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Governing Equations for Transport in Porous Electrodes

Pauline De Vidtst and Ralph E. White*

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

ABSTRACT

General governing equations for a porous electrode containing three phases (liquid, solid, and gas) are developed
using the volume-averaging technique. These equations include the mass transfer in each phase, ohmic drop in the liquid
and solid phases, and the equations resulting from applying the principle of conservation of charge. The electrolyte is con-
sidered to be a concentrated binary solution.

Infroduction
The purpose of this paper is to present the derivation of

transport equations for porous electrodes using the vol-
ume-averaging technique.' The application of this tech-
nique results in the representation of a porous medium
with multiple phases (gas, liquid, and solid) as a continu-
um. This eliminates the need for the description and rep-
resentation of the microscopic configuration of the medi-
um, which in many practical cases is not known. This
technique has been used extensively for deriving govern-
ing equations for mass and heat transfer in porous media.'

In electrochemical applications, Prins-Jansen et al.° used
volume averaging to develop a model of a molten carbon-
ate fuel cell. Newman and Tiedemann9 presented general
equations for porous electrodes based on a form of aver-
aging which is similar to the technique used here. The
derivation of their equatipns was presented by Dunning'°
and again by Trainham," who gave a more detailed
derivation. These authors9" used an area-averaging tech-
nique to define some variables (for example, the molar-
flux vector), which results in expressions that are not
exactly the same as those obtained when applying the vol-
ume-averaging technique used here, as discussed below.

In this work, the equations are derived for a porous elec-
trode consisting of three phases: solid, liquid, and gas. The
equations include the material balances of ionic and neu-
tral species in the three phases, electrical relations, and
equations resulting from applying the principle of conser-
vation of charge. In the first section of this paper we pre-
sent a brief summary of the principles and theorems
involved in volume averaging to make it easier for the
reader to follow the derivations presented in the following
sections. We begin by presenting the derivation of the
equations for the material balances in the three phases,
followed by Ohm's law in the liquid and solid phases, and
finally, the equations obtained from applying conservation
of charge to every portion of the porous electrode.

* Electrochemical Society Active Member.

Definitions from the Volume-Averaging Technique
In this section we present a brief description of the con-

cepts and definitions involved in the volume-averaging
technique as presented by Slattery' for systems of two
phases and later extended by Zanotti and Carbonell2 to
multiphase systems. The porous medium under considera-
tion in this work consists of three phases: liquid, solid, and
gas.

Consider a porous medium that consists of a solid phase
with its pores filled with two fluids (liquid and gas) as
shown in Fig. 1. The solid phase is considered to have no

Fig. 1. Porous medium consisting of three phases: solid, liquid,
and gas.
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Volume V with surface S

microporosity. Let V be a volume of this porous medium,
as shown in Fig. 2, over which we conduct volume averag-
ing. Volun'ie V is located at any given point in the porous
medium and is enclosed by surface S. The dimensions of
the volume V must be negligible with respect to the over-
all dimensions of the porous medium. Yet V must be large
enough to ensure that it contains parts of all three phases.
Also, V must be a representative subvolume of the medi-
um. Figure 2 shows a schematic of volume V and the sur-
faces inside this volume which are defined in the List of
Symbols.

Let B be a quantity (either scalar, vector, or tensor) asso-
dated with the liquid or gas phases, and let the quantity
B1'1 be called the local volume average of B in the phase i

BdV
V J,,,,

Let (B)'1 be the intrinsic volume average of B in phase i

BdV
V;11 i,,

Let €° and be the liquid and gas porosities, respectively

—

V

=
V

Thus, the porosity of volume V is given by

V;, + V) = + €'
V

[3]

[4]

[5]

A comparison of Eq. 1-4 shows that the local and intrinsic
volume average for the liquid and gas phases are related
by the appropriate porosity

= 1'1(B)1' i = g, 1

The theorem of the local volume average of a gradient,'
written for a system of multiple phases,4 states that

jo) = +
5 B111fl1lgdS + 5 B°1n1i1dS [7]

V 511g1 V s,,,

= +
5 Bas + -- 5 B11fl1gs1dS [8]

V 5(g) V s,,,,

[6]

where fl111 and fills) are unit vectors normal to the surfaces
5)ig) and S),), respectively, as shown in Fig. 3. In Eq. 8, fl)g))
and fl( are unit vectors normal to the surfaces S()g) and
5)gs)' respectively, also shown in Fig. 3. Note that

= T11g1) [9]

The theorem of the local volume average of a divergence'
reads, for the liquid and gas phases, respectively

yB =V.Bm +2-1 B'" •fl(lg)dSV

)g) =y.g) 11 •fl1gi1dS
V i5,,5

+ . S B1'1 n1151d5 [10]
V

+ 3 Ss,g, fl1gs1dS [11]

Another theorem that we use in the derivations present-
ed below is the generalized transport theorem for a system'

BdV= 1 ---dV+ 1 BvndS
dt iv. iv. dT i5.

[12]

in which V. represents the space region currently occupied
by a fluid system, S. is the closed bounding surface of the
system, v is velocity of the fluid, and n is a unit normal to
the surface S. pointing out of the system V.. This theorem
involves the assumption that the normal component of the
velocity of the fluid at the boundary of the system is equal
to the normal component of the velocity of the boundary
of the system.

In this work we consider the porous medium to be a
porous electrode. The electrode consists of a solid matrix
with pores filled with liquid and gas. The liquid phase is a
binary electrolyte with dissolved gaseous species.

Material Balances on the Liquid, Gas,
and Solid Phases

The equation of continuity for species i in a free-stream
[1] liquid in the absence of homogeneous reactions is given by

(1)

SL. + V N" = 0 [13]

[2] where c'1 and N" are the concentration and molar flux of
species i, respectively. If we integrate Eq. 13 over the vol-
ume of liquid, V111, contained in V; we have

Fig. 3. The unit vectors normal to the various surfaces inside vol-
ume V.

