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ABSTRACT

Computational methods for de novo identification
of gene regulation elements, such as transcription
factor binding sites, have proved to be useful for
deciphering genetic regulatory networks. However,
despite the availability of a large number of algo-
rithms, their strengths and weaknesses are not
sufficiently understood. Here, we designed a com-
prehensive set of performance measures and
benchmarked five modern sequence-based motif dis-
covery algorithms using large datasets generated
from Escherichia coli RegulonDB. Factors that affect
the prediction accuracy, scalability and reliability
are characterized. It is revealed that the nucleotide
and the binding site level accuracy are very low,
while the motif level accuracy is relatively high,
which indicates that the algorithms can usually cap-
ture at least one correct motif in an input sequence.
To exploit diverse predictions from multiple runs
of one or more algorithms, a consensus ensemble
algorithm has been developed, which achieved
6–45% improvement over the base algorithms by
increasing both the sensitivity and specificity. Our
study illustrates limitations and potentials of existing
sequence-based motif discovery algorithms. Taking
advantage of the revealed potentials, several pro-
mising directions for further improvements are dis-
cussed. Since the sequence-based algorithms are
the baseline of most of the modern motif discovery
algorithms, this paper suggests substantial improve-
ments would be possible for them.

INTRODUCTION

Computational identification of transcription factor binding
sites from the upstream regions of genes has proved to be

extremely valuable in functional genomics for deciphering
the complex genetic regulatory networks (1–4). Correspond-
ingly, there have emerged a large number of computational
algorithms for identifying regulatory elements from DNA
sequences with or without additional information, which
have been classified and summarized in excellent reviews
(1,2,5–8). Systems that integrate these tools for transcription
regulation analysis are also available (9). Recently, however,
it has been realized that current motif discovery algorithms
are far from perfect. To improve the prediction accuracy,
researchers incorporated other sources of information to com-
plement the sequence information, such as phylogenetic trees
and gene expression patterns (10–14).

On the other hand, despite the availability of dozens of motif
discovery algorithms, there are few systematic comparative
benchmarking that work to independently evaluate the pre-
diction performance of existing motif discovery algorithms
(15–19). Day and McMorris (15) compared consensus
methods for motif discovery in terms of their appropriateness,
basis, conformity, consistency, rationality and robustness.
These measures are defined mostly from program users’
point of view and thus are extremely valuable to guide users
to make choice from consensus methods. However, since it is
an early work, no widely used modern algorithms are evalu-
ated. Benı́tez-Bellón et al. (20) evaluated one motif discovery
algorithm, namely, Dyad-analysis and one pattern search/
matching algorithm and suggested how to select optimal
matching threshold to achieve better prediction results.
Although the same RegulonDB datasets of the earlier stage
were used as in this paper, no systematic comparison of
multiple motif discovery algorithms has been carried out in
this research. The influence of other factors, such as sequence
number and scalability, is also not characterized. Sinha
and Tompa (17) compared their YMF (21) with two other
algorithms with synthetic data and real datasets from yeast.
Recently, 13 motif discovery algorithms have been evaluated
using a well-selected set of eukaryotic datasets (18).

The focus of this paper is to extend earlier works to pro-
karyotic datasets and to clarify the limitations and potentials
of existing motif discovery algorithms. Complementary to the
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previous benchmarking work (18) in which algorithm
developers were allowed to fine-tune the running parameters
and reported the best results, we only allow minimal
parameter-tuning during performance evaluation. Perform-
ance evaluation based only on the predictions with the highest
score has the risk of penalizing some practically effective
algorithms, since in many cases the predicted motifs with
the highest score are not the motifs with the highest accuracy
(19). Here, a predicted motif is defined as all the predicted
binding sites for an input sequence set out of one prediction
by a motif discovery algorithm. It should also be noted that
no motif-search algorithms are included in this investigation as
discussed by Benı́tez-Bellón et al. (20) and more extensively
by Osada et al. (22). Although there are iterative alternating
steps between pattern search and position-specific score matrix
(PSSM) pattern summarization, there is no clear-cut two
stages of pattern discovery and pattern search in our evaluated
algorithms as in the case of Dyad-analysis (23).

We define a set of prediction performance indexes for motif
discovery algorithms and conduct comparative evaluation of
five motif discovery algorithms in terms of their prediction
accuracy, scalability and the reliability of their significance
scores with the RegulonDB, in which the real binding site
information is available through experimental methods. We
investigated how factors such as the width of a target motif, the
number of input sequences and the information content of
target motifs may influence the prediction accuracy. Based
on these evaluations, we provide some guidelines for motif
discovery algorithm users as well as algorithm developers
for improving the prediction accuracy. Five algorithms,
namely, AlignACE (24), MEME (25), BioProspector (26),
MDScan (19) and MotifSampler (27) are evaluated. These
are the motif discovery algorithms that only use DNA
sequence information. There are several factors considered
in choosing these algorithms. First, they are widely used in
practice. Second, they are used as the base algorithms to
develop more advanced algorithms, such as PhyME (13).
Third, these algorithms are readily downloadable from Inter-
net, allowing us to do large-scale local benchmarking runs.
Since the average motif length of RegulonDB is 21, we do
not include algorithms that can only handle short motifs
(e.g. < 10 nt), such as the oligonucleotide frequency counting
method (28). Some of these algorithms turn out to be imprac-
tical due to their prohibitive demand for computational
resources (29). We also pass by the algorithms that are only
suitable for highly conserved motifs, such as some combinat-
orial or enumerative exact algorithms (12).

Our comprehensive large-scale benchmark experiments
show that the performance of popular motif algorithms
based only on DNA sequence information is still quite low,
with �15–25% accuracy at the nucleotide level and 25–35% at
the binding site level for sequences of 400 nt long. However,
surprisingly, they are capable of predicting at least one binding
site correctly in more than 90% of the time. Among the factors
that affect the prediction accuracy, the sequence length
is found to be the most critical. The performance of all
algorithms degrades significantly as the sequence length
increases. On the other hand, we find that if a certain number
of sequences are available, using more sequences does
not improve the prediction accuracy. Finally, we propose a
simple ensemble algorithm for motif discovery by combining

prediction results from multiple runs of three heuristic motif
discovery algorithms. The ensemble algorithm can improve
the prediction accuracy of their corresponding base algorithms
by up to 45% in the case of sequence sets with lengths of
100 nt. The best ensemble algorithm achieves a better per-
formance than the popular MEME algorithm by 52%. The
improvement is achieved by both increasing the specificity
and sensitivity. These results imply that we can take advantage
of many choices of basic motif discovery algorithms to
develop a strong ensemble algorithm. Results from different
algorithms or algorithm runs can be used as a cross-validation
between each other, suggesting that high consensus among
multiple runs strongly indicates that a motif is found correctly.

MATERIALS AND METHODS

Datasets

To evaluate motif discovery algorithms, it is desirable to have
diverse datasets to illuminate the effects of a variety of factors
on prediction performance. We use the binding sites (motif)
information of Escherichia coli K-12 stored in RegulonDB
(30) to generate various types of input sequence sets. Regu-
lonDB is selected based on the following considerations: it
has been used by many other researchers for benchmark
(25,27,31); it complements the latest benchmark study (18)
in which only eukaryotic datasets were used; it has also been
used by a comparative study of motif representation and motif
search algorithms (22) and an early evaluation of a motif
discovery and a motif search algorithm (20).

