University of South Carolina Scholar Commons

Faculty Publications

Electrical Engineering, Department of

2-17-1986

Evidence for Amphoteric Behavior of Ru on CdTe Surfaces

D. N. Bose

S. Basu

K. C. Mandal University of South Carolina - Columbia, mandalk@engr.sc.edu

D. Mazumdar

Follow this and additional works at: https://scholarcommons.sc.edu/elct_facpub Part of the Electronic Devices and Semiconductor Manufacturing Commons

Publication Info

Published in Applied Physics Letters, Volume 48, Issue 7, 1986, pages 472-474.

This Article is brought to you by the Electrical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.

Evidence for amphoteric behavior of Ru on CdTe surfaces

D. N. Bose, S. Basu, K. C. Mandal, and D. Mazumdar

Citation: Applied Physics Letters **48**, 472 (1986); doi: 10.1063/1.96534 View online: http://dx.doi.org/10.1063/1.96534 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/48/7?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Amphoteric behavior of arsenic in HgCdTe Appl. Phys. Lett. **74**, 685 (1999); 10.1063/1.122987

Nanoscale surface clustering on CdTe epilayers Appl. Phys. Lett. **73**, 2974 (1998); 10.1063/1.122648

Oxygen on the (100) CdTe surface J. Appl. Phys. **73**, 7385 (1993); 10.1063/1.354096

Surface sublimation of zinc blende CdTe Appl. Phys. Lett. **62**, 1510 (1993); 10.1063/1.108623

Photoplastic Behavior of CdTe J. Appl. Phys. **43**, 2529 (1972); 10.1063/1.1661555

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 129.252.69.176 On: Thu, 19 Feb 2015 19:00:39

Evidence for amphoteric behavior of Ru on CdTe surfaces

D. N. Bose, S. Basu, K. C. Mandal, and D. Mazumdar Semiconductor Division, Materials Science Centre, Indian Institute of Technology, Kharagpur-721 302, India

(Received 9 May 1985; accepted for publication 13 December 1985)

Modification of large grain p-CdTe by Ru is shown to reduce the sub-band-gap response and increase minority-carrier diffusion length from 0.67 to $0.92 \,\mu$ m. Contact potential difference (CPD) measurements on n- and p-CdTe show shifts in surface Fermi level in opposite directions corresponding to increase in barrier height in each case. The amphoteric nature of Ru on CdTe surfaces depending on conductivity type is thus inferred. The magnitudes of the changes in CPD are approximately equal to the increase of open circuit voltage V_{oc} observed in photoelectro-chemical cells.

Surface modification of semiconductors has been shown to be a powerful technique for improving the properties of photoelectrochemical (PEC) solar cells.¹ While most of these investigations involved III-V compounds, Mandal *et* $al.^2$ have shown its application to PEC solar cells using large grain CdTe. In this case, along with increased open circuit voltage V_{oc} and fill factor, an improvement in short circuit current density J_{sc} was obtained.

In the present letter we report investigation of the surface properties of CdTe that are responsible for the observed behavior. Spectral response studies using a monochromator demonstrate a reduction of states within the band gap which is supported by broadband sub-band-gap measurements. Electron diffusion length in p-CdTe was also found to increase from 0.67 to 0.92 μ m due to reduction of surface recombination velocity. Finally contact potential difference (CPD) measurements using the Kelvin probe technique have demonstrated for the first time changes in surface Fermi level that were in good agreement with the changes in open circuit voltage for both p- and n-CdTe. Further, the changes due to Ru modification for each type were in opposite directions, as required for increased band bending, showing that Ru ions had opposite effective charge in the two cases, i.e., positively charged on *p*-CdTe and negatively charged on n-CdTe.

