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The low frequency noise in GaN field effect transistors has been studied as function of drain and
gate biases. The noise dependence on the gate bias points out to the bulk origin of the low frequency
noise. The Hooge parameter is found to be around 231023 to 331023. Temperature dependence
of the noise reveals a weak contribution of generation–recombination noise at elevated
temperatures. ©2001 American Institute of Physics.@DOI: 10.1063/1.1372364#

I. INTRODUCTION

A recent report on GaN highly doped metal semiconduc-
tor field effect transistors~HD-MESFETs!1 showed that
these devices~especially short channel MESFETs! have a
potential to compete with conventional AlGaN/GaN hetero-
structure field effect transistors~HFETs!. One of the most
important parameters of the microwave transistors is the
level of the low frequency noise, which determines the de-
vice suitability for microwave applications.

In this article, we present the experimental results on the
bias and temperature dependence of the low frequency noise
in HD-MESFETs and in GaN thin channel highly doped
metal oxide semiconductor field effect transistors~HD-
MOSFETs!. The analysis of the noise gate voltage depen-
dence allows us to speculate about the noise sources loca-
tion. The experimental results are compared with the noise
data for bulk GaN and for AlGaN/GaN HEFTs.

II. EXPERIMENTAL DETAILS

The structures were grown by low-pressure metal or-
ganic chemical vapor deposition on~0001! sapphire sub-
strates. The deposition of approximately 2mm of nominally
undoped GaN was followed by the growth of a Si-doped
GaN channel. The thickness and doping level of the channel
~extracted from capacitance–voltage characteristics! were
;60 nm and 1018cm23, respectively. The measured electron
Hall mobility in the channel was close tom5100 cm2/V s.

Prior to the HD-MOSFET fabrication, a 7nm SiO2 layer was
deposited on a part of the heterostructures using plasma en-
hanced chemical vapor deposition.

The fabricated HD-MESFETs and HD-MOSFETs had
the source–drain spacing of 4mm and the gate length of 1.5
mm.

A low-frequency noise was measured in the frequency
range from 1 Hz to 100 kHz with the sources grounded. We
used the probe station with the tungsten probes of 10mm
diameter. A controlled pressure on the probes provided the
contacts to the sample pads.

III. RESULTS AND DISCUSSION

The current–voltage characteristics of the HD-
MESFETs and HD-MOSFETs were similar and differed
only in the threshold voltage,Vth , which wasVth5(244
25) V andVth5(27428) V for HD-MESFETs and HD-
MOSFETs, respectively. Figure 1 shows the current–voltage
characteristic of the HD-MESFET. The gate leakage current
also shown in Fig. 1 did not exceedI g510 nA at drain bias
Vd58 V and gate biasVg55 V for both types of transistors.
The measurements using transmission line model~TLM !
structures showed that the contact resistanceRc was negli-
gible compared with the channel resistance.

The capacitance voltage measurements on the test struc-
ture with a relatively large area of the Schottky contact indi-
cated that the doping profile of the GaN layer was uniform
with doping density ofNd'1018cm23. The built-in voltage
of the Schottky barrier was found to beVbi'1 V.

The noise spectra of drain current fluctuationsSId had
the form of 1/f G noise withG close to unity (G51.0– 1.15)
for both HD-MESFETs and HD-MOSFETs. At low drain
biases,Vd,1 V, the spectral noise densitySId was propor-
tional to the square of the drain voltageSId;Vd

2, as ex-
pected.

a!On leave from the Ioffe Institute of Russian Academy of Sciences,
194021 St-Petersburg.

b!Electronic mail: palan@rpi.edu
c!Also with Sensor Electronic Technology, Inc., 21 Cavalier Way, Latham,
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The noise temperature dependence revealed a weak con-
tribution of one or two local levels. Figure 2 shows the tem-
perature dependence of noise for one of the HD-MESFETs.
As seen, the weak noise maxima shifted to higher tempera-
tures with a frequency increase. This behavior is typical for
the generation–recombination (g–r ) noise from a local
level.2 However, the contribution ofg–r noise was too weak
compared to the 1/f noise in order to extract the local level
parameters.

