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In this article we introduce a simpler version of Japanese ladder game. The mathematics of this game is discussed 
and an algebraic method is also introduced to solve this game. 

Japanese Ladder 
 
If you bought five Christmas gifts for your five children, how 
would you let them pick the gift without fighting with one another? 
A mathematical technique suggested by Lange and Miller in [5] 
might be a good solution to save you from a headache. On a paper 
draw five vertical lines. Randomly write the children’s names at 
the top of each line, and the five gifts at the bottom of the lines. 
Cover the names and the gifts, and let each child randomly draw 
some horizontal rungs connecting adjacent vertical lines. Once 
done, this structure determines which child will receive which gift. 
To decode this matching, each child starts from the top of the 
vertical line that has his or her name on it. He or she then traces the 
vertical line downward until a horizontal line is met. He or she then 
follows the horizontal line to another vertical line, and then keep 
going downward. Repeat this process, until the end of a vertical 
line is reached. The gift at the bottom of that line therefore belongs 
to this child.  
 This ancient technique is very popular in Asia, and is usually 
used to represent a random permutation. Chinese call it “Ghost 
Leg” (畫鬼腳), Korean “Ladder Climbing” (사다리타기), and 
Japanese “Budda’s Lots” (Amidakuji). The name “Japanese 
Ladder” was first raised in an earlier paper [2] by Dougherty and 
Vasquez, and is then adopted in our paper. 
 We first start with some terminologies. A Japanese ladder 
consists of several vertical lines and several horizontal bars, or 
rungs, connecting two adjacent vertical lines. From the top of each 
vertical line a path is traced through the ladder using the following 
three rules:  
 
1. When tracing a vertical line, continue downwards until an end 

of a rung is reached, then continue along the rung. 
2. When tracing a rung, continue along it until the end of the rung 

is reached, then continue down the vertical line. 
3. Repeat steps 1 and 2 until the bottom of a vertical line is reached.

  
The example shown in figure 1 (a) is a Japanese ladder with three 
vertical lines and three rungs. The paths of tracing these three 
vertical lines are provided in figure 1 (b), (c), and (d). 
 For any Japanese ladder, a sequence of objects is placed at the 
top of these vertical lines, and a random rearrangement of these 
objects at the bottom. If all the necessary rungs are placed at the 
right place, this ladder structure creates an “one-to-one” and “onto” 
mapping from the top sequence to the bottom rearrangement (see 
[2] and [5]). To make it easier to explain in this paper, we will use 
consecutive numbers to indicate the top sequence, and we will just 
call it a sequence. We will also use these consecutive numbers to 
indicate the order of the vertical lines if it does not cause any 

confusion. The rearrangement of these numbers at the bottom of 
the ladder will then be simply called a permutation. 
 A k-cycle is a permutation of k elements. Let ܽ be a number in 
the top sequence for every i. Then the k-cycle ሺܽଵ, ܽଶ,⋯ , ܽሻ 
permutes the involving k numbers as follow: ܽଵ → ܽଶ, ܽଶ → ܽଷ, 
⋯, ܽିଵ → ܽ, and ܽ → ܽଵ. The composition of cycles will be 
referred as a product, and the composition symbol will be omitted. 
For example, ሺ1,2ሻ ∘ ሺ2,3ሻ ൌ ሺ1,2ሻሺ2,3ሻ. Since it is a composition 
after all, we follow the same convention we used in any 
compositions, reading it from right to left. Therefore in the 
example ሺ1,2ሻሺ2,3ሻ, the net result is, 2 → 3, 3 → 1 (3 → 2 in the 
first (right) cycle, then 2 → 1 in the second (left) cycle), and 1 →
2. Two cycles are said to be disjoint if and only if they do not have 
any common elements. It is also known that the product of disjoint 
cycles is commutative. For more properties of k-cycle, we refer to 
Durbin [3], section 6. 
 One way, and the most common way, to play a Japanese ladder 
game is to place a random permutation at the bottom of a Japanese 
ladder without any rungs, and the player needs to create a 
minimum number of rungs to match the  top sequence to the 
bottom permutation. A Japanese ladder with a minimum number 
of rungs that create a correct match will be called a minimum 
solution. The mathematics of this game has been discussed by 
Dougherty and Vasquez in [2] and by Lange and Miller in [5]. It is 
given in [5] that the minimum solution of a Japanese ladder game, 
in general, is not unique. 
 In the next section, we introduce a modified version of this 
game, called Simple Japanese Ladder Game. The mathematics of 

 

 

Figure 1. 
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a simple Japanese ladder game is similar to, yet different from, the 
one of a normal version, and it will be discussed in section 2 as 
well. An algebraic method to find the minimum solution of this 
game will also be introduced. 
 
