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There has been increasing interest in electrochemical capaci-
tors1-5 as energy storage systems because of their high power densi-
ty and long cycle life, compared to battery devices. According to the
mechanism of energy storage, there are two types of electrochemical
capacitors. One type is based on double layer (dl) formation due to
charge separation, and the other type is based on a faradaic process
due to redox reactions. These dl devices are referred to as electro-
chemical dl capacitors (EDLCs), and faradaic devices are called
pseudocapacitors. Depending on the origin of the interaction be-
tween the electrode and electrolyte, the associated capacitance is
usually in the range of tens (for dl capacitors) to hundreds (for pseu-
docapacitors) of mF per cm2 of interfacial area.

Carbon materials, such as activated carbons,6,7 carbon fibers,8

and carbon aerogels,9 are widely used for dl capacitors because of
their high surface area. The specific capacitance of these kinds of
carbon materials typically ranges from 40 to 160 F/g (single elec-
trode). On the other hand, comparatively lower surface area transi-
tion metal oxides, such as amorphous hydrous ruthenium oxide,
RuO2?H2O, 10 have been studied for pseudocapacitors. A remarkable
specific capacitance of 760 F/g (single electrode) was achieved for
this material made by the sol-gel technique. Moreover, a recent mod-
eling study has shown that electrode materials possessing both dou-
ble layer and reversible redox processes can enhance the energy den-
sity of a device.11

The dl mechanism of energy storage is strictly a surface phe-
nomenon, with higher active surface areas giving rise to higher spe-
cific capacitances. In contrast, the faradaic mechanism of energy
storage is not limited to surface reactions; bulk reactions are also
possible and contribute to energy storage in these kinds of materi-
als.10 However, proton diffusion into the bulk of the material, an in-
herently slow transport mechanism, would likely limit the power of
such a device and thus the utilization of the material. It would be
advantageous to disperse a relatively low surface area, redox-active
transition metal oxide such as RuO2?xH2O throughout a high surface
area, double layer support such as activated carbon. The resulting
small particle size of the RuO2?xH2O would increase the redox-
active surface area of the material, giving rise to higher-power
devices and more utilization of this expensive transition metal oxide.
The sol-gel technique is well suited for making this kind of materi-
al, because it readily allows for control of the texture, composition,
homogeneity, and structural properties of the resulting materials.12

Recently, Miller et al. prepared an electrode material for superca-

pacitors, with ruthenium nanoparticles deposited via chemical vapor
deposition within the pore of a carbon aerogel.13 They achieved a
specific capacitance of 206 F/g (single electrode) for an areogel con-
taining 35 wt % ruthenium.

The objective of this work is to present an alternative method for
making high surface area carbon-ruthenium xerogel composites for
use as supercapacitors. This new method is based on a sol-gel route for
making high surface area carbon xerogels from carbonized resorcinol-
formaldehyde (R-F) resins.14 Physical properties of these unique xero-
gel composites, such as surface area, pore volume, crystallinity, and
surface morphology, are reported along with their performance as
electrochemical capacitors utilizing both dl and faradaic processes.

Experimental

The synthesis procedure presented below for making carbon-
ruthenium xerogels was based on similar procedures that have been
used for making carbon aerogels9 and carbon xerogels.14 Reagent-
grade resorcinol (98%, Aldrich), formaldehyde (37% in water, Ald-
rich), sodium carbonate (GR, EM Science, Germany), acetone (ACS,
99.5%, Alfa), and RuO2?xH2O (Ru 55.29%, Alfa) were used as re-
ceived. Briefly, solutions containing 20 wt/vol % solids were pre-
pared, in which the R-F mole ratio (R/F) was fixed at 1:2. Sodium car-
bonate was used as a catalyst and the resorcinol/sodium carbonate
mole ratio (R/C) was fixed at 50. The RuO2?xH2O/resorcinol mole
ratio (Ru/R) was varied to make carbon-ruthenium xerogels with dif-
ferent Ru loadings. RuO2?xH2O was added as a powder prior to the
partial polymerization of R-F to a sol state, and its addition slightly
decreased the pH of the initial R-F solution from 7.5 (Ru/R 5 0) to
6.9 (Ru/R 5 0.1). The solutions were sealed in a glass bottle and mag-
netically stirred at room temperature until gelation occurred, and then
the gels were placed in an oven (85 6 38C) for curing for 1 week. The
resultant gels were opaque instead of the characteristic deep red color
of unmodified R-F gels.9 After curing, the gels were washed with ace-
tone for three days. Fresh solvent was replaced daily after vacuum fil-
tration. Then the washed gels were dried under N2 in a tube furnace.
Using a heating rate of 0.58C/min, the furnace was heated to 658C and
held at that temperature for 5 h; it was then heated to 1108C and held
there for another 5 h. Finally, the carbon-ruthenium xerogels were
formed by pyrolysis of the dried gels at 7508C in a N2 atmosphere for
3 h with both heating and cooling rates set at 58C/min.

