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A series solution to the transient convective diffusion equation for the rotating disc electrode system is presented and compared to
previously reported solutions. The solution presented here is for the entire time domain and agrees well with both the short and
long time solutions presented earlier in the literature.
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The rotating disc electroddRDE) system is a classical tool that where
has been used for years in electrochemical engineéiiig steady-
state solution to the convective diffusion equation for the RDE sys-
tem was presented many years ago by von Karfrfamalytical and t=z
numerical solutions to th?% éwonsteady state convective diffusion
equation have been reported.Unfortunately, all analytical solu- . L .
tigns that have been er:asented are Iimiteéll to particﬁlar regions of According _to EQ. 5, the derivative @f with respect t, evalu-
time (i.e., short time or long time). Previous solutions provided by ated atf = 0 is
Deslouiset al* terminate with Airy’s integrals, which are not invert- (

av

1ISQ 12
(5

v

6]

ible back to the time domain. Orazéndiscussed the Sturm- M) = 1 [7]
Liouville type of solution provided by Nisancioglu and Newntan. al (=0
Whereas the previous solutions require the evaluation of two sepa-
rate expressions for short and long times, our solution provides a Equation 7 can be thought of as a step change in the gradient of
generalized solution for the problem, that converges over both shorihe concentration at the surface of the dise., a step change in the
and long periods of time. flux of the reactant at = 0).

The Convective Diffusion Equation Far away from the electrode surface, the concentration of the

. e . . r in i Is'i Ik concentratign
The convective diffusion equation can be written as eacting species equals its bulk concentratipn ¢

ac c(e,t) = ¢, (8]
E=DV2c—v~Vc [1]
so that
where c is the concentration of the diffusing species, D, the diffusion 0 " -0 (9]
coefficient andv, the velocity of the electrolyte. Following the as- (L — =) =
sumptions made by Orazetand considering the region close to the
electrode surface, Eq. 1 can be simplified as where
ac N ac Dazc ) D\ 13/ g\ 213
a VZE = ﬁ [ ] T=10Q ; § t [10]

wherev, is the axial component of the velocity and is giverf by
v, = —0.51023v (*20 3222 + 0.33333v 0% + -+ [3]

The initial concentration for all z is given by

c(z,0 = ¢, [11]
in which,v is the kinematic viscosity of the electrolyte, afids the
angular velocity of the electrode. Usually, the series in Eq. 3 isor
approximated with the first term for distances sufficiently close to
the electrode surfaceHere we include the first two terms for a 6(,r=0)=0 [12]
better approximation of the velocity profile. Substitution of Eq. 3
into Eq. 2 yields Using the dimensionless variables defined in Eq. 5, 6, and 10,
) 2 Eq. 4 can be written in nondimensional form as follows
gt (—0.51023v Y20 3272 + 0 3333317102z3)d—c -’
at : : 9z 0z a0(L,7) 5 5[ dO(L,T) d?0(¢,7)
[4] oo = (37— kD) a a2 [13]
Equation 4 can be written in dimensionless form by defining a ) ) . )
dimensionless concentration as follows where k is a function of the Schmidt numb&c), as shown in the
Notation.
G —C Taking the Laplace Transform of Eq. 13 yields
6(L,7) = (0cliD o (5]
. soz.9 = (32 — k)| 29| FOLI
v dg dg?
* Electrochemical Society Student Member. . .
** Electrochemical Society Fellow. Equations 7 and 9 become, respectively,
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1 Next, Yy, is determined from the first element ¥fby imposing an
0(L,9 =~ 3 [15]  approximation to Eqg. 16i.e., ©®({ = 2,s) = 0) that was obtained
{=0 from Fig. 2 in Nisancioglu and NewmdrThe first element of is
and (see Eq. 24)
1 1
O —»9=0 [16] 1 - ZCA' + E)kgs
_ Zap2 _
in the Laplace domain. 0.9 =|1+ 2 st )Ylo s [25]
Series Solution—the Matrizant which when set equal to zero with= 2 yields
A_ series solution for Eq. 14-16 can be obtained by using the 8k — 10
Matrizant method. Let Y10 = 551+ 29 [26]
d
(L9 = (d@e(z s)) [17] Therefore
1+128k 10 14+1k5
so that the Eq. 14-16 can be written in matrix form 2 s ) ¢ 4€ 20 ¢
0,9 = 5 -
dy q1 + 29 S
a = AY [18] [27]
Equation 27 can be inverted back to the time domain to obtain
whereA is given by the transient concentration profile in the time domaitt, ). The
expression obtained using Maple is as folloimee Appendix for the
A= 0 1 [19] Maple Code)
s —3(%+ k¢® 1 2
e(C,T) — __e*(T/Z)gz + Ze*(T/Z) -2+ _ke*(7/2)§2
and Y is the dependent variable vector 2 S
4 5
= - = + -k—{+ — - k=
v Lb(LS) (201 5 ke gk tr g kg (28
The boundary conditions &t = 0 are given by Discussion and Conclusion
Y10 The solution obtained from the method presented here is useful
Yo=| _ E [21] because it provides an analytical expression for the time-dependent
S concentration profile of the RDE system for the complete time do-

