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Mathematical models are useful in understanding battery opera-
tion, in facilitating battery design, and in conjunction with experi-
mental data to aid in accelerated testing. The models, however, are
only useful if the assumptions made during the model development
are valid for the system under consideration. An assumption that
holds for one battery system may not hold for another system with
different physical properties. One assumption usually implicit when
formulating the material balance for a one-dimensional model of a
porous electrode is that the volume is conserved during reaction (see,
for example, Ref. 1-3). However, if the volume of the reactants is not
equal to that of the products, then a volume change results due to the
reaction. The material balance produces erroneous results if this vol-
ume change is not accounted for correctly.

To understand how the assumption of volume conservation is
often inadvertently incorporated into models, consider a macroscop-
ic model of a porous electrode.4,5 In a one-dimensional model, the
following differential volume element is used

DV 5 A?Dx [1]

where the differential thickness, Dx, is large compared to the pore
dimensions but small compared to the electrode dimensions. The
conservation equations for the dependent variables are usually writ-
ten such that the cross-sectional area of the volume element, A, is
constant, and the material enters or leaves the volume element only
in the x direction. However, if volume is not conserved in the reac-
tion, the conservation equations should be modified. Two scenarios
are shown in Fig. 1 that result when the reactant volume is greater
than the product volume. Figure 1a represents the situation when
excess electrolyte, which is present on the top of the porous elec-
trode, fills the porous cathode to make up for the volume reduction.
The amount of electrolyte in the header decreases, while the active
cross-sectional area in the cathode (shaded portion) remains con-
stant. Figure 1b represents the case when no excess electrolyte is
present in the cell. Here, the active cross-sectional area of the porous
electrode decreases due to the volume reduction. The lighter shading
at the top of the electrode signifies the porous electrode without the
electrolyte. This portion of the electrode is no longer electrochemi-
cally active since no electrolyte is present.

In a two-dimensional model of the same system, the differential
volume element would be constant, and the two cases mentioned
above are naturally incorporated into the model either by incorpo-
rating the flux from the header into the boundary condition (Fig. 1a),
or by using a moving boundary condition (Fig. 1b). In a one-dimen-
sional model, it is easy to overlook these situations because of either
the added transport direction (Fig. 1a) or the changing size of the dif-
ferential volume element (Fig. 1b). It is shown here how the materi-

al balance in a one-dimensional model has to be modified to account
for either the inflow of electrolyte from the header or the loss in
active volume. A mathematical model of a lithium/thionyl chloride
primary battery is used to illustrate the effect of this material balance
modification on the prediction of the delivered capacity and the elec-
trolyte concentration. The volume reduction in this battery system is
significantly larger than for other batteries.6 For example, a one-
dimensional model developed for a nickel/cadmium battery1 will not
be significantly affected by incorporating the volume reduction pre-
sented in this work. However, the results from existing one-dimen-
sional models of a lithium/thionyl chloride battery can give erro-
neous results without this correction. Here we show the conse-
quences of neglecting the change in volume during the reaction.

Generalized Material Balance

The superficial current density in the solution, i2, is due to the
movement of charged species, given as

[2]

where Ni is the average flux density of species i in the pores aver-
aged over the cross-sectional area of the electrode. By conservation
of charge, the charge leaving the matrix phase must equal the charge
entering the solution phase, and this can be expressed as

i F z N2 5

i

i i∑
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Figure 1. A schematic diagram of the porous electrode depicting the volume
change due to the reaction. (a) Excess electrolyte is present at the top (head-
er) of the electrode. The electrolyte in the header moves into the porous elec-
trode as the void space is created by the reaction. Therefore, there is a flux in
a direction normal to x. (b) No header is present, and so the electrolyte level
in the electrode drops as a result of volume reduction. Therefore, the active
cross-sectional area, A, decreases with time.
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[3]

The current transferred from the matrix phase to the solution phase
must equal the net rate of the electrochemical reaction per unit vol-
ume of the electrode. This can be expressed as 

[4]

where j (A/cm3) is the local transfer current density per unit volume
of the electrode. The local transfer current is negative for a cathode
reaction, and it is related to the local concentration and overpotential
through a kinetic expression.7 In this work, only one reaction is con-
sidered in any region. If there were additional reactions, j would be
replaced by a summation over all reactions. In the absence of any
nonelectrochemical reactions, the rate of production of species i is
given as

[5]

where si is the stoichiometric coefficient of species i (molecular for-
mula Mi) in the electrochemical reaction expressed as

[6]

In the porous region, the material balance for species i in the
solution phase can be obtained by performing a balance on the dif-
ferential volume element. If material moves into and out of the vol-
ume element only across the plane normal to x, then the accumula-
tion of material in the differential time, Dt, is given by the difference
in the flux in the x direction plus the production due to reaction.
Mathematically this is expressed as

[7]

where ci is the solution-phase concentration of species i averaged
over the pore volume, e is the porosity of the electrode, and A is the
cross-sectional area available for material transport. 