The surface areas and pore volumes of the carbon-ruthenium
xerogels were measured using a Micromeritics Pulse Chemisorb
2700 analyzer. Transmission electron micrographs were recorded
with a Hitachi H-8000 transmission electron microscope (TEM), and
X-ray diffraction (XRD) patterns were collected using a Rigaku-D-
max B diffractometer equipped with a Cu source. Electrochemical
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measurements were carried out at room temperature using an EG&G
273A potentiostat.

A three-electrode test system was used to make the electrochemi-
cal measurements. The working electrode, containing about 1 to 2 mg
of active material and 5 wt % Teflon as binder, was hand-pressed into
a disk with a diameter of 0.75 cm and thickness of about 50 mm. The
disk was then pressed between two pieces of platinum gauze at 3
tons/cm2 with a hydraulic press and held there for 10 min. A saturat-
ed calomel electrode (SCE) was used as the reference electrode, a
piece of platinum gauze (large, relative to the working electrode) was
used as the counter electrode, and a solution of 30 wt % H2SO4 was
used as the electrolyte. Galvanostatic charge/discharge was per-
formed between 0 and 1 V (vs. SCE) by varying the current density
(0.1 to 50 mA/mg), and cyclic voltammetry (CV) was carried out be-
tween 0 and 1 V (vs. SCE) with a sweep rate of 5 mV/s. The electro-
chemical measurements were conducted at room temperature. 

The specific capacitances of the single electrode were calculated
from the galvanostatic discharge using the following equation

[1]

where C is the specific capacitance, i is the total current, td is the dis-
charge time, DVCC is the potential drop during constant current dis-
charge, and m is the mass of the active material. For comparison, the
specific capacitances were also calculated from the cathodic part of
the CV results using the following equation

[2]

where ic is the cathodic current, t is the time, t1 is the time when V 5
0.9 V, t2 is the time when V 5 0.1 V, and DVCV is the potential dif-
ference (0.8 V). The specific energy and power of the single elec-
trode were also calculated from the galvanostatic discharge results
using the following equations

[3]

[4]

where the average potential, Vw, is given by

[5]

Results
Different carbon-ruthenium xerogels were made by varying the

Ru/R mole ratio in the initial R-F solution between 0 and 0.1
(Ru/R 5 0.1 is equivalent to 14 wt % Ru in the resultant carbon-
ruthenium xerogel). It is noteworthy that gelation did not occur
above Ru/R 5 0.1. Figure 1 shows the effect of the Ru content on
the surface area and pore volume of the carbon-ruthenium xerogels.
The surface area was 563 m2/g for the pure carbon xerogel (Ru/R 5
0). It then dropped sharply to 520 m2/g with an increase of Ru/R
from 0 to 0.01. With an increase of Ru/R up to 0.1, the surface area
decreased more slowly and almost linearly to 475 m2/g. In contrast,
the pore volume increased significantly and linearly from 0.23 to
0.59 cm3/g with an increase of Ru/R from 0 to 0.1.

