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Fibonacci numbers and Fibonacci sequences play a key role in many areas of mathematics and
other sciences. Many inequalities satisfied by Fibonacci sequences have been established. In this
paper we prove a new Fibonacci inequality using Candido's identity.

Introduction

In this paper, we consider a problem in [1]. The problem
posed is to prove that for every natural number n,
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where F, is the n'™  Fibonacci as defined in the section

below.

We prove much stronger inequality:
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Existing identity and inequality
Definition 1. The nt" Fibonacci number is defined by
Fn =Fn—1 + Fn—Z
where Fy =0, F; = F, = 1 and n = 2 is a natural number.

Lemma 2. ( Candido’s identity ( [2], [3], [4]))
For every natural number n,

(Fnz +F,f+1+F,%+2)2 =2 (F,{*+F,‘f+1+F,‘f+2).
Lemma 3. For every natural number n,

Fa

Fn+1

=

N| =

Auxillary equations

In this section we give a proof of some auxillary equations
that we use to obtain our main result.

Lemma 4. For every natural number n,
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Lemma 5. For every natural number n,
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Result

In this section we give a proof of the new inequality which is
our main result.

Theorem 6. (Main inequality)
For every natural number n,
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(by Lemma 2.)
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