In this benchmarking, the test sequences are generated
using a cleaned RegulonDB as well as the gene information
and the whole genome sequence of E.coli. The raw data for
generating input sequences include the following three files:
ecoli.regulonDB (30), which stores experimentally deter-
mined binding sites information including transcription
factors, start and end positions on the genome, and location
on the forward or reverse sequence; ecoli.gene, which includes
start and end positions of genes in the genome; ecoli.genome,
which is the whole E.coli genome sequence taken from KEGG
database (32).

Binding site records in RegulonDB are organized in groups
which bind to the same transcription factor. From RegulonDB,
the following binding sites records are discarded: any record
that does not have positional information on the genome,
any duplicated record, any record that differs with other
binding site records only by a < 5 nt shift. Finally, we remove
binding site groups with only one sequence. We refer this
cleaned dataset as ECRDB70. Note that our ECRDB70 is
the source dataset from which a variety of input datasets
are generated (see below). ECRDB70 is thus different from
the input sequence datasets used in the previous benchmarking
work (18).

We generated two types of datasets (Type A and B) from
ECRDB70 (Figure 1). Type A datasets are generated from the
intergenic regions of E.coli genome. It is generated as follows:
for each known binding site of a motif group, we align it to
the E.coli genome, locating the adjacent genes to the binding
site and extracting the intergenic region to generate one input
sequence. If all the binding sites in a motif group are located in
the same intergenic region thus only one intergenic sequence
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can be extracted, that motif group was discarded. The final
screened dataset has 62 motif groups, which is termed
ECRDB62A. It has the following characteristics: the average
number of sequences per motif group: 12; the average number
of sites per sequence: 1.85; the average sequence length:
300 nt; the average site width: 22.83. Figure 2 shows the
distributions of the number of sequences per motif group
and the number of sites per sequence.

Type B datasets include sequences with symmetric margins
on both sides of known binding sites. They are generated
as follows. For each binding site of a motif group, we align
it with the E.coli genome and extend the binding site in both
directions by adding symmetric margins of a given length
along the genome. In this manner, we can define a series of
datasets with increasing margin sizes to test the scalability of
motif discovery algorithms. In some motif groups, multiple
binding sites appear in a single sequence when the margin size
is large. For instance, transcription factor XylR has binding
sites at the positions 3728472, 3728492, 3728622 and 3728642
in the genome. Thus, when the margin size is >200, all the
binding sites appear in each of the input sequences though

these sequences are different. We kept these exceptional cases
in the dataset because this case also happens in a real situation.
Each Type B dataset (ECRDB70B-X) with margin size X has
the following characteristics: there are 70 binding site groups,
each with at least two sequences; the average number of
sequences per motif group is 12 with the standard deviation
of 21; the average number of sites per sequence is 1.62; the
average site width is 21.70 with the standard deviation of
11.74. The high values of the standard deviations reflect the
diversity and variation among input sequence sets. For type B
datasets, we observe that when the margin sizes are larger (e.g.
>500 nt), some part of the sequences are located in the coding
regions. However, as to be shown in Results, no significant
influence has been observed of these variations on the pre-
diction accuracy. Type A dataset is suitable for analyzing
motif discovery for co-expressed genes while B provides a
good model for analyzing data from ChIP–chip experiments.

The ECRDB70, ECRDB62A (the intergenic dataset),
ECRDB70B-X motif datasets and the generated sequence
datasets used in our experiments are available at http://
dragon.bio.purdue.edu/pmotif/.

Algorithms tested

Five tested motif discovery algorithms are briefly described
below. We introduce the major characteristics of each algo-
rithm as well as the running parameters used in our experi-
ments. We also describe a random algorithm used to evaluate
the statistical significance of the prediction accuracy of tested
motif discovery algorithms.

Basically, most of the algorithm parameters are set as
default values or are set based on very general biological
facts rather than on the details of the RegulonDB datasets
(See Supplementary Material for the list of parameters used).
This is more realistic than the previous study (18), since
in practice expert knowledge of using a specific algorithm
is usually not available for ordinary users. Our minimal
parameter-tuning policy ensures that the algorithm per-
formance reported here is closer to that in real-world practice.
The difficulty of tuning parameters is discussed in Results.

Figure 1. Two types of generated input sequences. Target binding site position
information comes from ecoli.regulonDB, gene information from ecoli.genes,
and genome information from ecoli.genome.

Figure 2. Statistics of the ECRDB62A dataset. (a) Distribution of the number of sequences for a binding site group; (b) distribution of the number of sites per
sequence.
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AlignACE. AlignACE (24) is a stochastic motif discovery
algorithm based on the widely adopted Gibbs Sampling
method (33). Compared with the original Gibbs Sampling
method, it adds the following major features: both strands of
sequences are searched; near-optimum sampling is improved;
an iterative masking approach is used to search multiple
motifs. Running parameters for AlignACE are set as default
except that the gcback (the background GC content) is set as
0.5 and the expected motif width is set to 15 unless otherwise
specified. We have investigated the effect of the motif width
setting in Table 3.

The major statistical score used by AlignACE, the MAP
score, measures the degree to which a motif is over-represented
relative to the expected random occurrence of such a motif in
the sequence.

BioProspector. BioProspector (26) is another variant of the
Gibbs Sampling algorithm. Compared with the Lawrence ver-
sion (33), it added a Markov model estimated from all pro-
moter sequences in the genome to model adjacent nucleotide
dependency. It has 15 parameters. We use the default values
for most of these parameters except for the motif width, which
is set to 15, and the number of top motifs to report, which is set
to 5. The background frequency model is generated using the
whole E.coli genome, and the third-order Markov model is
used unless otherwise specified. The order of the Markov
model is chosen because it was the best among those tested
(see Results).

MDScan. MDScan (19) is an enumerative deterministic
greedy algorithm. It selects several top motif candidates
according to the chip-array enhancement score to build
motif models and then employs a greedy strategy to improve
the models. We used the default parameter set except for the
motif width, which is set to 15. The background frequency
model is generated using the whole E.coli genome, and the
third-order Markov model is used unless otherwise specified.
MDScan uses a maximum a posterior (MAP) score to evaluate
candidate motifs.

MEME. MEME (Multiple Expectation Maximization Estima-
tion) (25) is based on the expectation maximization (EM)
technique. With a given motif width w, MEME first decom-
poses original sequences into w-mers. Each w-mer could be a
motif or a background subsequence to be determined by the
motif and background model components. The search space
increases significantly with increasing number of sequences
and sequence lengths. It is the only algorithm in this evaluation
that does not require a motif width parameter, which can be
estimated by itself. We set the maximum dataset size in char-
acters as 1 million, maximum running time as 3600 CPU
seconds, maximal number of motifs to find as five, minimum
number of sites for each motif as one. The rest of the para-
meters are used as default. The background frequency model is
generated using the whole E.coli genome, and the third-order
Markov model is used unless otherwise specified.

MotifSampler. MotifSampler (27) is another motif discovery
algorithm based on Gibbs sampling. It extends the original
Gibbs Sampling approach in two ways. First, it introduces
a higher-order Markov background model. Second, it

incorporates a Bayesian mechanism to estimate the number
of motifs occurring in each sequence.

MotifSampler has seven major parameters. We made the
following adjustments to the default parameter values. We only
search input sequences without including its reverse comple-
ments because all known sites are aligned on the forward
direction of the input sequences. We search five different
motifs with width of 15 unless specified otherwise. The num-
ber of repeating runs is set to five. The background frequency
model is generated using the intergenic region sequences of
all E.coli genome, and the third-order Markov model is used
unless otherwise specified.