The effect of Ru content on the crystalline structure of fresh car-
bon-ruthenium xerogels is shown in Fig. 2A. The XRD patterns for
the pure carbon xerogel exhibited two broad humps at 2u 5 22 and
438, which corresponded to a typical microcrystalline carbon struc-
ture. As the Ru content increased, however, the carbon humps
decreased gradually and almost disappeared for the carbon-rutheni-
um xerogel with Ru/R 5 0.1. The XRD patterns for the carbon-
ruthenium xerogels also showed characteristic peaks of Ru metal at
2u 5 38.4, 42.2, 44.0, 58.3, and 69.58, and the intensities of these
peaks increased with increasing Ru content. Figure 2B displays
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XRD patterns for different Ru materials. The as-received
RuO2?xH2O, which was used for making the carbon-ruthenium xero-
gels in the initial solution, was essentially amorphous. For the car-
bon-ruthenium xerogel with Ru/R 5 0.1, the XRD patterns for fresh
xerogel, and that after 2000 CV cycles, both exhibited peaks that are
characteristic of Ru metal, but the intensities of the peaks decreased
by about 80% after CV cycling. In addition, the XRD pattern of
RuO2, which was made by calcining the as-received RuO2?xH2O at

Figure 1. Effect of Ru content on the surface area and pore volume of the car-
bon-ruthenium xerogels. 

Figure 2. (A) XRD patterns of carbon-ruthenium xerogels with different Ru
loadings; and (B) comparison of XRD patterns of carbon-ruthenium xerogels
(Ru/R 5 0.1) before and after 2000 CV cycles, as-received RuO2?xH2O, and
RuO2 (i.e., calcined RuO2?xH2O at 4008C in air for 3 h).
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4008C in air for 3 h, indicated that both the fresh and CV cycled car-
bon-ruthenium xerogels did not contain any crystalline RuO2. 

The surface morphology of the carbon-ruthenium xerogels was
studied with TEM; the TEM micrographs are shown in Fig. 3A to C.
The pure carbon xerogel (Fig. 3A) exhibited a very fine pore struc-
ture. In contrast, the xerogel with Ru/R 5 0.01 (Fig. 3B) had black
spots dispersed randomly in the carbon matrix that ranged from 10
to 30 nm in diam. These spots were identified as metallic Ru nano-

particles. The xerogel with Ru/R 5 0.1 (Fig. 3C), as expected,
showed a higher population of ruthenium particles with sizes similar
to those in Fig. 3B. For comparison, a TEM micrograph of the as-re-
ceived RuO2?xH2O is shown in Fig. 3D; particle sizes for this mate-
rial ranged from 50 to 100 nm in diam.

CV and galvanostatic techniques were used to determine the
electrochemical properties of the carbon-ruthenium xerogels and
also the as-received RuO2?xH2O. Figure 4A shows CVs of the car-

Figure 3. TEM images: (A) pure carbon xerogel; (B) carbon-Ru xerogel with Ru/R 5 0.01; (C) carbon-Ru xerogel with Ru/R 5 0.1; and (D) as-received
RuO2?xH2O.

Figure 4. CVs of Ru-carbon xerogels with different Ru loadings; and (B) comparison of CVs for the carbon-ruthenium xerogel with Ru/R 5 0.1 and as-received
RuO2?xH2O. In all cases, the scan rate was 5 mV/s.
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bon-ruthenium xerogels as a function of the Ru content. The con-
stant current observed with variation in potential was characteristic
of capacitive behavior. The CV curve also exhibited ideal pseudoca-
pacitive behavior between the hydrogen and oxygen evolution reac-
tions. The current increased with an increase in the Ru content, indi-
cating a higher capacitance for xerogels with a higher Ru content.
Figure 4B presents CVs for the carbon-ruthenium xerogel with Ru/R
5 0.1 and the as-received RuO2?xH2O. The as-received RuO2?xH2O
had a much higher capacitance than the carbon-ruthenium xerogel.
In addition, the shapes of their respective voltammograms were dif-
ferent. The carbon-ruthenium xerogel behaved more like a capacitor
material and exhibited a relatively flat current response over a broad
potential range. In contrast, RuO2?xH2O behaved more like a redox
material with distinguishable broad peaks. The electrochemical sta-
bility of the carbon-ruthenium xerogel with Ru/R 5 0.1 was studied
using CV; the results are shown in Fig. 5. Essentially, no change was
observed between the initial cycle and after 2000 cycles, indicating
that the electrode was very stable and that much of the Ru metal in
the carbonized material was converted to an electrochemically active
form during the first cycle.