Simple Japanese Ladder Game 
 
To play a simple Japanese ladder game, the player also needs to 
create a Japanese ladder with minimum number of rungs to match 
the top sequence and the bottom permutation. Only this time, the 
rungs are allowed to cross over vertical lines. That means a rung 
may connect any two vertical lines, not just adjacent ones. The 
three rules for tracing a simple Japanese ladder remain the same. 
Just remember, when tracing a vertical line we turn only when we 
meet the end of a rung, not the middle of a rung. In figure 2 an 
example of simple Japanese ladder with two cross-over rungs is 
provided in (a). The paths of tracing each vertical line are shown 
in (b), (c), (d), and (e). Readers may easily see that, with the new 
condition of rungs inserted, a simple Japanese ladder game 
requires fewer rungs in its minimum solution. In figure 3, with the 
same permutation at the bottom, we show a solution of a Japanese 
ladder game in (a), and a solution of a simple Japanese ladder game  
in (b). That’s why we call the modified version a “simple” one. 
Like a normal version Japanese ladder game, the minimum 
solution of a simple Japanese ladder game, in general, is not unique 
either. 
 
Mathematics of Simple Japanese Ladder 
 
The first fact we notice about a simple Japanese ladder is, a simple 
Japanese ladder also creates a one-to-one and onto mapping. From 
the top of any vertical line a number can be traced to the spot at the 
bottom that labeled the same number. But if we trace the bottom 
number backwards, meaning change the downwards rule to the 
upwards rule, we will go back to the same spot that we start with. 
That means this mapping is invertible. And we already know that 
any invertible mapping is one-to-one and onto. Another discussion 
about this fact, appropriate for both the Japanese ladder and the 
simple Japanese ladder, can be found in Lange-Willer [5], section 
3. 
 We next will focus on the mathematics of rungs. In figure 4 we 
can see that when we trace two objects from the top to the bottom, 
they switch places when hitting the ends of a rung. So what a rung 
does is to create a transposition of two objects. We will use a 2-
cycle to indicate this transposition. In the above case, it will be 
noted as ሺܽ, ܽሻ, meaning the number at the ܽth vertical line is 
switched to the position at the ܽth line (and the ܽth number is 
switched to the ܽth place.) It is trivial then, that the mapping of a 
Japanese ladder (or a simple Japanese ladder) with n rungs is 
actually a combination of n transpositions, hence a product of n 2-
cycles. 
 
Theorem 1. Any permutation in a simple Japanese ladder game 
can be written as a single cycle, or a product of disjoint cycles. 
Despite the order of the cycles, the product is unique. 
Proof. We may safely assume that any permutation in a simple 
Japanese ladder game is a finite permutation. In that case the first 
part of the theorem is apparently true according to [3] p.36. We 

will demonstrate one example here showing readers how to find 
the cycles. Let {5,3,6,1,4,2} be the permutation of the sequence 
{1,2,3,4,5,6}. We start our (first) cycle with the smallest number, 
1. It is moved from the first vertical line to the fourth vertical line, 
so the cycle starts with 1 → 4. Now we examine the number 4. It 
is moved from the fourth line to the fifth line, so the cycle continues 
with 4 → 5. Our next target, number 5, is moved from the fifth line 
to the first line, so we have 5 → 1. The last mapping moves a 
number back to 1, the number we started with, hence closes the 
cycle ሺ1,4,5ሻ. If the cycle includes every number in the 
permutation, it is the only cycle in the permutation. If there are 
other numbers not in the cycle, we then repeat the process to find 
other cycles. In our example, we still have numbers 2, 3, and 6 left, 
so we start the second cycle with the smallest remaining number, 
the number 2. We notice that 2 maps to 6, 6 maps to 3, and then 3 
maps back to 2. So the second cycle is ሺ2,6,3ሻ. We now see that 
the permutation {5,3,6,1,4,2} is the result of a product of two 
disjoint cycles, ሺ1,4,5ሻሺ2,6,3ሻ. By the way, if a number is not 
moved (a 1-cycle, the number maps to itself), it can be omitted in 
the product. For example, the permutation ሼ6,5,3,1,4,2ሽ can be 

 
Figure 2. 

 
Figure 3. 

 
Figure 4. 
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written as the product ሺ1,4,5,2,6ሻሺ3ሻ, which is equal to the single 
cycle ሺ1,4,5,2,6ሻ. 
 Assume that a permutation can be written as two different 
products of disjoint cycles, noted ܥଵܥଶ ଶܦଵܦ  andܥ⋯  , whereܦ⋯
 ’s are cycles. Removing all the same cycles from theseܦ ’s andܥ
two products, we have the remaining two products still equal. 
ଶ′ܥଵ′ܥ ᇱܥ⋯ ൌ ଶ′ܦଵ′ܦ   from these′ܦ  and′ܥ  . Consider′ܦ⋯
two new products that ܥ′ and ܦ′ are not disjoint. Since ܥ′ ്  ,′ܦ
there must be a common number in these two cycles that maps to 
two different numbers. This also reflects in their products. In the 
products ܥ′ଵܥ′ଶ ଶ′ܦଵ′ܦ ᇱ andܥ⋯  , there is at least one′ܦ⋯
number mapping to two different numbers accordingly. It 
contradicts that  ܥ′ଵܥ′ଶ ᇱܥ⋯ ൌ ଶ′ܦଵ′ܦ  . This implies, our′ܦ⋯
assumption that a permutation can be written as two different 
products of disjoint cycles is not true. That proves the uniqueness. 
∎ 
 