Many different noise sources in FETs might be impor-
tant including the contribution of the gate leakage current,
contact noise, bulk noise, surface noise, and the fluctuations
of the Schottky barrier space charge region~SCR! width, W
~see Fig. 3!. Depending on the device structure, different
noise mechanisms are responsible for the main contribution
to the overall noise.3–5 Since the observed low frequency
noise was a superposition of the 1/f and generation–
recombination noise, we should analyze the possible location
of the noise sources on the basis of both 1/f andg–r noise
models.

A. Contribution to noise from gate leakage current

The gate leakage current in the MESFETs and MOS-
FETs under investigation did not exceed a few nanoamperes

in the linear regime of operation~see Fig. 1! and was 6–7
orders of magnitude smaller than the drain current. Hence,
the gate leakage current should not contribute much to the
output noise in these devices.6–8

B. Contact contribution to noise

In order to determine the contribution of the contact
noise to the measured noise spectra, the noise measurements
were performed on the TLM structures. Assuming that the
contribution of the contact noise and of the noise from the
GaN layer are not correlated and taking into account that the
contact resistance is much smaller than the resistance of the
GaN layer, the spectral noise density of the current fluctua-
tions SI /I 2 can be expressed as:

SI

I 2 5
SRc1SGaN

RGaN
2 , ~1!

where SRc and SGaN are the spectral noise densities of the
contact resistance and of the GaN layer resistance fluctua-
tions, respectively,RGaN is the resistance of the GaN layer
between the pads of the TLM structure. In the limiting case
when the contact noise dominant (SRc@SGaN), the spectral
noise density,SI /I 2, should be proportional toLI

22, where
L1 is the distance between the TLM contact pads:

SI

I 2 5
SRc

RGaN
2 }

1

L1
2 . ~2!

In the opposite limiting case, whenSRc!SGaN, the spectral
noise density of the GaN layer resistance fluctuations is pro-
portional to the reciprocal volume of the GaN layer~the bulk
origin of the noise! or to the reciprocal GaN area~surface
origin of the noise! between the contact pads. In both these
cases:

SI

I 2 5
SGaN

RGaN
2 }

1

L1
. ~3!

Figure 4 shows the dependence of the relative spectral
noise density of the current fluctuations on the distanceL1

between the pads of the TLM structure. Since this depen-
dence is close to the 1/L1 law, we conclude that contacts do
not contribute much to the overall noise.

FIG. 1. Current–voltage characteristics of the MESFET under investigation.
Crosses show the gate leakage current.

FIG. 2. Temperature dependence of noiseSI /I d
2 for MESFET at different

frequencies of analysis.

FIG. 3. The schematic view of the HD-MESFET. Also shown a simplified
equivalent drain-to-source circuit,Rds5Rs1Rd .
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C. Surface noise sources

Let us first consider the location of the noise sources at
the surface of GaN in source-gate and drain-gate regions.
One of the possible mechanisms of the surfaceg–r noise
was analyzed in Ref. 9~the 1/f noise originated from the
surface is often dominant in Si MOSFETs!.10

For the noise sources located at the surface of regions 1
and 2 in Fig. 3, the relative spectral noise density of the short
circuit drain current fluctuations can be presented in the fol-
lowing form:

SId

I d
2 5

SRds

Rds
2

Rds
2

~Rds1RCh!
2 , ~4!

whereRCh is the channel resistance which depends on the
gate voltage,Vg , Rds5Rd1Rs is the resistance of source-
gate and drain-gate regions~regions 1 and 2 in Fig. 3!, SRds

is the spectral noise densities of theRds fluctuations. In this
case, the noise gate voltage dependence is determined by the
dependence ofRCh on Vg .

The data points in Fig. 5 correspond to the experimental
results for the dependence of noise on the drain current for
HD-MESFETs and HD-MOSFETs at a constant drain bias.
Within an experimental error, the noise behavior for both
types of transistors was identical. This indicates that SiO2

film deposited in order to fabricate HD-MOSFETs does not

affect much the noise properties. As seen from Fig. 5, the
relative spectral noise densitySId /I d

2 decreases with the drain
current increase, i.e. with the gate voltage increase.

According to Eq.~4!, noiseSId /I d
2 should decrease with

the RCh increase, i.e., with the drain current decrease. Since
the experimental dependence exhibits the opposite trend, the
measured noise can not be explained by the surface noise.