Fig. 2. The averaging volume Vto be associated with every point
in the porous medium. Volume V consists of a volume of liquid, %1;
volume of gas, V1; and volume of solid, V. The surfaces of inter-
est contained in volume V are the interface surfaces and the exits
and entrances of the gas and liquid phases.
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--1 VNdV=0
V Jv it V Jv)

Applying the general transport theorem (Eq. 12) for B =
c and V. = V, we have

J
(1) d= — cdV — cv ndS [15]

V)) at dt V(1) S0)

Dividing Eq. 15 by V, which is independent of time, and
considering that the surface S(1) consists of the sum of S(,),
S(lg), and '(1e), Eq. 15 becomes

1 J !_dVV at
=

S,, cdvj — :J5g)
C'Vc1g)

1dS —
V JS() C'V(lS)

dS

[16]

dTw 1 r 1 ç= — —J C1 Vig '(1g) dS — c VUS) fl(),) dSdt V
Sag) S0,)

in which V(lg) and V(l,) represent the velocities of the liq-
uid/gas and liquid/solid interfaces, respectively. Also,
and fl) are the unit normals to the interfaces pointing
from the liquid into the gas and solid phases, respectively.
In deriving Eq. 16 we have required that the velocity of the
boundary S)le) be zero.

Applying the theorem for the local volume average of a
divergence (Eq. 10) to the second term in Eq. 14, we obtain

V .NWdV= V +ifV Jv)1) V JSg

flag)dS + --
J N n(l)dS [171

V Sfl,)

Substituting Eq. 16 and 17 into Eq. 14, we have

+ +
V JS (N' —

c1)vg>) fligdS

+ -_
$ (N — cv()S)) as)dS = 0 [18]

Equation 18 has been derived for an elemental volume V
inside the porous medium. Volume V can be placed at any
position in the porous medium. Therefore, if we write
Eq. 18 for the whole porous medium with respect to a
fixed coordinate system, we have

d1 + V . + .. 5 (N'> — C)V(1g)) flIdS
S)lg)

+ _!_
$ (N — ci V()>) n(,)dS = 0 [19]V

Following the same procedure used for the liquid phase,
the material balances for the gas and solid phases are
given by

1+ v . + —
$ (N) — CV(lg))

.
n1>dS

5)Ig)

+ J_. f — CV(5,)) fl(gs)dS = 0 [20]
S)ga

for the gas phase and by

+ V . + --. f (r — c)v(l)) n,cis
S),)

+ ..$ — C,
V(gS)) = 0 [21]

for the solid phase.
In Eq. 20, V) and V() are the velocities of the liquid/gas

and gas/solid interfaces, respectively; and (g1) and flu,) are

the unit normals to the interfaces pointing from the gas
[14] into the liquid and solid phases, respectively, as shown in

Fig. 3. We have required that the velocity of the boundary
S(ge) be zero. In Eq. 21, V(l) and V(gg) are the velocities of the
liquid/solid and gas/solid interfaces, respectively, and n>
and (sl) are the unit normals to the interfaces pointing
from the solid into the gas and liquid phases, respectively.
These are not shown in Fig. 3, but are the negatives of fl(g,)
and (l)

Jump Mass Balance for Species i at the
Liquid/Gas Interface

The general form of the jump mass balance for species i at
an interface is'

(N4 fl÷ — CV(+) .
fl(+)) + (N fl_ — cv(_) n)

= [22]

in which fl(÷) and fl( are unit normals to the interface
pointing into phase + and —, respectively. Also, V(+) fl(+)
and V(_) fl(_) are the velocities of the interface in the + and
— direction, respectively. R is the rate at which species
i is produced by heterogeneous or catalytic chemical reac-
tions per unit area of interface.

If we apply Eq. 22 to the liquid/gas interface and assume
that there are no chemical or electrochemical reactions
taking place at that interface, we obtain

(N1 — c'v(I5) fl(g))) + (N) fl))g) — c)V()g) flog)) = 0 [23]

Equation 23 means that the flux of species i entering the
liquid phase is equal to that leaving the gas phase.

If we integrate Eq. 23 over the surface S01g0 contained in
volume I we have

5 (N — CaVg)) flgldS + ——

$ — CVig)
50g) 5ag)

Because fl50 = —
fl(g)), Eq. 24 is equivalent to

fl0igdS = 0 [24]

ii. 1—

V JSg)

—
C)V(Ig)) flig>dS —

:;: JSag) (ta) — c)vg0)

fl0gi0dS = 0 [25]

Let F°1 be the averaged flux of species i at the liquid/gas
interface in volume V leaving the liquid phase and enter-
ing the gas phase; thus

)1g) S (N'° — C1)Vig0) flIgdSV

1
5 (N° — Ca)Vg) ndSV S)Ig)

[26]

Jump Mass Balance for Species i at the
Liquid/Solid Interface

Applying Eq. 22 to the liquid/solid interface, we obtain

( 11(s)) — CV() iii) + (N1' ¼s) C0VOS) = R"> [27]

If we integrate Eq. 27 over the surface S contained in
volume 1 we have

—— $ (N'° — cv0l,0) fl(1)dS — —— 5 (N'° — CiVu))
V 5)1) V 5),))

fl(,I)dS = -.- 5 R"°dS [281
V 5),))

For the particular case in which species i is present in the
liquid phase but not in the solid phase, the second term in
Eq. 28 is zero

—
-— $ (N — CIV())) . fl(IS)dS = 5 (IS)js [29]V 5)) SI)
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appropriate. If species i is present in both the liquid and
the solid phases, Eq. 28 should be used instead of Eq. 30.

Molar Flux Vector in the Liquid Phase
Free-stream molar flux for ions in an. electrolytic solu-

[301 tion.—The molar flux of species i with respect to a fixed
frame of reference is defined as

N1 c1v1 = J1 + c,v [36]

where v is the mass-average velocity of the multicompo-
nent system and J is the molar flux of species i with
respect to v. If we neglect thermal and pressure diffusion,
J is given by

j = j(w) + j) [37]

where j(w) and jt) are the molar fluxes due to ordinary and
forced diffusion, respectively. For a mixture of N compo-
nents, the molar fluxes are given by (see Ref. 1, p. 478)

j(w) =

MkDk[xk
d [I [38]

—

pRT MkDfk[xkMk [fk — wifi] 139]

where c and p are the molar and mass densities of the
solution, respectively; Mk is the molecular (or ionic) mass
of species i; Dk is the multicomponent diffusion coefficient
between species i and k; p. is the chemical potential of
species i; Xk is the mole fraction of species k; w1 is the mass
fraction of species 1; k is the external force affecting
species k; R is the universal gas constant; and T is the tem-
perature. In an electrochemical cell, the ionic species are
subject to two external forces, gravity and that attribut-
able to the electric field

= g — [40]

where g is the acceleration of gravity and 41) is the elec-
[331 trostatic potential in the liquid phase.