main. Figure 1 presents a comparison of our solution to the short
where Yy, is the unknown dimensionless concentration, at the sur-and long time solutions presented by othersffg{r). Three digit
face(i.e., ©(0,9)). agreement between the short time solutiand our solution(ob-
Equatlons 18-21 can be solved fox¢, $)using Maple 8 and the  tained with 11 terms included ifb(A)®) was obtained in the range
technique presented by Subramanéral® The solution to Eq. 18  of r between 0.01 and 0.5. Similar agreement was obtained with the
can be written as long time serieSfrom T = 0.1 to 10.

Y = [®(A)]Y, [22] The University of South Carolina assisted in meeting the publication
) i ) ) o costs of this article.
where®(A) is defined as the matrizant of matrix A and is given by

e e {1 Appendix
OA) =1 + A d¢q] + A A dg,|d
(A) [ (Cl) Cl] (€w) [ (CZ)] b2 dty The Matrizant Solution of the Transient Convective Diffusion Equation Using
Maple 8
a1 The Matrizant solution presented here includes the first two terms of the series. The
A(Cl) A(Ly) [A(Cg)]d§3 di,|dgy + -+ number of terms could be increased as required by setting ‘terms’ to the appropriate
value

[23] > restart:
> with (linalg): with (plots): with (inttrans): with(DEtools):

Evaluation of the integrals and substitution of Eq 23 with two The Original Convective Diffusion Equatigafter all assumptions and simplifications

terms included inb(A), into Eq. 22 yields 2 Not presented here for brevity; available from Ralph E. White upon request.

1 1
_ 4 _ Kks5
£ ZU+ 5okt

1 2
1+ 588 Yi0~ S
Y = 24
-3+ E|<g4+ 1+ —k2§8 kg7+ 3g6+ Esgz -
4 2 2

1k5 34Y
S€+§SC *ZSC 10~ S
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Figure 1. Comparison of our solution wittkk = 0.1 with the short-time
solution from Ref. 8 and the long-time solution from Ref. 7.

is
>PDE:=diff(c(z,t),t) + v[z]*diff(c(z,t),z) = Dif*diff(c(z,t),z$2);

d
PDE::(a_t c(z,t)) + v,

F] [P
Ec(z,t)) = le(gc(z,t)) [A-1]

Nondimensional Form
>NPDE:=diff(theta(zeta,tau),zeta$2} diff(theta(zeta,tau),tauy (—3*zeta™ 2
+ k*zeta” 3)*diff(theta(zeta,tau),zeta);theta(zetas6);
NPDE aze —ae )+ 32+k2(ae \ A-2
206 = [3-0em| + (-3¢ k| o) | (a2
0(£,0:=0

Boundary conditions
>BC1:=theta(infinity,tau)= 0; BC2:=diff(theta(0,tau),zetaF —1;

BC1:=6(%,1) = 0 [A-3]

B
Bc2=:E 0(0,7) = —1 [A-4]

Laplace Transformation
>LBC1:=laplace(BC1,tau,s); LBC2laplace(BC2,tau,s);

LBC1:=laplac€6(,7),7,5 = 0 [A-5]

1
(1 + Esgz)ylo—

LBC2:=D(0)(0) = —é [A-8]