D. Fluctuations of the Schottky barrier SCR

Another mechanism of a low frequency noise was ana-
lyzed by Lauritzen.11 He assumed that the fluctuations of the
charge state of the levels inside the depletion region of ap-n
junction or of a Schottky barrier result in the fluctuations of
the depletion region width,W, and, consequently, in the fluc-
tuations of the channel width and the channel resistance. For
zero free carrier concentration in the depletion region and for
a single time constant process contributing to noise, the ex-
pression for the equivalent gate voltage fluctuationsSVg de-
rived in Ref. 11 for the linear mode of operation is given by

SVg5A
W3t

11v2t2 , ~5!

where A is the parameter which does not depend on gate
voltage,v52p f , f is the frequency, andt is the fluctuation
time constant. Theg–r noise of this origin was recently
observed in GaAsFETs5 ~the superposition of noise from
several traps can result in the 1/f -like spectrum!.

The spectral noise density of the channel resistance fluc-
tuations is given by

SRCh

RCh
2 5

SVgg
2

I d
2 , ~6!

where g is the intrinsic transconductance. In the linear re-
gime, the transconductance is inversely proportional to the
depletion region width,W. Therefore, the dependence of the
relative spectral noise density of the channel resistance fluc-
tuations on the channel widthW can be expressed as:

SRCh

RCh
2 5B

W

I d
2 . ~7!

The spectral noise density of the short circuit drain cur-
rent fluctuations can be presented in the following form:

SId

I d
2 5

SRch

RCh
2

RCh
2

~Rds1Rch!
2 5

BWRCh
2

~Rds1Rch!
2I d

2 , ~8!

whereB is the parameter which does not depend on the gate
voltage.

In order to compare our experimental results~Fig. 5!
with this model, the SCR width,W, should be expressed as a
function of the drain current:

W5
~ I fc2I d!W0

~ I fc2I d0!
, ~9!

where I d0 and W0 are drain current and depletion region
thickness, atVg50, respectively,I fc is the full channel drain
current.

FIG. 4. The dependence of the relative spectral noise densitySI /I 2 on the
distanceLI between the pads of TLM structure. Frequency of analysisf
5200 Hz.

FIG. 5. The dependence of the of the relative spectral noise density of the
drain current fluctuations on drain current. Drain voltageVd50.5 V. Fre-
quency of analysisf 5200 Hz. Different symbols show data for MESFETs
and MOSFETs. Lines 1 and 18 are calculated according to the Lauritzen
model ~see Ref. 11! @Eq. ~10!# for Rds5115V and Rds5180V, respec-
tively. Lines 2 and 28 are calculated according Eq.~14! for Rds5115V and
Rds5180V, respectively~bulk origin of noise!.
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The substitution of Eq.~9! into Eq.~8! yields the depen-
dence of noise on the drain current at the constant drain
voltage:

SId

I d
2 5B

~ I fc2I d!~Vd /I d2Rac!
2W0

~ I fc2I d0!Vd
2 . ~10!

In Fig. 5, lines 1 and 18 are calculated using Eq.~10! for
Rds5115V andRds5180V, respectively~see Appendix for
Rds estimates!. In order to calculate the dependence of noise
on the drain current, parameterB was adjusted to fit the noise
value atVg50. The thickness of the depletion region atVg

50 was taken to beW050.03mm ~extracted from the
capacitance–voltage measurements!.
Figure 5 shows that this noise mechanism predicts a much
faster increase of noise compared with that observed experi-
mentally.

E. Bulk location of the noise sources

Van der Ziel12 assumed that fluctuations of the carrier
density in the channel are responsible for the noise in FETs.
Assuming that a single time constant process contributes to
noise and neglecting the influence of resistanceRds on noise,
the spectral noise density of drain current fluctuations deter-
mined by this mechanisms are given by:12

SId8 5
4I dVdqmgt1

I g
2~11v2t1

2!
, ~11!

whereq is the electronic charge,m is the electron mobility,g
is constant,Lg is the gate length, andt1 is the fluctuation
time constant.

For the linear regime of operation, Eq.~11! can be sim-
plified:

SId8

I d
2 5

SRCh

RCh
2 5

4gt1

NCh~11v2t1
2!