Using the above equations applied to a binary elec-
trolytic solution and the definition of the current density
in an electrolytic solution

= F zN [41]

N' = — P,DeCe + + cc vC [42]
rRT e

z1F

Here p. is the chemical potential of the electrolyte, c is the
concentration of electrolyte, v is the number of ions i into
which a molecule of electrolyte dissociates, O) is the cur-
rent density in the solution, vC is the molar-average veloc-
ity of the solution, and t is the transference number of
species i with respect to v. The diffusion coefficient of the
electrolyte, D, is based on a thermodynamic driving force
and is given by's

D = D0D0(z — z) [43]
— zD0

[351 where D1 is the diffusion coefficient that describes the
interaction between species i and j (i.e., multicomponent
diffusion coefficient). The subscripts, +, —, and o refer to
the cation, anion, and solvent, respectively. We have as-
sumed here that D11 = D1, and that the concentration of the
binary electrolyte was defined as

c_
C,.

— = —
v, V

Let R1'be the averaged rate at which species i is produced
at the liquid/solid interface in volume V; thus

k) = I R°'dS
V

= — -- $ (N —
Cf V(l)) n0,)dSV

On the other hand, if species i is present in the solid phase
only, R" is given by

— --. I R1'dS
V

1
[31]

= — — $ (N —
Cf V(I,)) n(,l)dSV

Jump Mass Balance for Species i at the
Gas/Solid Interface

Equations similar to Eq. 30 and 31 can be derived in an
analogous way for species at the gas/solid interface (see
Ref. 12).

Resulting Material Balances on the Three Phases
We can now use the expressions derived for mass trans-

fer at the interfaces in the equations of continuity derived
previously. If we substitute Eq. 26 and 30 into Eq. 19, the
volume averaged equation of continuity for species i in the
liquid phase becomes

+ v + (1g) — R,°' = 0 [32]

Similar equations can be derived for the gas and solid
phases (see Ref. 12).

Rate of Reaction of Electrochemical Reactions
Consider the case in which species i is being produced

by electrochemical reactions taking place at the surface of
the pore walls. An electrochemical reaction can be repre-
sented in general

S1M = nke

where M," represents species i participating in reaction k,
z is the ionic charge number or valence of species i, S,k is
the stoichiometric coefficient of species i in reaction k, and
k is the number of electrons being released by reaction k.

The average production rate over the liquid/solid inter-
face contained in volume is given by

= — -— I --- j1 dS
V Js nkF' )

= = (jY' [341

where a'1 is the pore wall surface area wet by electrolyte
per unit volume of porous medium (S(S)/V), in cm/cm3,and
ji" is the average reaction rate of electrochemical reac-
tion k taking place at the liquid/solid interface contained
in volume V and is defined as

(3k) L,ikdS]

Comparison of the integrand in Eq. 34 to the integrand in
Eq. 30 reveals the mode of transport of species i to the
solid/liquid interface where it may react in one or more
electrochemical reactions. If Sfk = 0, species i does not react
at the solid/liquid interface. Note that the transport of liq-
uid-phase species i to the solid/liquid interface can be
affected by the movement of the solid/liquid interface, if

we obtain2

[44]

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.252.69.176Downloaded on 2014-10-20 to IP 

http://ecsdl.org/site/terms_use


J. Efectrochem. Soc., Vol. 144, No. 4, April 1997 The EIectrochemical Society, inc. 1347

This definition for the electrolyte concentration allows us
to satisfy automatically the electroneutrality condition,
which reads

zuci = 0

The chemical potential of the electrolyte, lie, in Eq. 42 is
given by

lie = vp + V4L
= VeRT in (cJ+a)

= veRT in (mey±A)

in which f. and -y+ are the mean molar and molal activity
coefficients of the electrolyte, respectively; a°+ and A are
proportionality constants independent of composition; me
is the molality of the electrolyte; and Ve = v + v. These
equations can be used to obtain

*

N' VDVCe + jU) + .c v *

where D is the diffusion coefficient of the salt (electrolyte)
based on a gradient of concentration and is related to D
by"

D = D 11 +
d in f

e dlnc
Finally, the molar flux vector for a neutral species dis-
solved in the electrolyte is treated here as a dilute species
and is given by

= —DVc' +

in which D is the diffusion coefficient of species i in the
electrolytic solution.

Volume average of the molar flux vector—Assuming
that t is constant, the local volume average of the molar-
flux vector can be written as I)

= —v.DVc (I) + + v-c v*'I I e
z,F ' e

(1) t. —U)= V,DVCe + ...L_1rn + v-cv
z1F

Using the theorem for the volume average of a gradient
(Eq. 7), we have

= v—U) + f CfljgdS + 11 Cefl)dS [51]V SQg) V S(e)
This allows us to write

*
—v (D)(l)VeU) + 1a + v (Ce)OV* — [52]

where )) is the molar density tortuosity vector and is
defined as

—-----(1) — v(D)'Vc° + v,(D)' —5 CfligdSV

[53)
(1) 1 (fl)l) )1)+ v,(D) _5 Cefl(lC)dS + v(c) v — v,cev*

s'I)

The molar density tortuosity vector represents the devia-
tions of the molar flux in a porous medium from the free-
stream molar flux. These deviations are caused by the
physical obstruction of the transport path in one phaseby
the presence of other phases. Thus, the transport ofmate-
rial is expected to be slower through a multiple-phase sys-tern than through a free stream. Experimental datacan be
used to prepare empirical correlations for i (see, e.g., Ref. 1).

