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We generalized the phase resetting curve (PRC) to a more realistic case of neural oscillators receiving two or 
more inputs per cycle. The PRC tabulates the transient change in the firing period of a neuron due to an 
external perturbation, such as a presynaptic stimulus. We used a conductance-based model neuron to estimate 
experimentally the two-stimulus PRC and compared the results against our mathematical prediction based on 
the assumption of instantaneous recurrent stimulation. Within the limits of the recurrent stimulation 
assumptions, we found that the newly introduced prediction for the two-stimulus PRC matched experimental 
measurements. Our new results open the possibility of a more realistic approach to predicting phase-locked 
modes in neural networks, such as the synchronous activity of large networks during epileptic seizures.. 

 
Introduction 
 
Neurons are excitable cells capable of generating large membrane 
potential excursions when electrically or chemically stimulated 
[1,4,5]. Hodgkin and Huxley modeled the electrical activity of 
excitable cells using only two main ionic species: sodium and 
potassium [4,5]. The extracellular environment of neurons is rich 
in sodium ions (≈ 440 mM/L) and relatively low in potassium (≈ 
20 mM/L). The intracellular concentrations are inverted, i.e. only 
about 60 mM/L for sodium (Na+) and about 400 mM/L for 
potassium (K+) [1,4,5]. Due to the strong concentration gradient of 
Na+, it tends to flow inside the cell if ionic channels (pores in the 
cell membrane) allow it. The strength of Na+ electrochemical flow 
is measured by Nernst’s potential, which is about +50 mV [4,5]. 
The positive sign indicates an inward flow of Na+ ions. For K+ ions, 
the electrochemical potential is about -90 mV, where the negative 
sign indicates an outward flow. Since the neurons usually have 
more potassium than sodium channels expressed per unit area, the 
equilibrium (or rest) potential of the cell is around -65 mV, i.e. 
closer to Nernst’s potential of K+ than to Na+ [5]. At rest, both K+ 
and Na+ ions constantly flow in and out of the cell down their 
electrochemical gradients through non-specific channels called 
leak channels [5]. The ion channels are integral membrane proteins 
that can change their conformation in response to electric pulses 
and allow ions to enter or exit a cell. There are many types of ion 
channels that respond to various stimuli, such as pressure-sensitive 
channels which respond to mechanical stimuli [2], ligand-gated 
channels that respond to specific extracellular ligand molecules 
[12], or voltage-gated ion channels which open in response to a 
change in the electric potential difference across the cell membrane 
[5]. 
 An action potential (AP) is a significant excursion in the 
membrane potential difference due to the activation of voltage-
gated ionic channels. At rest, the fraction of active voltage-gated 
channels is relatively small. However, a positive external electrical 
stimulation (excitation), e.g. stimuli coming from other excitable 
cells, could produce a slight increase in the membrane potential of 
the cell. As a result, voltage-gated Na+ channels, which are very 
sensitive to any increase (depolarization) in membrane potential, 
open immediately and allow an influx of Na+. This influx of 
positive charges further depolarizes the cell, which results in the 
opening of more voltage-gated Na+ channels; this process could 