, ~12!

whereNCh is the number of electrons in the channel. A su-
perposition of noise from several traps or from a continuous
spectrum of levels results in the 1/f like noise.13 Equation
~12! takes into account only the noise sources located inside
the channel. Assuming that the noise sources are not corre-
lated and located both in the channel and in the lateral re-
gions 1 and 2~see Fig. 3!,14,15 the spectral noise density of
the drain current fluctuations can be presented in the follow-
ing form:

SId

I d
2 5

SRds

Rds
2

Rds
2

~Rds1Rch!
2 1

SRCh

RCh
2

RCh
2

~Rds1Rch!
2 . ~13!

In Eq. ~12!, Nch is the only parameter which depends on the
gate voltageVg . In the linear regime of operation, the num-
ber of electrons in the channel is inversely proportional to
the channel resistance (Nch;1/Rch). Hence, the expression
for the spectral noise density of the drain current fluctuations
is given by:

SId

I d
2 5

SRds

Rds
2

Rds
2

~Rds1Rch!
2 1

CRCh
3

~Rds1Rch!
2 . ~14!

whereC is a parameter, which does not depend on gate volt-
age.

The bulk noise originated from the regions 1 and 2 in
Fig. 3 should be of the same nature as the channel bulk
noise. Therefore the spectral noise densitySRds/Rds

2 is given
by

SRds

Rds
2 5

FCh0

Fds
S SRCh

RCh
2 D

Vg50

, ~15!

where FCh05(d2W0)LgZ, is the channel volume atVg

50, d is the full channel thickness,Z is the channel width,
andFds is the volume of GaN layer between source-gate and
gate-drain intervals~regions 1 and 2 in Fig. 3!. We estimated
Fds as Fds5(d2W0)(Ld1Ls)Z for Rds5180V and Fds

5d(Ld1Ls)Z for Rds5115V ~see Appendix forRds esti-
mates!.

Curves 2 and 28 in Fig. 5 are calculated using Eq.~14!
for Rds5115V and Rds5180V, respectively. As can be
seen from Fig. 5, the experimental data can be fitted quite
well using the bulk noise model. At a low drain current,
(SId /I d

2);I d
21. This reflects the fact that the noise depends

on the channel volume as 1/FCh @see Eq.~14!#. This is a
usual behavior of the bulk 1/f noise. At high drain currents
and small gate voltages, the dependence of noise on drain
current is close to (SId /I d

2);I d
22.

Since it appears that the noise sources in the transistors
under investigation are located in the bulk of GaN layer, the
Hooge parametera5(SI /I 2)N f ~N is the total number of
carriers in the sample! can be used to characterize the noise
level.16 We estimateda5(2 – 3)31023 for the entire range
of the gate voltages. These values ofa are at least one order
of magnitude smaller than those reported for bulk GaN17 and
3–5 orders of magnitude smaller than that recently reported
for p-type GaN.18 The a values for HD-MESFETs and HD-
MOSFETs found in the present article are comparable witha
values for AlGaN/GaN HFETs.6,19,20

IV. CONCLUSION

The measurements of the low frequency noise on GaN
HD-MESFETs and HD-MOSFETs showed that the noise
properties of MESFETs and MOSFETs are identical and that
the drain and source contacts do not contribute much to the
low frequency noise. The dependence of the noise on gate
voltage indicates that the noise originates from the bulk of
GaN in the channel and in the source to gate and drain to
gate regions. We estimated the Hooge parametera5(2 – 3)
31023. This value is about one order of magnitude smaller
than the value ofa reported for bulkn-type GaN. The tem-
perature dependence of noise shows a weak contribution of
g–r noise at elevated temperatures.
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APPENDIX

From Fig. 3, we find

Rds5Rd1Rs5
R0

11
Lg~d2Ws!

~Ld1Ls!~d2W0!

,

where R0'250V and W050.03mm are the output resis-
tance and depletion region thicknessW at Vg50. This equa-
tion yields Rds'115V for Ws50 and Rds'160V for Ws

5W'0.03mm.
ResistanceRds can also be estimated from the transistor

dc characteristics. The gate voltage dependence of the output
resistanceRout is given by~see Ref. 21, for example!:

Rout5
R0

12AVbi2Vg

Vpo

1Rds,

whereVpo is the pinch-off voltage.
The intercept of the dependence ofRout on

S 12AVbi2Vg

Vpo
D 21

should yield the value ofRds. The accuracy of this procedure
is limited, since this technique is very sensitive to the values
of Vbi andVpo. This method yieldsRds'115– 180V.
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