Consensus ensemble algorithm. Stochastic motif discovery
algorithms, such as AlignACE, BioProspector and Motif-
Sampler, usually obtain different predictions for different run-
ning conditions, such as parameter settings or random seeds.
However, it is observed that many such predictions tend to
cluster together, which hints that summarizing these results
may improve the prediction performance. In this section, we
propose a simple consensus ensemble algorithm (CEA) to
illustrate how ensemble algorithms could improve existing
motif discovery algorithms.

The CEA algorithm is composed of the following steps.
(i) A base motif discovery algorithm such as AlignACE
with different random seeds is run for Nr times (Nr ¼ 10 in
the current test). For each run, a predicted motif with the
highest score and one more more binding sites is collected,
thus resulting in total of motifs. (ii) For each input sequence,
all the predicted binding sites on the input sequence from
the motifs are aligned on the sequence (Figure 3). (iii) For
each position of the input sequence, the number of times
the position is included in predicted binding sites, or votes
to the position, Vi, are counted. Then, it is normalized by the
number of predicted motifs, Nr, to compute the consensus
score of the position, Vi/Nr. (iv) Positions whose consensus
score is smaller than a threshold parameter, �c, are discarded.
Consecutive highly voted positions form a candidate of a
binding site region as shown in Figure 3. But if the width
of a candidate region is shorter than the binding site width
specified by the parameter of the base algorithm (e.g. 15),
that region is discarded. Multiple candidate regions may be
generated. In case when no positions are left on the sequence
by this discarding step, the position with the highest consensus

Figure 3. A simple consensus ensemble algorithm. Top predictions from
multiple runs are aligned together to determine the boundary of the prospective
motif based on over-representation. Then, a squeezing/expansion procedure
will be applied to extract a motif prediction of a specified motif width starting
from the center of the boundary region.
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score is kept. (v) Adjustment of the binding site width for each
candidate region. Starting from the center of a candidate
region, extend 1 nt in the direction of one of its two sides
that has higher consensus score until the specified motif width
is reached. Note that CEA only generates one binding site
prediction per candidate region. Depending on the threshold,
�c, zero or more (but at most two) binding sites will be reported
from each input sequence. In Table 7, results with different
threshold values are shown. A more sophisticated ensemble
algorithm without ratio parameter has been developed and will
be reported elsewhere.

Random algorithm. To estimate the statistical significance of
the prediction accuracy, a certain number of sites are randomly
picked up as the predicted motifs. The number of sites picked
up for each input sequence is determined as follows: 10 runs of
AlignACE, BioProspector, and MotifSampler and one run of
MEME are conducted to get the minimum and the maximum
numbers of predicted sites for ith input sequence, nSiteMini

and nSiteMaxi respectively. Then, the number of sites to be
predicted for ith input sequence is randomly chosen between
[nSiteMini, nSiteMaxi]. This random algorithm is run 1000
times for an input sequence set.

Measures of prediction accuracy

There are several prediction accuracy measures for evaluating
motif discovery algorithms (13,17,19,27). Many of them are
derived from the accuracy definitions for evaluating gene
predictions (34,35). Here, we use three levels of performance
criteria: nucleotide, binding site and motif levels.

Nucleotide level accuracy. First, for each target binding site
with overlapping predicted binding sites in an input sequence,
we define the following values for calculating accuracy met-
rics at the nucleotide level (Figure 4): nTP (true positive), the
number of target binding site positions predicted as binding
site positions; nTN (true negative), the number of non-target
binding site positions predicted as non-binding site positions;
nFP (false positive), the number of non-target binding site
positions predicted as binding site positions; nFN (false neg-
ative), the number of target binding site positions predicted as
non-binding site positions.

The sensitivity over a pair of target/predicted binding sites
is defined as:

nSn ¼ nTP

nTP þ nFN
1

and specificity is defined as:

nSp ¼ nTP

nTP þ nFP
: 2

In order to capture both specificity and sensitivity in a
single accuracy measurement, we use the nucleotide level
performance coefficient (nPC) following Pevzner and Sze
(16) and Tompa et al. (18):

nPC ¼ nTP

nTP þ nFP þ nFN
3

According to this definition, the nPC value ranges over (0, 1)
with the perfect prediction being the value of 1. Compared

with the correlation coefficient (CC) (34,35), nPC has several
benefits: it is straightforward to interpret, and practically, it
also tells the experimental biologists the probable range that
the true binding sites are located around the predicted posi-
tions. We also used the F-measure or Harmonic mean (36) as
the overall accuracy measurement. Compared with geometric
or arithmetic mean, it tends to penalize more the imbalance of
sensitivity and specificity. The F-measure is defined as:

F ¼ 2 * Sn * Sp

Sn þ Sp
: 4

In the case that Sn and Sp are equal to 0, F-value is defined as 0.
In addition to accuracy scores for target binding sites with

overlapping predictions, we need to address the cases of target
binding sites which do not overlap predictions or predictions
which do not overlap with any target binding sites. Suppose
MT is the number of missing targets and MP the number of
wrong predictions. We define the number of non-overlapping
target and predicted binding site pairs as the larger number of
MT and MP. The accuracy scores of these non-overlapping
pairs are set to zero. This definition will penalize algorithms
that report either too many or too few binding site predictions.

Based on the scores defined for the binding site pairs, the
accuracy scores ofamotif discoveryalgorithmare calculated as:

1

#-motifgroupð Þ
X

motifgroup

1

#-sequencesð Þ

·
X

sequences

1

#-sitepairsð Þ
X

sitepairs

nPC or nSP or nSnð Þ 5

Figure 4. Measures of prediction accuracy at the nucleotide and motif levels.
Accuracy scores over an input sequence set are the average accuracy scores over
all its sequences. The overall accuracy scores of a motif discovery algorithm are
the average accuracy scores over all M input sequence sets.
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Thus, the score is first averaged over all binding site pairs in a
sequence, followed by averaging over all sequences in a motif
groups, then averaged over all the motif groups. Note that we
allow multiple binding sites on a sequence as target sites.

Binding site level accuracy. The binding site level accuracy
indicates whether predicted binding sites overlap with true
binding sites by one or more nucleotide position. We define,
sTP, sFP and sFN as follows: sTP, the number of predicted
binding sites which overlaps with the true binding sites by at
least 1 nt; sFP, the number of predicted binding sites which
have no overlaps with the true binding sites; sFN, the number
of true binding sites that have no overlaps with any predicted
binding sites.

For each input sequence, we define the following accuracy
metrics at the binding site level:

Performance coefficient:

sPC ¼ sTP

sTP þ sFP þ sFN
6

Sensitivity:

sSn ¼ sTP

sTP þ sFN
: 7

Specificity:

sSp ¼ sTP

sTP þ sFP
: 8

The binding site level accuracy score of an input sequence set
(e.g. ArcA) is the average of the scores over all its sequences.
The binding site level accuracy score of the entire benchmark
dataset is the average of the scores for all input sequence sets.

Sequence and motif level accuracy. To evaluate the capability
to find at least one binding site in an input sequence, we define
the sequence level success rate as the number of sequences
Ns that have at least one correctly predicted motif divided by
the total number N of sequences in an input sequence set:

sSr ¼ Ns

N
9

The overall sequence success rate of an algorithm is thus the
average of sSr over all the input sequence sets.

