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Ferromagneticlike Resonance Behavior in Superfluid 3He-8

R. A. %ebb
Argonne ¹tional Laborato~, Argonne, Illinois 60439

(Received 29 June 1977)

Nonlinear cw NMR behavior, similar to that observed on ferromagnets at high rf pow-
ers, has been observed in superfluid He-g using a superconducting quantum interference
device (SQUID) magnetometer in fields of 31, 102, 180, and 308 Oe and at a pressure of
21 bar. It is observed that beyond some threshold value of the transverse II& field the z
component of magnetization anomalously decreases and is followed by a rapid increase
back to the normal resonance curve as the frequency of the 0, field is swept through res-
onance.

Nonlinear cw NMR behavior has been observed
in superfluid 'He-B at a pressure of 21 bar using
a superconducting quantum interference device
(SQUID) in measuring fields of 31, 102, 180, and
308 Oe. SQUID cw NMR directly measures the
decrease in the z component of magnetization,
N „as the frequency of the rf field H„perpen-
dicular to the static field H„ is slowly swept
through resonance. The change in M, is found to
obey the usual Bloch equation for H, fields below
some threshold value. Above this threshold, the
nonlinear behavior manifests itself in an abnor-
mal decrease of M, followed by a sudden increase
of M, back to the normal resonance curve. Both
the magnitude of the jump and the frequency at
which it occurs depend upon H„T/T„and H, .
The value of the II, field at which these nonlinear
effects first occur depends both upon T/T, and

JI,. A similar nonlinear effect has been observed
by Osheroff' during measurements of the trans-
verse absorption spectrum of He-B, although no
detailed investigation of the phenomenon was at-
tempted. This behavior is similar to the NMR
results obtained on ferromagnets at high rf pow-
ers. ' In the ferromagnetic resonance case it has
been shown" that these nonlinear effects arise
from the coupling of spin-wave modes to the uni-
form precession of the magnetization vector.

The adiabatic demagnetization cell used for the
experiments reported here has been described
elsewhere. ' The 'He measured was contained in
a B-mm-i. d. tower located above the main cerium
magnesium nitrate cell. Absolute temperatures
were determined with the aid of the La Jolla
phase diagram. ' For the work reported here, the
calibration of the SQUID magnetometer was de-
termined using pulsed NMR and adiabatic fast
passage at 15 mK. A complete description of the
techniques of SQUID NMR has been given else-
where. '
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FIG. 1. Typical cw NMH traces observed in 3He-&
at a reduced temperature T/T, = 0.922 in 102 Oe at a
pressure of 21 bar. The 8, field used to obtain the
four traces was (1) 2.49x10 Oe; (2) 2.54 x10 Oe;
(3) 3.5 x10 Oe; and (4I 5.93 x10 Oe. The arrows
indicate the direction of sweep.

Some typical examples of the kinds of nonlinear
events that were observed in a static field of 102
Oe are shown in Fig. 1 for a reduced tempera-
ture of T/T, = 0.922. The sweep rate for all four
traces was 0.42 kHz/sec. The first trace, ob-
tained using H, =2.49x10 ' Oe, is an example of
the normal superfluid cw NMR line. The two-
peak resonance curve is a result of the inhomo-
geneity in H, over the sample volume and has the
same shape in the normal phase. The measured
separation between the two peaks was hP = (0.018
+ 0.005)H, and is explained in detail elsewhere
Increasing the II, field a few percent to 2.54
&& 10 ' Oe produces the first nonlinear event at
this temperature and is shown in the second trace
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in Fig. 1. The z component of magnetization ini-
tially decreases more than would be expected for
this H, field. This is followed by a rapid and
nearly discontinuous increase of the magnetiza-
tion back to the normal resonance curve. This
small nonlinear event appears suddenly and the
magnitude of the jump slowly increases with in-
creasing H, field. Sweeping the frequency of the
Hy field in the reverse direction never produces
a nonlinear event but yields the normal resonance
curve. The third trace, H, =3.5&10 ' Oe, is an
example of one large nonlinear event. The tran-
sition from a small jump to a large jump also oc-
curs suddenly, although the value of the H, field
at which this transition first occurs is somewhat
less reproducible than for the onset of the small
jumps. The dashed line is the resonance curve
followed when sweeping in the reverse direction.
The nonlinear portion of the resonance curve is
reversible so long as the jump in magnetization
is not allowed to occur. Both the magnitude of
the large jump and the frequency at which it oc-
curs is nearly independent of the H, field. How-
ever, as the H, field is increased further, there
is yet another sudden transition from one large
jump to two large jumps. The fourth trace in
Fig. 1, obtained for H, =5.93x10 Oe, is an ex-
ample of the two large jumps and is the most fre-
quently observed curve. The dotted curves again
indicate the resonance curve followed when the
direction of the frequency sweep is reversed.
After going through the first jump, but before
the second jump has occurred, one can reverse
the direction of the sweep and follow a curve sim-
ilar to that shown in the third trace. This second
nonlinear curve is also quite stable. For exam-
ple, one can sit at any point on the second level
for many minutes and then retrace the same
curve so long as the normal resonance curve is
not met. Increasing the H, field to 0.12 Oe, the
largest field that could be used in this experi-
ment, does not produce any more than two large
jumps.

