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Series Solution to the Transient Convective Diffusion
Equation for a Rotating Disk Electrode
Shriram Santhanagopalan* and Ralph E. White**

Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,
Columbia, South Carolina 29208, USA

A series solution to the transient convective diffusion equation for the rotating disc electrode system is presented and compared to
previously reported solutions. The solution presented here is for the entire time domain and agrees well with both the short and
long time solutions presented earlier in the literature.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1768134# All rights reserved.
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The rotating disc electrode~RDE! system is a classical tool that
has been used for years in electrochemical engineering.1 The steady-
state solution to the convective diffusion equation for the RDE sys-
tem was presented many years ago by von Karman.2 Analytical and
numerical solutions to the nonsteady state convective diffusion
equation have been reported.3-8 Unfortunately, all analytical solu-
tions that have been presented are limited to particular regions of
time ~i.e., short time or long time!. Previous solutions provided by
Deslouiset al.4 terminate with Airy’s integrals, which are not invert-
ible back to the time domain. Orazem6 discussed the Sturm-
Liouville type of solution provided by Nisancioglu and Newman.7

Whereas the previous solutions require the evaluation of two sepa-
rate expressions for short and long times, our solution provides a
generalized solution for the problem, that converges over both short
and long periods of time.

The Convective Diffusion Equation

The convective diffusion equation can be written as

]c

]t
5 D¹2c 2 n • ¹c @1#

where c is the concentration of the diffusing species, D, the diffusion
coefficient andn, the velocity of the electrolyte. Following the as-
sumptions made by Orazem,6 and considering the region close to the
electrode surface, Eq. 1 can be simplified as

]c

]t
1 nz

]c

]z
5 D

]2c

]z2 @2#

wherenz is the axial component of the velocity and is given by6

nz 5 20.51023y2~1/2!V~3/2!z2 1 0.33333y21V2z3 1 ¯ @3#

in which, y is the kinematic viscosity of the electrolyte, andV is the
angular velocity of the electrode. Usually, the series in Eq. 3 is
approximated with the first term for distances sufficiently close to
the electrode surface.7 Here we include the first two terms for a
better approximation of the velocity profile. Substitution of Eq. 3
into Eq. 2 yields

]c

]t
1 ~20.51023y2~1/2!V~3/2!z2 1 0.33333y21V2z3!

]c

]z
5 D

]2c

]z2

@4#

Equation 4 can be written in dimensionless form by defining a
dimensionless concentration as follows

u~z,t! 5
cb 2 c

~]c/]z!z50
@5#

where7

z 5 zS ay

3DD 1/3S V

y D 1/2

@6#

According to Eq. 5, the derivative ofu with respect toz, evalu-
ated atz 5 0 is

S ]u~z,t!

]z D
z50

5 21 @7#

Equation 7 can be thought of as a step change in the gradient of
the concentration at the surface of the disc~i.e., a step change in the
flux of the reactant atz 5 0).

Far away from the electrode surface, the concentration of the
reacting species equals its bulk concentration cb

c~`,t! 5 cb @8#

so that

u~z → `,t! 5 0 @9#

where

t 5 VS D

y D 1/3S a

3D 2/3

t @10#

The initial concentration for all z is given by

c~z,0! 5 cb @11#

or

u~z,t 5 0! 5 0 @12#

Using the dimensionless variables defined in Eq. 5, 6, and 10,
Eq. 4 can be written in nondimensional form as follows

]u~z,t!

]t
5 ~3z2 2 kz3!S du~z,t!

dz D 1
d2u~z,t!

dz2 @13#

where k is a function of the Schmidt number~Sc!, as shown in the
Notation.

Taking the Laplace Transform of Eq. 13 yields

sQ~z,s! 5 ~3z2 2 kz3!S dQ~z,s!

dz D 1
d2Q~z,s!

dz2 @14#

Equations 7 and 9 become, respectively,
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S d

dz
Q~z,s! D

z50

5 2
1

s
@15#

and

Q~z → `,s! 5 0 @16#

in the Laplace domain.

