Shape Imprinting Due to Variable Disulfide Bonds in Polyacrylamide Gels

Andrew B. Greytak
University of South Carolina - Columbia, greytak@chem.sc.edu

Alexander Y. Grosberg

Toyoichi Tanaka

Follow this and additional works at: http://scholarcommons.sc.edu/chem_facpub

Part of the Biological and Chemical Physics Commons, Other Biochemistry, Biophysics, and Structural Biology Commons, and the Physical Chemistry Commons

Publication Info
Copyright 2001 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The following article appeared in *The Journal of Chemical Physics* and may be found at http://dx.doi.org/10.1063/1.1369139
Shape imprinting due to variable disulfide bonds in polyacrylamide gels

Andrew B. Greytak, Alexander Y. Grosberg, and Toyoichi Tanaka

Citation: The Journal of Chemical Physics 114, 10551 (2001); doi: 10.1063/1.1369139
View online: http://dx.doi.org/10.1063/1.1369139
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/114/23?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Emergence of molecular recognition phenomena in a simple model of imprinted porous materials

A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations

Characterization of Network Structure of Polyacrylamide Based Hydrogels Prepared By Radiation Induced Polymerization

Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

Relative effectiveness of polyacrylamide gel dosimeters applied to proton beams: Fourier transform Raman observations and track structure calculations
Med. Phys. 29, 569 (2002); 10.1118/1.1460873
Shape imprinting due to variable disulfide bonds in polyacrylamide gels

Andrew B. Greytak, a) Alexander Y. Grosberg, and Toyoichi Tanaka

Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 12 June 2000; accepted 9 March 2001)

Through the use of variable disulfide crosslinkers, we have created polyacrylamide gels whose shape can be altered after polymerization. N,N'-bisacryloylcystamine is incorporated as a crosslinker, along with a smaller amount of a permanent crosslinker. After polymerization, the disulfide bonds are cleaved into thiols through reduction. By reoxidizing the thiols with the gel held in a new macroscopic shape, a new set of disulfide bonds is formed, and the gel is forced to adopt the new shape. Retension of the new shape improves with greater distortion from the original shape, as well as with increased concentration of variable disulfide bonds. A simple theoretical model has been developed to explain these data, although the enigmatic kinetics of relaxation remain unexplained. © 2001 American Institute of Physics. [DOI: 10.1063/1.1369139]

I. INTRODUCTION

For some time now researchers have studied isotropic changes in the properties of gels. 1 They have been made to swell and shrink dramatically in response to a number of environmental variables, ranging from temperature 2 to metal ion concentration. 3 In this experiment, we concentrated instead on a nonisotropic change. Through the use of variable crosslinkers, one can rearrange the polymers to give the gel a new equilibrium macroscopic shape. This is what we call “shape imprinting.” Figure 1 shows a gel that was synthesized as a rod but has since been bent into a spiral. This experiment differs from previous demonstrations of shape changing gels 4 where monomer and crosslinker compositions, and thus the phase transition thresholds, are different in different regions of the gels.

Fundamentally the experiment involves five steps. First, a gel containing disulfide and nondisulfide crosslinkers is synthesized in some initial shape. Second, the disulfide bonds are cut through reduction into pairs of thiols. Third, the gel, which is now more flexible due to a smaller number of crosslinkers, is deformed into a new shape. In the fourth step, with the gel still held in its new shape, the disulfide bonds are reformed through oxidation. When the gel is let go in the fifth and final step, it retains the new shape. Due to the shape change, each thiol might not pick its original “partner,” but rather a new one which is closer to it in the new shape. The new disulfide bonds lock the polymer network into the new shape. The shape imprinting might not be perfect; some relaxation toward the initial shape may occur. Better shape imprinting results in closer retention of the new shape.

We observed the effect of two variables on shape imprinting: the concentration of variable crosslinkers, and the “degree of distortion” applied to the gel in step three. As one might expect, a greater number of variable crosslinkers (with permanent ones held at constant concentration) results in better shape imprinting. Interesting, however, is the fact that increased distortion also causes better shape imprinting. Upon release, the gels exhibit strange relaxation kinetics: the gels relax partially in a few seconds, then undergo a motion back in the direction of the distortion for a few minutes, before relaxing once again to their final equilibrium within an hour. Once this equilibrium is reached, the new shape is quite stable and is retained indefinitely. In addition to reporting the experimental data, we discuss possible explanations for the observations, including a simple model that matches the results observed for the distortion dependence.

