An improved Fibonacci inequality

Cameron T. Cooper, Dr. Fidele F. Ngwane and Dr. Wei-Kai Lai

Division of Mathematics and Science, University of South Carolina Salkehatchie, Allendale SC 29810
Fibonacci numbers and Fibonacci sequences play a key role in many areas of mathematics and other sciences. Many inequalities satisfied by Fibonacci sequences have been established. In this paper we prove a new Fibonacci inequality using Candido's identity.

Introduction

In this paper, we consider a problem in [1]. The problem posed is to prove that for every natural number n,

$$
2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)\left(\frac{1}{F_{n}^{2}}+\frac{1}{F_{n+1}^{2}}+\frac{1}{F_{n+2}^{2}}\right)^{2}>81
$$

where F_{n} is the $n^{\text {th }}$ Fibonacci as defined in the section below.

We prove much stronger inequality:

$$
2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)\left(\frac{1}{F_{n}^{2}}+\frac{1}{F_{n+1}^{2}}+\frac{1}{F_{n+2}^{2}}\right)^{2}>100
$$

Existing identity and inequality

Definition 1. The $n^{\text {th }}$ Fibonacci number is defined by

$$
F_{n}=F_{n-1}+F_{n-2}
$$

where $F_{0}=0, F_{1}=F_{2}=1$ and $n \geq 2$ is a natural number.
Lemma 2. (Candido’s identity ([2], [3], [4]))
For every natural number n,

$$
\left(F_{n}^{2}+F_{n+1}^{2}+F_{n+2}^{2}\right)^{2}=2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)
$$

Lemma 3. For every natural number n,

$$
\frac{F_{n}}{F_{n+1}} \geq \frac{1}{2}
$$

Auxillary equations

In this section we give a proof of some auxillary equations that we use to obtain our main result.
Lemma 4. For every natural number n,

$$
\left(\frac{F_{n+1}}{F_{n}}\right)^{2}=1+2\left(\frac{F_{n-1}}{F_{n}}\right)+\left(\frac{F_{n-1}}{F_{n}}\right)^{2} .
$$

Proof.

$$
\begin{aligned}
\left(\frac{F_{n+1}}{F_{n}}\right)^{2} & =\left(\frac{F_{n}+F_{n-1}}{F_{n}}\right)^{2} \\
& =\left(1+\frac{F_{n-1}}{F_{n}}\right)^{2} \\
\left(\frac{F_{n+1}}{F_{n}}\right)^{2} & =1+2\left(\frac{F_{n-1}}{F_{n}}\right)+\left(\frac{F_{n-1}}{F_{n}}\right)^{2}
\end{aligned}
$$

Lemma 5. For every natural number n,

$$
\left(\frac{F_{n+2}}{F_{n}}\right)^{2}=4+4\left(\frac{F_{n-1}}{F_{n}}\right)+\left(\frac{F_{n-1}}{F_{n}}\right)^{2} .
$$

Proof.

$$
\begin{aligned}
\left(\frac{F_{n+2}}{F_{n}}\right)^{2} & =\left(\frac{2 F_{n}+F_{n-1}}{F_{n}}\right)^{2} \\
& =\left(2+\frac{F_{n-1}}{F_{n}}\right)^{2} \\
& =4+4\left(\frac{F_{n-1}}{F_{n}}\right)+\left(\frac{F_{n-1}}{F_{n}}\right)^{2}
\end{aligned}
$$

Result

In this section we give a proof of the new inequality which is our main result.

Theorem 6. (Main inequality)
For every natural number n,
$2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)\left(\frac{1}{F_{n}^{2}}+\frac{1}{F_{n+1}^{2}}+\frac{1}{F_{n+2}^{2}}\right)^{2}>100$.
Proof.

$$
\begin{aligned}
& 2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)\left(\frac{1}{F_{n}^{2}}+\frac{1}{F_{n+1}^{2}}+\frac{1}{F_{n+2}^{2}}\right)^{2} \\
& =\left(F_{n}^{2}+F_{n+1}^{2}+F_{n+2}^{2}\right)^{2}\left(\frac{1}{F_{n}^{2}}+\frac{1}{F_{n+1}^{2}}+\frac{1}{F_{n+2}^{2}}\right)^{2}
\end{aligned}
$$

(by Lemma 2.)

$$
\begin{aligned}
& =\left(3+\frac{F_{n+1}^{2}+F_{n+2}^{2}}{F_{n}^{2}}+\frac{F_{n}^{2}+F_{n+2}^{2}}{F_{n+1}^{2}}+\frac{F_{n}^{2}+F_{n+1}^{2}}{F_{n+2}^{2}}\right)^{2} \\
& =\left(3+\left(\frac{F_{n+1}}{F_{n}}\right)^{2}+\left(\frac{F_{n+2}}{F_{n}}\right)^{2}+\left(\frac{F_{n}}{F_{n+1}}\right)^{2}+\left(\frac{F_{n+2}}{F_{n+1}}\right)^{2}+\left(\frac{F_{n}}{F_{n+2}}\right)^{2}\right. \\
& \left.\quad+\left(\frac{F_{n+1}}{F_{n+2}}\right)^{2}\right)^{2} \\
& =\left(9+\frac{6 F_{n-1}}{F_{n}}+\frac{2 F_{n}}{F_{n+1}}+2\left(\frac{F_{n-1}}{F_{n}}\right)^{2}+2\left(\frac{F_{n}}{F_{n+1}}\right)^{2}+\left(\frac{F_{n}}{F_{n+2}}\right)^{2}\right. \\
& \left.\quad+\left(\frac{F_{n+1}}{F_{n+2}}\right)^{2}\right)^{2}
\end{aligned}
$$

(by lemma 4-5.)

$$
\begin{aligned}
>\left(10+\frac{6 F_{n-1}}{F_{n}}+\right. & 2\left(\frac{F_{n-1}}{F_{n}}\right)^{2}+2\left(\frac{F_{n}}{F_{n+1}}\right)^{2}+\left(\frac{F_{n}}{F_{n+2}}\right)^{2} \\
& \left.+\left(\frac{F_{n+1}}{F_{n+2}}\right)^{2}\right)^{2}
\end{aligned}
$$

(by lemma 3.)
>100.

Acknowledgements

The authors acknowledge support from the University of South Carolina, Salkehatchie.

References

1 Baitinetu-Giurgiu, D.M. " Elementary problems and solutions." The Fibonacci Quarterly, Vol 50, Num 2 (2012) 180-181.
2 Brousseau, B.A. "Olde Fibonacci Curiosity Shoppe." The Fibonacci Quarterly 10.4 (1972): 441-43.
3 Candido, G. "A Relationship Between the Fourth Powers of the Terms of the Fibonacci Series." Scripta Mathematica xvii No. 3-4 (1951): 230.

4 Melham, R.S. "Ye Olde Fibonacci Curiosity Shoppe Revisited." The Fibonacci Quarterly, Vol 42, Num 2 (2004) 155-160.