Series Solution—the Matrizant

A series solution for Eq. 14-16 can be obtained by using the
Matrizant method.9 Let

c~z,s! 5 S d

dz
U~z,s! D @17#

so that the Eq. 14-16 can be written in matrix form

dY

dz
5 AY @18#

whereA is given by

A 5 F0 1

s 23z2 1 kz3G @19#

and Y is the dependent variable vector

Y 5 FQ~z,s!
c~z,s! G @20#

The boundary conditions atz 5 0 are given by

Y0 5 F Y10

2
1

s
G @21#

where Y10 is the unknown dimensionless concentration, at the sur-
face ~i.e., Q~0,s!!.

Equations 18-21 can be solved forQ~z,s! using Maple 8 and the
technique presented by Subramanianet al.9 The solution to Eq. 18
can be written as

Y 5 @F~A!#Y0 @22#

whereF~A! is defined as the matrizant of matrix A and is given by

F~A! 5 I 1 E
0

z

@A~z1!dz1# 1 E
0

zFA~z1!E
0

z1

@A~z2!#dz2Gdz1

1E
0

zFA~z1!E
0

z1FA~z2!E
0

z2

@A~z3!#dz3Gdz2Gdz1 1 ¯ 6
@23#

Evaluation of the integrals and substitution of Eq. 23, with two
terms included inF~A!, into Eq. 22 yields

Next, Y10 is determined from the first element ofY by imposing an
approximation to Eq. 16~i.e., Q(z 5 2,s) 5 0) that was obtained
from Fig. 2 in Nisancioglu and Newman.7 The first element ofY is
~see Eq. 24!

Q~z,s! 5 S 1 1
1

2
sz2DY10 2

z 2
1

4
z4 1

1

20
kz5

s
@25#

which when set equal to zero withz 5 2 yields

Y10 5
8k 2 10

5s~1 1 2s!
@26#

Therefore

Q~z,s! 5

S 1 1
1

2
sz2D ~8k 2 10!

5s~1 1 2s!
2

z 2
1

4
z4 1

1

20
kz5

s
@27#

Equation 27 can be inverted back to the time domain to obtain
the transient concentration profile in the time domain,u~z, t!. The
expression obtained using Maple is as follows~see Appendix for the
Maple Code!

u~z,t! 5 2
1

2
e2~t/2!z2 1 2e2~t/2! 2 2 1

2

5
ke2~t/2!z2

2
8

5
ke2~t/2! 1

8

5
k 2 z 1

z4

4
2 k

z5

20
@28#

Discussion and Conclusion

The solution obtained from the method presented here is useful
because it provides an analytical expression for the time-dependent
concentration profile of the RDE system for the complete time do-
main. Figure 1 presents a comparison of our solution to the short
and long time solutions presented by others foru0(t). Three digit
agreement between the short time solution7 and our solution~ob-
tained with 11 terms included inF(A) a! was obtained in the range
of t between 0.01 and 0.5. Similar agreement was obtained with the
long time series7 from t 5 0.1 to 10.

The University of South Carolina assisted in meeting the publication
costs of this article.

Appendix

The Matrizant Solution of the Transient Convective Diffusion Equation Using
Maple 8

The Matrizant solution presented here includes the first two terms of the series. The
number of terms could be increased as required by setting ‘terms’ to the appropriate
value
. restart:
. with ~linalg!: with ~plots!: with ~inttrans!: with~DEtools!:
The Original Convective Diffusion Equation~after all assumptions and simplifications!

a Not presented here for brevity; available from Ralph E. White upon request.