produce an avalanche that reaches a critical excitability threshold. 
(see Fig. 1a). At the threshold, which is around -55 mV (Fig. 1a), 
the cell is in an unstable state and a slight depolarization produces 
an exponential increase in the number of Na+ channels that open. 
As a result, the Na+ flow of positive ions would push the membrane 
potential towards Nernst’s potential of Na+ (see the upstroke of AP 
in Fig. 1a). The membrane potential reaches about +40 mV over 1-
2 ms and produces a spike of electrical activity (see Fig. 1a).  
 Voltage-gated K+ channels also activate (open) in response to 
depolarizations. However, K+ channels are slower than Na+ 
channels. As a result, they would significantly contribute to an AP 
only after the membrane potential already reached the highest 
depolarization of about +40 mV. Once potassium channels open, 
they allow an outward flow of K+, which pushes the membrane 
potential towards the Nernst’s potential of K+. Additionally, after 
1-2 ms, sodium channels inactivate, blocking further Na+ influx. 
The inactivation of sodium channels combined with the slow 
activation of potassium channels leads to cell repolarization (see 
the downstroke of the AP in Fig. 1a). After every AP, the ionic 
balance of a cell is perturbed and the Na+/K+ pump works against 
the concentration gradients to reestablish the normal ionic 
concentrations. The Na+/K+-ATP pump constantly moves 3 Na+ 
ions out and brings 2 K+ ions into the cell during every pump cycle 
[5]. 
 The above-described mechanism is the foundation of any 
conductance-based, or Hodgkin-Huxley (HH), model of excitable 
cells. Some more realistic models also consider other ionic currents 
involved in generating an AP, e.g. calcium, chlorine, magnesium, 
etc. Furthermore, each ionic species has multiple ion channel 
(proteins) types that can actively transport them across the 
membrane. For example, there are over twenty different types of 
potassium channels, some of them do not inactivate (as above), 
some inactivate (like sodium channels), and some require Ca2+ or 
Mg2+ presence to function [5]. Hodgkin and Huxley showed 
experimentally that despite the wide variety of morphologies, ion 
channel types, and AP shapes, there are only two classes of 
excitable cells that produce oscillatory activities [1,4]. Type I 
excitability class refers to neurons that can fire an AP of arbitrarily 
low frequency in response to an externally injected bias current 
(Fig. 1b – solid circles), whereas type II neurons can only oscillate 
above a critical frequency (Fig. 1b – solid squares). All excitable 
cells are nonlinear systems that work close to the stability threshold 
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(see Fig. 1a). Although the excitability class is determined by the 
type of instability near the AP threshold [1,7,11,14,15], qualitative 
differences between the two types are also visible in the shape of 
the AP. Type I excitability class has a very brief AP followed by a 
relatively long silent period (Fig. 1c) whereas type II excitability 
shows an almost sinusoidal AP (Fig. 1d). 
 
Phase Resetting Curve 
 
The phase resetting curve (PRC) theory reduces the complexity of 
the ionic mechanisms involved in generating APs to measuring the 
response of the neurons to a brief perturbation applied at different 
phases during a cycle of activity [13]. The PRC is a graphical 
representation of the advances or delays of the subsequent spike 
produced by a perturbation, e.g. a presynaptic input from another 
neuron (Fig. 2) [3,8,9,13].  
 Instead of focusing on a detailed and biologically accurate 
description of AP mechanisms and how presynaptic stimuli change 
the response of a neuron, the PRC treats the cell as a functional 
unit characterized by an input-output transfer function, i.e. the PRC 
tabulates the relative change in the firing period of the cell for 
inputs delivered at different times (phases) during the ongoing 
periodic activity.  
 If a stable oscillatory neural activity exists (see Fig. 3a – 
continuous line), then a phase variable could be unambiguously 
defined as the normalized stimulus time (ts) with respect to the 
intrinsic period of oscillation (Pi), i.e. φ = ts/Pi. The first order 
transient phase resetting is defined by (see Figs. 2a and 2c) [10]: 
F(φ) = 1- P1/Pi = ΔP1/Pi,    (1) 
 
and measures the relative advance, ΔP1 = Pi – P1 > 0, or delay, ΔP1 
= Pi – P1 < 0,  of the subsequent spike induced by an incoming 
input at phase φ = ts/Pi.  
  
 
 

Alternatively, resetting induced by an incoming stimulus at 
stimulus time, ts, could be tabulated in terms of neural oscillator's  
response, or recovery, time tr in open loop (see Fig. 3a) [8,11]: 
tr = G(ts),       (2) 
 
Figure 2 shows that a stimulus applied at phase φ = 0.5 changes the 
intrinsic period of neuronal oscillation from Pi = 30 ms to P1 = 30.6 
ms, i.e. a phase resetting ΔP1 of -2% of Pi (the negative sign 
indicates a delay of the subsequent spike). The plot of phase 
change, F(φ) given by Eq. (1), as a function of the stimulus phase, 
φ = ts/Pi, generates the PRCs shown in Figs. 2a and 2c. Based on 
Fig. 3a, the recovery time, tr, and the transiently modified firing 

 
Figure 1.  An action potential generated by the influx of 
Na+ (upstroke) and the repolarization due to K+ outflow (a). 
The resting membrane potential is determined by the 
conductance of leakage current and the activity of Na+/K+-
ATP pump. (b) Frequency versus steady stimulus current 
(f-I) curves show two distinct responses. Type I excitable 
cells fire with arbitrarily low frequency (solid circles), 
whereas type II cells can only fire above a critical 
frequency (solid squares). Typical AP generated by type I 
(c) and type II (d) model neurons. 