Specific example.—Nonoriented porous solid with no
convection—The simplest form of empirical correlations
for is that of a nonoriented porous solid when convec-
tion can be neglected. In such a case, we can expect to
be a function of the particle size of the porous medium, l;
the liquid porosity, )1); the diffusion coefficient, (D)'; and
some local distribution of the electrolyte concentration,
such as or Vë'. Following the analysis presented by
Slattery,' an empirical correlation for 1) takes the form

= vDD)'V' [54]

=
Di" tI" tel Veel) [5]

If we substitute Eq. 54 into Eq. 52, we obtain an expres-
sion for the average molar flux when convection can be
neglected in a porous electrode with uniform porosity and
nonoriented matrix structure

[47] ') =
—v1(ii)° (i + D)V +

z,F
or using the relation between the local and the intrinsic
volume average (Eq. 6), we have

*

[48] )') = _V(D) (i + D")V(€U)(Ce))'))

The porosity is not a function of position because we are
considering the case of a nonoriented porous medium;
thus, Eq. 57 becomes

[49] = —v,(D)' (i + + _s__

The term (D)' (1 + Dr)€' in Eq. 56 is called the effective
diffusion coefficient for species , D1. In many practical
applications, Dieff is expressed as'4"5

D,eff = (D)' sI [59]T

[50] where 'r is the tortuosity factor of the porous medium. In
view of Eq. 58, Eq. 59 suggests that

(1+D)=._ [60]

Using Eq. 60 in Eq. 58, we obtain
*

= _v,(D)' JV((ce)'>) + jU) [61]T z,F

For porous electrodes, researchers often use the following
expression for the effective diffusion coefficient'3

= D)'(€")" [62]

where b is a constant parameter normally equal to 1.5.
This expression for the effective diffusion coefficient'6 is
based on findings for the electrical conductivity of fluids
in porous media in which the porosity and the particle size
do not depend on position (nonoriented). In view of Eq.58,Eq. 62 suggests that

(1 + D') = (€)1))b_5 [63]

Substituting Eq. 63 into Eq. 58, we obtain
*

= j(D))J)(e)bV((c)))) + [64]z F
For the case of an oriented porous solid when convection
can be neglected, we can expect the molar density tortuos-
ity vector " to be a function of the gradient in particle
size, Vt, in addition to the quantities considered for the
nonoriented porous media. In this case can be
expressed as

[45]

[46] with

[56]

[57]

[58]

*
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= + (DY"v,lVë1iEVl

where l is the particle diameter, which is a function of
position. Here

= E& (€0), 1, IV11, ivë'i, Vl Vë', for k = 1, 2 [66]

Applying the Buckingham-Pi theorem" reduces this to

* (, vi . lIvEdI'lElk =
EIkE

IVLI, iviuvEfi ' for k = 1, 2 [67]

We can see that a tortuosity correction for a porous elec-
trode in which the particle size is a function of position, in
general, will not take the most commonly used form given
in Eq. 63. Substituting Eq. 65 into Eq. 52, we obtain an
expression for the average molar flux when convection
can be neglected in a porous electrode with an oriented
matrix structure

=
—vj(D)°(1

+ E)VE)) — e,(D)" vEfiEVl

+ _U) [68]
z,F

or using the relation between the local and the intrinsic
volume average (Eq. 6), we have

N' = e,(D) (i +

—
e1 (f)))') v(d (ce)1Evi

+ zF h1) [69]

Equation 69 should be used instead of Eq. 64 for porous
electrodes in which the porosity and characteristic parti-
cle size of the solid are a function of position, unless these
variations are negligible. Such cases are, for example,
porous electrodes that exhibit large changes in volume of
the solid phase as the active materials react, because this
leads to changes in the particle size and porosity which
varies with position inside the electrode.

Because Eq. 69 is valid for variable porosity, it must be
also valid for the particular case in which the porosity and
particle size are not functions of position. In such a case,
we obtain

=
—ej(D)('(1

+ E)€WV((ce)0)) + i° [70]

Equation 70 should be equivalent to Eq. 58. And, if we
assume that the effective diffusion coefficient is given by
Eq. 62, the term (1 + E) should be given by

(1 + Et) =

Substituting Eq. 71 into Eq. 69, we obtain

(I) b— 1 v(€0 (ce
))1))= —v(D) (€ )

/ \)l) *
—

,(D)11 iv(€' c,1 )i E12V1 + j)1) [72]
r,F

Equation 72 is valid for cases in which the porosity and
the particle size are functions of position. For cases in
which the particle size does not change with position, the
second term in Eq. 72 is zero, and the molar-flux vector is
given by

= —v (f))O) (€° )b—1 V(€h1) (c )°) + _1— [73]e
z,F

The averaged molar flux for neutral species is obtained by
taking the volume average of Eq. 49

= —D'Vc1' +
-0) [74]

[65] In Eq. 74 we have assumed that the diffusion coefficient
1J? is a constant. The theorem for the volume average of a
gradient (Eq. 7) allows us to write

Yc = Ye0 + . I cn, )dJs' + -- I c'n dS [75]1 J 1 )g
17 J503, '

and Eq. 74 becomes

= _f)017O + (c, )0);•;0) — [76]

with the molar density tortuosity vector defined as

dS+—D11'

S5(lg)
'0)

D'
V V

+ (c,)0m — [77]

Proceeding analogously as we did for the molar density
tortuosity vector for ionic species in an oriented porous
electrode when convection can be neglected (Eq. 65 and
67), we obtain

with

= D'EVE," + DfIVE"IEVl [78]

= E
[€0) Vu,

. _____ for k = 1, 2 [79]
VII

'
J

Substituting Eq. 78 into Eq. 76 and using Eq. 6, we obtain

= —D'(l + E )V(€°(c, )0)) — D1€)')(c1)'iEVi [80]

Again, if the effective diffusion coefficient is assumed to be
of the form given in Eq. 62, Eq. 80 would become

= f)l) ()1) )b1 V(€°1 (c, )0)) — I V6' I E,'Vl [81]

And if the particle size does not depend on position, Eq. 81
becomes

= ()1))b- ' V(€'1 (c, ))) [82]

The equations derived in this section for the molar fluxes
of species in the electrolytic solution are similar to those
presented by Newman (see Eq. 22.11 of Ref. 13 or Eq. 20
and 30 of Ref. 9), but they have one important difference.
The porosity that is premultiplying the average concentra-
tion in Eq. 73 and 82 appears outside the gradient opera-
tor in Newman's equations. For cases in which both the
porosity and particle size of the electrode do not depend on
position, the equations derived here are identical to those
presented by Newman. However, for cases in which
changes in porosity and particle size of the solid phase are
important, one should use equations of the form given in

[71]
Eq. 72 and 81. Also, one should find empirical expressions
for E,, and E in view of Eq. 67 and 78 that are appropri-
ate for the system under consideration.

Molar flux vectors for species in the gas and solid phas-
es—Similar flux vectors can be derived for species in the
gas and solid phases (please see Ref. 12).