Similarly, a balance on the matrix-phase volume, when there is a
porosity change due to reaction, gives

[8]

where V̂m is the specific volume of a solid phase, m, created due to
reaction (i.e., precipitation of species m). If the cross-sectional area,
A, does not change with time, then Eq. 7 and 8 can be rearranged to
give the commonly used governing equations for ci and e

[9]

[10]

Again, two inherent assumptions were made in the derivation of
Eq. 9 and 10: (i) the cross-sectional area normal to x does not change
with time; and (ii) material only moves into and out of the volume
element across the plane normal to x. When a volume reduction
occurs due to the reaction, these two assumptions cannot be simul-
taneously satisfied. Using Eq. 9 and 10 causes a discrepancy in the
amount of SOCl2 in the cell. This leads to the impossible situation
that more reactant is consumed than is actually present. Therefore,
one of the two assumptions given above must be relaxed.

No excess electrolyte present—If there is no excess electrolyte, A
is not constant and Eq. 7 and 8 must be rearranged to give the fol-
lowing expressions
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[12]

The rate of change of the area can be related to the stoichiometry and
the molar volume of the reactants and products as

[13]

where V̂k is the specific molar volume of species k. Equation 13 can
be substituted into Eq. 11 and 12 to yield the following material bal-
ances for the case when the cross-sectional area changes as a result
of the volume reduction in the electrode

[14]

[15]

The cross-sectional area, the electrolyte concentration, and the poros-
ity must be tracked throughout the discharge, and therefore Eq. 13
through 15 must be solved simultaneously to obtain A, ci, and e.

Excess electrolyte in header.—If excess electrolyte is present in
the header space, then the differential volume created by the volume
reduction is filled with electrolyte from the header. Although the
cross-sectional area of the differential volume is constant with time,
the material balance given by Eq. 9 does not hold, since the flux
from the header is across a plane that is not normal to x. The flux
from the header can be incorporated by adding a term to Eq. 9 that
corresponds to this flux. If the concentration of species i in the head-
er is the initial concentration, then the additional flux term is given
as (2ci

oRiDV̂i), which is the rate at which species i enters from the
header per unit volume of the porous electrode. Therefore, the mate-
rial balance becomes

[16]

Equations 10 and 16 are solved simultaneously to obtain ci and e.

Material Balance for Lithium/Thionyl Chloride Battery

The equations developed in the previous section are applied to a
lithium/thionyl chloride battery. Figure 2 is a schematic diagram of
the cross section of a spirally wound Li/SOCl2 cell as modeled in
this work. The four regions in the diagram are the lithium foil anode,
the lithium chloride (LiCl) film that forms on the anode surface, the
separator, and the porous carbon cathode. The components are rolled
together, and then the cell roll is inserted in a cylindrical can (com-
mercial D size). The electrolyte, which consists of lithium tetra-
chloroaluminate (LiAlCl4) in thionyl chloride (SOCl2), is poured
into the can, filling the porous regions of the roll. Henceforth, SOCl2
is referred to as the solvent, while LiAlCl4 is referred to as the salt.
Excess electrolyte resides at the top of the electrode/separator
assembly. The anode surface and the cathode current collector are
the boundaries of the model region.

The reactions included in the model are the oxidation of lithium
at the anode

Li r Li1 1 e2 [reaction 1]

and the reduction of SOCl2 followed by precipitation of LiCl at the
cathode
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4Li1 1 4e2 1 2SOCl2 r 4LiCl 1 SO2 1 S [reaction 2]

Reaction 2 is the net result of SOCl2 reduction and the subsequent
precipitation of the insoluble LiCl salt. Since the focus of the present
work is on the material-balance discrepancy due to reaction, only the
material balances in the porous cathode are discussed in this paper.
The entire model is presented and discussed elsewhere.7

As evident from reaction 2, for every mole of SOCl2 (solvent)
reduced, two moles of LiCl are deposited in the cathode. Therefore,
the total volume lost as a result of the reduction of a mole of SOCl2
is (V̂SOCl2 2 2V̂LiCl, and the solid volume created is 2V̂LiCl. The three
scenarios mentioned earlier are discussed in context of a Li/SOCl2
cell model: (i) no excess electrolyte is present, and therefore the
cross-sectional area changes with time; (ii) excess electrolyte is pre-
sent in the header; and (iii) no accounting is made in the material
balance to incorporate the volume reduction. The first two cases rep-
resent real events, while the third case results from an omission dur-
ing the model development.