II. DESIGN OF THE EXPERIMENT

For quantitative measurements, we found twisting rectangular slabs of gel to be the most convenient geometry (Fig. 2). This technique allowed easy manipulation of the gels and measurement of their distortion in degrees of twisting per millimeter. The twisting is largely a shear deformation, and is uniform along the length of the slab.

Gel slabs having the same thickness and width, but different lengths \(L \) were twisted through a constant angle of \(180^\circ \). In this way a range of angles per unit length was obtained. We will use \(\theta \) to denote the twisting of a gel in degrees per millimeter. Initially a gel is at \(\theta = 0 \). During re-oxidation it is held at \(\theta = \theta_0 = 180^\circ/L \), and upon release it relaxes to its new equilibrium shape with \(\theta = \theta_{eq} \). Shape imprinting is quantified as the ratio \(\theta_{eq}/\theta_0 \). A gel exhibiting perfect shape imprinting would not spring back at all, giving a shape imprinting ratio of 1. If a gel exhibited no shape imprinting at all, the twisting process would have no effect, and the gel would return to its original shape to give a shape imprinting ratio of 0.

It should be noted that each set of data was collected from a series of gels (parallel construction), rather than by reusing a single one, since the shape imprinting process was found not to be completely reversible. Reduction after the shape change has taken place causes the gel to return to its
original shape, but the gel is brittle and unsuitable for further experiments.

III. MATERIALS AND METHODS

The gels used in this experiment were formed by free radical polymerization. Acrylamide (AAM) was used as a backbone monomer, ethylene glycol dimethacrylate (EGDMA) as a permanent crosslinker, 2,2’-azobisisobutyronitrile (AIBN) as an initiator, and $N,N’$-bisacryloylcystamine (BAC) as a source of disulfide linkages. The BAC molecule contains two vinyl groups that can be incorporated into the polymer network, linked by a chain containing a disulfide bond. Due to the low solubility of BAC in water, dimethyl sulfoxide (DMSO) was used as the solvent during gelation, which took place over 12–18 h (overnight) at 60 °C. The concentrations of EGDMA and AIBN were held at 10 mM and 0.10 wt %, respectively, while the concentrations of BAC and acrylamide varied. For the qualitative demonstrations (such as the gel in Fig. 1), 700 mM AAm and 150 mM BAC worked well. In the gels used in the quantitative experiments, the concentrations of AAm and BAC were varied together such that $\frac{[\text{AAm}]}{[\text{BAC}]} = 900$ mM. This is so that in the reduced state, when each BAC monomer exists as two thiol-bearing residues, the density of crosslinks on the polymer chains is the same in all samples. For instance an acrylamide concentration of 700 mM corresponds to 100 mM BAC, while 800 mM AAm corresponds to 50 mM BAC. The concentrations used were 50 mM BAC/800 mM AAm, 75/750, 100/700, 125/650, and 150/600.

Before use, the gels were washed with water for several days to displace the DMSO. To reduce the disulfide bonds, the gels were immersed in a 100 mM solution of 1,4-dithiothreitol (DTT), a reagent routinely used to reduce disulfide bonds in proteins. A thin rod of gel will swell to about twice its original diameter as the disulfide bonds are cut, a process which takes about 48 h in the gels we used. The ‘‘cut’’ gel can be distorted into the desired new shape, and then transferred to a 2.0 wt % sodium bromate solution. In this solution the –SH groups reoxidize to –SS– in several hours, although in practice the gels were left in the sodium bromate solution overnight. Once reoxidation is complete, the gel can be released, and its relaxation can be observed and measured.

The slab gels were molded between glass microscope slides spaced by another slide (thickness 1.0 mm). After washing, the slabs of gel were sliced into pieces with a uniform width of 2.5 mm [Fig. 2(a)]. The gel strips, of uniform width and thickness but varying length, were attached to grippers. These grippers, which allowed us to control the length of the gel used, to handle the gels without breaking them, to twist the gels, and later to measure their relaxation, consisted of two thin wood strips, one on either side of the gel, bound by small vinyl elastics. Other materials were tested but found to be unsatisfactory, and experiments con-
increased with increased distortion, to a maximum of about

thick glass slides to clamp the grippers

water where they were twisted 180° using the weight of

pers was measured.

IV. RESULTS

Two primary sets of quantitative data were collected. A

set of gels having equal concentrations of BAC (100 mM

BAC, where 22.2% of monomers in the cut state have –SH)

were twisted to varying degrees (Fig. 3), and their equilib-

rium shape imprinting ratios were determined. A second set

of gels with varied concentrations of BAC were all twisted

roughly 29°/mm (Fig. 4) and their ratios likewise recorded.