Summary of Equations of Continuily for the Liquid,
Gas, and Solid Phases

We present here the equations that apply when varia-
tions in porosity may occur, but the variations in particle
size can be neglected, that is, the terms containing vi in
the expression for the molar fluxes for the liquid, gas, and
solid are assumed to be zero.

For ionic species in the liquid phase we have

a(c'0(c, ))l)) — pV . (€' )b 1 V(€' (c,,y'5]

+ — = 0 for i = +, — [831
z, F
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For neutral species in the liquid phase we have

a(€'(c,)U)) — v
{D')((1) )b 'vfr1 (c, )(1))] + (1g) (1e) = o

at

For species i the gas phase we have

___________ — DV
[(f(s))b_1V(E()(C)())}

+ DVat

[84]

(g)\
V((c))j — (1g) — (gs) = ( [85]\1

And for species in the solid phase we have

a(€(s) (c )(C)) — DS)V [€' )b_ 1 V(e' (c )(S))]at

— 1)e) — ge) 0 [86]
with the solid porosity defined as = 1 — ((1) +

Modified Ohm's Law for the Liquid Phase
The free-stream current density for a concentrated bina-

ry electrolyte can be expressed as'3

(1) = KV4' - + —

t (i sc
+_—+I_._2_l_-IVp. [87]ZV Z_ fl)C0)

where K is the conductivity of the electrolyte, If we use the
above expression for p.r, we obtain

(l) = -KV4' — KVeRT
+ [.1.

— + _.
+ + d

[88]Z_ fl) c, d in Ce) Ce

If we take the local volume average of (1) over the liquid
phase and use the theorem for the volume average of a gra-
dient (Eq. 7), we have

= —(K)V) — VeRT ( )(1) [ + ,/d in f s
F K

\diflCel Jnv+

+ + —

', I
1 S0 Ce —(1)+ — — — V in Ce

— [89]J(0)
where 'I'' is defined as the current density tortuosity
vector

= —(1) — (1)(1) +
$ Ifrfl(lg)dSV

+- f 'fldS + (±_V F

s ( dlnf+c1K11+ l-.—7 lflCen) i dince)c.
(l)f

(l)( /i in f l
—K) \dlflCe/ )\eI

— -i-S in Cefl(ls)dSJ] [90]
SIlO

We can see that if 41) and c were independent of position
inside the volume I'' would be equal to zero. For con-
venience, let us define

A=-' l+/nfz\(1)i1_±_+J..F in Ce! )nv+ Z0v
(1) (1)

— __) ÷() + [_ — (2s) ]
[91]

Analogous to the molar density tortuosity vector for an
oriented porous matrix, we can expect 'I'' to be a function
of the solid particle size; 1; the gradient in particle size, Vl;
the liquid porosity, a; the conductivity of the electrolyte,
K!'; the quantity A defined above; and some local distrib-
utionof the electrolyte concentration and potential, such
as V in Ce and V4". Following the procedure described by
Slattery,' we may postulate the following empirical corre-
lation for p(l)

= (Ky'Gv1) + (K) G2AV j-_-(1) + (Ky'Iv'IG:vl
[921

+ —

_sJ(_.) Jv in
Ce — (K)aG3IV4IV1 [95]

To find a suitable functionality for *1), one would have to
measure the electrical conductivity of the electrolyte for
various porosities and solid particle sizes. Most frequent-
ly, researchers use an effective conductivity which ispro-
portional to the porosity of the electrode to some power,'3
that is

+ + [:
/ (1)\(i s C (1)V1flC +j0) J

for i = 1, 2, 3.

Substituting Eq. 93 into Eq. 89, we obtain

(1) * VeRT1/i> _(K)D(l + G)V4, — (K/ (1 + G,)

( ,(1)\( ( \ jci in f s t÷ 1 1 *

in Cel )nv+ z) Ce/
1 + j—+ + ——It+

V in C — — in
Cefl(lg)dS

V JS1i1

+1'l

= (K)G1V') + (KG, 21 [iF + /d in
in

(1)(K) iv'iG:vl [93]

with
/ —(1)

0 *
G1 = G, L' vi, V4' . V in Ce V4' . Vi(1)iiV in Ce I V4U) ii vii

Vl.V Inc A I
IVltiV In Ce I' 41J [94]

(I)

+ t+* dlnf:\
din Ce)

K 1+_____IV Inc

/

'(1>I
— (K)' [1 + V in C —! I in Cefl0g)dSin Ce! ) V

1 + vRT ((i - + -— in
Cefl/1s)dSJj F z z_)
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[96] porosity of the electrode and particle size do not depend on
position, the equation derived here is identical to that pre-
sented by Newman. The second term in Eq. 102 cannot be
compared to Newman's equation because it does not
appear extended in Eq. 34 of Ref. 9; it appears just as V1s,.

Ohm's Law for the Solid Phase
Ohm's law states that the electronic current density is

proportional to the gradient of the electric potential; thus,
the current density in a solid is given by

j)') — if(1) V41)

where i(s) and 41' are the current density and electric
potential in the solid phase, and a' is the electrical con-
ductivity of the solid. We are interested in finding an
expression for the current density in the solid at any posi-
tion inside the porous electrode. If we take the local vol-
ume average of this equation over the solid phase and
assume that the conductivity in the solid is constant, we
have

= _&1)V$)1) — p)') [1041

where we have defined the current density tortuosity vec-
tor for the solid phase as

= —
2i..5

)s)n)l)ds — .!__5 43)S)1)g) [105]V fl1) V S(g,)

By analogy with the analysis made for the molar density
and current density tortuosity vectors, we may write
empirical correlations for IyS)Foran oriented solid matrix
'Jr)') is expected to be a function of the particle size, 1; the
gradient in particle size, Vt; the ratio between solid volume
to electrode volume, e'; the conductivity of the solid, &";
and some local distribution of the solid potential, such as
V43. A suitable expression for 'I'' is

= &s)H*V43)s) + &' V4l HrV1 [106]

with

= ln (c,)°1 [100] = HI€' Vt V
1 1 lvii lV4'l

Thus, the current density in the solid becomes

= a"(1 + HflV4° _.. .(1) lV43'I I-I]Vl [108]

Assuming that the tortuosity correction for the conductiv-
_______ ity in the solid is of the same form as that for the conduc-

tivity in the liquid phase (see Eq. 98), we have

1 + H = ()S))d-1 [1091

= — s(s) (e(43))1))HVt [110]

Conservation of Charge
Theequation of conservation of charge without double-

layer charging reads13

[111]
at

where q is the charge density at any position in a materi-
al. We require that any portion of the electrode be electri-
cally neutral; furthermore, each separate phase must be
electrically neutral.13 Here we consider the gas phase as an
electrical insulator with no ionic species. There is no cur-
rent flowing through the gas phase, and the equation of
conservation of charge (Eq. 111) is identically equal to zero.