The experiments were conducted on Bridgman-grown large grain CdTe (grain size 2-3 mm) with resistivities of 28 Ω cm for P-doped *p*-type and 8.7 Ω cm In-doped *n*-type material. Hall effect measurements gave majority-carrier concentrations of 1.25×10^{16} and 7.8×10^{15} cm⁻³ and mobilities of 18 and 428 cm²/V s, respectively. Photoelectrochemical experiments were conducted in $Sn^{2+/4+}$ redox in 0.1 M HC1 (pH = 1.2) for p-CdTe and Te²⁻/Te²⁻₂ redox in 5 M NaOH (pH = 12.0) for *n*-CdTe in which stable operation has been reported.³ Samples approximately 0.3×0.4 cm² in area were first etched in conc. H₂SO₄:K₂Cr₂O₇ (satd. soln.) in 3:7 ratio and washed in 0.1 M Na₂S₂O₈ solution. Prior to modification samples were etched by 8 M conc. HC1 to obtain a black matte surface and then immersed in 0.01 M RuC1₃, 3 H₂O in 0.1 M HNO₃ solution for 1–14 h. Samples were lightly washed in triple distilled water before use.

The spectral response of p-CdTe PEC cell determined before and after modification using a monochromator indicated a substantial reduction in photoresponse at energies below the band gap of 1.48 eV as shown in Fig. 1. The response at shorter wavelengths is also considerably improved indicative of reduction of effective surface recombination velocity as discussed later. Evidence of removal of interface states in the band gap was also obtained using broadband tungsten-halogen illumination and single crystal GaAs and InP filters by a method described earlier.⁴ The signal was detected using a PAR chopper and lock-in amplifier. Table I shows the response after different surface treatments.

It is seen that there is an increase in response on matte etching followed by a substantial decrease on Ru modification. While the polished surface appears to have large response for photon energies near the band edge, the matte surface is characterized by large photoresponse below the absorption edge of both filters. This is discussed later in connection with the CPD measurements.

The minority-carrier diffusion length L_n in p-CdTe was measured in the electrolyte using the equation $1/\eta = 1/\eta$

FIG. 1. Normalized spectral response in the current mode of *p*-CdTe photoelectrode in $Sn^{2+7/4+}$ redox in 0.1 M HC1 (*p*H = 1.2) before and after Ru modification.

TABLE I. Sub-band-gap response on p-CdTe.

Surface treatment	Sub-band response GaAs filter $(E_g = 1.43 \text{ eV})$	$(\times 10^{-6} \text{ V})$ InP filter $(E_g = 1.34 \text{ eV})$
Polished and etched	45	15
Matte etched	61	42
Ru modified	12	3
6 h AM1 illumination	11	2

 $(\alpha L_n + 1)$. Monochromatic radiation was incident on the sample, the source intensity being calibrated using a Si *p-i-n* diode. The optical absorption coefficient of the specimen, determined using a Beckman spectrophotometer, was in good agreement with the literature in the range 0.50–0.83 μ m.⁵ Plotting the quantum efficiency $1/\eta$ vs $1/\alpha$ (Fig. 2), the diffusion length could be determined from the slope of the curve. L_n was thus found to increase from 0.67 to 0.92 μ m on modification. It can be shown that the change in depletion layer width W_d on modification is small, from 0.29 to 0.31 μ m and hence the change in L_n is not merely due to increased band bending.

Jastrzebski *et al.*⁶ have shown that in the presence of surface recombination the effective diffusion length is reduced from the bulk value L_0 to L_{eff} , where

$$L_{\text{eff}}^{2} = L_{0}^{2} \left(1 - \frac{s}{s+1} \right) \exp \left(-\frac{Z}{L_{0}} \right)$$

and s = reduced surface recombination velocity SL_0/D , with D the diffusion coefficient. Considering excitation at the surface, i.e., Z = 0, it is found that for $L_0 = 1 \ \mu m$ the observed increase in L_{eff} corresponds to a decrease in S from 1.8×10^5 to 0.35×10^5 cm/s.

Since Aspnes⁷ had suggested that surface modification may also cause a shift in surface Fermi level, CPD measurements were carried out using the Kelvin vibrating probe

FIG. 2. Plot of inverse quantum efficiency (η^{-1}) vs inverse absorption coefficient (α^{-1}) . The L_n values are calculated from the slope of the plots. (O) 0.67 μ m; (\bullet) 0.92 μ m.