Theorem 2. Any n-cycle can be written as a product of (n-1) 2-
cycles. Moreover, (n-1) is the least number of 2-cycles needed. 
Proof. The first part of the theorem has been mentioned in many 
Algebra books, including [3]. It is quite self-evident, for we have 
known that for any n-cycle ሺܽଵ, ܽଶ,⋯ , ܽሻ, it can be written as  
ሺܽଵ, ܽଶሻሺܽଶ, ܽଷሻ⋯ ሺܽିଵ, ܽሻ, which is a product of (n-1) 2-
cycles. 
 Assume that for an n-cycle, it can be written as a product of k 
2-cycles where ݇ ൏ ሺ݊ െ 1ሻ. Since the product of these k 2-cycles 
can be merged into one n-cycle, each of the 2-cycle cannot be 
completely disjoint to all other 2-cycles. It must contains at least 
one element that is in common with another 2-cycle, and these two 
can therefore be merged into a 3-cycle. For the same reason this 3-
cycle should be able to merge into a 4-cycle with another 2-cycle. 
Repeating this process we will then end up with a (k+1)-cycle. 
Since ሺ݇  1ሻ ൏ ݊, it contradicts our original assumption that it is 
a re-statement of an n-cycle. ∎	
 
 We want to point out that in the proof the mentioned product of 
(n-1) 2-cycles is not unique. For example, the same n-cycle 
ሺܽଵ, ܽଶ,⋯ , ܽሻ can also be written as 
ሺܽଵ, ܽሻሺܽଵ, ܽିଵሻ⋯ ሺܽଵ, ܽଶሻ. 
 With these two results, we then can develop a strategy to solve 
a simple Japanese ladder game. 
 
Solving Simple Japanese Ladder Game 
 
To make it easier to understand, in this section we will use 
examples to explain each steps. For any simple Japanese ladder 
game, we first write the bottom permutation as a cycle or a product 
of disjoint cycles. In figure 5, we use the example used in Theorem 
1, {5,3,6,1,4,2}, to indicate the bottom permutation of the top 
sequence {1,2,3,4,5,6}. We already know that we can write the 
permutation as a product of two disjoint 3-cycles ሺ1,4,5ሻሺ2,6,3ሻ. 
 Second, we will write the single k-cycle, or any individual k-
cycle in the product, to a product of (k-1) 2-cycles. In the example 
mentioned above, ሺ1,4,5ሻ ൌ ሺ1,4ሻሺ4,5ሻ and ሺ2,6,3ሻ ൌ ሺ2,6ሻሺ6,3ሻ. 
Therefore, ሺ1,4,5ሻሺ2,6,3ሻ ൌ ሺ1,4ሻሺ4,5ሻሺ2,6ሻሺ6,3ሻ. 
  
Third, for each 2-cycle, draw the corresponding rung in the order 
of the cycles from the right to the left. The four rungs 

corresponding to the four 2-cycle product ሺ1,4,5ሻሺ2,6,3ሻ ൌ
ሺ1,4ሻሺ4,5ሻሺ2,6ሻሺ6,3ሻ is shown in figure 5. 
 Notice that Theorem 1 guarantees us that we can definitely find 
a solution of any simple Japanese ladder game. And Theorem 2 
guarantees us that the solution we found using this method is a 
minimum solution. 
 We already mentioned that an n-cycle can be written as a 
product of 2-cycles in different ways. And different products will 
create different simple Japanese ladders. In figure 6 we provide 
another minimum solution of the same simple Japanese ladder 
game according to a different product of 2-cycles: 
ሺ1,4,5ሻሺ2,6,3ሻ ൌ ሺ1,5ሻሺ1,4ሻሺ2,3ሻሺ2,6ሻ. 

  
Remarks 
 
The method discussed in this article is just one of many ways to 
solve a simple Japanese ladder game. We have found that people 
playing the game use a variety of strategies. Some like to start from 
the first number that is moved from the left, and then continue to 
the next moved number until all numbers have been handled. Some 
players first identify the number that moves the farthest and fix that 
first. The second and the third farthest numbers then be taken care 
of in order, until all the moved numbers are fixed. If handled well, 
the player may also find a minimum solution using these 
techniques. 
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