 
 
Figure 2. Type I neurons produce unimodal PRCs (a) 
whereas type II neurons produce bimodal PRCs (c). The 
corresponding spike time response curves (STRCs) plot 
the time it takes a neuron to respond to a perturbation (the 
response or recovery time, tr) versus the stimulus time, ts, 
of a neuron. The STRCs and the first order PRC contain 
similar information, although for predicting the phase-
locked modes of a network it is graphically more intuitive 
to use STRCs [9,11].  

 
 

Figure 3. Single-stimulus (a) and two-stimulus (b) PRC 
protocol measures the final transient change in the firing 
period of a neural oscillator. In the single-stimulus PRC, 
the transient change is ΔP = 1 - P1/Pi due to a stimulus 

applied at phase φ1 = ts/Pi. In the two-stimulus cased (b), 

the first stimulus at ts1 changes the firing period from Pi 

to P1 and the second stimulus, arriving at ts2, further 

changes it to P1’. The total phase resetting is ΔP = 1 – 

P’1/Pi. 
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period P1 are related by:  
P1 = ts + tr    tr = P1 – ts.    (3) 
 
Using the definition (1) of the PRC, it results that: 
P1 = (1 - F(φ))Pi = (1 - F(ts/Pi))Pi,    (4) 
 
which substituted into (3) leads to: 
tr = (1 - F(ts/Pi)) Pi – ts = G(ts).    (5) 
 
Both type I (Fig. 2b) and type II (Fig. 2d) STRCs carry out the 
same information as the corresponding PRCs. For example, a 
stimulus delivered to a neural oscillator with intrinsic firing period 
Pi = 30 ms at phase φ = 0.5 in Fig. 2a has a corresponding stimulus 
time ts = 15 ms. According to the corresponding STRC (see Fig. 
2b), its recovery time tr = 15.6 ms, which leads to the same 
transiently modified period P1 = 30.6 ms as we determined using 
the PRC.  
 The advantage of the PRC method is that it allows theoretical 
predictions regarding the existence and stability of phase-locked 
modes starting from known differential [14] or difference 
equations for model neurons (a subject that is outside the scope of 
this paper). Another important advantage of the PRC method is that 
it can be easily generated experimentally in any neurophysiology 
lab [3,8,14,16].  
 In this paper, we relaxed one of the strong restrictions on using 
the PRC, i.e. the requirement that the open-loop PRC is generated 
in response to only one stimulus per cycle (see Fig. 3). Although 
PRCs in response to isolated stimuli are very useful, for example, 
in predicting the 1:1 phase-locked modes in neural networks of 
invertebrates (see [8,9,10,11] and references therein), they have 
limited use in studying vertebrates brain due to the very large 
number (of the order of thousands [5]) of (almost) simultaneous 
inputs a cortical neuron receives during each cycle. In this paper, 
we used recursive functions to predict the response of a 
computational model to two inputs per cycle and compare the 
prediction against actual numerical data. Our approach is general 
and could be extended to any number of inputs per cycle to mimic 
biological-relevant activity of neural cells. 
 
Methods 
 
The Computational Model 
We used a conductance-based computational model to generate all 
PRCs and to test all our hypotheses. The archetypical conductance-
based model was introduced by Hodgkin and Huxley (HH) [4] and 
only involves Na+ and K+ ionic currents as briefly described in the 
Introduction section. In this paper, we used a Morris-Lecar (ML) 
model because it allowed us to switch its behavior from a type I to 
a type II excitable class by adjusting a relatively small number of 
parameters [1,7]. In contrast, HH model cannot switch between 
excitability classes [1]. The added flexibility of the ML model is 
due to a different, albeit biologically relevant, dynamics that 
replicates the calcium and potassium oscillations in the muscle 
fiber of a giant barnacle [7]. The general mathematical equation of 
any conductance-based model neuron is: 
Cm dV/dt + Σ I = 0,     (5) 
 
