 through A-6!, V
ai fitting parameter~see Eq. 1 and 14!, V
aii ith element of the diagonal of the matrixa 5 @( i51

k11(Ji
TJi)#21

b fitting parameter~see Eq. 2-5, and A-1 through A-6!, V
bi fitting parameter~see Eq. 1!, V
c fitting parameter~see Eq. 2-5, and A-1 through A-6!, V

ci fitting parameter~see Eq. 1!, V
d fitting parameter~see Eq. 2-5, and A-1 through A-6!, V

di fitting parameter~see Eq. 1!, V
D i dummy variable which takes a value of 1 or 0
ei fitting parameter~see Eq. 2!, V
Ji Jacobian matrix of theith regression interval
k number of knots
m order of the polynomial equation, see Eq. 14

a See Fig. 2.

Figure 8. Comparison of the experimental OCP curve of the carbon elec-
trode for a charge process and the curves predicted by polynomial regression.
Three different orders,m 5 10, 15, and 20, were used in Eq. 14, and 32-
digit precision was used in polynomial regression.
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n total number of experimental data points
ni number of experimental data points in theith regression interval

OCP open-circuit potential of an intercalation electrode, V
Qc charge capacity of an intercalation electrode, Ah

Qc,total total charge capacity of an intercalation electrode, Ah
Qd discharge capacity of an intercalation electrode, Ah

Qd,total total discharge capacity of an intercalation electrode, Ah
Qtheoretical theoretical capacity of an intercalation electrode, Ah

SE standard deviation, V
t120.05/2 value of Student’st distribution that depends on (n-k-4), degrees of free-

dom
x independent variable~dimensionless state of charge of the intercalation

electrode!
xi coordinate of theith knot in the cubic spline regression model
y dependent variable~the OCP!, V

yij predicted value of the dependent variable at thejth data point of theith
interval, V

yij* experimental value of the dependent variable at the jth data point of the ith
interval, V

Y i vector of the predicted values of the dependent variable of theith regres-
sion interval, V

Y i* vector of the experimental values of the dependent variable of theith
regression interval, V

Greek

u vector of fitting parameters~a, b, c, d, ei , andxi) , V
u i ith fitting parameter, V

u* vector of the point estimates of fitting parameters, V
u i* point estimate of theith fitting parameter, V

Du* vector of the incremental values of fitting parameters, V
F sum of squared residuals, V2

Superscripts

T transpose
21 inverse
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