Figure 2 shows the value of the H, field for
which the onset of nonlinear behavior occurs as
a function of temperature and static field. Re-
cent theoretical work by I iu and Brinkman' sug-
gests that the nonlinear phenomena observed in
this work may be due to a variation over the sam-
ple volume of the direction of the rotation axis'
m of the B phase. It appears from their work
that nonlinear phenomena can only occur when
the rotation axis ~ is not aligned with the static
field H, . The field and temperature dependence
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FIG. 2. The H, field for which the first nonlinear
event is observed as a function of reduced temperature
at a pressure of 21 bar. The solid curves are a fit to
the data assuming p, =A+B/(1-T/T, )'~'. O, 308 Oe,
A = —0.0128 Oe, pe = 0.0243 Oe; , 180 Oe, A = 0.0210
Oe, B = 0.0121 Oe; 0, 102 Oe, A = —0.0021 0e, & =
0.0076 Oe, g, 310e, data.

of the variation of v in a right circular cylinder
has been studied both theoretically and experi-
mentally by Brinkman et al. ' and arises from a
competition between the field- and wall-orienta-
tion energies. The characteristic healing length
is proportional to H, '(1 —T/T, )"'. This sug-
gests that the H, field for which the first nonlin-
ear event occurs might be estimated to be pro-
portional to the inverse of the healing length and
in particular would predict a square-root singu-
larity as T approaches T,. The solid curves
drawn through the 308-, 180-, and 102-Oe data
displayed in Fig. 2 are of the form H, =A+B/(1

T/T, )"' w-ith the values of A and B being given
in the figure caption. The onset data are consis-
tent with a (1 —T/T, )

"' temperature dependence
but do not firmly establish it. The exact depen-
dence of the H, field at onset on the IIp field can-
not be determined from these data. The spin-
lattice relaxation time T, is different for all
three fields. As would be expected from earlier
work, Tj is nearly proportional to the inverse
of the gradient field, which is proportional to Hp,
and it might need to be considered in the compar-
ison of the onset data at different fields. At T/T,
=0.87 for example, the values of T, for the 308-,
180-, and 102-Oe data was 0.24, 042, and 068
msec, respectively, with only a slight depen-
dence on temperature below 0.99T,. The 31-Oe
data displayed in Fig. 2 behaved differently from
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FIG. 3. The magnitude of the large jumps normalized
to the weak-coupling value of the magnetization of
3He-B as a function of reduced temperature at a pres-
sure of 21 bar. The solid symbols are the highest-fre-
quency jumps. Triagnels are 308-Oe data; circles are
180-Oe data; squares are 102-Oe data. The slopes of
the dashed lines are exactly proportional to the inverse
square of the static field.
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FIG. 4. The reduced frequency at which the jumps
in magnetization occur normalized to the center fre-
quency 0 as a function of reduced temperature at a
pressure of 21 bar. The open symbols are for the
large jumps and the closed symbols are for the first
nonlinear event. Triangles are 308-Oe data; circles
are 180-Oe data; squares are 102-Oe data. The slopes
of dashed lines are exactly proportional to the inverse
square of the static field.

the higher-field data. In the temperature range
T/T, = 0.86-0.93 no cw NMR signal was ever ob-
served. In the temperature range T/T, = 0.93-
0.96, the onset of the nonlinear phenomena tend-
ed to depend upon the history of the II, field, with
the value of the H, field necessary for the onset
of nonlinear behavior being larger when increas-
ing H, than when decreasing it. Above T/T, = 0.96
the onset data were reproducible and independent
of the direction of approach. From the work of
Osheroff et al. ,

" it is likely that the observed be-
havior in 31 Oe is a result of an aligning of the
rotation axis perpendicular to the sample cham-
ber walls.