We introduce the motif level success rate score mSr, a
sensitivity measure, to evaluate the adaptability of an algo-
rithm to different types of motifs. is defined as the number of
target motif groups Np, which have at least one correctly pre-
dicted binding site divided by the total number of target motifs
(M ¼ 70). A prediction is regarded as correct when the pre-
dicted motif overlaps with the target motif by at least 1 nt.

mSr ¼
Np

M
: 10

Alignment of annotated binding sites in RegulonDB

We use the experimentally determined binding sites infor-
mation as the targets of prediction. Since the binding site
sequences listed in RegulonDB are collected from literature

of different experiments, initially they are not aligned to
see the consensus motif patterns. Qin et al. (37) mentioned
one such example in which by shifting the experimentally
determined binding sites, more consistent motif patterns
can be obtained. Here, we performed a systematic alignment
of motif sequences in RegulonDB. Starting from a set of
unaligned binding sites, we obtain an alignment which will
show the conservation of each residue at each position of
the binding site. Figure 5 shows an example in RegulonDB,
where the number of consensus positions increased from 2
to 15 by shifting the sequences back-and-forth. Increasing
the number of consensus positions in a motif sequence align-
ment is critical for motif searching algorithms since most of
them use a PSSM (8) to create a motif model, which is highly
sensitive to consensus patterns of aligned sequences.

To evaluate improvement of consensus patterns of aligned
motif sequences, we compare the information contents (38) of
motifs before and after the alignment operation:

Iseq ¼
XL

j¼1

XA

i¼1

f i‚ j ln
f i‚ j

pi

11

where A is the alphabet of nucleotides (A, C, G, T). L is the
length of the sequences; pi is the a priori probability of letter i,
is the frequency that letter i occurs at position j; Iseq is the
information content of the sequences.

To align a motif sequence set, first, we extend each known
binding site in a motif group Smotif in both directions by 20 nt
to create an extended sequence set Sext. Then, we apply the
multiple sequence alignment tool clustalW (39) to Sext with a
high penalty for gaps (essentially not allowing any gap in a
multiple sequence alignment), which generates a new aligned
sequence set, Sclw. To reconstruct a new motif set Salign, we
trim each sequence in the Sclw to a new sequence with length
equal to the original motif length as follows: starting from the
center position of the sequence in Sclw, we check the informa-
tion content of the nucleotides in the two columns in both
directions and extend the motifs in the direction with a higher
information content or randomly pick a direction if both

Figure 5. An example of binding site misalignment in a motif in RegulonDB.
The shaded columns are those with at least 80% dominance of a certain
nucleotide. (a) Original binding sites of motif TrpR; (b) the shifted binding
site with maximum shift of four positions to maximize the number of consensus
positions.
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directions have an equal information content. This procedure
proceeds until the total length is equal to the original motif
length. Finally, for all these aligned sequence sets, Smotif,
Sext, Sclw and Salign, we calculate their information contents
to compare the conservation level of the sequence patterns.

RESULTS

Prediction performance on ECRDB62A set

Table 1 shows the prediction performance at the nucleotide,
binding site and motif levels for the five motif discovery algo-
rithms as well as the random algorithm. The accuracy scores
of AlignACE, BioProspector, MDScan and MotifSampler are
averaged over 100 runs. The random algorithm is repeated for
1000 runs.

First, we found that at the nucleotide level, the prediction
accuracy of all algorithms is relatively low: the maximum
sensitivity, specificity and performance coefficient are only
0.259, 0.270 and 0.174, respectively. The accuracy levels
are higher than the performance scores reported previously
on eukaryotic data (18). This is due to their longer sequences
ranging from 500 to 3000 nt, while the sequence lengths
in ECRDB62A vary from 86 to 676 nt (average: 289 nt).
BioProspector achieved the highest performance coefficient
and specificity while MEME has the best sensitivity, partly
due to its capability to estimate motif lengths. We find that all
algorithms are significantly better than the random algorithm
at the nucleotide level. Comparing the nPC and nF, we also
found that both measures generate the identical ranking
orders for the algorithms’ performances. Therefore, below
only PC/Sp/Sn accuracy scores are presented.

The prediction performance at the binding site level is better
than the nucleotide level. The maximum specificity reaches
0.476 for MotifSampler and the maximum performance
coefficient reaches 0.302 for MotifSampler. These accuracy
scores are higher than what was reported before (18) because
we regard overlaps with one or more nucleotides as sufficient
to qualify as a correct prediction, while at least 4 nt overlaps
were needed in the previous work (18). The justification is that
when a predicted binding site overlaps with the true site with at
least 1 nt, it is not difficult for experimental biologists to locate
the true binding site position around the predicted anchor
position since the motif width is only 10–20 nt on average.
This higher prediction accuracy at binding sites level implies
that at least these algorithms can locate rough positions
of binding sites. At the binding site level, BioProspector
and MEME are comparable with MotifSampler in terms of
performance coefficient scores, all of which are better than
AlignACE. This means that BioProspector and MotifSampler

indeed improve the prediction performance of the simple
Gibbs Sampling method. We also found that MEME is the
best in terms of sensitivity and BioProspector best in terms of
sequence level success rate, sSr while MEME is the second.

What is unexpected is the motif level success rate mSr. We
found that the motif level success rates of all five algorithms
are >0.90, which is much higher than 0.73, the average per-
formance of 1000 runs of the random algorithm. The P-value
for the random algorithm to achieve an accuracy score
of >0.900 is 0.000015, which shows the significance of the
motif level success rate of the tested algorithms. The P-value
is calculated from 1000 runs of the random algorithm. The
maximum accuracy in the population is 0.839 with the stand-
ard deviation of 0.04. This comparison demonstrates that the
algorithms are able to reliably predict at least one correct
binding site from all motif groups. This fact could be poten-
tially exploited to improve existing algorithms. We also found
the motif level success rate, mSr, of MEME is the highest
among the five algorithms, showing that MEME can handle
more diverse input sequences.

Another interesting observation is that the prediction
accuracy of stochastic algorithms, such as AlignACE, Bio-
Prospector and MotifSampler, are very stable over multiple
runs. For the mean nPC scores of AlignACE, BioProspector
and MotifSampler, the standard deviation is < 0.01 for
100 runs. Because we did not observe a significant difference
in different runs, all forthcoming experiment results for these
three algorithms are from only one run.

It would be interesting to compare our results on prokaryotic
datasets with what reported on eukaryotic datasets (18) since
both studies evaluated AlignACE, MotifSampler and MEME
and used the statistics nPC in the evaluation. However,
note that this comparison is not straightforward because
of the following reasons. First, the previous work allowed
the developers of each algorithm to tune its parameter sets
specifically to individual input data and also human interven-
tion to the outputs as pre- and post-processing including lit-
erature survey, while we adopt the minimal parameter-tuning
principle to simulate the motif discovery situation in practice
by biologists. The level of human intervention allowed in the
previous work is not feasible for the current large benchmark
study. Second, the datasets are significantly different, which
strongly affects the prediction performance. For example, the
sequence length used in the previous work (18) varies from
500 to 3000 bp, while it varies from 86 to 676 in ECRDB62A.
This explains that even though experts tuned their algorithms
for the eukaryotic datasets, the maximum nPC score for all
three algorithms is < 0.05, which is much lower than
0.158 as reported here on ECRDB62A datasets and 0.10 on
ECRDB70B-800 whose sequence length is �1600 bp.