No excess electrolyte present.—When no reservoir of excess
electrolyte is present, the volume reduction leads to a decrease in the
active cross-sectional area of the porous electrode. This effect can be
incorporated into the material balance in a manner described while
developing Eq. 14 where the loss in area is related to the stoichiom-
etry of the reaction, and is given as

(i 5 1, 2, o) [17]

where the subscripts 1, 2, and o refer to Li1, AlCl4
2, and SOCl2,

respectively.
Since the solvent is consumed in this system, the salt concentra-

tion increases as discharge proceeds. Concentrated solution theory5

is used to develop the equations describing the species transport. The
species flux, Ni, is obtained by inversion of the multicomponent dif-
fusion equation.5 The resulting flux expression for a binary elec-
trolyte salt and the solvent is given as

(i 5 1, 2, o) [18]

where v • is the volume average velocity. By definition, the transfer-
ence number of the solvent is zero (i.e., t•

o 5 0), and the effective dif-
fusion coefficient of the salt through the solvent, De, is defined as
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where the exponent accounts for the tortuosity of the electrode.5

Equations 17 and 18 are combined to obtain the material balance
for the salt

[20]

Since the electrolyte contains a binary salt, the cation and anion con-
centrations are equal to the total salt concentration (i.e., c1 5 c2 5
c). In addition, c and co are related to each other by the fact that the
partial volumes of the salt and the solvent sum to unity in each
region (i.e., the electrolyte contains only salt and solvent). This is
expressed mathematically as

cV̂ 1 coV̂o 5 1 [21]

The porosity in the cathode changes with time as a result of the
precipitation of LiCl and a change in the area, as explained while
developing Eq. 15. Therefore, the rate of change of cathode porosi-
ty can be expressed as

[22]

where the first term is due to the precipitation of LiCl, and the sec-
ond term is due to the change in electrode area. For this system,
Eq. 13 can be written as

[23]

A material balance similar to Eq. 20 can be written for the solvent.
The solvent balance, salt balance, solid-phase (LiCl) balance, and Eq.
21 can be combined to yield an overall material balance, that allows
one to solve explicitly for the volume average velocity, given as Eq. 24

[24]

In summary, Eq. 20, 22, 23, and 24 are used to solve for the four
unknowns A, c, e, and v •.

Excess electrolyte in header.—When a reservoir of excess elec-
trolyte is present at the top of the assembly, it is assumed that the
void space created by the volume differential is filled with this elec-
trolyte. This excess electrolyte remains at its initial concentration.
This effect is accounted for by combining Eq. 16 and 18 to yield the
material balance for the salt as

[25]

The porosity in the cathode changes as a result of LiCl precipita-
tion, but no area change is involved. Therefore, Eq. 22 reduces to

[26]

The salt material balance (Eq. 25), a similar balance for the sol-
vent, the solid-phase balance (Eq. 26), and Eq. 21 are combined to
yield the overall material balance, which is same as that given by
Eq. 25. Here the three unknowns, c, e, and v • are obtained by solv-
ing Eq. 24, 25, and 26.

No material-balance correction.—Equations 9 and 18 combined
to yield
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Figure 2. Schematic diagram of a lithium/thionyl chloride cell. The anode,
separator, and the porous cathode are stacked together, and the assembly is
spirally wound and inserted into a D size cell.
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[27]

Again, the overall material balance is obtained in a manner similar to
the previous two cases, and the volume average velocity is given as

[28]

Equations 26, 27, and 28 can be solved for the three unknowns c, e,
and v •.

Maximum theoretical capacity.—It is helpful to examine the
three cases detailed above by comparing the maximum theoretical
capacity a cell can deliver. The end of discharge for a cathode-limit-
ed cell design can occur by one of two mechanisms: (i) plugging of
all the pores in the cathode or (ii) consumption of all the solvent (i.e.,
reactant) in the cell. The latter mode of cell failure can be avoided by
adding excess electrolyte in the header above the cell.