Figure 6A shows constant-current discharge profiles of the car-
bon-ruthenium xerogels at a current density of 1 mA/mg. The pro-
files were similarly shaped for all of the carbon-ruthenium xerogels;
however, the discharge time for the potential change from 1 to 0 V
increased with an increase in Ru content, indicating that the capaci-
tance increased with increasing Ru content. The initial potential
drops observed in Fig. 6A were caused by non-uniform current dis-
tributions as a result of ohmic and pore resistances.11,15 Figure 6B
presents constant-current discharge profiles of the carbon-ruthenium
xerogel with Ru/R 5 0.1 and the as-received RuO2?xH2O, both at a
current density of 1 mA/mg. The corresponding capacitances were
232 and 675 F/g, respectively. It was interesting that the essentially
faradaic electrode (RuO2?xH2O) did not exhibit the initial drop in
potential, which was more characteristic of a battery discharged at
high current densities. Figure 7 shows the effect of Ru content on the
capacitance of the carbon-ruthenium xerogels, measured by con-
stant-current discharge at a current density of 1 mA/mg and by CV
at a sweep rate of 5 mV/s. As shown in Fig. 7, the capacitance
obtained by constant-current discharge was always about 10 to 15%
higher than that obtained by CV. Because the transition discharge
time was easier to determine and thus more accurate than the total
cathodic or anodic charge from the CV, any capacitance referred to
below is based on the constant-current discharge method unless stat-
ed otherwise. The capacitance was about 120 F/g for pure carbon
xerogel, and it increased with an increase in Ru content and reached
232 F/g for the xerogel with Ru/R 5 0.1.

During galvanostatic experiments, the capacitance of the carbon-
ruthenium xerogels also varied with current density. The results for

the carbon-ruthenium xerogel with Ru/R 5 0.1 and the pure carbon
xerogel are shown in Fig. 8A. The capacitance decreased almost lin-
early with an increase in the log of the current density in both cases.
For the carbon-ruthenium xerogel, a capacitance as high as 256 F/g
was obtained at a current density of 0.1 mA/mg; however, it dropped

Figure 5. Stability of the carbon-ruthenium xerogel with Ru/R 5 0.1, meas-
ured at a scan rate of 5 mV/s.

Figure 6. (A) Constant current discharge profiles of carbon-ruthenium xero-
gels with different Ru loadings; and (B) comparison of constant current dis-
charge profiles for the carbon-ruthenium xerogel with Ru/R 5 0.1 and as-
received RuO2?xH2O. In all cases, the current density was 1 mA/mg. 

Figure 7. Effect of Ru content on the capacitance of the carbon-ruthenium
xerogels, measured by constant current discharge at a current density of
1 mA/mg and by CV at a sweep rate of 5 mV/s. 
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to about 184 F/g at a current density of 50 mA/mg. For the pure car-
bon xerogel, the capacitances were 142 and 34 F/g at current densi-
ties of 0.1 and 50 mA/mg, respectively. A Ragone plot for the single
electrode containing the carbon-ruthenium xerogel with Ru/R 5 0.1
is presented in Fig. 8B. The energy density remained constant at
about 30 Wh/kg up to a power density of 1000 W/kg, then the ener-
gy density began to drop off at higher power densities. It is note-
worthy that these are average power densities, not peak power den-
sities; and that the per kilogram basis includes only the mass of the
electrode material.

Discussion
High surface area carbon-ruthenium xerogels were made with the

sol-gel technique, and their pore structure was measured in terms of
surface area and total pore volume (Fig. 1). The surface area of the
carbon-ruthenium xerogels decreased with an increase in Ru con-
tent; however, the pore volume increased with an increase in Ru con-
tent. A decreasing surface area with an increasing pore volume is in-
dicative of the presense of larger pores with an increase in Ru con-
tent, which implies less shrinkage of the gel structure with an in-
crease in Ru content. Less shrinkage of the gel structure may have
also been caused by the slight decrease in pH of the initial R-F solu-
tion that occurred after addition of the RuO2?xH2O. This decrease in
pH may have enhanced the condensation reaction14 of the R-F sys-
tem, thereby leading to a more cross-linked R-F resin and hence,
larger pores.

