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Hydrogen-Atom Direct-Entry Mechanism 
into Metal Membranes 

G. Zheng,* B. N. Popov,** and R. E. White** 
D e p a r t m e n t  o f  Chemica l  Engineer ing ,  Univers i ty  o f  S o u t h  Carolina, Columbia,  S o u t h  Carol ina 29208 

ABSTRACT 

The hydrogen-atom direct-entry mechanism is used to explain why the steady-state hydrogen permeation current 
density through a metal membrane is directly proportional to the cathodic current density, i~, and is independent of the 
membrane thickness when io is small. 

Bagotskaya ~ and later Frumkin 2 postulated that hydro- 
gen atoms enter directly into a metal membrane and do not 
go through an intermediate adsorbed state. The mechanism 
they proposed is 

kl 
H ++M+e ~MH~b~ [i] 

k-1 

1 m++M+e - ~ MH~ ~ ~H=+M [2] 

where k~, k 1, k2, and k3 are rate constants. 
Bockris et  al. 3 checked this mechanism by considering 

the following equations 

J ~ = F [ k l ( 1 - ~ ) e  . . . .  ~ - k  1Coe (1-~l)an] [3] 

i~ = toe ~2~ [4] 

D F  
J~ = L -  Co [5] 

where j| is the steady-state permeation current density, ~q is 
the overpotential, a = F/RT, Co is the hydrogen concentra- 
tion directly beneath the cathode surface, C, is the satura- 
tion value of Co, ~ is the transfer coefficient of reaction 1, 
~2 is the transfer coefficient of reaction 2, ic is the cathodic 
current density, D is the hydrogen diffusion coefficient, and 
L is the membrane thickness. Bockris et  aI. 3 used Eq. 3 to 5 
to claim that  the hydrogen permeation current density is 
proportional to the cathodic current density squared 

j~ ~ i :  [6] 

Since no experimental  evidence exists in l i terature to sup- 
port Eq. 6, Bockris et al.3 concluded that the direct entry 
mechanism does not predict the observed results and is 
unable to explain the hydrogen permeation through a 
membrane. 

The hydrogen atom direct mechanism ~'2 is used here to 
explain why the steady-state hydrogen permeation current 
density (j=) is directly proportional to the cathodic current 
density (i~) and is independent of the membrane thickness 
when ic is small. Assuming that the metal  is far from satu- 
ration, then 1 - Co/C, = 1, and if in reaction 1, k ~ is negligi- 
ble to k~, Eq. 3 becomes 

j~ = Fk le  ~1~ [7] 

The ratio of Eq. 7 to 4 is 

j~ Fk l e  . . . . .  [8] 
i o -  toe -"2~ 

and assuming that the overpotential for the electrode (~) 
aplies to both reactions 1 and 2 

j= = i~ F.kl e_r ~2)~ [9] 
~o 
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If al = a2, Eq. 9 shows that j~ is directly proportional to ic, 
which is in agreement with previous experiment work 4-9 
that was done under conditions consistent with the devel- 
opment of Eq. 9. For example, Early 4 reported that j~ 
through palladium membranes is directly proportional to ic 
when io is less than 200 txA/cm 2. Heath s reported the same 
for io less than 22 mA/cm 2. Raczynski 6 and Zacrozymski 
et  aI. 7 demonstrated that  j= ~ io for low values of i~ for hy- 
drogen permeation through iron. Also Evseev 8 reported 
that  j~ ~ ic for iron for values of ic between 5 and 80 mA/cm 2. 

Note that  Eq. 9 shows that j| does not depend on the 
thickness of the metal membrane (L). This is consistent 
with results presented by Hoare and Schuldiner g'~~ and 
Bowker and Piercy ~ for Pd membranes. 

Experimental 
The Devanathan-Stachurski  permeation technique 12 was 

used to investigate the rate of hydrogen permeation 
through a HY-130 steel and through palladium membranes 
with an area of approximately 4 cm 2 with thicknesses of 
0.15 and 0.025 mm, respectively. The permeation experi- 
ments were carried out in a system with two compartments, 
separated by a bipolar membrane made of HY-130 steel or 
palladium. 

The electrolyte on the cathodic side of the cell for the 
HY-130 steel membranes was 1M Na2SO4, 0.4M NaC1, and 
1M H3BO3 and for the palladium membrane was 1N H2SQ. 
Atomic hydrogen permeation transients through a HY-130 
steel membrane for different applied cathodic potentials 
were recorded continuously as a function of time. At the 
beginning of each experiment, the cathodic side of the steel 
membrane was held at a constant potential  of -0.58 V vs. 
SCE. Next, the potential  was stepped to a more negative 
value after the hydrogen permeation current density 
reached a steady-state value. After the permeation stabi- 
lized at an applied potential of about -0.87 V vs. SCE, the 
potential was switched off, and a decay curve was recorded. 
The palladium alloy membrane on the cathodic side of the 
cell was polarized galvanostatically using a low cathodic 
current density in the range of 59.4 to 594.3 aA/cm 2. 