Table 1. Prediction accuracy on the E.coli intergenic region dataset at nucleotide, binding site and motif levels

Algorithms Nucleotide level BindingSite level Motif level
nPC nSn nSp nF sPC sSn sSp nF mSr sSr

AlignACE 0.128 0.198 0.152 0.172 0.234 0.355 0.335 0.345 0.903 0.537
BioProspector 0.174 0.205 0.270 0.233 0.294 0.424 0.374 0.397 0.952 0.642
MDScan 0.149 0.177 0.230 0.200 0.240 0.328 0.355 0.341 0.935 0.531
MEME 0.158 0.259 0.199 0.225 0.295 0.461 0.436 0.448 1.000 0.590
MotifSampler 0.153 0.179 0.237 0.204 0.302 0.331 0.476 0.390 0.919 0.524
Random 0.050 0.061 0.083 0.070 0.100 0.161 0.146 0.153 0.730 0.342
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In this study, we evaluated the accuracy of the best pre-
diction out of top five scoring predictions. This is because in
practice biologists can test five candidate motifs by experi-
ments if they know the correct sites are included in the top
five predictions with a reasonably high probability (accuracy).
But for comparison, we also reported the statistics of the
accuracy of the top-scoring motifs in Table 2.

First, it is evident that on average the top-scoring motif is not
the best prediction. For example, in the case of MotifSampler
the top-scoring motif corresponds to the best prediction in only
45% of the cases. Second, the discrepancy of the accuracy
between the best and the worst prediction is relatively larger
for AlignACE, MEME and MotifSampler, and the mean
accuracy of them are lower than the other two algorithms.
We found that this is resulted from the way these three
algorithms find the next best-scoring motifs: once the top-
scoring motif is found, its positions are masked out so that
no subsequent sites are overlapped with them. Therefore,
averaging the accuracy of the multiple top-scoring motifs is
disadvantageous for the three algorithms.

Scalability

The scalability concerns how the algorithm performance
changes with the increase of the number of sequences, the
motif width and the sequence length.

We generated eight types of datasets with different margin
sizes (extending on both sides of target motifs) of 20, 50, 100,
200, 300, 400, 500 and 800. Hence, the total sequence length is
the target motif width plus twice the margin size. Each type

has 70 motif groups with at least two sequences in a dataset.
We run the five algorithms with the same parameter settings as
in the previous section.

Figure 6 shows the prediction accuracy at the nucleotide
and binding site levels. First at the nucleotide level, the per-
formance of all the algorithms decreases significantly as the
sequence length increases (Figure 6a). When the margin size is
< 200 nt, all algorithms except for AlignACE showed a sim-

ilar performance. What is interesting is that when the margin
size becomes larger than 400 nt, BioProspector, MDScan and
MEME become the best algorithms, while MotifSampler and
AlignACE become quite ineffective. Note that AlignACE
and MotifSampler are all based on Gibbs sampling strategy
while MEME and MDScan have an enumerative component
in their search strategy. This performance discrepancy shows
that for long input sequences, Gibbs sampling strategy tends to
become too inefficient to identify the binding sites correctly.

At the binding site level, BioProspector, MDScan and
MEME are the best algorithms, especially when the sequence
length (double margin size) becomes >300 nt (Figure 6b).
Figure 7 shows the motif level success rates with respect

Table 2. The statistics of the top five predictions in terms of nPC on

ECRDB62A set

Algorithm Best Worst Mean Standard
deviation

Top-scored

AlignACE 0.128 0.029 0.072 0.045 0.083
BioProspector 0.174 0.097 0.124 0.041 0.130
MDScan 0.149 0.068 0.106 0.034 0.099
MEME 0.158 0.002 0.054 0.069 0.116
MotifSampler 0.153 0.010 0.062 0.065 0.069

Figure 6. Scalability in terms of Performance coefficient (PC) with respect to the input sequence length (margin size). (a) nPC at nucleotide level; (b) sPC at binding
site level.

Figure 7. Motif level success rate (mSr) with respect to the sequence length
(margin size).
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to different margin sizes. Here, MEME is the best with its
capability to locate at least one correct binding site for a given
dataset. In this test, AlignACE also has a high success rate.
We also find all algorithms are significantly better than the
random algorithm in terms of the motif level success rate.

To examine why MEME has the highest motif level success
rate, we compare the sensitivity (nSn) and the specificity
(nSp) of these algorithms (Figure 8). It is illuminating that
MEME has a dominant sensitivity, contributing to its high
success rate mSr. One possible explanation of MEME’s
high sensitivity is that it is the only algorithm that has an
exhaustive enumerative component while all other algorithms
have a local search component. Another possible factor is that
MEME can automatically adjust the motif widths while other
algorithms use a fixed motif width.

Effect of different parameters for the expected
width and numbers of motifs

Motif discovery algorithms have several parameters to tune
its prediction performance. Here, we examined the effect of
two of the most critical parameters of the algorithms. One
is the expected motif width We, and the other is the expected
number Nbs of binding sites for a sequence or dataset. To
evaluate how the parameter We affects the performance, we
run the algorithms on the ECRDB70B-200 dataset using
different We ranging from 5 to 25 with step of 5. For sto-
chastic algorithms, such as AlignACE, BioProspector and
MotifSampler, the experiments are repeated for 10 times
and the average scores are reported. Since MEME can adapt-
ively estimate the best motif width, we only conducted a
single run using the parameter setting specified in the Method
Section.

Table 3 shows how the nucleotide level accuracy varies
with the different parameter of estimated motif width, We.
Generally speaking, if We is too small, the algorithms will
be penalized in sensitivity. If We is too large, they will be
penalized in specificity. We found that for both BioProspector
and MDScan, the best performance is achieved at We of 20,
which is closest to the average target motif width of 21.9,

while AlignACE and MotifSampler work best with We of
10 and 25, respectively.

We have chosen 15 as the expected motif width, which is
approximately the average between the default value of the
algorithms (which is 10 expect for MEME) and the average
size of the binding sites in the benchmark set. The results in
Table 3 clarified that the optimal value for the motif width
differs from algorithm to algorithm even for the same bench-
mark dataset. The value 15 we used performed better or equal
(MEME) for four of the algorithms than using the default
value of 10. These results illustrate the difficulty for biologists
to tune good parameters when they use these algorithms.

Another parameter we have examined is the number of
expected binding sites in an input dataset. AlignACE and
MEME have the parameter and MotifSampler also has it as
the maximal number of expected binding sites for a sequence.
MDScan and BioProspector do not have the parameter which
user can tune. For both ECRDB62A and ECRDB70B-X
datasets, there are cases that multiple binding sites of a
motif exist on a single sequence. We run AlignACE,
MEME and MotifSampler on the ECRDB70B-200 dataset
with a different value of the estimated sites per sequence
(nSite) ranging from 1 to 5. We conduct one run for
MEME and 10 runs for AlignACE and MotifSampler, and
the average accuracy scores are reported. All other parameters
are set as described in Materials and Methods. In Table 4, the
rightmost column shows the results with the default nSite
value (AlignACE: 10, MEME and MotifSampler: Unset).
Both AlignACE and MotifSamper achieve the highest

Figure 8. The nucleotide level prediction accuracy in terms of sensitivity (nSn) and specificity (nSp) with respect to the sequence lengths (margin sizes). (a) nSn at
nucleotide level; (b) nSp at nucleotide level.

Table 3. Influence of estimated motif width on the nucleotide level prediction

accuracy (nPC)

Algorithm motif width 5 10 15 20 25

AlignACE (10) 0.068 0.142 0.139 0.127 0.100
BioProspector (10) 0.041 0.136 0.205 0.230 0.222
MDScan 0.073 0.164 0.215 0.237 0.221
MEME 0.177 0.177 0.177 0.177 0.177
MotifSampler (10) 0.055 0.107 0.149 0.147 0.170
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accuracy with the default setting. However, MEME works
best with nSite of 1. This is a little surprising since for
the ECRDB70B-200 dataset, the average number of site per
sequence is 1.78 with the standard deviation of 0.8.