 

where Cm is the membrane capacitance, V is the membrane 
voltage, Cm dV/dt is the capacitive current due to membrane 
polarization, and Σ I stands for the sum of all other ionic currents 
flowing in and out of the cell. In particular, for ML model neuron 
the currents involved are 
Cm dV/dt + ICa + IK + Ileak + Ibias = 0,   (6) 
 
where ICa is the inwards calcium current, IK is the outward 
potassium current, Ileak is the nonspecific (leakage) ionic current 
responsible for the rest membrane potential, and Ibias is any non-
intrinsic (external) current, such as the presynaptic inputs or 
external stimuli through electrodes inserted into the cell. The ionic 
currents are described by Ohm’s law [1,5]: 
I = g (V - E),     (7) 
 
where g is the electrical conductance of the membrane and E is the 
reverse (Nernst) electrochemical potential of a specific ion 
channel. For leakage channels the conductance is just a constant. 
However, the conductance of active ionic channels, such as 
calcium and potassium is voltage-dependent with very strong 
nonlinearities. For example, the complete equations of ML model 
are: 
Cm dV/dt + gCa m∞ (V - ECa) + gK w (V - EK) + gleak (V – Eleak) + Ibias = 0, (8a) 
 
dw/dt = ϕ (w∞ - w)/τw,    (8b) 
 
where w represents the fraction of potassium channels open at any 
given time, m∞ = 0.5(1 + tanh((V - V1)/V2)) is the steady-state 
fraction of calcium channels open at a given voltage V, w∞ = 0.5(1 
+ tanh((V - V3)/V4)) is the steady-state fraction of potassium 
channels open at a given voltage V, and the characteristic time 
constant of potassium channels is τw = 1/cosh((V - V3)/2V4)). All 
ML model parameters are dimensionless, i.e. the voltages were 
divided by calcium Nernst’s potential of ECa = 120 mV, 
conductances were divided by potassium conductance of gK = 2 
μS/cm2, the currents were divided by gK*ECa = 100 μA/cm2, the 
membrane capacitance Cm = 5 μF/cm2, determines the time 
constant of the system Cm/gL = 2.5 s. The dimensionless parameter 
for a ML model neuron are: V1 = -0.01; V2 = 0.15; V3 = 0.1/0.017; 
V4 = 0.145/0.25; VCa = 1; VK = -0.7; VL = -0.5; gCa = 1.33/2.2; gL 
= 0.5/1.0; gK = 2.0/4.0; Cm = 1;  = 0.6/0.417, and I = 0.0725/0.4 
[1]. For example, potassium reversal VK = -07 dimensionless units 
means VK = -0.7*120 mV = -84 mV; gK = 2.0 (type I)/4.0 (type II) 
means gK = 2.0*2 μS/cm2 (type I)/4.0*2 μS/cm2 (type II)  = 4.0 
μS/cm2 (type I)/8.0 μS/cm2 (type II). 
 
PRC Generation 
 
Single-stimulus PRC. We used Eqs. (8) to simulate neural activity 
with Mathematica software. The bias current Ibias contained a 
continuous (dc) component that allowed stable oscillations with 
the intrinsic firing period of about Pi = 8.5 ms (see Fig. 3). On top 
of the dc component, we superimposed a brief rectangular current 
pulse of amplitude (A) and duration τ (see Fig. 3a). By measuring 
the transient change in the first firing period P1 due to the stimulus 
applied at ts (Fig. 3a) we obtained the single-stimulus PRC (see 
Fig. 4a). In the case of a rectangular stimulus, the parameter space 
of a single-stimulus PRC is 3-dimensional, i.e. (φ, A, τ). We often 
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represent the PRCs as a family of two-dimensional curves (see Fig. 
4a) with the phase resetting F(φ) along the vertical axis versus 
stimulus phase φ along the horizontal axis for fixed values of (A, 
τ).  
 
Two-stimulus PRC. In a similar manner, we superimposed two 
identical rectangular pulses on the dc component of Ibias (see Fig. 
3b) to find the phase resetting induced by the train of pulses, such 
as synaptic inputs (see Fig. 4b). In the case of two-stimulus PRCs, 
the resetting depends not only on the phase φ1 of the first stimulus, 
its amplitude A and duration τ, but also o the delay time to the next 
rectangular input Δt. In the simplest case of two identical 
rectangular stimuli, the parameter space that defines a two-
stimulus PRC is 4-dimensional, i.e. (φ1, A, τ, Δt). For geometrical 
convenience, the two-stimulus PRCs are two-dimensional families 
of curves F(φ1, φ2) that depend on the phase of both the first and 
second stimulus (for a more precise definition see next section). 
The two-stimulus PRC, F(φ1, φ2), is measured experimentally (see 
Fig. 3b) by recording the final transient change in the firing period 
due to both stimuli, i.e.  
F(φ1, φ2)  = 1 – P1’/Pi.     (9) 
 