The electrolyte on the anodic side of the cell for a HY-130 
steel membrane was 0.2M NaOH while for the palladium 
membrane it was IN H2SO4. To avoid passivation or disso- 
lution, the anodic side of the HY-130 membrane was elec- 
troplated with a thin layer (0.15 to 0.20 ~m) of palladium. 
The electrodeposition of palladium was carried out ~n an 
electrolyte containing 2 x I0 5M Na2Pd(NOa) 4 using a cur- 
rent density of I09 ~A/cm ~ for 2 h. After the electrolyte was 
drained off, the compartment was washed with deionized 
water and filled with the anodic solution. 

The potential on the anodic side for HY-130 steel mem- 
branes (the side from which the hydrogen emerges) was set 
at -0.3 V vs. a Hg/HgO reference electrode placed in the 
solution in the cell. The permeation rate through a palla- 
dium membrane was measured by setting the potential at a 
fixed value of 0.3 V vs. a SCE. These values of the set poten- 
tials correspond to a practically zero concentration of ab- 
sorbed atomic hydrogen on the anodic surface os the mem- 
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Fig. 1. Atomic hydrogen permeation transients through a HY-130 

steel membrane as a function of time for different applied cathodic 
potentials in a catholyte containing 1M Na2SO4, 0.4M NaCI, and 1M 
H3BO3. The thickness of the membrane was L = 0.15 mm. 
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Fig. 3. Hydrogen permeation transients through a Pd membrane 
obtained at constant cathodic current densities. The thickness of the 
palladium membrane was L = 25 ~m. The catholyte was 1N H2SO4. 

brane.  Prepur i f ied  n i t rogen  was bubb led  th rough  bo th  
compar tmen t s  in order  to keep them :free f rom oxygen  
contamina t ion .  

Results and Discussion 
Atomic hydrogen permeation transients through a HY- 

130 steel membrane as a function of time for different ap- 
plied potentials are shown in Fig. i. The plateaux in Fig. 1 
represent the j~ values for different values of Eo. The corre- 
sponding cathodic current density, ic, was recorded for each 
value of Eo. As expeeted, the permeation current densities 
increased as the applied cathodic potentials and the result- 
ing cathodic current densities were increased. Figure 2, a 
plot  of j~ vs. to, is c lear ly  linear. 

Pe rmea t ion  t rans ients  th rough  a pa l l ad ium m e m b r a n e  
were  ob ta ined  as a func t ion  of appl ied  ca thodic  current  
densit ies,  as shown in Fig. 3. The p l a t eaux  in Fig. 3 repre-  
sent j= values  for the  associa ted  set of io values.  The pe rme-  
at ion current  density, j~, for  pa l l ad ium also increases  l in-  
ear ly  wi th  the  ca thodic  current  density, as shown in Fig. 4. 
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Fig. 2. The steady-state hydrogen permeation current density (i=) 
as a function of the cathodic current density (i<) through the HY-130 
steel membrane. 

Conclusion 
The direct  hydrogen  ent ry  mechan i sm 1,2 was shown to be 

correct  for  HY-]30 steel  and Pd for smal l  va lues  of jc- A 
s imple  express ion (Eq. 9) was deve loped  tha t  showed tha t  
the  hydrogen  pe rmea t ion  current  density, j~, is di rect ly  p ro-  
por t iona l  to the appl ied  ca thodic  current  density, ic, and is 
i ndependen t  of the th ickness  of the meta l  membrane .  This 
express ion was shown to be consis tent  wi th  expe r imen ta l  
da ta  p resen ted  here  and  wi th  da ta  f rom previous  workers .  
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Fig. 4. The steady-state hydrogenpermeation current density (i~) 
as a function of the cathodic current density (i,) through a palladium 
membrane (L = 25 ~m). 
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LIST OF SYMBOLS 
a F/RT, V -~ 
Co hydrogen concentration directly beneath the cathode 

surface, tool cm 3 
Cs saturation value of Co, tool cm -3 
D hydrogen diffusivity, cm 2 s -1 
Ec cathodic potential, V 
F Faraday's constant, 96,487 C (eq) 
ic cathodic current density, A cm -~ 
io exchange current density, A cm -2 
j~ stead_y-state hydrogen permeation current density, 

A cm-- 
k~ absorption constant, mol (cm 2 s) 
k 1 desorption constant, cm s -1 
k3 hydrogen recombination rate constant, mol (cm 2 s) 
L membrane thickness, cm 
R gas constant, 8.3143 J(mol K) -1 
T temperature, K 

Greek 
c~1, ct2 transfer coefficients, dimensionless 

overpotential, V 
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