Precise repetition of the amount of twisting was difficult, as

the length of the slabs to be twisted was hard to control

(although measurement was accurate).

The data show that the shape imprinting ratio \(\theta_{eq}/\theta_t \)

increases with increased distortion, to a maximum of about

0.82 for the 100 mM BAC gel for \(\theta_t \geq 30°/mm \). In the

concentration-dependent study, we found that near-perfect

shape imprinting was achieved at 150 mM BAC/600 mM

AAm.

Toward the beginning of the project only equilibrium

relaxation positions were recorded, but observation of the

unusual relaxation kinetics prompted us to record more care-

fully the relaxation of the gels over time. The relaxation over

time of several of the gels in Figs. 3 and 4 is plotted in Fig.

5. Note that one of the curves appears in both parts (a) and

(b). After relaxing quickly in the first few seconds after re-

lease, the gels began retwisting: \(\theta_t \) increased, in some cases

surpassing \(\theta_t \), before decreasing again to come to equilib-

rium. Though it took many minutes to achieve equilibrium

(\(\theta_{eq} \)), the angle did not change after that. One gel was ob-

served for over two weeks and showed no change. The ki-

netic data did not show a trend with respect to concentration

or degree of distortion.

V. DISCUSSION

The experimental data show that increased distortion of

the gel gives rise to better shape imprinting (Fig. 3). We

believe that this occurs because as distortion is increased, it

becomes more likely that –SH groups will find new partners

rather than returning to those they had in the original confor-

mation. The number of crosslinks pulling the gel back to the

original shape is decreased, and so the new shape is more

thoroughly imprinted as distortion increases.

To further examine this distortion dependence, we used

the following model. One recognizes that the shape imprint-

ing observed when twisting the gel involves the relative mo-

tion of only the “tangential polymers,” those which are pri-

marily oriented tangentially to horizontal circles centered on

the twisting axis (Fig. 6). We imagine the gel to be a stack of

horizontal, rectangular plates separated by a uniform dis-

tance \(d \). When the gel is twisted, tangential polymers at the

same radius \(r \) in adjacent plates will slide past one another

by a distance \(r \Delta \theta \), where \(\Delta \theta \) is the twisting angle between any

two adjacent plates, dubbed the microscopic twist. If we

know how these individual tangential polymers interact after

reoxidation, we can integrate the force along the radius to get

a torque, and set the torque to zero to find the equilibrium

microscopic angle, \(\Delta \theta_{eq} \). This will generate a shape imprin-
ing curve for the microscopic distortion, and by comparing this curve with the macroscopic version provided by the experiment, we can find \(d \), since \(d = \Delta \theta / \theta \). If this distance is on the order of the separation between polymers in the gel, we can feel confident that the model is consistent with the experimental data.

The first step is to model the interaction of two adjacent tangential polymers (Fig. 7). In Fig. 7, the –SH group is depicted as being on the end of a polymer chain. In actuality each crosslinker lies in the midst of a chain of monomers, so that the “tails” in the picture would be loops, but this is of marginal importance to the model. The essence of the model is as follows. Two adjacent, parallel polymers are held together by two classical springs, one permanently attached and having constant \(K_{\text{perm}} \) and the other variably attached, having constant \(K_{\text{SS}} \). The values of the constants reflect the concentration of each type of crosslinker in the gel. Let \(x \) denote the relative position of the two polymers, and let \(x = 0 \) be defined as the equilibrium displacement for the permanent crosslinker; that is, when the anchors for the permanent spring are directly on top of one another (see Fig. 7).

Before we start the experiment, the variable crosslinker will be at some \(x_0 \) which is not necessarily zero. However, since the gel is by definition in equilibrium after synthesis, when averaged over the whole gel, \(\langle x_0 \rangle = 0 \).

During the experiment, the –SS– bonds are cut, leaving only the permanent crosslinkers attached, and the top polymer in the figure is translated a distance \(x_d = r \Delta \theta \). In the reduced state, the potential “new” partners form a Poisson distribution, which is translationally invariant. However, we know there to also be a set of original partners for which \(\langle x_0 \rangle = 0 \). The original partners break down the translational invariance of the distribution of binding sites. Upon reoxidation, a portion of the –SH groups will bind to the original sites. This portion behaves like a spring centered at \(x = 0 \). The portion which finds new partners will behave like a spring centered about \(x = x_d \). To determine what fraction of the –SH groups fall into each of these two portions (and thus the relative strengths of the springs), we take the probability
distribution for the loose –SH group to be Gaussian about \(x_d \) with root mean square \(\sigma \). The probability of binding to a site at \(x_i \) is

\[
p(x_i) = \frac{1}{C} \exp \left[\frac{(x_d - x_i)^2}{2\sigma^2} \right].
\]

