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We present the results on piezoelectric and pyroelectric doping in AlGaN-on-GaN and
GaN-on-AlGaN heterostructures and demonstratep-GaN/AlGaN structures with accumulation hole
layer. Our results indicate that polarization charge can induce up to 531013 cm22 holes at the
AlGaN/GaN heterointerfaces. We show that the transition from three-dimensional~3D! to
two-dimensional~2D! hole gas can be only achieved for hole sheet densities on the order of
1013 cm22 or higher. At lower densities, only 3D-hole accumulation layer may exist. These results
suggest that a piezoelectrically induced 2D-hole gas can be used for the reduction of the base
spreading resistance in AlGaN/GaN-based heterostructure bipolar transistors. ©2000 American
Institute of Physics.@S0003-6951~00!00421-6#

Recent proposals of inducing two-dimensional~2D! hole
gas by piezoelectric effects in AlGaN/GaN heterostructures1

stimulated interest in exploring these heterostructures for a
drastic reduction of the base spreading resistance in GaN-
based heterostructure bipolar transistors~HBTs!. One of the
most challenging problems in realizing these devices is to
achieve a reasonable base spreading resistance. A small
base-spreading resistance is the most important feature of
GaAs- or InP-based HBTs. In a grown AlGaN/GaN HBT, a
sheet resistance of 75 kV per square was estimated.2 We
expect that, using a piezoelectric effect, a 2D-hole density
induced into the base of a GaN-based HBT can result in the
considerable reduction of the base-spreading resistance, and,
possibly, reduction of the contact resistance as well. Since
the holes in the 2D gas might have a higher mobility~for
example, around 100 cm2/V s!, we speculate that the sheet
resistance can be reduced to approximately 1 kV per square.

In this letter, we demonstrate an experimental evidence
of the accumulation of holes inp-GaN/AlGaN heterostruc-
tures. Also, we present the calculated band diagrams and
sheet hole density in AlGaN/GaN heterostructures where
spontaneous and piezoelectric polarizations, as well as strain
relaxation effects, are taken into account.

Figure 1 shows the sample structure we used for our
measurements. The top 50 nmp-GaN layer was Mg doped to
yield the bulk hole concentration of 231017 cm23 for the
total estimated sheet density of 1012 cm22. This layer was
grown on top of the superlattice structure with the top 10 nm
strainedp-AlGaN layer. The measured sheet density in our
sample at room temperature was 4.531012 cm22, well
above the estimated contribution from the topp-GaN layer.
This value is consistent with the calculations based on the
theory of elasticity. The measured hole mobility was 5–6
cm2/V s. As shown in Fig. 1, with an increase in temperature

up to 450 K, the sheet hole density,ps , increased to
1013 cm22, but the hole mobility further decreased to ap-
proximately 4 cm2/V s. We estimated mean free path,l, ver-
sus hole mobility and hole gas accumulation layer width,
Xac, versus sheet hole density~see Fig. 2!. For a given hole
mobility, an accumulation layer exists ifl,Xac, and 2D gas
corresponds tol.Xac. For the measured hole mobility of 6
cm2/V s, the estimated transition from three-dimensional 3D
to 2D holes corresponds to 7.531012 cm22 ~see Fig. 2!.
Since measured sheet hole density was smaller than 7.5
31012 cm22, we conclude that we must have 3D and not 2D
holes in the measured sample at room temperature. We esti-
mate that the holes become two dimensional forps

.1013 cm22 ~at 450 K in our sample!.
We calculate typical densities of the 2D-hole gas for a

model heterostructure with a Schottky gate contact shown in
Fig. 3. Our calculations use an analytical self-consistent so-
lution of the Poisson and Schro¨dinger equations for inverted

a!Author to whom correspondence should be addressed; electronic mail:
gaskar@rpi.edu

FIG. 1. Measured temperature dependence of hole mobility in the hole
accumulation layer~top!. Temperature dependence of the measured sheet
hole density and the bulk contribution~theory! in the hole accumulation
layer ~bottom!. Inset shows epilayer design of the structure.
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heterostructures with an accumulation layer at the heteroint-
erface. For noninverted heterostructures, we used a solution
of Poisson’s equation to describe the depletion near the in-
terface. The boundary condition for the AlxGa12xN/GaN in-
terface accounted for the piezoelectric effect and spontane-
ous polarization

e1F11P11Ps15e2F21P21Ps2 , ~1!

wheree1 ande2 are the dielectric permittivities,F1 , F2 are
the interface electric fields, andP1 , Ps1 , andP2 , Ps2 are the
piezoelectric and spontaneous polarizations in AlGaN and
GaN, respectively. For the~0001! growth direction, the pi-
ezoelectric polarizations are

P1562~e312e33c31/c33!uxx . ~2!