 
Results 
 
Theoretical model of two-stimuli PRC 
 
According to the definition (1) of the singe-stimulus PRC, the 
transiently changed firing period of a neuron in response to the first 
stimulus arriving at stimulus time ts1 (phase φ1 = ts1/Pi) is given by 
Eq. (4). As a result of the first stimulus, the second stimulus that 
arrived at ts2 = ts1 + Δt finds a (transiently) modified firing period 
P1 instead of Pi.  
 To predict the phase resetting induced by the second stimulus 
we made two assumptions: (1) instantaneous resetting, i.e. the 
effect of the first stimulus is consumed by the time the second 
stimulus arrives, and (2) the PRC scales with the firing period. The 
first assumption is necessary because it allows us to treat the 
second stimulus as if it acts alone on a neural oscillator with a 
(transiently modified) firing period P1. Sometimes this assumption 
is also called memory-less process, although the memory of the 
first stimulus is present in the transiently modified firing period P1. 
The second assumption is also necessary because it allows us to 
used over and over a scaled version of the single-stimulus PRC, 

F(φ), to find the effect of multiple stimuli.  
 Based on the two assumptions, the second stimulus arrives at a 
stimulus time ts2 = ts1 + Δt, which corresponds to a phase 
 φ2 = ts2/P1 = (ts1 + Δt)/((1 + F(φ1))Pi).    (10) 
 
Using recursively the definition provided by Eq. (4), we estimate  
that the new (transiently modified) firing period due to the second 
stimulus is:   
P1’ = P1 (1 – F(φ2))     (11) 
 
Substituting (4) and (10) into (11) we get P1’ = Pi (1 – F(φ1))(1 – 
F(φ2)), which combined with the definition (9) gives the two-
stimulus PRC F(φ1, φ2) in terms of the single-stimulus PRC F(φ): 
1 - F(φ1, φ2) = (1 - F(φ1))(1 - F(φ2)).   (12) 
Our theoretical prediction is that Eq. (12) represents a good 
approximation of the experimental two-stimulus PRC obtained 
using Eq. (9). Our prediction can also be generalized to an arbitrary 
number of stimuli, which opens the possibility of a more realistic 
use of PRC in predicting phase-locked modes in cortical circuits.  
 
Experimental validation of two-stimulus PRC model 
 
We carried out measurements of single-stimulus (see Fig. 4a) and 
two-stimulus (see Fig. 4b) PRCs. The single-stimulus PRC was 
measured according to definition (1) and two-stimulus PRC was 
computed based on (9). The experimental two-stimulus PRC was 
compared against the theoretical predictions given by Eq. (12) and 
the sum of the squares of all differences between the two curves 
was computed, i.e. the prediction error. Typical results are shown 
in Fig. 4. We were interested in quantifying the goodness of our 
prediction based on Eq. (12) when compared against the 
experimental two-stimulus PRC computed according to definition 
(9). Since the parameter space is very high, we fixed the delay t 
between the two stimuli to 1% of Pi (Fig. 5a), respectively, 5% of 
Pi (Fig. 5b) while scanning a wide range of amplitudes and pulse 
durations. We found that the contour levels of constant percent 
error follow arcs of hyperbolae (see continuous black lines in Fig. 
5).  
 Since in the plane of amplitude versus stimulus duration the 
product amplitude*duration is constant along a hyperbola, it 
results that the amplitude and duration of a stimulus have similar 
effect on phase resetting. This is because for a rectangular current 
stimulus, the product amplitude*duration represents the amount of 
injected electric charge into the cell due to the external 
perturbation. Our findings suggest that doubling the amount of 
phase resetting could be achieved either by doubling the duration 
of the stimulus or by doubling its amplitude, which both inject the 
same amount of electric charge into the cell. Obviously, such a 
linear relationship and equivalence of amplitude and duration of 
stimulus fails for large durations and/or amplitudes.  
 Another relevant result of our study is that closely spaced 
stimuli (Fig. 5a) lead to larger prediction errors than stimuli spaced 
farther from each other (Fig. 5b). The reason is that, in the case of 
closely spaced stimuli, the neuron did not have enough time to 
recover from the previous inhibition and the figurative point was 
not yet back on the unperturbed limit cycle. As a result, there is a 
large error in estimating the phase of the second stimulus, which 
leads to larger overall error of PRC prediction. 