Conservation of charge in the liquid phase—If we take
the local volume average of Eq. 111 over the liquid phase,
we have

ifat V 11,0 3t V

[112]

[103]

K,ff =

where d is a constant parameter normally equal to 1.5.
This expression was obtained for porous systems in which
neither the porosity nor the particle size vary with posi-
tion.16 Thus, if concentration effects and gradients in par-
ticle size are important for a particular system, one would
have to find a better empirical expression.

Consideration of the two equations given immediately
above shows that

1 + G7 = (v)d-1 and 1 + G.' = ()1))11-1 [97]

Thus, the current density in the electrolyte becomes

= _(K)(€0) )d 1 — v,RT
(K)(e0) )d 1

1 + (d ln fV 1-±±_ + + -
\d ln c,/ (nv zv÷ [z+ &) \c0/

+ [1 — .fn](.2n)°]v lnc
— (K)°G iV4"iVl [98]

The term lnc,° in Eq. 98 needs to be changed to an expres-
sion in terms of (ce), so that the equation will be compat-
ible with the volume-averaged variables introduced in the
equation of continuity. If we assume that the concentra-
tion in volume V is close to (c,)°, we can use a linear
approximation for ln c, in the vicinity of Using a
Taylor series, we have

in ce in (c€)' + __2-j15-(c, — (c,)°1) [99]
(c,)

Therefore

vjvj
(cj" + —

(ceY)]dV

Using this approximation, we obtain

j)1) = _(K)U)(€(1))d_1 V(€(1)(4)W) —
v,RT

I (I) * / 1)1)

i+/nf±\ 1±— +_.+1J_—J_:(.-
\d ln c/ (nv÷ zv÷ lz÷ &) \c0

+
— n](.n) ]V(€w

in (c,)°) — (K)°G IV(€(°(43)°5IVl

[101]

For cases in which the variations in particle size can be
neglected, the last term in Eq. 101 is zero, and the current
density is given by

1)1) = (K)' (€0) )0 1 V(E' (4)))1)) —
v,RT

(K)'(€ jd 1

* , '.0)

Ii+fnf±\ i1-L +J±_..+1I_J_k(2s-
\dlnc,/ )knv÷ zv÷ \z r) \c,,

(1)

+ H - !s-)(5\ ')V(co) ln (c,)°) [102]z n)\c,,/ )
Similar to what we found for the equations for the molar-
flux factor in the liquid phase, the equation we have
derived for Ohm's law in the electrolyte has one difference
relative to that presented by Newman (see Eq. 24 of Ref. 9).
The porosity that is premultiplying the average potential in
Eq. 102 appears outside the gradient operator in Newman s
equations. As we mentioned before, for cases in which the

for i = 1, 2 [107]

and
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1

J —dV = q("dV'1
1 '- at dt V V

— _J qU) . ndS [113]

Jv—'=—
1 •i • a

at dt
—

The velocity of the boundary S(1) is zero, thus

1 aqn dV = —
_$ q°v0> n0)dSdt

!J V . j(l) dV = V i' + 2_ ç (l) I1(IS)dSV V(l) V Jsu,)

Substituting Eq. 115 and 116 into Eq. 112, we obtain

+ V . + $ (jW — qv()) . fl()dSdt V

1 l•
(1) (1)+ —J (i — q V(Jg)) fl(lg)dS = 0 [117]

V SUg)

Since we have assumed that the condition of electroneu-
trality applies everywhere in the liquid, there must not be
an accumulation of charge in the liquid or any portion of
the liquid. Thus, the first term of Eq. 117 is zero, and it
becomes

() + __
$

(j(I) — qv(l)) . fl(1)dSV

The integral terms in Eq. 118 represent the flux of charge
from the liquid phase into the other phases. Here we
assume that there is no charge flux into the gas phase; thus
the second term on the right of Eq. 118 is zero

The flux of charge from the liquid phase into the solid
phase is caused by the electrochemjcal reactions taking
place at the liquid/solid interface. This leads to the defin-
ition of the local transfer current per unit, j, as follows

which allows us to write Eq. 119 as

(1) =
The local transfer current is equal to the sum of the local
transfer Currents due to all the electrochemical reactions
at the fluid/solid interface

= a(1) (k)(I)

Conservation of charge in the solid phase.—If we take
the local volume average of Eq. 111 over the solid phase
and follow the same steps described for the liquid phase,
we have

+ V . + __
5 (i(s) — qv)) fl(.1)dSdt V S(s)

+ -i—f (i° — qv(g)) flgdS = o 11231
V

Assuming that there is no accumulation of charge in the
solid (electrically neutral) and no charge flow from the
solid into the gas phase, we have

V i> + _!_ $ (i — qv()) . ndS = 0 1124)V

The integral term represents the flux of charge from the
solid into the liquid phase. If we assume that there must
not be accumulation of charge at the liquid/solid inter-
face, the sum of fluxes from the solid and liquid phases has
to be equal to zero, that is

..:..
5 (j(I) — q(v(1)) . nldSV S0,)

+ ! 5 (j() — qv(1))- = 0 1125)
V S(1)

Using the definition of the local transfer current per unit
volume given in Eq. 120, we have

= 15 (i — qv(1)) . fl(l)dS [126)V

and Eq. 124 becomes

v . j(s) = —j [127)

If we add Eq. 127 and 119, we find the condition for any
portion of the electrode to be electrically neutral

v + i)) = 0
[128)

Conclusions
The equations derived here can be used to model mass

transport in porous electrodes with multiple phases: solid,
liquid, and gas (see Ref. 12 and 18). The equations are
readily applicable to electrodes consisting of two phases.
We have presented a full description of the derivation of
the transport equations using the volume-averaging tech-
nique with the goal of giving the reader a clear under-
standing of the assumptions and important factors to be
considered when applying these equations or when devel-
oping new equations based on this same averaging tech-
nique. Also, the derivations presented here give insight
into the nature of the definition of effective properties
(diffusion coefficients and electrical conductivity) com-
monly used in modeling porous electrodes. This gives a
theoretical basis for determining effective properties
experimentally or for evaluating the appropriateness of
empirical expressions developed by others when one is
applying them to a different system.