Herec31, c33 ande31, e33 are the AlxGa12xN or GaN elastic
constants and piezoelectric constants, respectively, anduxx is
the strain component in the interface plane. The piezoelectric

FIG. 4. Sheet hole density at zero bias voltage as a function of Al molar
fraction calculated taking into account strain relaxation~solid lines!. Dashed
lines are for fully strained heterostructures. Barrier thicknesses are 3 nm~a!,
10 nm ~b!, and 30 nm ~c!. The Schottky barrier is 0.8 eV.
Na(GaN!51017 cm23. Separate curves show the effect of spontaneous po-
larization, the effect of the piezoelectric polarization, and combined effect.

FIG. 2. Estimated mean free path,l, vs hole mobility ~a! and hole gas
accumulation layer width,Xac, vs sheet hole density~b!. For the measured
hole mobility of 6 cm2/V s, the estimated transition from hole accumulation
layer ~3D holes! to 2D-hole gas occurs at hole sheet density 7.5
31012 cm22. Dashed line in~b! corresponds to 2D-hole gas, solid line
shows 3D-hole accumulation.

FIG. 3. Calculated 2D charge density distribution including piezoelectric
and spontaneous polarization charges, metal surface charge, accumulation
hole charge~top N! @Fig. 3~a!# and depletion charge~top Ga! @Fig. 3~b!# for
metal/AlGaN/GaN heterostructure. Al molar fraction is 0.25. No donors in
AlGaN. In GaN,Na51017 cm23.
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constants of GaN were extracted from GaN electromechani-
cal coupling coefficients~see Ref. 3!. The spontaneous po-
larizations were taken from Ref. 4

Ps12Ps2560.052x. ~3!

The sign in Eqs.~2!–~3! depends on the face orientation at
the surface and at the heterointerfaces. A hole concentration
enhancement corresponds to a nitrogen-terminated top sur-
face, whereas electron concentration enhancement corre-
sponds to a gallium-terminated top surface~see Fig. 3!.3

Figure 3 shows the calculated band diagrams, 2D charge
density, and schematics for AlGaN/p-GaN heterostructures.
The hole density strongly depends on the piezo- and pyro-
electric polarizations, and AlGaN barrier thickness. Figure 4
shows the calculation results for the sheet hole density,ps ,
generated by the piezoelectric doping in AlxGa12xN/p-GaN
heterostructure field effect transistors~HFETs! as a function
of the Al molar fraction. The sheet electron density was cal-
culated at zero bias voltage taking into account the sponta-
neous polarization and strain relaxation in AlGaN. A sheet
hole density from 1 to 531013 cm22 can be generated at
zero bias voltage~see Fig. 4!. Strain in AlGaN was analyzed
using a misfit dislocation relaxation mechanism.

Our calculations show that, as inn type, larger sheet
concentration can be generated by the total polarization in
HFETs with thinner barrier layers and higher Al concentra-
tions. For example, atx50.9, almost two times largerps can
be generated using 3 nm AlGaN than using 30 nm AlGaN
~see Fig. 4!. Even in partially relaxed structures, the maxi-
mum ps is over 331013 cm22 for high Al molar fractions.
As can be seen from the figure, the maximum sheet hole
concentration in unrelaxed heterostructures at zero bias volt-
age is estimated to be approximately 531013 cm22. For

comparison, in Fig. 4 we plotted separately the contributions
into sheet hole density from the spontaneous polarization and
the piezoelectric effect. In unrelaxed heterostructures, these
contributions are almost equal, and, therefore, equally impor-
tant ~see Fig. 4!. This is despite the fact that spontaneous
polarization charge is substantially larger than the piezoelec-
tric charge in AlGaN~see Fig. 3!. The reason for that is the
partial compensation of the spontaneous polarization charge
of AlGaN by an opposite spontaneous polarization charge of
GaN at the heterointerface~see Fig. 3!.

In conclusion, our calculations show that a sheet hole
density as high as 531013 cm22 can be obtained due to the
piezoelectric and spontaneous polarization effects. We ex-
pect that a similar 2D-hole density can be induced into the
base of a GaN-based HBT resulting in the considerable re-
duction of the base spreading resistance, and, possibly, re-
ducing the contact resistance as well. The results suggest that
a reasonable base spreading resistance in GaN-based HBTs
might be realized by piezoelectric doping if the hole mobility
is enhanced.

The work at Rensselaer Polytechnic Institute was sup-
ported by the Office of Naval Research~Project monitor Dr.
John Zolper!. The work at USC was supported by the Bal-
listic Missile Defense Organization~BMDO! under Army
SSDC Contract No. DASG60-97-C0066, monitored by Dr.
Brian Strickland and Dr. Kepi Wu.
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