>LDE:=simplify(laplace(NPDE,tau,s)):
laplace(theta(zeta, tau), tau, s¥theta(zeta):
LDE:=eval(LDE);
LDE = dze =s0 3(de )2 (de kg3 A-9
—W(C)—S(C)* d_g(C)Cer_g(C))c [A-9]

The Matrizant Solution
>terms:=2; N:=2;

nvars:=2

N:=2

>A:=matrix(([0,1],[s,—3* zetd 2tk* zetd 3]]);
YO :=matrix(([y10],[rhs(LBC2)]]);

0 1
A= A-10
s =302+ k¢® [A-10]
y10
YO:=| 1 [A-11]
s
>id:=Matrix(N,N,shape= identity); X1:=matrix(N,N): X2:=matrix(N,N): S
= matrix(N,N):
1 0
id:= A-12
ids= 0 [A-12]
>X1:=map(int,subs(zete zetal,evalm(A)),zeta¥ 0..zeta);
0 e
X1:= 1 A-13
st —%+ ket A13]
>mat:=evalm(id+ X1);
1 e
mat:=| [A-14]

1
st —(3+ Zkg“+ 1

> for i from 2 to terms do

S:=evalm(subs(zeta zetal,evalm((A))& subs(zeta= zetal,evalm(X))):X2
:=map(int,S,zetal 0..zeta):matevalm(mat+ X2):X1
:=evalm(X2):od:evalm(mat):

>Y:=evalm(mat& Y0);

1 1
_ 4 ksS
(- g0+ ke

S

v 1 1 1 1 1 [A-15]
3 KA1 KB — kT4 Z8 4 Zs2
(s L B 4) 0 Crghir s kKO- gy 50+ 58t
st 5 sC ZS§ ’y S
>y:=Y[1,1]; dybdx:=Y [2,1]:
ad 1
LBC2:=7- laplacg®(0,1),7,9) = —5 [A-6] 1,1
1 L= 780+ 5K
>LBC1:=subs(diff(laplace(theta(zeta,tau),tau,s),zetagval(D(theta) (zeta),zeta y==(1 + Esgz)ylo— E— [A-16]
= 1), laplace (theta(zeta,tau),tauss)eval(theta(zeta),zeta 2),LBC1);
>y10:=solve(subs(zeta 2,y) = 0,y10);
LBC1:=6(2) = 0 [A-7] Y ( ( v yi0)
>LBC2:=subs(diff(laplace(theta(zeta,tau), tau,s) , zetapval(D(theta) (zeta) , zeta Y10 — 8k-10 [A-17]
= 0),laplce(theta(zeta,tau),tau,s) eval(theta(zeta),zeta 0),LBC2); 591 + 29
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>theta(zeta)}=eval(y);

1 1
_ _ 4 —kr5
Lo g0+ ke

591 + 29 B s

se?
2(1+ =5+ 4K

0(0)=

[A-18]

‘tthet’ below is the dimensionless concentration in the time domain
>tthet:=invlaplace(theta(zeta), s, tay

1 2 8 8
tthet:=— e ("2 + 267 — 2 + —ke (22 — —ke (R + —k
e 2e 18 e 5 e I8 5 e 5

4 5
_€+%_k§_

5 [A-19]

List of Symbols

A the system matrix
a constant= 0.51023)
concentration of the diffusing speciésol/nt)
¢, bulk concentratior{mol/cn?)
D diffusion coefficient(m?s)
| Identity matrix
k 3.5374x Sc1®
Sc  Schmidt numbefu/D)
s dimensionless Laplace variable
t time(s)
v, Velocity in the z directionicm/s)

[N

oOThWN

© 0~

J53

Y dimensionless vector of unknow(Z, s) andys(Z, )
Yo dimensionless initial condition vector

z distance(cm) in the axial direction, from the electrode surface

v kinematic viscosity(cn¥/s)

Q angular velocity of the dis¢s™)

6 dimensionless concentratiof(¢,7) = (¢, — €)/(dc/dL) o
dimensionless concentration at the electrode surface Q)
dimensionless concentration in the Laplace domain
7 dimensionless time; = Q(D/v)M3)(a/3)?3)

s dimensionless concentration flux in the Laplace domalr(¢,s)
= (dI6(L,s)/d)

{ dimensionless distancé,= z(au/3D)"3\Q/v
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