The analysis above on the effect of changing two parameters
illustrates the difficulty of users to tune parameters. A different
algorithm has a different optimal parameter even for the same
dataset. Moreover, the optimal parameter does not always
correspond to the average value of that parameter in the
dataset, so that making a good guess of the optimal parameter
value is even difficult. In practice, it is also difficult to
obtain the data to make an estimation of the parameter values.

Effect of the background Markov models

Another factor that affects the prediction accuracy of some
motif discovery algorithms is the background Markov models
generated from background sequences. To evaluate their
effects, we generated two types of background Markov models
for BioProspector, MotifSampler and MEME: the first type is
generated from the whole E.coli genome; the second type is
created using only the intergenic regions. We generated six
Markov background models with the order ranging from
0th to 5th for each model type except that BioProspector,
which has only 0th to 3rd order background models. We
run the algorithms over the intergenic dataset (Table 5).

Unexpectedly, the order of the background Markov models
does not have a significant impact on the performance. For
example, MEME achieves similar performances with 1st,
2nd and 3rd order models generated from the whole E.coli
genome. This is also true for other two algorithms. We also
found background models from the whole genome or inter-
genic regions lead to different prediction accuracy for the
algorithms. Both BioProspector and MEME achieve a better
accuracy for the whole genome background models while
MotifSampler works better with background models from
intergenic regions. Based on these observations, we use the
third-order Markov models from whole genome for Bio-
Prospector and MEME and the third-order Markov models
from intergenic regions for MotifSampler throughout this
study.

Effect of the number of input sequences

In this section, we investigate how the number of sequences in
a given input sequence set affects the prediction accuracy
because it is a dominant factor that determines the time
complexity of motif discovery algorithms. For this study,
input sets with K (¼5, 10, 20, 30, 40) number of sequences
are generated as follows: first, we select the following seven
motif groups, CRP.txt (286 sequences), Lrp (150 sequences),
FIS(138 sequences), IHF (126 sequences), FNR (102
sequences), NarL (84 sequences) and ArcA (80 sequences).
These motif groups are the only ones with at least 40
sequences. For each motif group, we extend each binding
site with 200 nt on both sides to create raw input sequences.
Then, from each such set of raw input sequences, we randomly
select K sequences without duplicates. Ten such sequence
sets are created for each K. We then run the motif dis-
covery algorithms on all 70 (¼7*10) datasets. The prediction
accuracy scores are then averaged for all the input sequence
sets with the same number of (K) sequences (Figure 9). It is
observed that when the number of sequences becomes >10,
the performance coefficient at nucleotide level becomes stable
(Figure 9a). More input sequences do not improve the predic-
tion accuracy. Figure 9b even shows that the binding site level
accuracy are almost independent of the number of sequences
except that BioProspector seems to benefit from more input
sequences. Therefore, for a large input sequence set, it is
recommended to use an algorithm which has a good scalability
to the number of sequences, such as BioProspector. If a user
insists to use a computationally demanding algorithm, such as
MEME, this observation suggests a novel approach: namely,
one can input only partial input sequences to a motif discovery
algorithm to obtain a motif model (e.g. PSSM) and then use
this model to find motifs in the remaining sequences. In this
manner, a significant reduction in the running time can be
achieved without sacrificing the prediction accuracy.

Effect of the motif length

The target motif length is another factor that influences the
prediction accuracy. For a given margin size on both sides,
the conserved motif length along with the conservation level
determines the signal-to-noise ratio. In the ECRDB70B-200,
the motif length varies from 5 to 61 nt with the mean of 22.8
(the standard deviation is 11.92). To evaluate the effect of
the motif length on the prediction accuracy, ideally, we need
to remove other factors, such as the number of sequences in
the input sequence set. However, from the previous section,
we know that the influence of the number of sequence on the
prediction accuracy is limited. Therefore, we used the same

Table 4. Influence of estimated number of sites per sequence on the nucleotide

level prediction accuracy (nPC)

Site no/seq 1 2 3 4 5 Default

AlignACE 0.144 0.141 0.134 0.126 0.121 0.144
MEME 0.194 0.186 0.167 0.142 0.114 0.177
MotifSampler 0.126 0.136 0.142 0.148 0.143 0.149

Table 5. Influence of background Markov models on the nucleotide level prediction accuracy (nPC)

Background
sequences

Markov order 0 1 2 3 4 5 Mean

Whole genome BioProspector 0.174 0.173 0.172 0.174 N/A N/A 0.173
MEME 0.152 0.158 0.149 0.157 0.141 0.156 0.152
MotifSampler 0.146 0.140 0.139 0.143 0.144 0.146 0.143

Intergenic region BioProspector 0.168 0.173 0.170 0.158 N/A N/A 0.167
MEME 0.137 0.136 0.140 0.140 0.141 0.146 0.140
MotifSampler 0.144 0.151 0.145 0.152 0.150 0.152 0.149
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results from the previous section, reorganizing them to
examine how motif length affects algorithm performance.
Specifically, we extract the prediction accuracy scores of
all the algorithms on the input sequence sets with the margin
size of 200 nt on both sides. The motifs are grouped into four
motif length groups, namely, {mL< 9}, {10 < mL< 15},
{16 < mL< 20}, {21 < mL< 25}, {26 < mL}. Then, the
accuracy score is averaged within the length groups.

The results are summarized in Table 6. We found that
AlignACE and MEME achieve higher prediction accuracy
on datasets with longer motif width. For Mdscan, motif
width barely affects the performance (between 0.2 and 0.23),
and in addition, the maximum (0.23) is obtained for motifs of
21–25 nt. On the other hand, BioProspector and MotifSampler
have no simple relationships between the motif length and the
performance; they achieved the highest accuracy on datasets
with intermediate motif lengths. One possible reason for this
difference is that only AlignACE and MEME has the capab-
ility to adjust motif model length in a single run. Since the
average motif length is 21.70, when the motif length becomes
bigger, those algorithms with fixed-length motif models will
be increasingly penalized due to the inappropriate parameter
setting of the motif length. In practice, the real motif length
of an input sequence set is usually unknown and usually users
have to specify an estimated motif length for AlignACE,
MDScan, MotifSampler and BioProspector. It is thus sugges-
ted to run these algorithms multiple times with different
motif widths to get the best result.

Correlation between the significance scores
and the accuracy

Most of motif discovery algorithms provide a score which
evaluate the statistical significance of predicted binding
sites. As investigated by Liu et al. (19) the binding site with
the highest significance scores are not necessarily the best
prediction of the target motifs. They calculated the average
ranks of the correct binding sites when in the top five reported
binding sites by MDScan, BioProspector, CONSENSUS (40)
and AlignACE. They found that MDScan and BioProspector
usually report the most accurate predictions with the top score
while the most accurate predictions of the other two algorithms
are within top 1 to 3 on average. However, their study did not
show the consistency between the significance scores and the
accuracy scores.

Here, we examined whether motif significance scores are
correlated with prediction accuracy using ECRDB70B-200.
Figure 10 shows results of MDScan. The performance coef-
ficient scores (nPC and sPC) of the binding sites with the top
score are plotted relative to their MAP scores. However, no
clear correlation between these two scores is found. For each
significance score range, the variation of accuracy is large.
This lack of correlation between the significance scores and
the accuracy scores also applies to other four algorithms,
showing that high significance score does not necessarily
indicate high prediction accuracy. We also found that motif
significance scores from different input sequence sets are not
comparable in general. In other words, one cannot judge the
quality of a prediction simply by looking at its significance
score.