The XRD patterns in Fig. 2A revealed that the ruthenium in the
carbon xerogels was in the form of metal dispersed throughout the
carbon matrix, even though it was added as an oxide (RuO2?xH2O)

to the initial R-F solution. The ruthenium metal likely formed during
carbonization according to the following reaction, because carbon is
a good reductant at high temperatures

RuO2?xH2O 1 2C 5 Ru 1 2CO 1 xH2O [6] 

Nevertheless, after one charge/discharge cycle, the majority of the
ruthenium metal inside the carbon matrix was converted into a
hydrous oxide form similar to the as-received RuO2?xH2O. This
hydrous oxide was electrochemically active and gave rise to the
higher capacitances observed with the carbon xerogels containing
ruthenium as shown in Fig. 7. This explanation is consistent with the
XRD patterns shown in Fig. 2B. Birss et al.16 studied the formation
of oxide films on Ru metal electrodes. They found that after
charge/discharge between 0 and 1.4 V (vs. saturated hydrogen elec-
trode, SHE), a hydrous ruthenium oxide film formed on the Ru metal
surface and its thickness increased with cycling. This oxide film was
also not reducible to metal in the positive potential range. The results
presented here are consistent with their finding16 in that the Ru metal
nanoparticles were converted to a very stable form of hydrous ruthe-
nium oxide after charge/discharge.

The TEM results indicated that the ruthenium particles in the car-
bon-ruthenium xerogels, ranging between 10 and 30 nm, were small-
er than those in the as-received RuO2?xH2O, which ranged between
50 and 100 nm (Fig. 3). There are two plausible reasons for this dif-
ference. First, Fig. 3D shows that the RuO2?xH2O particles were com-
prised of aggregates of smaller particles in the range of 30 to 70 nm.
These aggregates most likely broke up into individual particles in the
initial R-F solution, especially because RuO2?xH2O is slightly soluble
in aqueous solutions. Second, the ruthenium particles in the carbon
xerogels were metallic and formed according to Eq. 6. These consec-
utive events of aggregate breakup, followed by dispersion in the car-
bon matrix and subsequent dehydration and reduction to ruthenium
metal likely gave rise to the smaller metallic ruthenium nanoparticles
of about 10 to 30 nm in diam. These metallic particles also converted
into an electrochemically active form after CV cycling, as explained
above. Note that the particle size after cycling was not investigated,
because it was very difficult to recover the active electrode material
from the cell after cycling. 

The electrochemical studies also showed that these carbon-ruthe-
nium xerogels utilized both the dl capacitance associated with the
high surface area carbon xerogel and the pseudocapacitance associ-
ated with the ruthenium redox reactions. For example, the capaci-
tance increased with an increase in Ru content (Fig. 7) from 120 F/g
for the pure carbon to 232 F/g for the xerogel with Ru/R 5 0.1. This
result was clearly due to the pseudocapacitance associated with the
ruthenium inside the carbon matrix. The results in Fig. 8 show that
at a current density of 0.1 mA/mg, the capacitances were 256 and
142 F/g for the carbon-ruthenium xerogel with Ru/R 5 0.1 and pure
carbon xerogel, respectively. Becasue there was 0.14 g of Ru in 1 g
of the carbon-ruthenium xerogel (i.e., with Ru/R 5 0.1), the capaci-
tance from the ruthenium redox reaction was approximately 956 F/g
of Ru after subtracting the carbon contribution, based on the ruthe-
nium-free carbon xerogel (i.e., with Ru/R 5 0.0). Also, assuming a
two-electron transfer for Eq. 7, the theoretical capacitance for the
ruthenium redox reaction was 1907 F/g of Ru. Therefore, the ruthe-
nium utilization was about 50% for the carbon-ruthenium xerogel
with Ru/R 5 0.1 at a current density of 0.1 mA/mg. Actually, the
ruthenium utilization was probably somewhat higher than 50%
because d was actually a little less than 2, and also according to the
surface area and pore volume results. The surface area and pore vol-
ume decreased and increased, respectively, with an increase in Ru
content (Fig. 1). Therefore, the dl capacitance alone probably de-
creased slightly compared to the pure carbon xerogel, which sug-
gests even more electrochemical activity for the ruthenium inside the
carbon matrix.

