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Fibonacci numbers and Fibonacci sequences play a key role in many areas of mathematics and 
other sciences. Many inequalities satisfied by Fibonacci sequences have been established. In this 
paper we prove a new Fibonacci inequality using Candido's identity. 

 

Introduction 

In this paper, we consider  a problem in [1]. The problem 
posed is to prove that for every natural number n,  
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where ܨ  is the  ݊௧   Fibonacci as defined in the section  
below. 
 
We prove much stronger inequality: 
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Existing identity and inequality 

Definition 1. The  ݊௧  Fibonacci number is defined by  

 
ܨ ൌ 		ିଵܨ  	ିଶܨ	

 
where ܨ ൌ 0, ଵܨ ൌ ଶܨ ൌ 1	ܽ݊݀	݊   .ݎܾ݁݉ݑ݊	݈ܽݎݑݐܽ݊	ܽ	ݏ݅	2
 
Lemma 2. ( Candido’s identity ( [2], [3], [4] ) ) 
For every natural number n,  
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Lemma 3. For every natural number n,  
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Auxillary equations 

In this section we give a proof of some auxillary equations 
that we use to obtain our main result. 

Lemma 4. For every natural number n,  
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Proof. 
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Lemma 5. For every natural number n,  
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Proof. 
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Result 

In this section we give a proof of the new inequality which is 
our main result. 

Theorem 6. (Main inequality)  
For every natural number n, 
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Proof. 
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            (by Lemma 2.) 
 



 

 Journal of the South Carolina Academy of Science, [2013], 11 (2)  |  9 

		ൌ ቆ3 
ାଵܨ
ଶ 	ܨାଶ

ଶ

ଶܨ

ଶܨ 	ܨାଶ

ଶ

ାଵܨ
ଶ 	

ଶܨ 	ܨାଵ
ଶ

ାଶܨ
ଶ 	ቇ

ଶ

	 

 

ൌ ቆ3  ൬
ାଵܨ
ܨ

൰
ଶ

	൬
ାଶܨ
ܨ

൰
ଶ

 ൬
ܨ
ାଵܨ

൰
ଶ

 ൬
ାଶܨ
ାଵܨ

൰
ଶ

 ൬
ܨ
ାଶܨ

൰
ଶ

 ൬
ାଵܨ
ାଶܨ

൰
ଶ

	ቇ
ଶ

	 

 
 

ൌ ቆ9 
ିଵܨ6
ܨ

	
ܨ2
ାଵܨ

 	2 ൬
ିଵܨ
ܨ

൰
ଶ

 	2 ൬
ܨ
ାଵܨ

൰
ଶ

 ൬
ܨ
ାଶܨ

൰
ଶ

 ൬
ାଵܨ
ାଶܨ

൰
ଶ

	ቇ
ଶ

	 

 
(by lemma 4 – 5.) 
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(by lemma 3.) 
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