Ensemble algorithms

In the pioneering study of gene-prediction algorithm evalu-
ation, Burset and Guigo (34) showed that combining the
outputs of several algorithms can be beneficial to improve
the specificity, which means that coincidence of several
algorithms can reinforce a given prediction. These combining
algorithms are called ensemble algorithms in the machine
learning field and have proven to be extremely successful (41).

Table 6. Nucleotide level prediction accuracy versus motif widths

Motif width (1,9) (10–15) (16–20) (21–25) (26– )
No. of targets 3 13 22 16 16
Algorithm Performance coefficient (nPC)

Alignace 0.077 0.126 0.130 0.155 0.200
Bioprospector 0.145 0.216 0.208 0.166 0.174
MDScan 0.210 0.218 0.221 0.226 0.196
MEME 0.050 0.151 0.176 0.180 0.220
MotifSampler 0.148 0.107 0.225 0.090 0.145

Figure 9. Comparison of prediction performance in terms of the number of input sequences in a dataset. The margin size is 200. (a) Nucleotide site level accuracy
(nPC); (b) Binding site level accuracy (sPC).
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In the domain of protein structure prediction, ensemble algo-
rithms or meta-server approaches are also very successful,
as reported in CASP5 (42). Despite these encouraging results,
to the best of our knowledge, there is no report of ensemble
algorithms for motif discovery problems. Here, we show
the first result for a simple ensemble algorithm for motif
discovery. The datasets used here are the same as used in
previous experiments with margin size 50. We have tested
ensemble algorithms based on multiple runs of three stochastic
algorithms, AlignACE, BioProspector and MotifSampler.

Table 7 shows the nucleotide level performance coefficient
(nPC) of the three ensemble algorithms tested on the
ECRDB70B-50. For comparison, it also shows the results
of the base algorithms as well as MDScan and MEME.
For each base algorithm, we tested four different consensus
threshold values and summarize the best results (the fifth
row of Table 7). The score in the bracket shows the highest
accuracy among all. First, we find that ensemble algorithms
have improved the accuracy over their corresponding
base algorithms. Ensemble AlignACE, BioProspector and
MotifSampler show improved performance by 39, 6 and
45%, respectively. The best ensemble algorithm (based on
MotifSampler) outperforms the best standalone algorithm
(BioProspector) by 26.5% with the accuracy score of
0.382 versus 0.302. The ensemble algorithm can also improve
the performance of AlignACE to the level of MEME. These
results show that a high degree of consensus among multiple

predictions is a good indication of the quality of the predicted
binding sites.

A remaining question about ensemble algorithms is whether
its increased accuracy comes from synergetic effects of mul-
tiple predictions or simply because multiple runs have a better
chance of getting a site with a higher accuracy. We developed
a simple multi-restart algorithm in which a base algorithm is
repeated for 10 times, each run reporting five predictions. We
sort 50 predictions by their statistical score and report the
top five scoring predictions as the final results of the multi-
restart algorithm (the last row of Table 7). While the multi-
restart algorithm improves AlignACE, it works worse than
the base algorithms for BioProspector and MotifSampler.
We found that reporting the top five scoring predictions out
of 10 runs can make the final results worse because the score
does not correlates well with the accuracy as shown by Table 2,
Figure 10 and by Liu et al. (10). For MotifSampler, we used
the consensus score, because it correlates better with the accur-
acy than the other two scores provided (but still not good:
the correlation coefficient between nPC and the consensus
score is 0.21, 0.21 with the information content, and �0.049
with the log-likelihood score, all with a P-value of >0.05).
It confirms that ensemble algorithms distinguish themselves
from the multiple-restarting strategy by exploiting synergetic
effects among multiple predictions.

We also tested the simple ensemble algorithm on sequences
with larger margin sizes. We found that when the margin
size is increased to 200, our simple ensemble algorithm
achieved similar or worse performance than corresponding
base algorithms. After close examination, we found that
this failure is caused by the divergence of the predictions of
the base algorithms for long input sequences. To address this
divergent prediction issue, we are developing more sophist-
icated clustering-based ensemble algorithms. The ensemble
algorithms shown here are based on multiple runs of a single
standalone algorithm. It is natural to combine results of
multiple algorithms to achieve synergetic effect, which we
have observed their benefits in our preliminary experiments.
This research will be reported elsewhere.

DISCUSSION

We have developed a comprehensive set of performance
measures at the nucleotide, binding site and motif levels
and systematically evaluated five motif discovery algorithms
using a prokaryotic motif dataset, ECRDB70. We selected
algorithms which solely use input sequences for finding
motifs, because this is the baseline of any of the recent
algorithms which will also incorporate additional information.
Special attention is paid to carefully examine factors that
affect the prediction accuracy, which have not been carried
out in the previous studies. We found that the prediction
accuracy at the nucleotide and binding site levels is relatively
low while the motif level prediction accuracy is surprisingly
high. These conclusions complement the evaluation work
reported for eukaryotic datasets (18). We compared the
scalability of these algorithms and found that Gibbs Sampling
based algorithms tend to fail for long sequences. Other algo-
rithms also show significant degradation when the sequence
lengths increase. These results suggest a need for improving

Table 7. Comparison of nucleotide level prediction accuracy (nPC) of

consensus ensemble algorithms to standard-alone base algorithms

Threshold (qc) Margin size 50
AlignACE BioProspector MotifSampler MDScan MEME

0.1 0.201 0.267 0.306
0.2 0.219 0.275 0.347 N/A N/A
0.3 0.242 0.307 0.382
0.4 0.253 0.324 0.372
Best of ensemble 0.253 0.324 0.382
Base algorithm 0.182 0.304 0.263 0.294 0.252
Multi-restart 0.221 0.276 0.213 N/A N/A

Figure 10. Correlation between motif significance scores and performance
coefficient scores of MDScan.
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scalability of motif discovery algorithms, which is particularly
important when motifs are sought from an increasing number
of complete genome sequences. We also found that the cap-
ability of adapting motif length is important which partially
contributes to the dominance of MEME’s high prediction
sensitivity. Interestingly, it is observed that increasing the
number of input sequences does not always improve the pre-
diction accuracy once it reaches a threshold level, which can
be exploited to reduce computational complexity of some
algorithms. Another observation is that for noisy real datasets,
no strong correlation between significance scores and predic-
tion accuracy is observed for all motif discovery algorithms
across all datasets. Finally, we developed a simple ensemble
motif discovery algorithm that showed promising results for
input sequence datasets of moderate length, showing that the
available diverse motif discovery algorithms can be exploited
to our advantage. It also implies that the high degree of con-
sensus among multiple predictions of one or more algorithms
may indicate their correctness.

Alignment of motif sequences in RegulonDB

In Figure 5, we have shown one example of alignment with
increased consensus positions. We systematically checked the
differences of the information content for the prealigned motif
sets in ECRDB70 Smotif and for the aligned motif sets Salign.
The same comparison is also applied to the extended sequence
sets Sext and aligned sequence sets Sclw (Figure 11). We found
that multiple sequence alignment can increase the information
content of a motif group with an average gain of 95.7%. The
aligned sequences Sclw increase the information content of
Sext by �65%. There are some degradation of information
content from Sext to Sckw due to the inherent divergence in
the region of outside of motifs. The significant increase of
information content suggests that shifting binding sites in a
motif group using a multiple alignment procedure can greatly
improve the motif models, thus improve the subsequent motif
search performance.