When no excess electrolyte is present, either of the two failure
modes mentioned above is possible. In order to achieve the maxi-
mum theoretical capacity due to pore plugging, the reaction must be
uniform throughout the cathode. Under this assumption, the transfer
current density, j, can be expressed as (2Iapp/dpeA). When no excess
electrolyte is present, the area, A, changes with time, and therefore j
changes with time. Equation 13 is integrated to yield a time depen-
dent j which is substituted into Eq. 22, and then Eq. 22 is integrated
from e 5 eo to e 5 0 to give

[29]

If the solvent is consumed before the pores are plugged, the maxi-
mum theoretical capacity is obtained by multiplying the total moles
of SOCl2 in the cell by 2F to give

Qmax 5 2Aoco
oF(eodpe 1 esds) [30]

Therefore, the maximum theoretical capacity when no excess elec-
trolyte is present is the smaller of Eq. 29 and 30.

When excess electrolyte is present, A is constant and Eq. 26 can
be integrated to give

[31]

Since the electrolyte is in excess, the cell will not run out of elec-
trolyte and Eq. 31 is the maximum theoretical capacity.

For the parameters given in Table I, V̂o/2 is greater than V̂LiCl, and
the capacity predicted by Eq. 29 is lower than that predicted by Eq.
31. The reduced capacity without excess electrolyte is a result of a
decrease in the electrolyte level in the electrode due to the volume
reduction, which results in less volume for the LiCl precipitate to
occupy. In the event of no volume reduction, V̂o/2 is equal to V̂LiCl,
and Eq. 29 and 31 are equivalent.

Results and Discussion
The focus of the present work is to account for the volume reduc-

tion in the material balance in the porous cathode. The key parame-
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ters that determine whether or not a change in volume due to reac-
tion is significant are the specific molar volumes and the properties
of the cathode. The parameters for a lithium/thionyl chloride cell are
listed in Table I. A complete list of model parameters can be found
elsewhere.7 Using the parameters given in Table I and with no excess
electrolyte present, the theoretical capacities given by Eq. 29 and 30
are approximately 9.43 and 11.25 Ah, respectively. Therefore, no
more than 9.43 Ah of capacity can be removed from the cell. This
limit corresponds to the point at which the active pores are uniform-
ly plugged with LiCl, though a small amount of reactant (i.e., sol-
vent) remains in the cell. Adding a reservoir of excess electrolyte
increases the maximum theoretical capacity of the cell from 9.43 to
16.7 Ah, where the latter value is obtained from Eq. 31. Increasing
the cell capacity by adding excess electrolyte seems counterintuitive
since the mode of failure is pore plugging not electrolyte consump-
tion. However, adding excess electrolyte also prevents a portion of
the cell from drying out (see Fig. 1). Therefore, the entire cathode
remains active throughout the discharge, and more capacity can be
realized before all the pores become plugged.

Figure 3 shows the simulated discharge curves (i.e., cell voltage
vs. charge removed) obtained from the Li/SOCl2 model7 at a low
discharge rate (250 V load) with different material-balance equa-
tions. The dashed line represents the discharge curve when no excess
electrolyte is present (Eq. 20, 22, 23, and 24). The capacity is
approximately 9.26 Ah, which corresponds to 98% of the theoretical
maximum given by Eq. 29. The solid line represents the case when
excess electrolyte is in the header (Eq. 24, 25, and 26). The capaci-
ty is approximately 16.2 Ah, which corresponds to approximately
97% of the theoretical maximum given by Eq. 31. The dotted line
represents the case when no accounting is made for the volume
reduction in the material balance (Eq. 26, 27, and 28). Using these
equations, 15.4 Ah of capacity are removed from the cell. However,
removing this much capacity is impossible since there is only
11.25 Ah of capacity available in the electrolyte according to Eq. 29.
This physically impossible situation arises because the governing
equations do not account for the volume reduction as a result of the
reaction. The unintended consequence, in effect, is the spontaneous
creation of SOCl2. In other words, using Eq. 25 instead of 27, and
substituting co by c will also result in the dotted line in Fig. 3.

As mentioned earlier, the mode of failure for the two physically
realizable cases is pore plugging. This is evident from Fig. 4, which
shows the porosity profile at the end of discharge for all three cases.
The porosity at the front end of the cathode is very close to zero for
all three cases, indicating that the plugging of the pores resulted in
the end of discharge. The porosity throughout the electrode is low

Table I. A list of key parameters used in the model. A complete
list of model parameters can be found elsewhere.7 SNL signifies
parameters used in D size cells at Sandia National Laboratories.

Parameter Value Ref. Parameter Value Ref.