TABLE II. CPD measurements on *n*- and *p*-CdTe.

Surface condition	p-CdTe		n-CdTe	
	V _{CPD}	V_{∞}	V _{CPD}	V_{∞}
Polished and etched	- 0.50 V	0.65 V	- 0.20 V	0.36 V
Matte etched	- 0.35 V	• • •	+ 0.20 V	
Ru modified	- 0.70 V	0.86 V	+ 0.28 V	0.76 V

technique. Experiments were conducted in a nitrogen ambient using a gold reference electrode vibrated at 100 Hz. A lock-in amplifier was used for signal detection while the voltage null was measured using a Keithley 510B DMM. Measurements on several specimens were reproducible to within \pm 15 mV. Table II gives the changes in CPD after different surface treatments.

It is observed that on matte etching the CPD becomes more positive for both *n*- and *p*-CdTe indicating that the bands bend up due to creation of acceptorlike states at the surface. This is similar to usual observations on ground or damaged surfaces of elemental semiconductors. Thereafter the effect of Ru modification causes the CPD to change in opposite direction for the two cases, i.e., bands bend down at the surface for *p* type and bend up for *n*-CdTe. Thus the barrier heights are increased in both cases, the changes being -0.20 V for *p*-CdTe and +0.48 eV for *n*-CdTe. Also shown in Table II are the values of open circuit voltages $V_{\rm oc}$ under AM1 illumination when these electrodes are used in PEC solar cells. It is seen that the increases in $V_{\rm oc}$ in the two cases are 0.21 V and 0.40 eV, in fairly good agreement with the changes in $V_{\rm CPD}$.

The shift in surface Fermi level and increase in V_{∞} on modification can be attributed to additional surface charge which is positive for p-CdTe and negative for n-CdTe. From the observed changes in V_{∞} , using the theory of Kingston and Neustadter,⁸ the density of surface charge can be calculated to be $+3.4 \times 10^{15}$ /cm² for *p*-CdTe and -1.6×10^{15} / cm^2 for *n*-CdTe. Our calculated value is supported by recent XPS measurements9 which demonstrate a fairly high concentration of Ru atoms. A change in the surface stoichiometry (Cd:Te) ratio on modification and formation of a stable Te-rich oxide layer was also observed, the latter being expected to contain the additional surface charge. The presence of the oxide layer may account for the much improved stability, the decrease in photocurrent density after modification being found to be only 4.7% in 130 h compared with 89% over the same period prior to modification. In conclusion, it is shown that the effect of Ru surface modification of CdTe is a change in the surface Fermi level as determined from CPD measurements which is opposite in direction for n- and p-CdTe. The excess surface charge causes an increase in band bending increasing the $V_{\rm oc}$ in PEC solar cells. The growth of a passivating oxide layer helps to reduce the interface state density and the surface recombination velocity leading to an increase in effective diffusion length.

¹B. A. Parkinson, A. Heller, and B. Miller, J. Electrochem. Soc. **126**, 954 (1979).

 $^2K.\ C.$ Mandal, S. Basu, and D. N. Bose, Solar Cells (in press).

- ³A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Am. Chem. Soc. 98, 6418 (1976).
- ⁴D. N. Bose, Y. Ramprakash, and S. Basu, J. Electrochem. Soc. 131, 850 (1984).
- ⁵H. M. Brown and D. E. Brodie, Can. J. Phys. 50, 2502 (1972).
- ⁶L. Jastrzebski, J. Logowski, and H. C. Gatos, Appl. Phys. Lett. 27, 537 (1975).
- ⁷D. E. Aspnes, Surf. Sci. **132**, 406 (1983).
- ⁸R. H. Kingston and S. F. Neustadter, J. Appl. Phys. 26, 6, 718 (1955).
- ^oD. N. Bose, M. S. Hegde, S. Basu, and K. C. Mandal, Proc. 18th IEEE
- Photovoltaic Specialists Conference, Las Vegas 1985.