The alignment procedure could be further improved if
the following fact of the annotated binding sites in RegulonDB

is considered. It is known that some transcription factors are
not sensitive to the strands of the DNA, which means that for
some binding sites, either one of the two strands may be
annotated in RegulonDB. It is thus possible that the opposite
strand of an annotated binding site can be used to generate an
alignment with more consensus position. For a set of K binding
sites there are 2K combinations of strand selections in total.
For small K, one can simply enumerate all of them and pick out
the one with highest information content. For a very large K,
it is computationally prohibitive to test all the possible com-
binations of strands of K sequences. For such a large K, after
we do a coarse alignment as described above, for each binding
site sequence, we could test whether a replacement with the
opposite strand can improve the information content. If true,
we include its opposite strand rather than the annotated site to
build the motif model. These algorithms are to be tested in a
future work.

Limitations of current motif discovery algorithms

Despite the long-time effort for the motif discovery problem,
our benchmarking results show that current sequence-based
motif discovery algorithms have several fundamental limita-
tions. First, the nucleotide level and binding site level predic-
tion accuracy are still very low (i.e. nPC and sPC) (Figure 6)
even on the prokaryotic motifs, which are supposed to be
easier to be captured than eukaryotic ones. Therefore, in
the current situation users should be aware of the limitations
and be extremely careful in interpreting computational pre-
dictions. It should be also noticed that the significance score
of algorithms do not necessarily corresponds directly to the
accuracy of found motifs (Figure 10). The lack of scalability is
another problem for all the evaluated algorithms. Below we
list three technical difficulties which cause these limitations.

The first one is the inherent low signal/noise ratio in
only-sequence-based motif discovery problems. As shown
in Figure 6b, prediction performance decreases significantly
as the length of sequences increases for all five algorithms.
Several strategies have been proposed to increase the
signal-to-noise ratio. Wang et al. (43) proposed an iterative
refinement approach to this problem. Phylogenetic trees and
structural information can be incorporated to increase signal-
to-noise ratio (10–13,44–47).

The limitation also comes from the pattern model used to
capture the regularity among the binding sites for transaction
factors. The PSSM model is used for all five algorithms, with a
slight variation. This model, however, has difficulty in model-
ing gapped motifs and assumes that the nucleotide positions
are independent of each other, which is not true in reality.
The syntactic deterministic motif models, such as consensus
sequence models, suffer from their applicability only to short,
highly conserved sequences (48). Several methods have been
proposed to incorporate position-dependence information,
including a novel hidden Markov model method (48), which
tries to capture dependency between non-adjacent positions
using a position re-ordering method. Osada et al. (22) intro-
duced per-position information content as well as local pair-
wise nucleotide dependencies to improve the motif search
performance. However, such more advanced motif models
have not been incorporated into current motif discovery
algorithms.

Figure 11. Difference of the information content between two sequence sets.
Aligned sequences Sclw and the expanded sequences Sext; realigned motifs
Salign and the original motifs Smotif.
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The local optima phenomena in optimization algorithms
should be also mentioned here. Many popular motif discovery
algorithms are based on heuristic search algorithms such as
greedy search (13), Gibbs sampling (24,27) and Expectation
Maximization (13,25). The performances of these methods are
subject to potential suboptimal solutions in the search space.
While usually 10–20 starting points are evaluated to find
the most potential search direction, the effectiveness of this
simple approach is usually limited for large multi-modal
search spaces found in datasets with long sequences. Extensive
experiments are needed to evaluate how severe the local
optima issue could limit the performance of existing
heuristic-based methods and whether stronger global optim-
ization techniques, such as genetic algorithms and others (49),
could be used to improve it.

Potentials of motif discovery algorithms

Although the low prediction performance has been revealed
on the nucleotide and the binding site level accuracy, we
believe that sequence-based motif discovery still has room
for improvement. First, we could take advantage of the
high motif-level success rate (mSr > 0.92), a capability to
identify at least one binding site correctly for a motif group
in ECRDB70 (i.e. mSr, Figure 7).

A remarkable characteristic of the motif level success rate is
the better tolerance to a longer input sequence size, i.e. a better
scalability (Figure 7). Based on this observation, one natural
idea of searching motifs in a set of long sequences is to per-
form the motif search in two steps, namely, to perform the
second search just in the vicinity of motifs identified in the
initial search. In this manner, the search space could be greatly
reduced.

Two additional approaches we propose here are the
ensemble algorithms and the hybrid algorithms. This is to
take advantage of the high motif-level success rate and the
stochastic nature of some motif discovery algorithms.

Ensemble algorithms are compound algorithms that com-
bine the results of multiple predictions from multiple runs of a
single or multiple algorithms. Ensemble algorithms have been
shown to be able to build strong algorithms based on simple
weak algorithms in both gene-finding (35), protein structure
prediction (42) and machine learning (41). Our simple con-
sensus ensemble algorithm provides the first proof of the
promise of ensemble algorithms in motif discovery problems.
Therefore, it is expected that ensemble algorithms are able to
improve the accuracy of motif discovery. First, it is found that
coincidence of the predictions of multiple algorithms usually
could indicate the confidence of the predictions. Second, since
all five evaluated algorithms achieved very high motif-level
success rates, a set of diverse predictions from multiple
algorithms thus has a high probability to cover all binding
sites. There are several ways to exploit this property using
ensemble algorithms. One way is to apply a motif discovery
algorithm in two steps as described above, and another way is
to apply a clustering algorithm on the multiple predictions to
identify consensus predicted regions. As dozens of motif dis-
covery algorithms are available today, the ensemble approach
is especially promising to use them to our advantage.

So-called hybrid algorithms assemble the complement-
ary components of multiple algorithms to build a stronger

algorithm. This is different from assembling multiple predic-
tions in an ensemble algorithm. Many algorithms have been
proposed to address the motif discovery problems, from early
algorithms based on consensus strings or regular expressions
to the popular PSSM-based heuristic algorithms and the latest
algorithms that exploit phylogenetic information. As shown by
Sinha and Tompa (17), each type of algorithms have their own
strengths. It is thus natural to combine characteristics to
develop better algorithms. For example, heuristic algorithms
have an advantage in their flexible representation of motif
models while statistical algorithms usually run much faster
than heuristic search methods (19). A hybrid algorithm can
then be designed by first applying statistic algorithms to find
potential sequence segments and then applying heuristic
algorithms to locate the final motif positions.

The second interesting characteristic observed in this study
is that increasing the number of sequences does not necessarily
improve the prediction accuracy once the minimum number is
reached. There are several ways to exploit this characteristic.
First, it can be used to significantly reduce the running time of
some time-consuming motif discovery algorithms by only feed
a portion of the input sequences and then use the extracted
motif model to find the binding sites on the remaining
sequences. Second, we can divide the input sequences into
multiple groups and apply different algorithms on each group.
We then use the ensemble algorithms to summarize the
predictions.

A trend of recent motif discovery algorithms is to incorp-
orate additional information, such as phylogenetic trees
or family sequences, to improve the predication accuracy
(13,14). This strategy can effectively increase the signal/
noise ratio, thus greatly improve both the specificity and sens-
itivity. In contrast, in our study, we have carefully revealed
limitations and potentials of current sequence-based
algorithms, and indicated ways to take advantage of the
potentials for improvement. Since sequence-based approach
is the baseline of any modern algorithms, our finding will
surely benefit to improve almost all the algorithms.
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