V̂ (cm3/mol) 77.970 08 es 0.950 SNL
V̂LiCl (cm3/mol) 20.500 09 eo 0.835 SNL
V̂o (cm3/mol) 72.630 10 ds (cm) 0.023 SNL
co (mol/cm3) 00.001 SNL dpe (cm) 0.085 SNL

Figure 3. Discharge voltage vs. charge removed for the two scenarios shown
schematically in Fig. 1 [i.e., (a) excess electrolyte (———); and (b) area
decreasing with time (- - - -)]. Also included is the discharge curve that results
if no accounting is made of the volume reduction due to the reaction
(?????????). In all three cases, the lithium/thionyl chloride cell is discharged
across a constant load of 250 V at 258C.
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for the two cases where proper accounting of the volume reduction
is made, either by changing electrode area or through the influx of
excess electrolyte from the header. Although the porosity profiles for
these two cases are very similar, the capacities seen in Fig. 3 are sig-
nificantly different. In the case when the electrode area changes with
time (i.e., no excess electrolyte), the profile seen in Fig. 4 is for the
remaining active volume. The porosity of the inactive volume does
not go to zero. If no accounting is made of the volume reduction due
to the reaction, some pore volume remains, but the mode of failure
is still the plugging of the front end of the porous cathode.

The solvent (i.e., SOCl2) concentration profile in the cell at the
end of discharge is shown in Fig. 5. Some solvent remains for all
three cases, although the concentration profiles are different. If no
accounting is made of the volume reduction due to the reaction, the
solvent concentration in the cathode is lower than that in the separa-
tor, as opposed to the other two cases where the concentration in the
cathode is higher. Also, the solvent is not consumed as early as pre-
dicted by Faraday’s law (see Eq. 30). As stated earlier, only 11.25 Ah
of SOCl— are added to the cell when no excess electrolyte is pre-
sent, yet Fig. 3 indicates that 15.4 Ah of capacity is removed. Using
the governing equations (Eq. 26, 27, and 28) for the case when no
accounting is made of the volume reduction causes a discrepancy in
the amount of SOCl2 present in the cell.

Conclusions
The consequences of disregarding the volume changes due to

reaction in a porous electrode were presented. It was shown how the
material balance should be modified for systems where the specific
volume of the reactants is not the same as that of the products. The
modified governing equations were implemented, and the effect was
illustrated by simulating the discharge behavior for a lithium/thionyl
chloride (Li/SOCl2) primary battery.7 Two different situations were
shown, each representing a different battery design. In one case, the
governing equations were developed to treat change in active elec-
trode volume when no excess electrolyte is present. In the other case,
the governing equations describe the influx of electrolyte from the
cell header. If no accounting is done for the volume reduction, the
battery is predicted to consume approximately 37% more reactant
(solvent) than is actually present in the cell.

The University of South Carolina assisted in meeting the pulication costs
of this article.

List of Symbols
A active cross-sectional area of the electrode, cm2

c electrolyte concentration, mol/cm3

ci concentration of species i, mol/cm3

D diffusion coefficient of the binary electrolyte, cm2/s
De effective diffusion coefficient of the binary electrolyte, cm2/s
dpe cathode thickness, cm
ds separator thickness, cm
F Faraday’s constant, 96,487 C/equiv
Iapp total cell current, A
i1 superficial current density in the matrix phase, A/cm2

i2 superficial current density in the solution phase, A/cm2

j transfer current density, A/cm3

n number of electrons transferred in the electrochemical reaction,
equiv/mol

Qmax maximum capacity, C
R universal gas constant, 8.314 J/mol K
Ri rate of production of species i due to reaction, mol/cm3 s
si stoichiometric coefficient of species i
t time, s
t i

• transference number of species i relative to v •

v • superficial volume average velocity, cm/s
V̂i partial molar volume of species i, cm3/mol
x distance along axis normal to the electrode/electrolyte interface, cm

Greek
e porosity of the porous electrode

Subscripts
e electrolyte
i species index
k species index
m solid species index
o solvent
p porous electrode
1 cation
2 anion

Superscripts
o initial value
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Figure 4. The porosity profile at the end of discharge for the two scenarios
shown schematically in Fig. 1 [i.e., (a) excess electrolyte (———); and (b)
area decreasing with time (- - - -)]. Also included is the discharge curve that
results if no accounting is made of the volume reduction due to the reaction
(?????????). In all three cases, the lithium/thionyl chloride cell is discharged
across a constant load of 250 V at 258C.

Figure 5. The solvent concentration profile at the end of discharge for the
two scenarios shown schematically in Fig. 1 [i.e., (a) excess electrolyte
(———); and (b) area decreasing with time (- - - -)]. Also included is the dis-
charge curve that results if no accounting is made of the volume reduction
due to the reaction (?????????). In all three cases, the lithium/thionyl chloride
cell is discharged across a constant load of 250 V at 258C.
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