 
 

Figure 4. Experimentally measured single stimulus (a) 
and two-stimulus PRC (b). The experimental PRC 
(continuous line) and theoretically prediction (dotted 
lines) for a delay time Δt =1% of Pi between stimuli with 

amplitude A = -0.001 μA/cm
2
 and duration τ = 1% of Pi.  
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Discussion 
 
 Our goal is to understand how neurons exchange information 
and how that process leads to neural networks organization. For 
this purpose, simple lookup tables, or PRCs, that map the timing 
(or phase) of the incoming stimulus to relative change in firing 
period (phase resetting) suffice. 
 In this paper, we generalized the single-stimulus PRC theory to 
multiple stimuli per cycle in order to correctly apply PRC method 
to cortical neural networks that have highly connected neurons 
which receive more than one input per cycle from presynaptic 
neurons. The novelty of our results consists of a general approach 
to phase resetting in neural cells. At the same time, we proved that 
there is no need to change the traditional (single-stimulus) PRC 
protocol since multiple stimuli PRCs can be readily expressed in 
terms of the traditional single-stimulus PRC. 
 We found that the predicted two-stimulus PRC matches the 
experimental PRC. A critical evaluation of this very important and 
novel result in the theory of phase resetting must start from our 
assumptions. First, we assumed instantaneous resetting, i.e. the 
effect of the first stimulus is consumed by the time the second 
stimulus arrives. This assumption allowed us to treat the second 
stimulus as if it acts alone on a neural oscillator and re-use the 
single-stimulus PRC, hence the name iterative multiple stimuli 
PRC method. The assumption definitely stands for a wide class of 
neural oscillators characterized by a so-called “infinitely attractive 
limit cycle” [1]. For such neural oscillators, a small perturbation 
from the unperturbed phase space trajectory quickly disappears 
over a time interval much shorter than the intrinsic firing period of 
the neuron. “Infinitely attractive limit cycle” occur close to a 
saddle-node bifurcation that generates a type I excitability 
[8,9,10,11]. However, for type II excitability class, which is 
determined by a Poincare-Andronov-Hopf bifurcation [8,9,10,11], 
the system does not always return quickly to its unperturbed state. 
This is the reason we tested our theory in the worst case scenario 
by using a type II Morris-Lecar model neuron. Although we did 
not carry out an exhaustive search of the entire parameter space to 
prove that our theoretical prediction is correct, the parameters 
selected here are representative and the estimation error is 
reasonably low (below 5%). It would be very hard to improve the 

precision of prediction formula beyond the current values due to 
intrinsic limitations posed by this first assumption. Indeed, the 
validity of this assumption is determined by the detailed ionic 
mechanisms of the individual neuron. While some neurons, such 
as type I, would generally fulfill the requirements, it is well known 
that type II neurons have parameter ranges where they relax very 
slowly to the unperturbed state [1,3].  
 The second assumption was that PRC scales with the firing 
period. While it would be very hard to improve the precision of 
prediction formula by working on the first assumption, the second 
assumption could be eliminated completely. It is obviously 
convenient to assume that the single-stimulus PRC looks identical 
for different firing period. However, experimentally measuring 
single-stimulus PRC is equally convenient, which eliminates any 
potential error induced by the second assumption.  
 The method of PRC has obvious limitations beyond the two 
assumptions that limit the accuracy of two-stimulus PRC 
prediction. For example, it cannot be applied to designing a new 
and very specific drug targeting a neurodegenerative disease. In 
such a case, the model would need to capture all the details of 
neural activity and describe specific ion channels up to the 
morphology of the cell. However, our goal is to understand how 
neurons communicate and produce coherent activity at neural 
network level. For such an endeavor a simple input-output transfer 
function, such as the single-stimulus PRC, suffices.  
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Figure 5. The error between the experimental and 
theoretical two- stimulus PRC increased with the 
amplitude and duration of the stimulus. For a short delay 
time of 1% of Pi (a), the error increases more rapidly than 

for a larger 5% of Pi (b) delay time between stimuli. The 

continuous black curves mark levels of constant injected 
electric charge, i.e. stimuli for which the area of the current 
stimulus is constant.  