Manuscript submitted Jan. 29, 1996; revised manuscript
received Dec. 5, 1996.

LIST OF SYMBOLS
a' specific surface area of the liquid/solid interface per— unit volume of porous media, cm2/cm3
B local volume average of quantity B in phase k (k =

[122) g, 1, s)
(B)° intrinsic volume average of quantity B in phase

k (k = g, 1, s)
ce concentration of electrolyte, mol/cm3
c0 concentration of solvent, mol/cm3

Applying the general transport theorem (Eq. 12) to the
first term, we have

qv() . n()dS

1' 1"—

VJS(lg)
1'(lg) dS

— fl)dS [114]

— _i'_J q(l) ig dS [115)
V S()

Applying the theorem for the volume average of a diver-
gence (Eq. 10) to the second term in Eq. 112, we have

+ I
J (1 fl(Ig)dS [116]

Sflg)

+ --
S

(ja — q'v(g)) h1igdS = 0 [118)V S(lg

V . + $ (j(I) —
q()v(1)). n(1)dS = 0 [119)V

— J (j(1) — qWvfl)) . [120)V S()

The University of South Carolina assisted in meeting the
[121J publication costs of this article.

The averaged local transfer current for reaction k, ljk)', is
defined in Eq. 35.
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c molar density of the solution, mol/cm3
Kc,)C volume averaged concentration of species i in phase

k (k = g, 1, s) mol/cm3
D free-stream diffusion coefficient of a concentrated

binary electrolyte based on a concentration gradient,
cm2/s

(D)1 volume averaed diffusion coefficient of a binary
electrolyte, cm /s

D, diffusion coefficient of the electrolyte based on a
thermodynamic driving force, cm2/s

D1 multicomponent diffusion coefficient of i into j, cm2/s
k) diffusion coefficient of species i in phase k (k =

1, s), cm2/s
D? function of dimensionless numbers for an empirical

correlation to represent the molar density tortuosity
vector for a nonoriented porous matrix

E, function of dimensionless numbers for an empirical
correlation to represent the molac density tortuosity
vector for an oriented porous matrix

F Faraday's constant, 96,487 C/eq
f external force per unit mass acting upon species i,

cm/s2
L mean molar activity coefficient of the electrolyte

averaged flux of species i from the liquid phase into
the gas phase, mol/cm3 s

g acceleration of gravity, cm/s2
i current density vector, A/cm2
j current density in the liquid, A/cm2
j(o) current density in the solid, A/cm2
j(1) average current density in the liquid phase, A/cm2
j() average current density in the solid phase, A/cm2
j local transfer current per unit volume, A/cm3
1k local transfer current per unit surface area for reac-

tion k, A/cm2
3i) averaged local current density due to reaction k tak-

ing place at the liquid/solid interface, A/cm2
J, molar flux of species i with respect to v, mol/cm2 s
j(w} molar flux due to ordinary diffusion, mol/cm2 s
j° molar flux due to forced diffusion, mol/cm2 s
1 characteristic size of the solid particles in an orient-

ed porous matrix, cm
1, characteristic size diameter of the solid particles in

a nonoriented porous matrix, cm
m molality of the electrolyte, mol/kg
M, molecular (or ionic) mass of species i, g/gmol
ii number of electrons released by electrochemical

reaction in the reference electrode
n2 number of electrons released by reaction k
n unit normal to S. defined for the generalized trans-

port theorem (Eq. 12)
t1(gL) unit vector normal to the surface S5g), pointing out of

the gas phase into the liquid phase
unit vector normal to the surface pointing out of
the gas phase into the solid phase

fl(lg) unit vector normal to the surface 5(a) pointing out of
the liquid phase into the gas phase

fl00) unit vector normal to the surface S(), pointing out of
the liquid phase into the solid phase
unit vector normal to the surface 5(gs)' pointing out of
the solid phase into the gas phase

fl(,l) unit vector normal to the surface S(j,), pointing outof
the solid phase into the lipiid phase

N, molar flux vector, mol/cm s
(k) volume averaged molar flux of species i in phase

k (k = g, 1, s), mol/cm2 s
q charge density, C/cm3
R universal gas constant, 8.3143 J/mol K
R" rate of production of species i per unit surface area
— at the liquid/solid interface, mol/cm2 s
R" average rate of production of species i at the liq-

uid/solid interface, mol/cm7 s
Rf' average rate of production of species i at the gas/

solid interface, mol/cm3 s
5jk stoichiometric coefficient of species i in reaction k
s+ stoichiometric coefficient of the cation participating

in the reaction at a reference electrode, used to de-
fine the current density in the electrolyte (modified
Ohm's law)

s,, stoichiometric coefficient of the neutral species (sol-
vent) participating in the reaction at a reference
electrode, used to define the current density in the
electrolyte (modified Ohm's law)

S(L)
closed boundary surface of V(l) and is the sum of 5(le)'
S(J,), and 5(Ig), cm2

5G'} surface that coincides with the liquid/solid interface
inside volume l cm2

5ug) surface that coincides with the liquid/gas interface
inside volume l' cm2

(1e) portion of surface S(l) that coincides with S (exit and
entranced of the liquid phase in V), cm2

S(3) closed boundary surface of and is the sum of S( ,)
and 5(lg), cm2

surface that coincides with the solid/gas interface
inside volume V, cm2

5(ge) portion of surface S() that coincides with S (exit and
entrance of the gas phase in V), cm2