(1)

The normalization constant \(C \) is given by summing the exponential term for each \(x_i \). The binding sites \(x_i \) are randomly distributed except for \(x_0 \), the original partner. Therefore

\[
C = \exp \left[\frac{(x_d - x_0)^2}{2\sigma^2} \right] + \sum_{i \neq 0} \exp \left[\frac{(x_d - x_i)^2}{2\sigma^2} \right]
\]

(2)

\[
\langle S \rangle = \int_{-\infty}^{\infty} \frac{1}{\sigma} \exp \left[\frac{(x - x_d)^2}{2\sigma^2} \right] dx = \sqrt{2\pi} \frac{\sigma}{\delta}
\]

(3)

If the –SH group recombines at some \(x = x_{\text{new}} \), the force between the polymers in the \(x \) direction is

\[
F_x = -K_{\text{perm}} x - K_{SS}(x - x_{\text{new}}),
\]

(4)

\[
\langle x_0 \rangle = 0, \quad \langle x_{\text{new}} \rangle = x_0 p(x_0) + \sum_{i \neq 0} x_i p(x_i)
\]

(5)

\[
x_{\text{new}} = x_d (1 - p(x_0))
\]

(6)

\[
\langle F_x \rangle = -(K_{\text{perm}} + K_{SS}) x + \frac{K_{SS} x_d}{1 + \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{-x_d^2}{2\sigma^2} \right]}.
\]

(7)

This is the force by one polymer on the other as a function of displacement. Upon release, the gel as a whole must twist until it finds the equilibrium angle where the total torque is zero. We integrate the force to find the torque. Let \(x_d = r \Delta \theta_i \):

\[
T(\Delta \theta) = \int_{r=0}^{R} r F(r, \Delta \theta) dr
\]

(9)

\[
= \int_{r=0}^{R} r \left[- (K_{\text{perm}} + K_{SS}) r \Delta \theta + \frac{K_{SS} r \Delta \theta}{1 + \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{-(r \Delta \theta_i)^2}{2\sigma^2} \right]} \right] dr
\]

(10)

\[
= 0 \quad \text{for} \quad \Delta \theta = \Delta \theta_{\text{eq}}.
\]

(11)

This equation is solved numerically. Appropriate values must now be chosen for \(K_{\text{perm}}, K_{SS}, \delta, \) and \(\sigma \) so that a microscopic shape imprinting curve \((\Delta \theta_{\text{eq}}/\Delta \theta_i, \text{vs} \, \Delta \theta_i) \) may be plotted and compared to the experimental data for the macroscopic twist.

The radius \(R \) of the gel strips is 1.25 mm (half of their width). \(K_{\text{perm}} \) and \(K_{SS} \) are simply the concentrations of permanent and disulfide crosslinkers during relaxation. The first of these is designed to be 10 mM, and the second can be calculated from the high-distortion limit of the shape imprinting ratio, where \((x_{\text{new}})_{\text{eq}} = x_d \):

\[
K_{SS} = K_{\text{perm}} \lim_{\theta_{\text{eq}}/\theta_i \rightarrow 1} \frac{\theta_{\text{eq}}}{\theta_i} = 10 \text{ mM} \times \frac{0.82}{1 - 0.82} \approx 50 \text{ mM}.
\]

(12)

It is apparent that complete reoxidation does not occur; some groups are left without partners.

Typically, for a polymer bound at one end, the Gaussian probability distribution describing the other end has \(\sigma = a \sqrt{N} \) where \(a \) is the size of one “bead,” the smallest unit of a polymer chain that can be said to rotate freely, and \(N \) is the number of beads in the chain. In our case, the loops of polymer bearing –SH groups are bound at both ends, so we will let \(\sigma = a \sqrt{N}/2 \). We will approximate \(a \) as two monomer units, or about 6 Å. This makes \(N \) equal to half the number of monomer units between crosslinkers:

\[
N = \frac{1}{2} \left(\frac{[\text{AAm}]+[\text{SH}]}{2[\text{SS}]+2K_{\text{perm}}} \right),
\]

(13)

To find \(\delta \), the average distance between available binding sites, we divide the total concentration of polymer chain components by the concentration of –SH groups, and multiply by the length of a monomer, \(a/2 \). Thus

\[
\sigma = \frac{a}{2\sqrt{2}} \sqrt{\frac{[\text{AAm}]+[\text{SH}]}{2[\text{SS}]+2K_{\text{perm}}}},
\]