Y 5 F S 1 1
1

2
sz2DY10 2

z 2
1

4
z4 1

1

20
kz5

s

S sz 1
1

5
ksz5 2

3

4
sz4DY10 2

2z3 1
1

4
kz4 1 1 1

1

32
k2z8 2

1

4
kz7 1

1

2
z6 1

1

2
sz2

s

G @24#
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is
.PDEªdiff(c(z,t),t) 1 v@z#* diff(c(z,t),z) 5 Dif* diff(c(z,t),z$2);

PDEªS ]

]t
c~z,t! D 1 vzS ]

]z
c~z,t! D 5 Dif S ]2

]z
2 c~z,t! D @A-1#

Nondimensional Form
.NPDEªdiff(theta(zeta,tau),zeta$2)5 diff(theta(zeta,tau),tau)1 (23* zetaˆ 2
1 k* zetaˆ 3)* diff(theta(zeta,tau),zeta);theta(zeta,0)ª0;

NPDEª
]2

]z2 u~z,t! 5 S ]

]t
u~z,t! D 1 ~23z2 1 kz2!S ]

]z
u~z,t! D @A-2#

u~z,0!ª0

Boundary conditions
.BC1ªtheta(infinity,tau)5 0; BC2ªdiff(theta(0,tau),zeta)5 21;

BC1ªu~`,t! 5 0 @A-3#

BC2ª
]

]z
u~0,t! 5 21 @A-4#

Laplace Transformation
.LBC1ª laplace(BC1,tau,s); LBC2ª laplace(BC2,tau,s);

LBC1ª laplace~u~`,t!,t,s! 5 0 @A-5#

LBC2ª
]

]z
laplace~u~0,t!,t,s! 5 2

1

s
@A-6#

.LBC1ªsubs(diff(laplace(theta(zeta,tau),tau,s),zeta)5 eval(D(theta)(zeta),zeta
5 1), laplace (theta(zeta,tau),tau,s)5 eval(theta(zeta),zeta5 2),LBC1);

LBC1ªu~2! 5 0 @A-7#

.LBC2ªsubs(diff(laplace(theta(zeta,tau),tau,s),zeta)5 eval(D(theta)(zeta),zeta
5 0),laplace(theta(zeta,tau),tau,s)5 eval(theta(zeta),zeta5 0),LBC2);

LBC2ªD~u!~0! 5 2
1

s
@A-8#

.LDEªsimplify(laplace(NPDE,tau,s)):
laplace~theta~zeta, tau!, tau, s!ªtheta(zeta):
LDEªeval(LDE);

LDE 5
d2

dz2 u~z! 5 su~z! 2 3S d

dz
u~z! D z2 1 S d

dz
u~z! D kz3 @A-9#

The Matrizant Solution
.termsª2; Nª2;

nvarsª2

Nª2

.Aªmatrix(@@0,1#,@s,23* zetâ 2tk* zetâ 3##);
Y0ªmatrix(@@y10#,@rhs(LBC2)##);

A 5 F 0 1

s 23z2 1 kz3G @A-10#

Y0ªF y10

2
1

s
G @A-11#

.idªMatrix(N,N,shape5 identity);X1ªmatrix(N,N):X2ªmatrix(N,N):S
ª matrix(N,N):

idªF 1 0

0 1
G @A-12#

.X1ªmap(int,subs(zeta5 zeta1,evalm(A)),zeta15 0..zeta);

X1ªF 0 z

sz 2z3 1
1

4
kz4G @A-13#

.matªevalm(id1 X1);

matªF 1 z

sz 2z3 1
1

4
kz4 1 1G @A-14#

. for i from 2 to terms do
Sªevalm(subs(zeta5 zeta1,evalm((A))&* subs(zeta5 zeta1,evalm(X1))):X2
ªmap(int,S,zeta15 0..zeta):matªevalm(mat1 X2):X1
ªevalm(X2):od:evalm(mat):
.Yªevalm(mat&* Y0);