S. closed surface that contains volume V., cm2
t time, 5
T temperature, K
t1" transference number of species i with respect to vK
V total averaging volume that contains solid and fluid

phases of the porous medium, cm3
Vj) volume of liquid contained in volume V, cm3
V(g) volume of gas contained in volume V cm3
V(,) volume of solid contained in volume V cm2
V. volume occupied by a fluid system, used in the

definition of the generalized transport theorem
(Eq. 12), cm2

v mass-average velocity of the multicomponent
system

v" molar-average velocity of the solution, cm/s
Va,) velocity of the gas/solid interface, cm/s
V(15) velocity of the liquid/gas interface, cm/s
V(),,) velocity of the liquid/solid interface, cm/s
w, mass fraction of species i
x mole fraction of species i
z, ionic charge number or valence of species i,

eq/mol

Greek
+ mean molal activity coefficient of the electrolyte
A molar density tortuosity vector in phase k (k = g, 1,

s), mol/cm2 s
porosity of the electrode, fraction of volume occu-
pied by gas and liquid in the porous electrode
fraction of volume occupied by phase k in the porous
electrode (k = g, 1, s)

ic free-stream conductivity of the electrolyte, S/cm
KKY averaged conductivity of the electrolyte, S/cm
.i, chemical potential of the electrolyte, J/mol
p. chemical potential of species i, J/mol
i, number of moles of ions into which a mole of elec-

trolyte dissociatesv number of moles of cations into which a mole of
electrolyte dissociates

v_ number of moles of anions into which a mole of elec-
trolyte dissociates

p mass density of the solution, g/cm2
u' electrical conductivity of the solid phase in the

porous electrode, S/cm
T tortuosity factor
41' electric potential in the liquid phase, V

electric potential in the solid phase, V
K4)° averaged electric potential in the liquid phase, V
K+)' averaged electric potential in the solid phase, V
t' current density tortuosity vector in the liquid phase,

A/cm2
t' current density tortuosity vector in the solid phase,

A/cm2
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Oxide Film Formation on a Microcrystalline Al Alloy in
Sulfuric Acid

S. C. Thoma? and V. I. Birss*

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

ABSTRACT

The differences in the electrochemical behavior of a rapidly solidified, two-phase (matrix and dispersoid) Al-based
alloy containing Fe, V, and Si (FVSO812 alloy) and the bulk form of its matrix and dispersoid phases were investigated in
sulfuric acid. FVSO812 exhibited generally higher electrochemical activity than the matrix material due to the presence
of the very active dispersoid phase in the alloy. Impedance studies indicated that the properties of thin films formed on
the FVSO812 and matrix substrates during only 5 mm of anodization are similar, whereas the film formed on the alloy
during 2.5 h of anodization was substantially less resistive and contained a thinner and/or damaged underlying barrier
oxide compared to a comparable film formed on the matrix. Compared to the classical structure of porous Al oxide films
with underlying barrier oxide, the oxide film on FV50812, as seen by TEM, was thinner; with an intermittent barrier
oxide underlying a porous oxide of contorted morphology. Evidence is seen for the loss of dispersoids from the oxide film,
leaving voids throughout its structure, perhaps the reason for its lack of physical adherence and its limiting thickness.

Introduction
A recent advance in both the science and technology of

metallurgy has been the application of rapid solidification
techniques to Al alloy production resulting in alloys with
structures and enhanced properties that are unobtainable
by conventional casting methods.12 The alloy under re-
search, designated as FVSO812 by its developer, Allied
Signal Incorporated, is a microcrystalline Al-based alloy
which has been rapidly solidified by planar flow casting.
Table I sumnarizes the atomic and weight percentages of
the elemental components of alloy FVSO812, which con-
tains Fe, V, and Si in addition to Al.3 As is characteristic far
rapidly solidified Al-Fe-V-Si alloys, the microstructure of
alloy FVSO812 consists of very fine, nearly spherical, inter-
metallic "dispersoids" uniformly distributed throughout a
matrix phase.4 The microcrystalline matrix grain size typi-
cally varies from 0.5 to 2 l,Lm in diam.' The matrix compo-
sition is primarily Al supersaturated with Fe [ca. 0.5 atom
percent (a/of! and Si (ca. 0.1 a/o).3" The nanosized disper-
soids, of nominal composition of Al,3(Fe,V)3Si, are 0.05
0.01 p.m in diameter and occupy ca. 27 volume percent (v/o)
of the alloy.4'79

In practice, it was known that significant difficulties
exist in forming an adherent and sufficiently thick, porous
oxide film on the alloy surface using regular anodizing
methods." This was verified by scanning electron
microscopy which showed that, in contrast to a conven-
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tional Al alloy, such as AA-6061, at which anodizing yield-
ed a film of ca. 25 tim, the oxide film formed on the
FVSO812 alloy surface under identical conditions result-
ed in a corresponding thickness of ca. 3.4 p.m, as shown
in Fig. 1.11 Moreover, this oxide contained damaged seg-
ments and could be removed relatively easily. An oxide
thickness of 2.5 tim is considered to be adequate for gen-
eral corrosion resistance, but the film should be at least 25
p.m thick to protect the substrate against abrasion.'2 Thus,
the thin oxide film formed on FVSO812 provided inade-
quate abrasion resistance.

A search of the literature indicates that growth of anod-
ic films on Al alloys containing phases of differing reac-
tivity is extremely dependent on the inter-metallic phase.
The behavior of intermetallic compounds during anodiz-
ing in sulfuric acid has been generally classified into three
categories,'3 those intermetallics which are unchanged and
incorporated into oxide films, those which are oxidized
and incorporated or dissolved at a rate slower than the
surrounding Al matrix, and those which are oxidized and
incorporated or dissolved at a rate faster than Al. In addi-
tion, particle size is an important factor as the extent of
oxidation of the intermetallic particles will decrease with
increase in size. Thus, the variability in size and distribu-
tion of intermetallic particles within the alloy as well as
the anodizing conditions can explain disagreement in the
literature for the seemingly same material. For example,
various studies of the anodization of Al alloys containing
dispersed A13Fe in sulfuric acid have indicated that the
discrete intermetallic particles fall out or pass into the
oxide film unchanged, and form a porous oxide film with
an interlying barrier layer.'4"

Al alloys supporting oxide films with a range of mor-
phologies have been reported. For example, anodization of
a rapidly solidified Al-10% Si alloy in phosphoric acid
resulted in the development of a regular fine featured
porous anodic film above the Al matrix and a Si product
which grew upward from the substrate and then spread
laterally parallel to the alloy/film interface.'6 Therefore it

Table I. Composition of alloy FVSO8 12.

Element Atomic percent Weight percent

Al 93.2 88.5Fe 4.3 85
V. 0.8 1.35, 1.7 1.7

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.252.69.176Downloaded on 2014-10-20 to IP 

http://ecsdl.org/site/terms_use

	Governing Equations for Transport in Porous Electrodes
	Publication Info

	tmp.1413834698.pdf.d7h62