The charge storage mechanism for the reversible ruthenium redox
reaction has been explained in terms of a proton-electron reaction
mechanism in which ruthenium oxide and RuO2?xH2O can be reduced
and oxidized reversibly through electrochemical protonation17,18

Figure 8. (A) Effect of current density on the capacitance of the carbon-
ruthenium xerogel with Ru/R50.1 and the pure carbon xerogel; and (B)
Ragone plot for the single electrode containing the carbon-ruthenium xerogel
with Ru/R 5 0.1. 
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RuO2 1 dH1 1 de2 } RuO22d(OH)d 0 # d # 2 [7]

This reversible redox reaction gives rise to the broad anodic and
cathodic peaks in the CV curves for the samples containing rutheni-
um, as shown in Fig. 4. The ruthenium valence state changes from
Ru21(OH)2 at about 0 V (vs. SHE) to Ru41O2 at about 1.4 V (vs.
SHE) upon complete oxidation, with proton diffusion within the
bulk of the material being the rate-determining step for the faradaic
reaction. In this study, the maximum charge potential was up to 1 V
(vs. SCE), which is 0.16 V lower than 1.4 V (vs. SHE). As a result,
no crystalline ruthenium oxide formed during charge/discharge and
again, d was probably less than 2. 

Figure 8A also shows that carbon-ruthenium xerogel with
Ru/R 5 0.1 consistently exhibited a much higher capacitance over a
very broad range of currents compared to the pure carbon xerogel.
The decrease in the capacitance that was exhibited by both materials
with increased current was also less pronounced for the carbon-
ruthenium xerogel with Ru/R 5 0.1. This last result is also reflected
in Fig. 8B, which shows that the carbon-ruthenium xerogel with
Ru/R 5 0.1 maintained an energy density of approximately
30 Wh/kg up to a power density of 1000 W/kg. The capacitance of a
pure carbon xerogel is linked directly to its specific surface area.
However, increasing the surface area above that corresponding to the
formation of micropores less than about 0.5 nm in diam does not
necessarily result in a corresponding increase in capacitance,
because pores in this size range remain inaccessible to the elec-
trolyte and thus do not form a dl.19 Consequently, there is a limit to
the energy and power densities that can be obtained from any car-
bonaceous materials. As shown in Fig. 8A and B, however, it is pos-
sible to further increase the energy density of a material, beyond that
which is possible based solely on a dl mechanism, by utilizing a
faradaically active material such as RuO2?xH2O. Thus, the clear
advantage of this kind of carbon-ruthenium xerogel material is that
it utilizes both the faradaic capacitance of the metal oxide and the dl
capacitance of the carbon. Also, the results in Fig. 8 tend to suggest
that the ability of the carbon-ruthenium xerogel with Ru/R 5 0.1 to
sustain a high energy density over a broad range of power density is
due to the faradaic contributions arising from the ruthenium. Similar
trends have been reported recently based on a modeling study of a
capacitor with dl and faradaic processes.11

Conclusions
Sol-gel derived high surface area carbon-ruthenium xerogels

were prepared from R-F resins containing RuO2?xH2O. Carboniza-
tion at 7508C in nitrogen converted the resin into a conductive car-
bon xerogel and the RuO2?xH2O into metallic ruthenium particles 10

to 30 nm in diam that were subsequently oxidized to an electro-
chemically active form of ruthenium oxide after one charge/dis-
charge cycle. A very high specific capacitance of 256 F/g (single
electrode) was obtained from a carbon xerogel containing 14 wt %
Ru. This corresponded to utilizing more than 50% of the ruthenium.
Moreover, about 40% of the capacitance was attributed to the for-
mation of a dl within the pores of the high surface area carbon xero-
gel support during charge/discharge, and about 60% of the capaci-
tance was attributed to the ruthenium oxide dispersed throughout the
carbon xerogel matrix undergoing reversible redox reactions during
charge/discharge. This material also showed no change in electro-
chemical capacitance after 2000 charge/discharge cycles, indicating
that the material was very stable and the redox reactions associated
with the ruthenium oxide were completely reversible. 
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