The cw NMR phenomena observed in this work
can be grouped into two classes of nonlinear
events according to the size of the jump in mag-
netization. The events with small jumps in mag-
netization exhibit little temperature dependence.
There can be as many as four small jumps on a
single sweep. Both the magnitude of the jumps
and the frequencies at which they occur have a
slight linear dependence on the H, field. The
magnitudes of these jumps can be as large as 4%
of the B-phase magnetization, but at any fixed
temperature there is at least a factor-of-2 differ-
ence between the magnitude of the large and small
jumps and frequently a factor of 10 or more.

The behavior of the events with two large jumps
in magnetization is shown in Fig. 3, where the
magnitude of each jump, normalized to the weak-
coupling value of the B-phase magnetization, ' is
plotted as a function of reduced temperature. The
higher-frequency jump is shown as a solid sym-
bol and the lower as an open symbol. The mag-
nitude of the jumps is nearly independent of the
H, field and is temperature independent up to
some temperature, which appears to depend only
on Hp Above this temperature the magnitude of
the jump decreases linearly with increasing tem-
perature initially, and then somewhat faster as
T, is approached. For each value of Hp there is
a temperature above which no large jumps occur
and only the nearly temperature-independent
small jumps are observed. The slopes of the
dashed lines drawn through the data are exactly
proportional to the inverse of the square of the
static field.

The frequency at which the large jumps occur,
normalized to the center line frequency w„ is
shown as a function of temperature and field in
Fig. 4. The two open symbols at each tempera-
ture represent the frequencies at which the two
large jumps occur. These data are remarkably
similar to those displayed in Fig. 3. The solid
symbols are the frequencies at which the first
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nonlinear event occurs. The slopes of the dashed
lines drawn through the data are again exactly in-
versely proportional to the square of the H, field.
There is a slight dependence on the H, field of the
frequency at which the large jumps occur. The
larger II„ the higher the frequency at which the
jump occurs.

The role that the gradient in magnetic field
plays in these nonlinear phenomena cannot be un-
ambiguously determined from the measurements
presented here. However, an estimate of the im-
portance of the gradient field may be made by
comparing the experiments reported here with
those of Ref. 1 in which the gradient was nearly
100 times smaller. Assuming that the nonlinear
events depend primarily upon the magnitude of
AMs/Ma as in the ferromagnetic resonance case,
then the two experiments can be compared by us-
ing the standard relationship" EMs/Ms =y'Il, '
x T,T,. I find, using the value for T, and T, ap-
propriate for the two examples of Ref. 1 in 623
Oe at a reduced temperature T/T, =0.60, that no
nonlinear phenomena were observed for hM s/Me
~ 5x 10 ' while for hM a/M a ~ 2x 10 ' the first non-
linear event was observed. In the present work,
at the lowest temperature and highest field em-
ployed, the onset of nonlinear phenomena began
at hM a/Mn = l. lx 10 '. Although this comparison
is based on only two events, it does suggest that

the only major effect of the gradient field is to
change the values of T, and T, and it does not
play a dominant role in the physics of these in-
teresting and unexplained nonlinear phenomena.

I would like to acknowledge many useful and in-
teresting conversations with Dr. %. F. Brinkman,
Dr. M. Liu, Dr. D. D. Osheroff, and Dr. P. Ku-
mar. This work was performed under the aus-
pices of the U. S. Energy Research and Develop-
ment Administration.
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Ornstein-Zernike Theory of Classical Fluids at Low Density

D. B. Abraham'" and H. Kunz
Laboratoire de I'hysiq'ue 7'bezique, EcoEe I'olytechnique Federale, Lausanne, Switzerland

(Received 26 April 1977)

We show rigorously that for dilute classical systems with finite-range interactions the
pair-correlation function has the form predicted by Ornstein and Zernike.

The Ornstein-Zernike theory of pair-correla-
tion functions is a cornerstone, albeit a heuristic
one, in discussion of fluids and lattice gases out-
side the critical region. " It predicts that the
truncated pair-correlation function for a fluid
u(r, p) should behave asymptotically as

u(r, p)=&exp( &,irl)cosh-2iri/Iri" "',
where A, k„and k, are functions of density and
temperature and d is the dimensionality. In this
Letter we establish the theory rigorously both
for continuum systems with finite-range poten-
tials and for lattice systems under the same con-

ditions, essentially for low densities and high
temperatures. The latter extends results obtained
by transfer-matrix techniques in this region to
non-nearest-neighbor interactions in the transfer
direction. Paes-Leme and Shor have obtained
similar results for lattice gases independently. '
Prior to this work, bounds had been obtained on
the spatial behavior of correlation functions. '
Our results should prove useful in a field-theo-
retic context, ' and more generally in statistical
mechanics. '

The outline of our approach is as follows: We
use the direct correlation function c(r, p) first
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