.yªY@1,1#; dybdxªY @2,1#:

yªS 1 1
1

2
sz2D y10 2

z 2
1

4
z4 1

1

20
kz5

s
@A-16#

.y10ªsolve(subs(zeta5 2,y) 5 0,y10);

y10 5
8k210

5s~1 1 2s!
@A-17#

Y 5 3 S 1 1
1

2
sz2D y10 2

z 2
1

4
z4 1

1

20
kz5

s

S sz 1
1

5
ksz5 2

3

4
sz4D y10 2

2z3 1
1

4
kz4 1 1 1

1

32
k2z8 2

1

4
kz7 1

1

2
z6 1

1

2
sz2

s

4 @A-15#

Figure 1. Comparison of our solution withk 5 0.1 with the short-time
solution from Ref. 8 and the long-time solution from Ref. 7.
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.theta(zeta)ªeval(y);

u~z!ª

2S 1 1
sz2

2 D ~25 1 4k!

5s~1 1 2s!
2

z 2
1

4
z4 1

1

20
kz5

s
@A-18#

‘tthet’ below is the dimensionless concentration in the time domain
.tthetªinvlaplace~theta~zeta!, s, tau!;

tthetª2
1

2
e2~t/2!z2 1 2e2~t/2! 2 2 1

2

5
ke2~t/2!z2 2

8

5
ke2~t/2! 1

8

5
k

2 z 1
z4

4
2 k

z5

20
@A-19#

List of Symbols

A the system matrix
a constant~5 0.51023!

c~z,t! concentration of the diffusing species~mol/m3!
cb bulk concentration~mol/cm3!
D diffusion coefficient~m2/s!
I Identity matrix
k 3.53743 Sc21/3

Sc Schmidt number~y/D!
s dimensionless Laplace variable
t time~s!

nz velocity in the z direction~cm/s!

Y dimensionless vector of unknownQ~z, s! andc~z, s!
Y0 dimensionless initial condition vector

z distance~cm! in the axial direction, from the electrode surface
y kinematic viscosity~cm2/s!

V angular velocity of the disc~s21!
u dimensionless concentration,u(z,t) 5 (cb 2 c)/(]c/]z)z50

u0(t) dimensionless concentration at the electrode surface (z 5 0)
Q~z, s! dimensionless concentration in the Laplace domain

t dimensionless time,t 5 V(D/y)(1/3)(a/3)(2/3)t
c dimensionless concentration flux in the Laplace domainc(z,s)

5 (d/U(z,s)/dz)
z dimensionless distance,z 5 z(ay/3D)(1/3)AV/y

References

1. V. G. Levich,Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs,
NJ ~1962!.

2. Th. v. Karman,Z. Angew. Math. Mech.,1, 233~1921!.
3. L. Nanis and I. Klein,J. Electrochem. Soc.,119, 1683~1972!.
4. C. Deslouis, C. Gabrielli, and B. Tribollet,J. Electrochem. Soc.,130, 2044~1983!.
5. E. Levart and D. Schuhmann,Electroanal. Chem.,53, 77 ~1974!.
6. M. Orazem, inTutorials in Electrochemical Engineering-Mathematical Modeling,

R. F. Savinell, J. M. Fenton, A. West, S. L. Scanlon, and J. Weidner, Editors, PV
99-14, p. 68, The Electrochemical Society Proceedings Series, Pennington, NJ
~1999!.

7. K. Nisancioglu and J. Newman,Electroanal. Chem.,50, 23 ~1974!.
8. V. S. Krylov and V. N. Babak,Soviet Electrochem.,7, 626~1971!.
9. V. R. Subramanian, B. S. Haran, and R. E. White,Comput. Chem. Eng.,23, 287

~1999!.

Journal of The Electrochemical Society, 151 ~8! J50-J53~2004! J53

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.252.69.176Downloaded on 2014-10-27 to IP 

http://ecsdl.org/site/terms_use

	Series Solution to the Transient Convective Diffusion Equation for a Rotating Disk Electrode
	Publication Info

	tmp.1414436008.pdf.q9VW6