(14)

\[
\delta = \frac{a}{2} \times \frac{[\text{AAm}]+[\text{SH}]+2[\text{SS}]+2K_{\text{perm}}}{[\text{SH}]}.
\]

(15)

Both \(\sigma \) and \(\delta \) depend on [SS] and [SH]. These concentrations change over the course of the reaction, with [SS] rising from zero at the start of reoxidation to its maximum, \(K_{SS} \). To simplify the problem, we will pick a single characteristic [SS] to use such that the experimental data is most closely matched. This characteristic [SS] signifies in a rough way the point in the reaction at which the new equilibrium is selected.

In Fig. 8, curves for several [SS] values are compared to the experimental data from Fig. 3. The theoretical curve is plotted against \(\Delta \theta_i \), the microscopic twist between adjacent “plates” in the model, measured in degrees. The data are plotted against the macroscopic twist \(\theta_i \), measured in degrees per millimeter. A characteristic [SS] of 10 mM is selected as the best fit. The length scales are adjusted to best
match the points, and we divide the scales to obtain a length \(d \), the separation between plates, equal to 70 Å. Of course the gel is not nearly so regular in structure, but the point is that by considering a Gaussian probability density for the motion of a loop of polymer, and a Poisson distribution for binding sites along an adjacent chain (except for the known sites), we can reproduce the observed distortion dependence assuming that these chains are separated by a distance which, to an order of magnitude, is believable.

The concentration dependence curve (Fig. 4) is roughly linear, with a higher fraction of variable crosslinkers giving rise to a higher shape imprinting ratio, as might be expected. Once the concentration gets high enough, there are so many new partners to choose from that the original shape seems to be entirely forgotten and the new one perfectly retained. Of course, this is only a limiting case and one must assume that the 100% measured for the gel with a [BAC] of 150 mM means simply that at that point the resolution limit of the experiment has been reached. Note also that the data do not appear to extrapolate to 0 at zero distortion, but rather to reach a finite limit. We assume this is due to some nonlinear behavior of the curve near zero concentration, or perhaps due to some small malleability of the permanently crosslinked gel.

The relaxation time dependence is one of the most puzzling parts of this experiment. As can be seen clearly in Fig. 5, the gels relaxed some immediately following release (before measurement could begin), but then underwent a very slow oscillation back toward further distortion, sometimes even assuming more than the applied twist, before finally relaxing again to equilibrium within an hour. While we have not been able to come up with a good explanation for this, we can rule out several possibilities.

When a mechanical spring is distorted and released, it exhibits damped harmonic oscillations until it finally settles at equilibrium. However, it is clear that the period of the gels’ oscillation is far too long for such a mechanism.

It is worth noting that the gels were transferred out of the sodium bromate solution and into pure water to observe the relaxation. It is natural to suspect that the gel may have absorbed or released liquid after the transfer, thus affecting the data. However, during preliminary experiments, switching between sodium bromate solution and water was observed to have no effect on the size of the gels in the oxidized state. Furthermore, it remains to be seen how absorbing or releasing liquid could be responsible for both the extra twisting and the subsequent relaxation.

It is probable that the three motions: initial relaxation, hypertwisting, and long-term relaxation are due to three different forces, given the different time scales of each. The first lasts just seconds, the second 5–10 min, and the last 30–60 min. Further experiments would be necessary for a more thorough explanation.

VI. CONCLUSIONS

We have synthesized polyacrylamide-based gels which can be given a new shape due to the inclusion of variable disulfide bonds. Gels can be permanently distorted into any desired shape, as demonstrated in Fig. 1. The coils of gel that we formed as a demonstration (Fig. 1) inspired us to nickname this process the “gel perm effect” after the similar process of rearranging (protein) polymers in hair to imprint a permanent wave.

Shape imprinting improves with increasing concentration of disulfide bonds, and with increasing distortion from the gel’s original shape. The kinetics of relaxation from the new shape are bizarre, featuring a fluctuation back toward and even beyond the original distortion before equilibrium is finally achieved. In Sec. V, we offer an explanation for the distortion dependence, and discuss possible causes for the behavior seen in the other sets of data. These or similar gels may one day allow the creation of gels in shapes that are difficult to mold, and may also find use in situations where the desired shape is not yet known at the time of polymerization, but may be applied at any later time.

ACKNOWLEDGMENTS

We thank Felice Frankel for the photography in Fig. 1.

This work was supported by the National Science Foundation (DMR-9616791).